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ABSTRACT

The authors determine the spectral linear solutions that arise in response to local 3D body forces and heatings
in an idealized environment that turn on and off smoothly but not necessarily slowly over a finite interval in
time. The solutions include impulsive through slowly varying body forcings. The forcings result in both a mean
response, which is typically significantly broadened spatially in one direction, and a gravity wave response,
which allows the fluid to reach this state. The gravity wave field depends on both the spatial attributes of the
source and the forcing duration. The frequency of the wave response is the ‘‘characteristic’’ source frequency
(formed from the source dimensions) if the forcing frequency is greater than the characteristic frequency and
is the forcing frequency otherwise. The radiated gravity waves from zonal forcings have vertical wavelengths,
which are approximately twice the vertical extent of the forcing, and horizontal wavelengths, which are at least
twice the horizontal extent of the forcing. Wave excitation is increasingly inefficient when the forcing frequency
is smaller than the characteristic source frequency. In addition, the mean responses are not confined to the source
region; in general, significant spatial broadening of the mean responses occurs. If the source’s frequency is high
and low, the responses are broadened horizontally and vertically, respectively, with the amount depending on
the characteristic scales of the source. If the body forcing is in the eastward direction, then much or all of the
ensuing zonal mean wind is eastward. However, for many realistic forcing scenarios, a large percentage of the
ensuing zonal wind flows westward. These countersigned jets are displaced meridionally about the source. Thus,
spatially confined body forcings create both gravity wave and mean responses if the forcings are fast enough;
very slowly varying forcings create only mean responses.

1. Introduction

Body forcing due to gravity wave dissipation and
momentum flux divergence is now understood to con-
tribute to mean atmospheric structures at many altitudes.
Orographic gravity wave flux divergence contributes to
systematic zonal wind reductions and tropospheric jet
closure in the summer lower stratosphere, where dis-
sipation is enhanced by light winds and high stability
(Palmer et al. 1986; McFarlane 1987; VanZandt and
Fritts 1989). In the middle and upper stratosphere, flux
divergence accompanying nonstationary gravity waves
appears to play an accelerative role at lower and middle
latitudes (Alexander and Rosenlof 1996; Alexander
1997) and to contribute to a separated polar winter stra-
topause (Hitchman et al. 1989). Gravity wave flux di-
vergence appears to have its largest (known) influences,
however, in the mesosphere and lower thermosphere,
where it causes zonal torques of ;100 m s21 day21,
closure of the mesospheric jets, an induced residual cir-
culation from the summer to winter hemisphere, and a
corresponding reversal of the mean meridional temper-
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ature gradient near the mesopause (Nastrom et al. 1982;
Holton 1982, 1983; Dunkerton 1982; Garcia 1987). In-
deed, localized gravity wave forcing appears to account
for many of the unique characteristics of the summer
mesopause region (McIntyre 1989; Garcia 1989; Fritts
and Luo 1995; Luo et al. 1995). The general principles
have been addressed theoretically (McIntyre 1989;
Dunkerton 1989), leading to the concept of ‘‘downward
control’’ of the meridional circulation by wave Elias-
sen–Palm (EP) flux divergence applied at greater alti-
tudes (Haynes et al. 1991; Garcia and Boville 1994).

Despite our current qualitative understanding of grav-
ity wave forcing in the lower and middle atmosphere,
we know virtually nothing of its role at thermospheric
altitudes. Nevertheless, we might expect that the pos-
sible effects may be large because of the significant
mean fluxes at lower thermospheric altitudes, the prop-
agation and filtering characteristics of gravity waves,
and the implications of ‘‘downward control’’ at these
altitudes. Indeed, there is some evidence that gravity
waves generated by convection and orography propa-
gate to very high altitudes (Taylor and Hapgood 1988;
Kelley 1997). Other processes also induce local body
forces at various altitudes. Tropospheric convection con-
tributes heat and vertical momentum sources, and un-
balanced flows undergo adjustment, while Joule heating,
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auroral precipitation, and ion drag are significant sourc-
es at higher altitudes.

At present, we have an incomplete understanding of
the role of spatial and temporal variability of gravity
wave flux divergence in radiating additional gravity
waves. Studies have been performed with localized two-
or three-dimensional (2D or 3D) initial conditions and
body forcings; however, the momentum was assumed
to be deposited either impulsely in time (i.e., instanta-
neously at t 5 0) or as a step function in time (i.e.,
turns on instantaneously at t 5 0 and turns off instan-
taneously at t 5 s) (Dickinson 1969; Blumen 1972;
Walterscheid and Boucher 1984; Zhu and Holton 1987;
Fritts and Luo 1992; Luo and Fritts 1993; Bühler et al.
1999). While illustrative and useful in describing the
mean and oscillatory responses for certain types of body
forcings, these studies do not describe the general re-
sponses to realistic atmospheric body forcings. For ex-
ample, a recent 2D simulation shows that when waves
generated by tropospheric convection break in the me-
sosphere, zonal momentum is deposited with a com-
plicated temporal evolution, which includes both low-
and high-frequency temporal components (Holton and
Alexander 1999). In addition, Holton and Alexander
(1999) and Satomura and Sato (1999) find that second-
ary waves are generated and radiate away from simu-
lated wave-breaking regions, which may be due in part
to the momentum deposition process described herein.
Toward this end, we investigate in this paper body forc-
ings that evolve as sin2(. . . t) over a finite interval, so
that a linear superposition of these solutions can ap-
proximate a complicated, temporally evolving body
forcing. Because the forcing turns on and off smoothly,
it more realistically mimics an atmospheric wave-dis-
sipation event and eliminates any unrealistic oscillatory
responses that result from the instantaneous turn on and
off of the step function forcings. Sensitivity studies with
differing forcing frequencies result in a quantitative un-
derstanding of the amplitudes and wavelengths of the
radiated gravity waves from differing temporal fre-
quency components. Therefore, the present work illu-
minates the adjustment process accompanying local
body forcing in the atmosphere more realistically and
in more detail than previously described.

We are interested here in describing the characteristics
of radiated gravity waves and mean responses to general
body forcings (e.g., wave breaking, ion drag, unbal-
anced flows undergoing adjustment, etc.). Perhaps the
most important body forcing in the middle atmosphere
is due to wave breaking. We parameterize the deposition
of momentum from a wave-dissipation event as a body
forcing with spatial and temporal scales imposed by the
source, filtering, and interaction processes that control
gravity wave momentum transport with altitude. This
involves an assessment of both the characteristic wave
scales or frequencies and the extent and structure of the
response in space and time. In the case of orography,
isolated convection, or frontal systems, typical wave

scales and frequencies are about tens to hundreds of
kilometers and tens of minutes to hours, while a wave
packet extent may increase from about tens of kilo-
meters near the source to hundreds of kilometers at
stratospheric altitudes (Durran and Klemp 1987; Gall et
al. 1988; Nastrom and Fritts 1992; Fritts and Nastrom
1992; Fovell et al. 1992; Alexander et al. 1995; Alex-
ander 1996). High-frequency waves account for a large
part of momentum transport (and the higher-frequency
variability of the body forcing) at greater altitudes, while
characteristic frequencies do not vary much, though the
spatial scales likely increase with altitude (Fritts and
VanZandt 1993). Influences of filtering and wave–wave
interaction processes at higher altitudes are more dif-
ficult to guess. Nevertheless, time series of velocity and
temperature data typically show that wave trains last for
;3 to 10 cycles, suggesting that body forces extend
about hundreds of kilometers here as well. Timescales
for such forcing may also be imposed by filtering con-
ditions accompanying the larger-amplitude tidal features
(Fritts and Vincent 1987), which contribute to variable
momentum fluxes that may be much larger than mean
values. In this case, typical depth scales of the forcing
are ;10 to 20 km, with corresponding timescales of a
few hours. Forcing by lower-frequency gravity waves
also surely occurs, but this forcing is clearly distributed
over larger spatial domains, occupies longer intervals
of time, and almost certainly involves much smaller
body forces due to the smaller vertical group and per-
turbation velocities of such motions.

In order to characterize the duration of the body forcing,
we note that the forcing cannot occur on timescales too
much shorter than the characteristic period of the wave
field (which controls the rate of vertical momentum flux
and the timescale for wave dissipation). And it is not likely
to occur on timescales much less than the duration of the
wave packet as a whole. Thus, given that typical wave
packets exhibit a few to a few tens of oscillations in middle
atmosphere measurements and that the intrinsic wave pe-
riods accounting for the majority of gravity wave mo-
mentum flux are about an hour or less, we assume that
typical forcing intervals occupy ;1 to 10 h.

Although we are primarily interested in describing the
scales, frequencies, and amplitudes of gravity waves ra-
diated from atmospheric body forcings, we will also in-
vestigate the mean responses to these body forcings, as
they are obtained ‘‘for free’’ in our spectral solutions.
These mean responses are due solely to the effects of the
body forcing and occur whether or not gravity waves are
excited from the forcing. Because our solutions are derived
from the linear equations, wave-mean interactions and oth-
er nonlinear effects will not be considered here. Our goal
in this paper is to use analytic techniques to explore the
ramifications of body forces on the mean and radiated
gravity wave responses due to gravity wave momentum
flux divergence that are localized both spatially and tem-
porally. Our primary motivations include 1) the consid-
erable variability of gravity wave momentum fluxes in
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FIG. 1. Gravity wave plus mean responses that result from a longitudinally symmetric monopole zonal body
forcing with sy 5 20 km, sz 5 1 km, n 5 1, and s 5 1 h. For this source, tc 5 1.7 h so that â . vc. The
velocity vectors at t 5 1, 3, and 12 h are shown in (a), (b), and (c), respectively. The body forcing region is
shaded at the .10% level. The domain is increased in (c). The dash lines indicate the angles sin21(vc/N ) 5
2.98 from the source center, while the dash-dot-dot-dot lines indicate the angles sin21(â/N ) 5 5.08 from the
source center. For this illustration, Ny 5 1024, Nz 5 256. This figure does not depend on the forcing amplitude
as long as the linear approximation is satisfied (true for all illustrations). This is because both u and w scale
as u0.
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TABLE 1. Symbols and notation.

Fx(x ), Fy(x),
Fz(x)

Body force in x, y, and z directions,
respectively

J Heat source
Fz External (vertical) vorticity forcing ]Fy/]x 2

]Fx/]y
Fd External divergence forcing ]Fx/]x 1 ]Fy/]y 1

]Fz/]z
ũ, F̃x, . . . Fourier transform of u, Fx (x), . . .

. . .u, ũ , E, Mean (averaged in time) u, ũ, E, . . .
F (t) Temporal evolution of forcing (i.e., body force

and heating)
s Total forcing duration
â Forcing frequency 2pn/s
n Number of cycles in forcing
u0 Amplitude of zonal forcing
sx, sy, sz Half-widths of the source in x, y, and z, respec-

tively
kc, lc, mc Characteristic wavenumbers of the source, kc 5

s , etc.21
x

k Characteristic horizontal wavenumber, kHc 5
Ïk 1 l2 2

c c

R Rossby deformation radius szN/ f
vc Characteristic source frequency, vc 5 f {[1 1

(kR)2]/[1 1 (szk)2]}1/2

S sinvt 1 sinv (s 2 t)
C cosvt 2 cosv(s 2 t)
Dx, Dy, Dz Half-widths of broadened mean responses in x,

y, and z, respectively

space and time, 2) the likely importance of the variable
component(s) of this forcing in both mean forcing and
additional gravity wave excitation at larger scales of mo-
tion, and 3) the potential that these larger-scale radiated
gravity waves may propagate to much greater altitudes
and contribute to presently unknown effects because of
their larger scales and phase speeds.

We organize this paper as follows. We obtain formal
solutions describing the linear response to local, time-
dependent body forces and heatings in an unsheared
environment with constant buoyancy frequency in sec-
tions 2 and 3. Section 4 shows the radiated gravity wave
spectra for various longitudinally symmetric body forc-
ings. Section 5 illustrates some post forcing mean re-
sponses to 2D and 3D body forces. Section 6 contains
a summary and discussion of our results.

2. Equations and potential vorticity

a. Linear equations with local body forcing

We consider a 3D, local body forcing of the atmo-
sphere, which is created by gravity wave dissipation
processes, ion drag, adjustment to unbalanced flows, etc.
The dissipation process gives rise to a vertical wave
momentum flux divergence or EP flux divergence,
which acts on the fluid as a zonal body force (Andrews
et al. 1987). Meridional and vertical body forcing can
also occur for waves generated, for example, from con-
vective systems, mountains having nonlongitudinal
alignments, or for waves that are filtered by lower-fre-
quency or mean motions. Heat may be deposited

through wave dissipation or another process and will
also be considered as a source term in our derivation.
We assume that the forcing amplitudes are small (so that
wave–mean flow and wave–wave interactions can be
neglected), that the vertical extent of this force is smaller
than a density scale height (assumed to be H . 7 km),
and that the Mach number is less than one. We also
assume that the background atmosphere is isothermal
and unsheared and that it is inviscid, since the scales of
the forcing, wave responses, and mean responses we are
considering are much larger than the scale at which
diffusion is operative. Our goal is to provide simple and
insightful solutions to aid in understanding the gener-
ation of the mean and gravity wave responses in an
idealized background but not the propagation and/or
dissipation of these responses. (Hereafter, ‘‘radiated
gravity waves’’ or ‘‘gravity wave responses’’ refer to
the gravity waves created by the body forcing). The 3D
linear,1 Boussinesq, incompressible, f -plane equations
that describe this situation are

]u 1 ]p9
1 2 fy 5 F (x)F (t), (2.1)x]t r ]x

]y 1 ]p9
1 1 fu 5 F (x)F (t), (2.2)y]t r ]y

]w 1 ]p9 g
1 2 u9 5 F (x)F (t), (2.3)z]t r ]z u

2]u9 uN u
1 w 5 J(x)F (t), (2.4)

]t g g

]u ]y ]w
1 1 5 0, (2.5)

]x ]y ]z

where N is the buoyancy frequency; u, y, and w are the
zonal, meridional, and vertical velocities, respectively;
u9 is the perturbation potential temperature; p9 is the
perturbation pressure; the overlines denote the mean val-
ues; and and are the constant background potentialu r
temperature and density, respectively. We illustrate our
solutions with upper mesosphere, midlatitude values of
N 5 2 3 1022 s21, f 5 1 3 1024 s21, 5 10 241 K,u
and g 5 9.53 m s22, although our theory is applicable
throughout the atmosphere. The ‘‘interval’’ body forc-
ing/heating has frequency â, temporal evolution F (t) }
sin2(ât/2) for t 5 [0, s], and F 5 0 for t $ s. Both F
and dF /dt are continuous for t $ 0. Additionally, the
spatial distributions are Fx(x), Fy(x), Fz(x), and J(x)
(hereafter called ‘‘sources’’). Table 1 shows some im-
portant symbols used in this paper.

Where rotation is important, the response of the fluid

1 Appendix A contains crude estimates as to how small a zonal
body forcing must be in order to neglect the nonlinear wave–wave
and wave-mean terms. Vadas et al. 2001, (unpublished manuscript)
contains a better estimate as to when these nonlinear terms can be
neglected. It is found that nonlinear terms are generally only impor-
tant when compressible effects are important as well.
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FIG. 2. Same as in Fig. 1 but for the much longer forcing duration of s 5 10 h. Here, â K vc. The dash
lines indicate the angles sin21(vc/N ) 5 2.98, while the dash-dot-dot-dot lines indicate the angles sin21(â/N )
5 0.58.

TABLE 2. Temporal variability used to generate solid lines in Fig. 7.

m0 (m s21)
s (h)
n
t0 (h)
s/n (min)

0.05
10.0

1
0.0

600.0

0.13
5.0
1
0.5

300.0

0.05
7.0
4
1.0

105.0

0.03
8.0
2
1.0

240.0

0.14
7.0
3
1.0

140.0

0.20
9.0
3
0.5

180.0

0.20
10.0

5
0.0

120.0

0.10
10.0
10
0.0

60.0

0.07
10.0
12
0.0

50.0

0.03
10.0
20
0.0

30.0
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FIG. 3. The Newtonian ball-and-block setup.

TABLE 3. Spatial broadening of postforcing mean responses from zonal forces.

.2 2Ïk vc c

broadens
in

Monopole

mc f
z

lcN
y

kcN
x

Dipole-in-x

mc f
z

lcN
y

kcN
x

Dipole-in-y

mc f
z

lcN
y

kcN
x

Dipole-in-z

mc f
z

lcN
y

kcN
x

u
y
u9

u
u
u

—
u
u

u
u
u

u
u
u

—
u
u

u
—
u

u
u
u

—
—
—

u
u
u

u
u
—

—
u
u

u
u
u

to a body force is the geostrophic adjustment process, first
studied by Rossby (1936, 1937, 1938), whereby a balanced
mean state is attained through the radiation of nongeos-
trophic gravity waves. This process has been studied from
initial conditions, impulsive forcing, and temporal step
function forcing (Dickinson 1969; Blumen 1972; Zhu and
Holton 1987; Fritts and Luo 1992; Luo and Fritts 1993;
Bühler et al. 1999). Since F (t) turns on and off in a smooth
manner for the forcings in this paper, the solutions derived
herein are likely more realistic than the solutions obtained
by Zhu and Holton (1987) (which were derived with a
temporal step function body forcing) because our solutions
do not contain an excess of gravity waves that result from
the discontinuous turn on and off of the body forcing (see
section 3e). In addition, the solutions derived here will
describe the characteristic frequencies and scales of ra-
diated gravity waves better than those from the impulsive
solutions by Fritts and Luo (1992) and Luo and Fritts
(1993) due to the temporal variability present in real mid-
dle atmosphere wave-dissipation processes. Finally, the
solutions derived herein generalize previous solutions in
that they contain the gravity wave and mean responses
from vertical and horizontal body forcings as well as from
heatings.

b. Induced potential vorticity

The potential vorticity is conserved in geostrophic ad-
justment processes for which initial conditions are spec-
ified (Gill 1982). Zhu and Holton (1987) generalized this

concept to include external divergence and vorticity forc-
ings. Following them, Eqs. (2.1)–(2.5) become

]z f ]Ju 5 F 1 F , (2.6)z 21 2]t N ]z

where Fz 5 ]Fy/]x 2 ]Fx/]y is the external (vertical)
vorticity forcing,

f g ]u9
z 5 z 1 (2.7)u 2N u ]z

is the induced potential vorticity,2 and z 5 ]y/]x 2 ]u/
]y is the fluid vorticity. In the absence of forcing and
dissipation, the potential vorticity is conserved in time.
The time integration of the vorticity forcing and heating
gives the steady geostrophic mode. Using Eq. (2.6), the
induced potential vorticity at time t is

tf ]J
z (t) 5 z (0) 1 F 1 F (t9) dt9. (2.8)u u z E21 2N ]z 0

For ‘‘equal-momentum forcings’’ (which we define here
to be forcings for which F (t9) dt9 5 1, where F (t)s#0

5 0 for t $ s) and for a given spatial source, the
postforcing (i.e., t $ s) induced potential vorticity does
not depend on the details of the temporal variability
contained in the function F (t); the shape, amplitudes,
and interval length of F (t) do not influence the post-
forcing steady mean response. For a given source then,
the step function in time forcing (see section 3e) and
the sin2(. . . t) forcing with any duration length [see Eq.
(3.5); includes an impulsive forcing] both create the
same postforcing mean response.

3. Interval body forcing solution

a. Solution methods

We expand u, y, w, p9, u9, Fx, Fy, Fz, and J in a
Fourier series,3 for example,

u(x, y, z, t)

1
2ikx2ily2imz5 e ũ(k, l, m, t) dk dl dm, (3.1)EEE3(2p)

2 Defining f 5 p9/ , setting Fz 5 J 5 0, H → `, and neglectingr
the vertical acceleration, we recover Eq. (24) in Zhu and Holton
(1987), zu 5 z 1 ffzz/N 2.

3 All integrals not explicitly marked are evaluated from 2` to `.
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FIG. 4. Gravity wave spectra in variance content form from longitudinally symmetric monopole zonal
body forcings with sy 5 20 km, sz 5 1 km, n 5 1, and u0 5 1 m s21. The solid, dash, and dash-dot lines
are for s 5 0.1 h, s 5 3 h, and s 5 10 h, respectively. The dotted lines in (b)–(f) are located at v 5 vc,
ly 5 9sy, lz 5 9sz, cy 5 vc9sy/2p, and cz 5 vc9sz/2p, respectively. The solid lines are the spectra for
essentially impulsive forcings. For these illustrations, t 5 s and Ny 5 Nz 5 1024.

where ‘‘;’’ denotes the Fourier transform of the variable.
We then take the Laplace transform of the equations (Abra-
mowitz and Stegun 1972), then solve them algebraically.
The Laplace transform of w̃(t), denoted Lw̃(t), is

A s 1 B A s 1 BI I F FL 5 1 L (3.2)w̃(t) F2 2 2 2s 1 v s 1 v

where the Laplace transform of F (t) is LF, the total

wavenumber is k 5 (k, l, m), k2 5 k2 1 l2 1 m2, the
horizontal wavenumber squared is 5 k2 1 l2, and2kH

the wave frequency v is

2 2 2 2(k N 1 m f )H2v 5 . (3.3)
2k

The first term in Eq. (3.2) incorporates the initial condi-
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tions [see Eq. (B6) and appendix B], while the last term
incorporates the interval body forcing and heating with

˜2˜ ˜ imfFimF k J zd H˜A 5 F 2 , B 5 2 , (3.4)F z F2 2 2k k k

where Fd 5 ]Fx/]x 1 ]Fy/]y 1 ]Fz/]z is the external
divergence forcing.

b. Spectral solutions

As discussed previously, F (t) turns on and off
smoothly (but potentially quickly):

12 (1 2 cosât), for 0 # t # s,
F (t) 5 2 (3.5)

s 
0, for t $ s.

The function F is an equal-momentum forcing. The
‘‘forcing frequency’’ â is

â [ 2pn/s, (3.6)

the ‘‘interval frequency’’ is 2p/s, and the number of
forcing cycles is a positive integer, n 5 1, 2, 3, . . . . If
n 5 1, then the interval length s equals the forcing
period 2p/â. An impulsive forcing is a special case of
this more general forcing and is obtained exactly by
setting n 5 1 and s 5 0 in Eq. (3.5). We take the inverse
Laplace transform of Eq. (3.2) and solve.4,5 Defining

1
D 5 , (3.7)

2 2 2sv (â 2 v )

the solution during the forcing (i.e., when 0 # t # s)
for â ± v is

˜ilF sinât mz
ũ(t) 5 2 t 2 2 (l fB t 1 l fA 1 kB )F F F2 2 21 2sk â sv kH H

Dm lfBF2 2 2 22 (l fA 1 kB )(v cosât 2 â cosvt) 1 v 2 kâA sinât 1 â (kvA 2 l fB /v) sinvt , (3.8)F F F F F2 5 1 2 6k âH

˜ikF sinât mz
ỹ (t) 5 t 2 1 (kfB t 1 kfA 2 lB )F F F2 2 21 2sk â sv kH H

Dm kfBF2 2 2 21 (kfA 2 lB )(v cosât 2 â cosvt) 1 v 1 lâA sinât 2 â (kfB /v 1 lvA ) sinvt , (3.9)F F F F F2 5 1 2 6k âH

BF 2 2w̃(t) 5 1 D{A âv(â sinvt 2 v sinât) 1 B (v cosât 2 â cosvt)}, (3.10)F F2sv

2J̃ sinât N
Q̃(t) 5 t 2 2 (B t 1 A )F F21 2s â sv

2 2 2 2 21 2 212 N D{A (v cosât 2 â cosvt) 1 B (v â sinât 2 â v sinvt)}, (3.11)F F

2˜i J sinât N
P̃(t) 5 t 2 2 (B t 1 A )F F21 2[ ]m s â sv

iD
2 2 2 2 2 22 {A [v (N 2 â ) cosât 2 â (N 2 v ) cosvt]Fm

2 21 2 2 2 21 2 21 B [v â (N 2 â ) sinât 2 â v (N 2 v ) sinvt]}, (3.12)F

and the postforcing solution (i.e., when t $ s) for â ± v is

2 ˜ ˜2ilN F 2 mlfJz
ũ(t) 5

2 2k v

2Dmâ l fBF2 kvA 2 S 2 (l fA 1 kB )C ,F F F2 51 2 6k vH

(3.13)

2 ˜ ˜ikN F 1 mkfJz
ỹ (t) 5

2 2k v

2Dmâ kfBF2 (kfA 2 lB )C 1 1 lvA S ,F F F2 5 1 2 6k vH

(3.14)

4 It can be shown that Eqs. (3.8)–(3.17) are neither singular nor
enhanced at v 5 â.

5 The special case solutions are given in appendix C.
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2w̃(t) 5 {Dâ (A vS 2 B C )}, (3.15)F F

2 ˜ ˜mf (iN F 1 mfJ )z
Q̃(t) 5

2 2k v

B SF2 21 DN â A C 1 , (3.16)F5 6v

2 ˜ ˜i f (iN F 1 mfJ )z
P̃(t) 5

2 2k v

2 2 2iDâ (N 2 v ) B SF1 A C 1 , (3.17)F5 6m v

where P [ p9/ , Q [ gu9/ , S [ sinvt 1 sinv(s 2r u
t), and C [ cosvt 2 cosv(s 2 t). Equations (3.13)–
(3.17) reduce to Eqs. (14a)–(17b) of Luo and Fritts
(1993) for an impulsive, hydrostatic, zonal body forcing
(i.e., setting s 5 0, n 5 1, k2 . m2, v2 K N 2, and F̃y

5 F̃z 5 J̃ 5 0). The constant amplitude results are
obtained by multiplying Eqs. (3.8)–(3.17) by s.

In general, the body/thermal forcing causes an ad-
justment process to occur. This process creates a radiated
gravity wave field [curly brackets in Eqs. (3.13)–(3.17)
with spectral components proportional to the oscillatory
terms S or C] and forces a steady (possibly geostrophic)
mean response [all other terms in Eqs. (3.13)–(3.17)].
Here, the ‘‘mean’’ response is defined as the postforcing
response due to the time-independent spectral compo-
nents of the solution. Upon taking the inverse Fourier
transform, these time-independent spectral components
are also time-independent in physical space and make
up the steady response after the gravity waves have
radiated away apart from the inertial oscillations. This
mean response is created entirely by the forcing, since
wave–mean flow interactions have been neglected.

In special cases, body forcing results in an insignif-
icant mean response. For example, near the equator and
in other circumstances in which f can be neglected, the
mean response is small when a zonal body forcing varies
negligibly in the meridional direction. If f 5 lc 5 l 5
F̃y 5 J̃ 5 0, then there will be no local mean response.
However, weak ‘‘waves’’ with zero frequency and no
horizontal structure (i.e., 5 0) are created and func-2kH

tion as nonlocal mean flows. In this situation, even
though there are no Coriolis torques, high-frequency
gravity waves are created abundantly from 3D local
zonal body forcings (Vadas et al. 2001, unpublished
manuscript).

We denote the fast-forcing (or short interval) limit to
be vs K 1. In this limit, S 5 vs cosvt and C 5 2vs
sinvt, and the postforcing gravity wave amplitudes are
independent of s and â. These fast-forcing solutions are
equivalent to the impulsive solutions when s 5 0 and
give nearly the same solutions as long as vcs K 1.

We denote the slow-forcing limit to be â K v. In
this limit, the postforcing gravity wave amplitudes are
greatly reduced because â2/(â2 2 v2) is small. This

occurs because there is coherent cancellation between
gravity waves with frequencies larger than the forcing
frequency. For a given source then, we expect very
strong damping of gravity wave amplitudes with fre-
quencies larger than the forcing frequency. In addition,
S and C both equal zero when v 5 ân/n or vs 5 2pn,
where n 5 1, 2, 3, . . . is a positive integer. (Note that
this cannot occur in the fast-forcing limit.) Thus, except
when n 5 n, gravity waves with these particular fre-
quencies will have zero amplitude because of destruc-
tive interference from waves created when the forcing
turns on and off. These cancellations are averaged out
for more realistic temporal distributions built up of
many forcings with differing forcing frequencies.

c. Source distributions

Our solutions encompass the response from horizon-
tal and vertical forcings as well as heatings. In general,
horizontal and vertical body forces and heatings will
accompany mesospheric wave breaking. Meridional
forcing can also occur from tidal filtering. The illustra-
tions in this paper, however, are obtained solely from
zonal body forcings. We focus on zonal forcings because
waves that break in the mesosphere are preferentially
filtered zonally in the stratosphere and lower meso-
sphere, thereby creating primarily zonal momentum flux
divergences.

Our choices for the scales and geometries of canonical
body forcings in this study are motivated by our knowl-
edge of the characteristic scales of wave–wave and
wave–mean flow interactions in the mesosphere (based
on current measurements and model studies cited
above). The typical vertical scales of such interactions
are ;10 km, while horizontal scales are a few tens to
hundreds of kilometers. The body forcing accompany-
ing dissipation within a single wave packet would likely
have a monopole structure spatially, while gravity
wave–tidal interactions imposing variable flux diver-
gence in height would imply a dipole body forcing hav-
ing the characteristic vertical scale of the tidal modu-
lation (;10 to 15 km between opposing maxima). In a
limited way, we also consider the consequences of a
dipole distribution of body forcing in latitude, assuming
that latitudinal variations in wave sources or filtering
conditions may imprint these structures at greater alti-
tudes. Examples of such include gravity wave excitation
with opposite directions of propagation northward and
southward of a significant tropospheric low pressure
system or differential filtering of the gravity wave spec-
trum by a latitudinally varying tidal or planetary wave
velocity field. In these cases, we expect that the scale
of the latitudinal dipole would be ;1000 km or more
substantially larger than the vertical variations imposed
by these same motions. We also consider the dipole-in-
longitude distribution for similar reasons.

The spatial distributions of sources representing these
choices are
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i53 2(x 2 x )i i0F (x) 5 u exp 2Ox 0 25 1 262si51 xi

1, monopole,
3 (3.18)5(x 2 x )/s , dipole in x ,i i0 x ii

where x 5 (x, y, z), x0 5 (x0, y0, z0), and s is thexi

Gaussian half-width in the xi direction. (The half-width
is defined as the length whereby the function decreases
to e21/2 of its maximum value.) The monopole source
is either positive or negative, while the dipole sources
have equally sized positive and negative regions ori-
ented in x, y, or z. The Fourier transform of Fx(x) is

3/2 ik ·x˜ 0F 5 u (2p) s s s ex 0 x y z

2 2 2 2 2 23 {exp(2[k s 1 l s 1 m s ]/2)}x y z

1, monopole,
3 (3.19)5ik s , dipole in x .i x ii

These distributions all have ‘‘characteristic’’ wave-
numbers of

k [ 1/s , l [ 1/s , m [ 1/s ,c x c y c z (3.20)

where the subscript ‘‘c’’ refers to characteristic. Using
Eq. (3.3), we define the characteristic source frequency
to be the frequency of a gravity wave associated with
these wavenumbers:

1/222 22 2 22 2(s 1 s )N 1 s fx y z
v 5c 22 22 22[ ]s 1 s 1 sx y z

1/2
21 1 (kR)

5 f , (3.21)
2[ ]1 1 (s k)z

where k [ k 5 ( 1 )1/2 is the characteristic22 22s sHC x y

horizontal wavenumber and R [ N/mcf 5 szN/ f is the
Rossby deformation radius. The characteristic source
period is defined as

t 5 2p/v .c c (3.22)

The shallower (deeper) the source, the lower (higher)
the characteristic frequency. We refer to body forces
with vc k f (or kR k 1) and vc . f (or kR K 1) as
being ‘‘high’’ and ‘‘low’’ frequency sources, respec-
tively.

d. Illustrations of radiated gravity waves from body
forcings with differing intervals

We illustrate our solutions for a longitudinally sym-
metric, monopole, zonal body force with a 1-h forcing
interval and one cycle.6 This source is roughly 4.5 km

6 For all of the illustrations in this paper, Nx, Ny, and Nz are the
number of grid points in the x, y, and z directions, respectively, and
the gridpoint spacings are dx 5 sx/2, dy 5 sy/2, and dz 5 sz/2.
Because a monopole body force is spanned in the xi direction by
4.5s a 2D (3D) monopole source is well-represented here, with 81,xi

(729) grid points within its source area.

deep and 90 km wide. (However, because the solutions
are Boussinesq, spatially scaled results hold for all other
monopole zonal forcings with the same aspect ratio, sy/
sz 5 20.) Figure 1 shows the solution at various times.
The source region exhibits primarily near-inertial and
inertial oscillations, and high-frequency gravity waves
are observed radiating away in Fig. 1a. This source has
the characteristic frequency vc 5 1.0 3 1023 s21 and
characteristic source period tc 5 1.7 h, while the forcing
frequency is â 5 2p/(1 h) 5 1.7 3 1023 s21. Because
the interval is shorter than the characteristic period, the
radiation pattern observed is approximately that which
would be observed from a purely impulsive forcing. The
dash lines show the direction waves with v 5 vc prop-
agate, while the dash-dot-dot-dot lines show the direc-
tion waves with v 5 â propagate. It is clear that virtually
all of the radiated gravity waves have frequencies less
than or equal to the characteristic source frequency.

Figure 2 shows the solution for the same source but
with a 10-h forcing interval. Because the forcing fre-
quency is much smaller than the characteristic source
frequency, this forcing is a slow forcing. As shown in
section 2b, the mean response here is identical to the
mean response for the body forcing in Fig. 1 (see Fig.
10a for the mean response). However, at t 5 3 h, gravity
waves with v . vc (i.e., those following the dash line)
are not observed as they were in Fig. 1 at this time. The
radiation pattern at t 5 12 h shows clearly that gravity
waves with frequencies greater than the forcing fre-
quency are virtually absent. Thus, nearly all of the ra-
diated gravity waves have frequencies less than or equal
to the forcing frequency.

e. Step function in time

If we instead use a step function in the temporal dis-
tribution, F (t) 5 1/s for 0 # t # s and 0 otherwise,
then the postforcing vertical velocity is

1
w̃(t) 5 (A vS 2 B C ). (3.23)F F2v s

As noted by Zhu and Holton (1987), because the gravity
wave amplitudes are proportional to s21, longer forc-
ings excite smaller-amplitude gravity waves. Compare
Eq. (3.23) to Eq. (3.15) and note that all of the post-
forcing solutions are derived from w̃(t). The amplitudes
of the radiated gravity waves for the more realistic tem-
poral forcing represented by Eq. (3.5) is reduced by â2/
(â2 2 v2) from the amplitudes derived from the step
function in time forcing.7 This factor is approximately
equal to 1 for fast forcings but is much less than 1 for
slow forcings. The step function in time forcing there-
fore gives the same solution for fast forcings but over-
estimates the amplitudes of gravity waves for slow forc-

7 For the step function forcing, gravity wave amplitudes are 0 when
vs 5 2pn for any integer n.
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ings with vc k â (see Fig. 9). For example, a step
function forcing with s 5 5 h overestimates the am-
plitudes of gravity waves with periods of 1.7 h by a
factor of 8.

For the 3D simulations shown by Zhu and Holton
(1987), tc 5 2.5 h while s 5 1 h and 3 h—these forcings
were not slow. For this reason and because the ampli-
tudes of gravity waves with v * â were overestimated
as described above, these authors did not observe the
strong gravity wave damping that occurs from more
temporally realistic slow body forcings.

f. Postforcing (i.e., t $ s) energetics

Taking the dot product of the momentum equations
[Eqs. (2.1)–(2.3)] with v, noting that v · (V 3 v) 5r
0, and using Eqs. (2.4)–(2.5), the energy equation is

2] 1 Q Q
2r v 1 5 r uF 1 yF 1 wF 1 J F (t)x y z2 2[ ] [ ]]t 2 N N

2 = · (p9v). (3.24)

The quantities in the square brackets on the left-hand
side are the kinetic and potential energies per volume,
respectively. Using Parseval’s theorem, the total energy
is

21 Q
2 2 2E 5 r u 1 y 1 w 1 dxEEE 2[ ]2 N

5 E dk, (3.25)EEE
where E is the spectral energy density and is defined as
E [ ( | ũ | 2 1 | | 2 1 | w̃ | 2 1 | | 2/N 2)/2.˜r ỹ Q

We substitute Eqs. (3.13)–(3.16) into Eq. (3.25). The
postforcing spectral energy densities due to the mean
( ) and gravity wave (EGW) responses areE

21 2˜ ˜|iNF 1 mfN J |r z
E 5 , (3.26)

2 22 k v

4 2 2 2 2 24â sin (vs /2) r k (v |A | 1 |B | )F FE 5 , (3.27)GW 2 2 2 2 2 2 2[ ]s v (â 2 v ) 2 v kH

respectively. In this paper, the overline denotes the value
associated with the mean response. The gravity wave
spectral energy density decreases rapidly for wave fre-
quencies larger than the forcing frequency, since EGW

is proportional to the temporally dependent factor

1, â k pnv,
4 2 4â sin (vs /2) 62. sin (vs /2) â

2 2 2 2 2[ ]s v (â 2 v ) , â K v. 2 2 1 2p n v

(3.28)

Thus the effect of a finite-interval body forcing is to
cut off the generation of gravity waves with frequencies

greater than the forcing frequency. Therefore, the total
postforcing energy depends on the interval length and
forcing frequency for a fixed amount of momentum de-
posited from a fixed spatial source. As we will show by
analogy in the next section, the total system energy
varies in this manner because of conservation of mo-
mentum.

g. Analogy with a ball-and-block Newtonian system

In this section, we compare our forced atmospheric
solutions to the solutions for a forced ball-and-block
Newtonian system, since it lends insight to our under-
standing of the atmospheric solution. Consider a block
of mass M and location X resting on a frictionless table.
A ball of mass m is attached to the end of a weightless
rod of length l, which swings freely from a weightless
support rigidly attached vertically to the top of the block.
The ball and rod swing as a pendulum with natural
frequency v and make the angle j(t) with the vertical.
Figure 3 shows the system setup. The block is pushed
in the x direction by the force Fblock. This force has the
same temporal evolution as in the atmospheric case [see
Eq. (3.5)]. Here, â 5 2pn/s, and

(m 1 M )V (1 2 cosât), for 0 # t # s,0F (t) 5block 5s 0, for t $ s,

(3.29)

where V0 is a constant velocity factor. The solutions to
this system are derived in appendix D. The analogy
between the atmospheric and ball-and-block solutions
is quite good. As with the atmospheric solution, when
the total momentum deposited is fixed, the postforcing
mean responses do not depend on s, and the ball-and-
block oscillation velocities and the work done by the
force (or equivalently, the postforcing total energy of
the system) both depend sensitively on s with the same
multiplying factors as in the atmospheric case. Thus, as
for the atmospheric forcing, if v K 2/s, the energy
expended to deposit the momentum can be much greater
than that to deposit the same momentum with v k â.

The total momentum imparted to the ball and block
is Fblock(t) dt 5 (m 1 M)V0. If the block is accelerateds#0

very slowly (i.e., s → `), then the ball and block will
accelerate together as Ẍ 5 Fblock/(m 1 M), giving the
final ball and block velocities of U 5 Ẍ dt 5 V0.s#0

(Here, ‘‘˙˙’’ denotes ]2/]2t.) Therefore, only enough
work is done by the force to facilitate the mean response:

5 (1/2)(m 1 M) However, if the forcing is very2E V .0

fast (i.e., s → 0), the ball’s velocity is zero just as the
forcing finishes. Letting U be the block’s velocity and
equating the block’s momentum to the momentum de-
posited by the force, MU 5 (m 1 M)V0, the block’s
velocity at t 5 s is U 5 (1 1 m/M)V0. Thus, U must
be larger than V0 in order that the block initially absorb
all of the momentum deposited. The total system energy
is then E(t $ s) 5 (1/2)MU 2 5 (1/2)(m 1 M) [1 12V 0
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m/M], which is an increase of (1 1 m/M) over . ThisE
excess energy provides kinetic and potential oscillatory
energy to both the ball and block [see Eq. (D.6)]. There-
fore, fast forcing creates an unbalanced system that leads
to the creation of compensating oscillatory motions.

A similar argument holds in the atmosphere. We take
as an example a longitudinally symmetric zonal body
forcing. From Eqs. (3.13)–(3.17), just as the forcing
ends (i.e., at t 5 s): i) â K v (slow forcing):

F̃x 2 2ũ 5 ũ 5 (l N ), ỹ 5 w̃ 5 0,
2 2k v

F̃x 2˜ ˜Q 5 Q 5 2 (mlfN ), (3.30)
2 2k v

and ii) s K 1/v (fast forcing):

F̃x 2 2 2 2 ˜ũ 5 (l N 1 m f ) 5 F . ũ,x2 2k v

˜ỹ 5 w̃ 5 Q 5 0. (3.31)

The total momentum per volume deposited by the body
force is # Fx(x)F (t) dt 5 Fx(x). If the forcing is slow,r r
then just enough work is done to accelerate u and u9 to
their postforcing mean states. However, if the forcing
is very fast, in order to conserve momentum, u must
acquire the total momentum of the system [i.e., u 5
Fx(x)] just as the forcing ends. The zonal velocity is
therefore larger than the zonal mean wind by F̃xm2f 2/
(k2v2), leading to an increase in the system spectral
energy density by the amount | F̃x | 2m2f 2/(2k2v2) 5r
EGW using Eq. (3.27). Thus, a fast forcing creates an
unbalanced flow at t 5 s, causing the radiation of grav-
ity waves so as to achieve a balanced mean flow. The
fact that it takes more energy to accelerate the atmo-
sphere quickly rather than slowly given a fixed total
momentum deposited is therefore due to the requirement
of conservation of momentum.

4. Spectral results for radiated gravity waves from
2D zonal body forcings

a. Simple body forcings

The vertical velocity power spectral density (hereafter
PSDww* or PSD) is defined as

t12p /v

w̃ w̃* dt9E FFT FFT

t
PSD (k, l, m) 5 , (4.1)ww* t12p /v

dhN N N dt9x y z E
t

for t $ s (postforcing), where dh is the interval length
(e.g., dm, dcx, etc.); Nx, Ny, and Nz are the number of
grid points in the x, y, and z directions, respectively;
the asterisk denotes taking the complex conjugate; and
the fast Fourier transform of the vertical velocity as
defined by Eq. (3.1) is w̃ 5 dxdydzw̃FFT, where dxi is

the gridpoint spacing in the xi direction. We temporally
average over each gravity wave’s period to obtain an
average amplitude. All power spectral densities are in
units of (m2 s22)/dh. The variance content spectra,
vPSD, mPSD, . . . , are in units of meters squared per
seconds squared.

Figure 4 shows the radiated gravity wave energy spec-
trum and variance content spectra as functions of the
interval length s for the same sources as in Figs. 1–2.
The solid lines depict the spectra from a nearly impul-
sive force (since s K 2p/vc), while the dash and dash-
dot lines depict the spectra from forces with increasingly
longer intervals. The impulsive forcing PSD peaks at
the characteristic source period (dotted line in Fig. 4b),
while slower forcings peak at successively slower fre-
quencies: vmax . â. As argued in sections 3b and 3f,
this is because gravity waves with frequencies greater
than the forcing frequency are strongly suppressed. On
the other hand, the predominant vertical wavelength of
the radiated gravity waves is roughly independent of the
interval length and is approximately twice the depth of
the body forcing region, lz . 9sz (dotted line in Fig.
4d).8 However, as the interval lengthens, the PSD peak
spectral amplitude decreases; its amplitude at s 5 10
h is decreased by a factor of 50 from its amplitude when
the forcing is impulsive. The peak horizontal wave-
length is roughly twice the length of the body forcing
for the impulsive forcing, ly . 9sy 5 180 km (dotted
line in 4c), and is increasingly larger for forcings with
increasingly longer durations, peaking at ly . 1100 for
s 5 10 h. This satisfies the dispersion relation for v 5
â: ly . lzN/â . (180 km)(s/1.7 h). Thus slower forc-
ings create waves with larger horizontal wavelengths.
The horizontal phase speed cy [ v/l . N/m is approx-
imately independent of the forcing duration because it
depends only on the vertical wavelength: cy 5 lzN/2p
. 22 m s21. On the other hand, the vertical phase speed
cz [ v/m decreases as the interval increases beyond the
characteristic source period due to the decreasing wave
frequencies. The dotted lines in Figs. 4e–f show cy 5
vc9sy/2p, and cz 5 vc9sz/2p, respectively.

It may be of interest to point out that the gravity waves
created from thermal forcings in the troposphere also
have vertical wavelengths that are twice the depth of
the heating (Salby and Garcia 1987; Alexander et al.
1995). In addition, the gravity waves created from 3D
clear-air turbulence (CAT) layers have | mH | . 1.5 or
lz . 6sz for somewhat differing initial conditions
(Bühler et al. 1999). Our fast-forcing results agree with
those from Bühler et al. (1999) for instantaneously
formed CAT layers: lx . 9sx, using | kH | . 0.01 with
H 5 L/100 5 sx/100.Ï2

Figure 5 shows the spectra for fast forcings to be 4.5

8 Latitudinally symmetric and 3D zonal body forcings also create
gravity waves with vertical wavelengths that are approximately twice
the vertical extent of the source (Vadas et al. 2001, unpublished
manuscript).
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FIG. 5. Spectra in variance content form for longitudinally symmetric monopole zonal body
forcings. The spectra of the sources with sy 5 5 km, sy 5 20 km, and sy 5 50 km are shown
with solid, dash, and dash-dot lines, respectively. The dotted lines are located at (b) v 5 vc, (c)
ly 5 9sy, (d) and lz 5 9sz. For these sources, u0 5 1 m s21, sz 5 1 km, n 5 1, s 5 0.1 h, t 5
s, and Ny 5 Nz 5 1024. All forcings are essentially impulsive.

km deep and with varying horizontal extents. Because
these forcings are nearly impulsive, the spectral varia-
tions are due entirely to the changing aspect ratios. As
shown by the dotted lines, the PSD spectra peak at the
characteristic source period, vertical wavelengths that
are twice the depth of the body forcing, and horizontal
wavelengths that are twice the horizontal extent of the
body forcing.

To test these conclusions, we show the peak spectral
values in Fig. 6 for a wide variety of body forcings with
differing aspect ratios and forcing frequencies. The dot-
ted lines indicate where the peak frequency equals vc

in Figs. 6a–b and where the peak horizontal and vertical
wavelengths equal twice the width and depth of the
forcing in Figs. 6c–d, respectively. From Fig. 6a, the
peak frequency equals the forcing frequency for slow
forcings. For fast forcings, however, the peak frequency
equals the characteristic source frequency. In Fig. 6b,
we determine where this transition occurs. For a forcing
frequency greater than .5vc, the peak frequency equals
vc. As the forcing frequency decreases from this value,
the peak frequency decreases slowly. When â . vc, the
spectra peaks at vc/2. But as the forcing frequency de-

creases further, the peak frequency rapidly approaches
the forcing frequency—it equals the forcing frequency
when â & vc/10 (as long as â $ f ). When â , f [as
happens for the three slowest forcings for sy 5 50 km
(asterisks)], the gravity wave frequencies are v . f .
Figure 6c–d show that for fast forcings, the peak hor-
izontal and vertical wavelengths are about twice the
width and depth of the forcing, respectively. However,
for slow forcings, the peak vertical wavelength decreas-
es somewhat, whereas the peak horizontal wavelength
increases dramatically.

Therefore for fast forcings, the peak frequency is the
characteristic source frequency, and the peak horizontal
and vertical wavelengths are twice the width and depth
of the source, respectively. For slow forcings, the peak
frequency is the forcing frequency, the peak vertical
wavelength is slightly smaller than twice the depth of
the source, and the peak horizontal wavelength is much
larger than twice the width of the source. The increase
in horizontal wavelength is needed in order for these
lower-frequency waves to satisfy the dispersion relation
with roughly the same vertical wavelength.
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FIG. 6. (a) Maximum v of vPSDww*
, (b) maximum v of vPSDww*

divided by vc, (c) maximum
ly of lPSDww*

, and (d) maximum lz of mPSDww*
. The longitudinally symmetric monopole zonal

body forcings all have sz 5 1 km and n 5 1. The diamonds, triangles, squares, and asterisks
show the results for sy 5 5, 10, 20, and 50 km, respectively. The dotted lines are located at (a),
(b) v 5 vc, (c) ly 5 9sy, and (d) lz 5 9sz, respectively. For this illustration, Ny 5 Nz 5 2048,
and the evaluation times are t 5 2s for s/tc , 1 and t 5 s otherwise. This figure does not depend
on the forcing amplitude u0.

b. Body forcings with more realistic temporal
distributions

Up until now, our illustrations involved single cycle,
n 5 1 forcings. But wave dissipation processes are likely
much more temporally variable than a single sin2(. . .
t) forcing. We superpose 10 forcings with differing val-
ues of s, n, u0, and t0 (i.e., the starting time) in order
to simulate a more realistic temporal distribution with
added variability on 1–3-h timescales. We regard this
as conservative given that variability can also occur at
higher frequencies (e.g., Holton and Alexander 1999).

In Fig. 7, we compare the spectra of radiated gravity
waves from two spatially identical monopole, zonal
sources with 2p/vc 5 1.7 h 5 105 min but with differing
temporal variability. The total zonal momentum depos-
ited in each case is the same. The body force parameters
used to generate the solid lines in this figure are given
in Table 2. The forcing periods range from s/n 5 0.5
h through 10 h, although the largest amplitudes occur
for periods of s/n . 1 h through 5 h. This combination
of forcing functions was chosen as an example of how
temporal variability can alter the solution. The dotted
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FIG. 7. Dependence of spectra on differing temporal evolutions when forcing envelope is ‘‘slow.’’
(a) Temporal distribution, F (t), for a single n 5 1, s 5 10 h forcing (dash line), and temporal
distribution for a more complicated evolution that composed of 10 forcings with an overall envelope
of 10 h (solid line). The parameters used to generate the complicated temporal evolution are
displayed in Table 2. (b), (c), (d) Postforcing spectra in variance content form for longitudinally
symmetric monopole zonal body forcings with sy 5 20 km, sz 5 1 km, n 5 1, and u0 5 1 m s21.
The spectral results are shown as dash (solid) lines for the corresponding dash (solid) line displaying
F (t) in (a). The dotted lines show the location of the forcing frequencies for the complicated
temporal evolution in (b). The dotted lines in (c) and (d) are located at ly 5 9sy and lz 5 9sz,
respectively. For this illustration, t 5 10 h and Ny 5 Nz 5 1024.

lines in Fig. 7b show the forcing frequencies. There are
‘‘spikes’’ in the PSD at the highest forcing frequencies
(i.e., at 30, 50, and 60 min). The extra high-frequency
temporal variability results in significantly higher am-
plitudes for radiated gravity waves with periods smaller
than 6 h (or v . 3 3 1024 s21). For example, at wave
periods of 1–2 h, spectral amplitudes are increased by
approximately 100 in this example. These high-fre-
quency waves are expected to propagate more easily to
greater altitudes. It is important to note, however, that
temporal variability is only expected to significantly en-
hance the amplitudes of higher-frequency gravity waves
when the period of the envelope (in this case, 10 h) is
of order or larger than the characteristic source period.
If the period of the envelope is much smaller than the
characteristic source period, then any added high-fre-
quency temporal variability will do little to alter the
gravity wave amplitudes. In Fig. 7c, the PSD is broadly
distributed in horizontal wavelength, with a low wave-

length cutoff at twice the horizontal extent of the source.
The vertical wavelengths, however, do not depend on
the temporal variability. Thus, the radiated gravity
waves have vertical wavelengths that are twice the depth
of the source and a range of horizontal wavelengths that
are of order or larger than twice the horizontal extent
of the source.

c. Body forcings with spatial variability

Because wave field dissipation (especially wave
breaking) may be intermittent and patchy, the body forc-
ing distributions will likewise be patchy rather than
smoothly distributed (Andreassen et al. 1998; LeLong
and Dunkerton 1998; Holton and Alexander 1999; Fran-
ke and Robinson 1999). For example, Fig. 8 of Holton
and Alexander (1999) suggests that there may be many
spatially localized regions of wave breaking within the
overall wave field. Thus, source regions will not, in
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FIG. 8. Effect of spatial variability on a monopole longitudinally symmetric zonal body forcing.
(a) Outline of the pure monopole forcing at 10% of its maximum (shaded). Solid contour lines
show the outline of the spatially variable source [Eq. (4.2)] at 10% increments of its maximum.
This source is a monopole source with added horizontal and vertical variability at psy/2 and psz/
2, respectively. (b), (c), (d) PSDww*

for the spatially variable source [i.e., Eq. (4.2)] with solid lines
and for the pure monopole source with dash lines. Here, sy 5 20 km, sz 5 1 km, s 5 3 min, n
5 1, u0 5 1 m s21, t 5 2s, and Ny 5 Nz 5 1024. The dotted lines show the location of the added
variability at ly 5 psy/2 5 31 km in (c) and at lz 5 psz/2 5 1.6 km in (d). Both forcings are
essentially impulsive.

general, resemble the idealized monopole sources we
have considered above. In order to investigate the effect
of spatial variability of a localized body forcing region
on the spectra of radiated waves, we consider the zonal
forcing with added horizontal and vertical wavelength
variabilities at psy/2 and psz/2, respectively:

4[y 2 y ] 4[z 2 z ]0 0F (x) 5 1 1 cos 1 cos ux 05 1 2 1 26s sy z

2 2(y 2 y ) (z 2 z )0 03 exp 2 2 .
2 21 22s 2sy z

(4.2)

In Fig. 8a, we show the monopole forcing (shading)
as well as the spatially variable source with added var-
iability at ly 5 31 km and lz 5 1.6 km using Eq. (4.2)
(contour lines). In each case, the total momentum de-
posited is the same. The spectra are shown in Figs. 8b–
d as solid lines for the spatially variable source and dash
lines for the pure monopole source. The spectra are not

sensitive to the temporal portion of the body forces be-
cause they are essentially impulsive. Thus, the differ-
ence between the solid and dash lines is due entirely to
the source’s added spatial variability. These spatial var-
iabilities add very substantial components to the spec-
trum at ly 5 31 km and lz 5 1.6 km (dotted lines in
Figs. 8c–d, respectively, and the spectrum is broadened
considerably in frequency from 20 min to 8.3 h, con-
sistent with the added spatial variability. The meridional
variability creates deeper forcings and thus the added
higher-frequency components, while the vertical vari-
ability creates shallower forcings and thus the added
lower-frequency components. Finally, the energy is sub-
stantially higher for the spatially variable forcing. In
this example, the total kinetic plus potential energy in
radiated gravity waves is increased by 3.7 for the spa-
tially variable forcing (not shown). Thus, spatial vari-
ability can substantially enhance the radiated gravity
wave amplitudes at frequencies higher and lower than
the characteristic frequency of the overall source.
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FIG. 9. Spectra in variance content form for slow monopole longitudinally symmetric zonal body
forcings with the same spatial distributions but with differing temporal evolutions, F (t). The spectra
for the step function temporal distribution is shown as solid lines, while the spectra for the improved
temporal distribution [see Eq. (3.5)] is shown as dash lines. For this illustration, sy 5 20 km, sz

5 1 km, n 5 1, u0 5 1 m s21, t 5 s 5 10 h, and Ny 5 Nz 5 2048.

d. Body forcings from step function in time temporal
variability

In section 3e, we found that the step function in time
solutions are essentially identical to the ‘‘improved’’
postforcing solutions [i.e., Eqs. (3.13)–(3.17)] when the
forcings are fast. This is because gravity waves will only
respond to temporal fluctuations a few times larger or
smaller than the characteristic source period. However,
we found that for slower forcings, the step function in
time forcing overestimates the amplitudes of gravity
waves with frequencies larger than the forcing frequen-
cy. This is because higher-frequency components are
needed to turn on and off the step function instanta-
neously, regardless of the forcing duration. This slow-
forcing effect is illustrated in Fig. 9. There, we show
the PSD for the step function forcing (solid lines) and
improved forcing (dash lines). The characteristic period
and forcing periods are tc 5 1.7 h and s 5 10 h, re-
spectively. The most striking difference between the
spectra is that the average amplitude of the step function
spectra does not drop off until v $ 2p/100 min .vc,
whereas the improved temporal forcing drops off quick-
ly for v * â 5 2p/600 min.9 The peak vertical wave-
lengths of either forcing is about twice the depth of the
forcing (not shown). The horizontal wavelengths of the
step function waves are correspondingly smaller.

5. Postforcing mean responses
a. Illustrations from 2D zonally symmetric zonal

forcings

In Fig. 10, we illustrate the mean responses for zon-
ally symmetric monopole zonal forces: Fig. 10a, high-

9 The other difference is the zero in the step function spectrum at
v 5 â, which is absent in the improved spectrum. However, this and
the other zeros would not be present from more realistic temporal
forcings because of averaging.

frequency source with horizontal width of 90 km; Fig.
10b, low-frequency source with horizontal width of
4500 km. Both sources are 4.5 km deep and are outlined
by the lightly filled contours at the $10% level. The
mean response in Fig. 10a is the same as the mean
response in Figs. 1 and 2.

The zonal mean wind, , for the high-frequencyu
monopole source is virtually the same as that of the
source Fx(x). Dual, vertically stacked residual circula-
tion cells are created during the forcing, with southward
motion throughout the source region (see Figs. 1a–b and
2a–b). Because a fluid parcel’s potential temperature
relative to the surrounding fluid is lower (higher) when
it moves up (down) adiabatically in an isothermal at-
mosphere, regions of upwelling (downwelling) have
lower (higher) potential temperatures. Of particular in-
terest is that the potential temperature response is
‘‘broadened’’ in latitude with half-width, denoted Dy, of
Dy . 100 km, even though the latitudinal half-width of
the source is only sy 5 20 km. By ‘‘broadening,’’ we
mean that a spatial dimension of the mean response is
larger than that of the source. However, neither mean
response is broadened vertically. In addition to the
broadened latitudinal half-width, the mean potential
temperature decreases much more slowly than the
source in latitude: ; exp(2 | y 2 y0 | /Dy).u9

For the low-frequency monopole source, there are
several important differences. First, the main eastward
zonal jet is weakened considerably (by a factor of 5)
and is broadened considerably vertically. In addition,
there are ‘‘countersigned’’ westward jets with ampli-
tudes that are 20% of the amplitude of the main eastward
jet for | y 2 y0 | * 1.5sy. By counter-signed, we mean
that the resulting mean winds are in the opposite direc-
tion than the forcing is applied. The potential temper-
ature is also broadened vertically, and no mean response
is broadened latitudinally. These effects are due to the
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FIG. 10. Postforcing, mean responses for monopole longitudinally symmetric zonal forcings
with sz 5 1 km and u0 5 1 m s21. (a) High-frequency source with sy 5 20 km. (b) Low-
frequency source with sy 5 1000 km. The plots on the left show the zonal mean wind, , scaledu
by their maximum values, max, while the plots on the right show the mean, potential temperature,u

, scaled by their maximum values, max. The values of max and max for (a) are 0.91 m s21u9 u9 u u9
and 1.2 K, respectively, while the values of max and max for (b) are 0.17 m s21 and 1.9 Ku u9
respectively. The solid lines indicate values from 0.1 to 1.0 with 0.1 increments, the dash lines
indicate the values from 20.1 to 21.0 with 20.1 increments, and the dotted lines indicate the
values 0. The lightly shaded region indicates where the source is $10% of its maximum value,
while the darkly shaded region indicates where the source is greater than exp(20.5) 5 0.61 of
its maximum value. For this illustration, t 5 s 5 10 h, n 5 1, and Ny 5 Nz 5 512. Note that
this figure is identical (but with proportionately differing values of max } u0 and } u0) foru u9
any forcing amplitude.
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zonal Coriolis torque, which decelerates the forming
zonal wind during the forcing. This zonal Coriolis
torque is created from the meridional residual circula-
tion, which is formed during the forcing as a result of
the meridional Coriolis torque.10 Thus, the counter-
signed zonal wind regions are formed from the merid-
ional residual circulation ‘‘back-reacting’’ onto the zon-
al wind. From Eq. (2.1), northward flows move eastward
while southward flows move westward in the Northern
Hemisphere. Thus, as the main meridional southward
jet accelerates westward, the strength of the main east-
ward zonal jet is reduced in the immediate forcing re-
gion, and weak westward-moving jets are created in the
northern and southern wings where the eastward body
forcing is small. In addition, the meridional northward
jets above and below the forcing region expand the zonal
jet vertically to the extent that the residual circulation
broadens vertically (not shown). Likewise, the potential
temperature response broadens in the vertical because
the areas of vertical motion are spread vertically. For
both the zonal mean wind and mean potential temper-
ature responses, the vertical half-widths, denoted Dz, are
about Dz 5 2.5 km, an increase of 2.5 over the vertical
half-width of the source.

To determine which physical effects balance the zonal
body forcing, we do a term-by-term analysis of the zonal
momentum equation when s → ` and â → 0 so that
only mean responses are created. Substituting Eqs.
(3.8)–(3.12) into the Fourier transform in space of Eq.
(2.1), the integrated zonal momentum terms [which sum
to F̃x using k2v2 5 (k2 1 l2)N 2 1 m2f 2] are

s 2 2]ũ l N ˜dt 5 ũ 5 F ,E x2 2]t k v0

s 2 2 2k N 2 kl fN s /2˜ ˜(2ikP) dt 5 F ,E x2 2k v0

s 2 2 2m f 1 kl fN s /2 ˜(2 f ỹ) dt 5 F . (5.1)E x2 2k v0

The zonal acceleration only balances the body forcing
exclusively when the source is high frequency and lc k
kc: ]u/]t . Fx(x)F (t), giving a zonal mean flow that
equals the source . Fx. But if the source is highu
frequency and kc k lc or if the source is low frequency,
then the pressure gradient and/or the zonal Coriolis
torque instead supply the zonal momentum balance:
(]p9/]x)/ 2 fy . Fx(x)F (t). In particular, 1) the zonalr
Coriolis torque balances a zonally symmetric, low-fre-
quency body force, y dt . 2Fx(x)/ f , and drives thes#0

meridional wind of the residual circulation; and 2) the
zonal pressure gradient balances a body force when ro-
tation can be neglected and kc k lc: (]p9/]x) dt .s#0

Fx(x).r

10 The Coriolis torque is fyi 2 fuj from Eqs. (2.1)–(2.2), so the
zonal and meridional Coriolis torques are fy and 2 fu, respectively.

b. Theoretical analysis of mean forcing solution
characteristics

Here, we derive general features of the mean re-
sponses by examining the spectral solutions. We show
that mean wind responses in the opposite direction to
the forcing are common for many types of body forces.
We also show that mean responses are typically signif-
icantly broadened spatially (over the spatial extent of
the source) in one direction only; the mean responses
from low-frequency sources are only broadened verti-
cally, while the mean responses from high-frequency
sources are only broadened horizontally (they are broad-
ened zonally if sx K sy and are broadened meridionally
if sy K sx). In addition, we derive a formula [Eq. (5.3)]
that estimates the broadened half-width of a mean re-
sponse from a given source. We show that the extent of
the broadening is determined by the spatial dimensions
of the source but not on the extent of the source in the
direction that broadens. These results explain the mean
response features highlighted in Fig. 10. Essentially, we
find that the mean responses often do not resemble the
sources spatially because of mass conservation. This
includes the action of Coriolis torques when rotation is
important.

The spectral solution for the mean response generated
from a given source consists of the Fourier transform
of the source times wavenumber factors in the numerator
(e.g., l2, kl) divided by the following wavenumber fac-
tors in the denominator: (k2 1 l2)N 2 1 m2f 2. Wave-
number factors in the numerator represent derivatives
of the source in physical space and determine spatial
solution symmetries for simple sources. For example,
the meridional mean wind exhibits dipole behavior in
both x and y for a 3D monopole zonal forcing because

} klF̃x (see also Fritts and Luo 1992; Luo and Frittsỹ
1993). In addition, the zonal mean winds from zonal
monopole sources can be countersigned when | y 2 y0 |
* sy. This follows because } l2F̃x/k2v2, so that whenũ
k2v2 ± l2N 2, the zonal mean wind is proportional to

2d
2 22 exp[2(y 2 y ) /2s ]0 y2dy

21 (y 2 y )0 2 25 1 2 exp[2(y 2 y ) /2s ]. (5.2)0 y2 2[ ]s sy y

This quantity is positive in the source region and neg-
ative outside of the source region. For example, if a
zonally symmetric, low-frequency zonal force is east-
ward, then although the zonal mean wind will be east-
ward in the source region, the zonal mean wind will be
westward outside of the source region where | y 2 y0 |
* sy (e.g., Fig. 1111). Due to cancellation of l2 factors
in the numerator and denominator, however, zonal forces
with sy & R and sy & sx will not have significant

11 The neglected factor of l2 in the solution denominator changes
the exact location somewhat.
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countersigned regions. A similar conclusion, that is, that
the meridional mean winds created from meridional
monopole sources are countersigned for | x 2 x0 | * sx

when k2v2 ± k2N 2, follows because } k2F̃y/k2v2.ỹ
And analogously, meridional forces with sx & R and
sx & sy will not have significant countersigned regions.

On the other hand, uncancelled wavenumber factors
in the denominator, k2v2 5 k2N 2 1 l2N 2 1 m2f 2, rep-
resent spatial ‘‘broadening’’ of the mean response. By
broadening we mean that the spatial extent of the mean
response in one direction is larger (potentially much
larger) than the spatial extent of the source in that same
direction. Consider a high-frequency source with a me-
ridional extent that is much smaller than the zonal ex-
tent, that is, sy K sx. In this case, the denominator of
the mean spectral solutions can be approximated as k2v2

. N 2(l2 1 a2), where a . ( 1 R22)1/2 is constant.2kc

Upon taking the inverse spatial transform of the mean
spectral solutions, when | l | , a, the contributions to
the integral are multiplied by the constant factor 1/N 2a2.
But when | l | k a, the contributions to the integral are
very small. Thus, meridional wavenumbers larger than
a will not influence the broadened mean solutions sig-
nificantly. The ‘‘characteristic wavenumber’’ of the
mean response then is a and is smaller than the char-
acteristic wavenumber of the source lc. We therefore
estimate that the mean response from this source is
broadened meridionally with the resulting half-width of
.1/a. The extent of the broadening is determined by
whichever is smaller, sx or R, and does not depend upon
the value of sy. If sx K R, then the mean response will
have approximately equal horizontal extents, unlike the
source. But if sy 5 sx or sy 5 R, then only very small
or negligible meridional broadening occurs. Analogous
conclusions are made for high-frequency sources with
sx K sy and for low-frequency sources.

Therefore, the mean response created from 1) a high-
frequency source with sx K sy can only be broadened
in x, 2) a high-frequency source with sy K sx can only
be broadened in y, and 3) a low-frequency source can
only be broadened in z. The spatially broadened half-
widths for these three distinct classes of sources are
approximately12

1
D .x 22 22 1/22(s 1 R )y

for sources with v k f and s K s ,c x y

1
D .y 22 22 1/22(s 1 R )x

for sources with v k f and s K s ,c y x

f
D . for sources with v . f .z c2Nk

(5.3)

12 The factor of 1/2 gives the actual half-widths for sources with
Dy/sy * 5. It gradually increases to 1.0 below this value as the
broadening effect becomes decreasingly important (not shown).

Plugging in the source half-widths, we see that the lat-
itudinally and vertically broadened mean responses de-
picted in Fig. 10 are in agreement with Eq. (5.3).

All spatial broadening occurs because of mass con-
servation [i.e., Eq. (2.5)]. Setting â 5 0 to obtain only
the mean flow effects, this integrated continuity equa-
tion in spectral space becomes

s

dt[(kũ) 1 lỹ 1 {mw̃}] E
0

F̃x 2 2 2 2 25 [(kl N s /2) 1 2lm f 2 kl N s /2 2 2k v

21 {m lf }]. (5.4)

Inside the square brackets, the terms within the inner ( ),
, and { } are due to the zonal, meridional, and vertical 

velocity gradient contributions to mass conservation,
respectively. For zonally symmetric forces, Coriolis
torques work to ensure mass continuity between the
meridional and vertical winds during the forcing, which
may result in vertical or meridional broadening of the
mean responses. But when rotation is unimportant, there
is instead a balance between the zonal and meridional
winds, which may result in horizontal broadening of the
mean responses.

For special sources (e.g., monopole and dipole sourc-
es), certain mean wind/potential temperature fields may
be broadened while others may not be due to the co-
incidental cancellation of wavenumber factors in the
numerator and denominator. Using Eqs. (3.19) and
(3.13)–(3.17), we summarize the mean postforcing re-
sponses that are broadened for monopole and dipole
zonal forces in Table 3. A check denotes that the mean
solution is broadened in the x, y, or z direction relative
to the source, and a dash denotes that the response is
not broadened. Most of the mean responses broaden.
Table 3 agrees with Figs. 10–12.

From Eqs. (3.13), (3.14), and (3.16), the zonal mean
wind only equals a zonal force (i.e., . F̃x) if theũ
source is high frequency and lc * kc. In this situation,
the zonal mean wind will not be broadened and will not
have significant countersigned regions. (However, an
additional heating and meridional force with lc * kc

results in meridionally broadened zonal mean wind con-
tributions.) Likewise, the meridional mean wind only
equals a meridional force (i.e., . F̃y) if the source isỹ
high frequency and kc * lc. And the mean potential
temperature only equals a thermal forcing (i.e., . J̃)Q̃
if the source is low frequency. Thus, a zonal, meridional,
and thermal forcing with similar spatial scales will never
result in zonal mean winds, meridional mean winds, and
mean potential temperature responses that are all si-
multaneously identical to each of their respective forc-
ings unless sx . sy . R.

As an example of our findings, Zhu and Holton (1987)
found in their studies that the induced mean fields are
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FIG. 11. Meridional and vertical half-widths of the mean responses from longitudinally symmetric
zonal forcings. The half-widths of the zonal mean winds for the monopole, dipole-in-y, and dipole-
in-z sources are represented by the symbols 3, 1, and *, respectively. The half-widths of the mean
potential temperatures for the monopole, dipole-in-y and dipole-in-z sources are represented by
diamonds, triangles, and squares, respectively. In all cases, sz 5 1 km, t 5 s 5 10 h, and n 5 1.
For sy # 200 km, Ny 5 4096 and Nz 5 128, and for sy $ 200 km, Ny 5 128 and Nz 5 4096.
This figure does not depend on the forcing amplitude.

confined to the 3D forcing region. However, they
chose characteristic scales for which no broadening
occurs: s x 5 s y 5 200 km and R 5 1000 km (see
their p. 625). Because this is a high-frequency source
and s x 5 s y , the mean response does not broaden.
Fritts and Luo (1992) noticed only a very small
amount of vertical broadening in their 2D mean re-
sponses. Significant vertical broadening did not occur
because they chose s y 5 R 5 100 km (see their p.
683). Luo and Fritts (1993) chose a 3D source with
s x 5 1000 km, s y 5 R 5 100 km, for which there
is negligible broadening because the smallest and sec-
ond smallest of s x , s y , or R are the same (see their
p. 105). Thus, the mean responses were not broadened
and did not have significant countersigned regions in
these papers due to the coincidental choices of the
characteristic source scales. Indeed, these compari-
sons highlight the insights obtained with an analytic
formulation of the body forcing problem.

c. Spatially broadened half-widths from 2D zonally
symmetric zonal forces

Figure 11 shows the calculated meridional and ver-
tical half-widths for the main features of the zonal
mean wind and potential temperature responses for lon-

gitudinally symmetric zonal forces. Meridional broad-
ening only occurs for high-frequency deep sources
(i.e., sy K R), while vertical broadening only occurs
for low-frequency shallow sources (i.e., R K sy). The
only mean responses that broaden meridionally are the
potential temperature responses for the monopole and
dipole-in-z sources, while all of the mean responses
broaden vertically except for the potential temperature
response for the dipole-in-z source. These results agree
with Table 3. In agreement with Eq. (5.3), the merid-
ionally broadened mean responses satisfy Dy /s z . 80–
100 regardless of the horizontal extent of the sources,
and the vertically broadened mean responses satisfy
Dz /sy . 0.002–0.0025 regardless of the vertical extent
of the sources.

d. Illustrations from 3D zonal forces

Figure 12 shows the zonal mean winds from 3D zonal
forces. Lightly shaded contours show where sources are
$ 10% of their maximum values. In Fig. 12a, the source
is high frequency with sy K sx and results in a zonal
mean wind, which closely resembles the source, and a
meridional mean wind and mean potential temperature
that broaden meridionally (not shown). The zonal mean
wind that results from a high-frequency source with sx
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FIG. 12. Slices of the zonal mean winds three different 3D, monopole, zonal forcings with u0

5 1 m s21. (a) The response for a high-frequency monopole with sx 5 25 km, sy 5 5 km, and
sz 5 1 km (Nx 5 Nz 5 64 and Ny 5 512). (b) The response for a high-frequency monopole with
sx 5 5 km, sy 5 50 km, and sz 5 1 km (Nx 5 512 and Ny 5 Nz 5 64). (c) The response for a
low-frequency monopole with sx 5 sy 5 2000 km and sz 5 1 km (Nx 5 Ny 5 64 and Nz 5
512). The left-hand (right-hand) column shows the zonal mean winds on the slice x 5 x0 (z 5
z0). Each contour plot is scaled by its maximum zonal mean wind, which is 0.83 m s21, 0.086
m s21, and 0.069 m s21 for (a), (b), and (c), respectively. The contour line and shading intervals
are as in Fig. 10. For all illustrations, t 5 s 5 10 h and n 5 1. Note that this figure is identical
(but with proportionately differing values of max) for any forcing amplitude.u

K sy is shown in Fig. 12b. Two countersigned zonal
jets are aligned meridionally about the source center for
| y 2 y0 | * 1.5sy [see Eq. (5.2)], and the zonal mean
wind is broadened zonally with half-width Dx . 25 km,
consistent with Eq. (5.3) using sx 5 5 km. Thus, within
a factor of 2, broadening results in approximately equal
horizontal half-widths, and the zonal mean wind decays

more slowly in | x 2 x0 | than the source, a consequence
of the source being Gaussian. The zonal mean wind that
results from a low-frequency source is shown in Fig.
12c. As in Fig. 12b, countersigned jets for | y 2 y0 | .
1.1sy are present and are aligned meridionally. In ad-
dition, vertical broadening occurs with half-width Dz .
5 km, consistent with Eq. (5.3) using sz 5 1 km.



15 AUGUST 2001 2271V A D A S A N D F R I T T S

FIG. 13. The maximum zonal mean wind divided by the maximum amplitude of the source
created from zonal body forces with t 5 s 5 0.1 h and n 5 1. The diamonds, triangles, and
squares indicate the results for 2D longitudinally symmetric monopole, dipole-in-y, and dipole-
in-z sources, respectively. The asterisks and plus symbols indicate the results for 3D monopole
sources with s x 5 s y and s x 5 s y /5, respectively. The solid, dash, and dash-dot lines indicate
the estimated fraction using Eq. (5.5) for kc /lc 5 0, 1, and 5, respectively. The top horizontal
axis displays several values of 2D characteristic source frequencies. For all of the 2D forces,
Ny 5 Nz 5 512. For the 3D forces, Nx 5 Ny 5 256 and Nz 5 64 for the sources with s x 5
s y , and Nx 5 512 and Ny 5 Nz 5 64 for the sources with s x 5 s y /5. This figure does not
depend on the forcing amplitude.

e. Illustrations of zonal force estimates using
characteristic scales

By simply calculating the spectral amplitudes at the
characteristic source scales, it turns out that we can
estimate reasonably well the fraction of energy in grav-
ity waves, the zonal and meridional mean wind ampli-
tudes, and the mean potential temperature. This is useful
when a source is dominated by single horizontal and
vertical scales. For purposes of estimating general fea-
tures of the solution then, we assume that the charac-
teristic source wavenumbers and frequency are the dom-
inant peaks in the source spectrum with negligible
spread. Evaluating the postforcing mean spectral com-
ponents of Eqs. (3.13), (3.14), and (3.16) at the char-
acteristic wavenumbers for a zonal force, the maximum
3D mean zonal and meridional winds and potential tem-
perature are estimated to be

2(R /s )y
u . F (x) , (5.5)max x max 21 1 (kR)

2R /s sx y
y . 2F (x) , (5.6)max x max 21 1 (kR)

2R /s sf uF (x) y zx maxu9 . 2 , (5.7)max 2g 1 1 (kR)

respectively, where the maximum amplitude of the zonal
source is denoted Fx(x)max. In Fig. 13, we show the
actual and estimated maximum zonal mean winds for
many different source shapes and sizes. The longitu-
dinally symmetric forcings are represented by triangles,
diamonds, and squares, while the 3D forcings are rep-
resented by asterisks and pluses. The estimated maxi-
mum mean winds reflect the actual maximum mean
winds reasonably well because the main feature is the
transition that occurs at k . R21 between very small
wind speeds for shallow forcings to very large wind
speeds for deep forcings. The actual transition is more
broadly distributed in frequency because the estimate
does not account for the true spectral contents of the
sources.

Figure 14 shows the maximum mean potential
temperatures. The maximum of this function occurs
at the Rossby deformation radius and is 308–708C for
monopole and dipole forcings with Fx (x)max . 10 m
s 21 . The broadening of the mean potential tempera-
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ture response in frequency leads to a reduction
in the amplitude at k . R 21 by approximately a factor
of 2.

During the adjustment that accompanies zonal forc-

ing, energy is partitioned between mean and gravity
wave responses. Evaluating Eqs. (3.26)–(3.27) at the
characteristic source scales, the estimated fraction of
energy in radiated gravity waves is

2 2 2 2 2 2E m [k f 1 k (N 2 f )]GW c c c. , (5.8)
2 2 2 2 2 2 2 2 2 2 2 2E 1 E m [k f 1 k (N 2 f )] 1 l N k {sv (1 2 v /â )/[2 sin(v s /2)]}GW c c c c c c c c

where EGW and are the energies due to the oscillatoryE
and mean responses, respectively. For fast forcings (i.e.,
s K 2/vc), the estimated fraction of energy is

21
2 2 2E l k NGW c c. 1 1 (5.9)

2 2 2 2 2 2[ ]E 1 E m [k f 1 k (N 2 f )]GW c c c

21
2 2 2l N 1 1 (R /s )c x. 1 1 5

2 2 2 2 2[ ]m f 1 k N 1 1 (kR)c c

2 2if k . m , (5.10)c c

where the second line holds when vc K N from Eq.
(3.21).

Figure 15 displays the log10 of the estimated fraction
of energy in gravity waves using Eq. (5.8) for longi-
tudinally symmetric zonal forcings (Fig. 15a), 3D zonal
forcings with sx 5 sy (Fig. 15b), and sx 5 sy/10 (Fig.
15c). The dash line shows vc 5 â using [Eq. (3.21)]

2 2 2 2 1/2kR 5 (N/ f )[(v 2 f )/(N 2 v )] . (5.11)c c

Forcings well above (below) this line are fast (slow).
For forcings that are fast, the production of gravity
waves is highly favored by 1) low-frequency sources
and 2) high-frequency sources with sx & sy. On the
other hand, high-frequency longitudinally symmetric
sources highly favor the production of mean responses,
with the transition occurring at the Rossby deformation
radius. This result, as applied to longitudinally sym-
metric sources, is consistent with the results of previous
work (Walterscheid and Boucher 1984; Zhu and Holton
1987; Fritts and Luo 1992); as sy decreases relative to
sz, the source becomes deeper, and pressure forces in-
creasingly oppose the Coriolis force during the forcing
so that the zonal flow becomes increasingly balanced
by the forcing. From Eq. (2.8), the postforcing potential
vorticity induced from the zonal body forcing (hereafter
PV) is zu(t $ s) 2 zu(t 5 0) 5 2]Fx/]y } u0/sy.
Therefore, for increasing values of log10(kR) in Fig. 15,
the PV increases (since sx and sy decrease while u0 and
sz remain constant) and EGW/( 1 EGW) decreases. ThisE
agrees with the results of Bühler et al. (1999) in the
impulsive limit. Figures 15b–c show that fast high-fre-
quency 3D zonal forcings produce gravity waves very
efficiently, greatly enhancing the production of radiated

gravity waves over ‘‘equivalent’’ (i.e., same lc and R
but with kc 5 0) zonally symmetric zonal forces.

We also observe destructive interference patterns.
These are smeared out if more realistic temporal vari-
ability is taken into account or if the estimate could
account for the finite spectral width of the source. Ad-
ditionally, the fraction of energy in gravity waves drops
off very sharply at and beyond the second zero, that is,
when s $ 4p/vc. For all slow forcings well below the
dash line, there is virtually no estimated gravity wave
response.

Figure 16a (Fig. 16b) shows the log10 of the fraction
of energy in radiated gravity waves with frequencies v
. vc/3 for 2D (3D) monopole zonal forcings. We also
show the log10 of the fraction of energy for all gravity
waves (including inertial oscillations) generated from
3D sources with sx 5 sy in Fig. 16c. As above, the
dash lines indicate where vc 5 2p/s. The difference
between Figs. 16b and 16c is that for high-frequency
sources, Fig. 16b shows the fraction of the energy in
high frequency waves, while Fig. 16c shows the total
fraction of energy in waves. Because high-frequency
zonally symmetric monopole sources radiate a substan-
tial amount of energy as inertial oscillations and near-
inertial gravity waves, the fraction of the total energy
in radiated gravity waves does not decrease very quickly
for s . 2p/vc (Fig. 16c). The agreement between the
integrated fraction of energy in Figs. 16a,b with the
estimated fraction shown in Figs. 15a,b is fairly good.
Therefore, the estimated fraction of energy in gravity
waves given by Eq. (5.8) is a fairly accurate, simple,
first-order approximation as to how the energy is par-
tioned in a wave dissipation event. This type of formula
may be useful as a correction to general circulation mod-
el (GCM) parameterization of gravity wave effects on
the mean flow.

6. Summary and discussion

In this paper, we derived the 3D Boussinesq, f-plane
solutions to horizontal and vertical body forces and heat-
ings applied over the temporal interval length s in a
nonsheared, constant buoyancy frequency background.
The interval length ranges from zero to infinity. This
generalizes past solutions in that 1) the solutions cover
impulsive forcings through infinitesimally slowly vary-
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FIG. 14. Same as in Fig. 13 but displaying instead the maximal mean potential temperatures.
The estimated quantities here are obtained from Eq. (5.7) and are multiplied by 1/2. This figure
does not depend on the forcing amplitude u0.

ing forcings (depending on the forcing frequency and
interval lengths chosen) and 2) the forces are applied
in a continuous (but not necessarily slow) manner, that
is, as sin2(ât/2), where â is the forcing frequency. This
characterizes the high-frequency waves created from
nonimpulsive forces better than a step function in time
forcing. This model determines properties associated
with the creation (not propagation) of gravity waves
from body forces and heatings in an idealized unsheared
background. Indeed, strong shears and vertical changes
in N will likely alter this generated spectrum in ways
not currently understood. The primary focus of this pa-
per is the exploration of the mean and gravity wave
responses that arise from differing 2D and 3D zonal
body forces (scales, frequencies, amplitudes, etc.).
These results are summarized in the following para-
graphs, and implications pertaining to these results fol-
low.

Suppose a given source region has half-widths sx,
sy, and sz in the x, y, and z directions, respectively.
This source has characteristic frequency vc 5 ([k2N 2

1 f 2/ ]/[ 1 k2])1/2, where k 5 ( 1 )1/2 is2 22 22 22s s s sz z x y

the characteristic horizontal wavenumber. The deeper
the source, the larger the characteristic source frequen-
cy. The spectrum of radiated gravity waves that results
from a forcing depends on the spatial character of the
source and forcing frequency content factors. The max-
imum amplitudes of radiated gravity waves for a given
source results from impulsive forcings. The temporal

character of the forcing modifies the impulsive spectrum
by greatly reducing the amplitudes of gravity waves
with frequencies greater than the forcing frequency. This
is due to the coherent cancellation of gravity waves with
frequencies larger than the forcing frequency. For im-
pulsive forcings, the PSD (vertical velocity power spec-
tral density) peaks at the characteristic frequency,
whereas if the forcing frequency is smaller than the
characteristic frequency ( f # â K vc), then the PSD
peaks at the forcing frequency.

Virtually independent of the forcing frequency (and
therefore regardless of the dominant frequency of the
created waves), the vertical wavelength of waves gen-
erated from a given zonal body force is approximately
twice the depth of the source. And if the forcing interval
is smaller than the source’s characteristic period, the
horizontal wavelength is twice the horizontal extent of
the source. On the other hand, if the forcing frequency
is much smaller than the source’s characteristic fre-
quency, then the PSD peak amplitudes decrease dra-
matically, and the dominant horizontal wavelength is
lengthened to be twice the horizontal extent of the
source times vc/â. For example, for scales representative
of expected forcing by convectively or orographically
generated gravity waves (vertical and horizontal extents
;10 km and ; a few tens or hundreds of kilometers,
respectively), the horizontal wavelengths of radiated
gravity waves will be tens to hundreds of kilometers if
the forcing duration is less than 2 h and will be greater
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FIG. 15. The log10 of the estimated fraction of the energy in radiated gravity waves from zonal forces in
increments of 20.5 using Eq. (5.8) for one forcing cycle (i.e., n 5 1). The lightest regions are when this
estimated fraction is $0.316 and the darkest regions are when this fraction is #131024. We show these
results for kc/lc 5 0, 1, and 10 from top to bottom, respectively. The dash lines indicate where vc 5 2p/s.
The labels for v/ f at the top of (a) shows the the corresponding 2D characteristic source frequencies. This
figure does not depend on the forcing amplitude.

than this amount by .(t â/2 h) if the forcing period, t â

[ 2p/â, is greater than 2 h. In both cases, the vertical
wavelengths of the radiated gravity waves is about 20
km.

Temporal and spatial variability broaden the spec-
trum of radiated waves. Spatial variability broadens

and enhances both the frequency and wavenumber
PSD spectra. Temporal variability can lead to greatly
enhanced gravity wave amplitudes at higher frequen-
cies, perhaps as much as 10 or 100 times as much as
the temporally smoothed force for a nonimpulsive
force with long temporal envelopes. Therefore, pa-
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FIG. 16. The log10 of the fraction of the energy in radiated gravity waves from zonal forces in
increments of 20.5 for longitudinally symmetric and 3D monopole sources. (a) Results from 2D
longitudinally symmetric forces. Here, we only display the fraction of energy in gravity waves
that satisfy v . vc/3. (b) Results from 3D forces with sx 5 sy. Here, we only display the fraction
of energy in gravity waves that satisfy v . vc/3. (c) Results from 3D forces with sx 5 sy. Here,
we display the total fraction of energy in gravity waves (i.e., v $ f ). Here, sz 5 1 km, n 5 1,
sy ranges from 1 to 10 000 km, and the quantities were calculated at t 5 s. The forcing intervals
range from 0.1 to 20 h. The lightest regions are when this fraction is $ 0.316 and the darkest
regions are when this fraction is #1 3 1024. The dash lines indicate where vc 5 2p/s. Simulations
for parameters in the hatched regions were not performed. For all 2D sources, Ny 5 Nz 5 512.
For the 3D sources, Nx 5 Ny 5 64 and Nz 5 512 for the sources with sx/sz # 200, and Nx 5
Ny 5 256 and Nz 5 64 for the sources with sx/sz $ 200. This figure does not depend on the
forcing amplitude u0.
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rameterizing a complicated wave dissipation event by
a body forcing with averaged temporal and spatial
distributions would underestimate, potentially se-
verely, the amplitudes of the higher-frequency, sec-
ondary gravity waves. Because it is the higher-fre-
quency waves that are expected to most easily prop-
agate to greater altitudes, it is important to include
spatial and temporal variability into any parameteri-
zation scheme to be used in global-scale models. Our
results imply both an important role of spatially and
temporally localized body forces in the radiation of
gravity waves and a potential to quantify the role of
such radiation in the atmosphere.

Finally, the mean responses are not confined to the
source region; in general, significant spatial broadening
of the mean responses occurs in one direction. By
‘‘broadening’’ we mean that a spatial extent of the
mean response is larger (potentially much larger) than
the spatial extent of the source in the same direction.
If a source has a high characteristic frequency, the
mean responses are generally broadened meridionally
and zonally if sy K sx and sx K sy , respectively. If
a source has a low characteristic frequency, the mean
responses are generally broadened vertically. The
amount of broadening that occurs depends sensitively
on the characteristic spatial scales of the source but
not on the spatial extent of the source in the direction
of the broadening. Equation (5.3) is a handy formula
relating these quantities. In addition, the mean zonal
(meridional) wind just outside the source region in the
6y (6x) direction is commonly in the opposing di-
rection to the direction of the zonal (meridional) body
force (i.e., ‘‘countersigned’’ winds).

In cases where the body force geometry is determined
by source conditions, that is, convection or orography,
with high-frequency motions occupying a volume of
tens to hundreds of kilometers horizontally and dissi-
pating over tens of kilometers vertically, the momentum
source is deep and will broaden along the direction of
minimum horizontal extent. For example, a zonally con-
fined wave field excited by extended north–south moun-
tains would excite a circulation that would broaden zon-
ally. Alternatively, tidal filtering of a localized, con-
vectively generated gravity wave field might resemble
a dipole-in-z source with sx, sy ; a few hundred ki-
lometers and a vertical scale of sz ; 10 km. The mean
response generated from this source may not broaden
very much because the horizontal extents of the source
are similar.

There are a number of important implications of these
findings for spatially and temporally varying body forc-
ings in the atmosphere. First, these results do not impact
the inference of mean forcing by mean gravity wave
momentum flux divergence. Thus, prescription of such
forcing in large-scale models will yield the mean re-
sponse accompanying a statistical forcing having the
same mean values. Second, the radiation of gravity
waves, especially for 3D forcings that are spatially lo-

calized with sx & sy) and temporally confined (i.e., â
* vc), is very efficient and occurs on spatial scales
comparable to or larger than the forcing scales. For
scales representative of expected forcing by convec-
tively or orographically generated gravity waves (sx and
sy ; a few hundred kilometers and sz ; 10 km), the
wave scales and frequencies are sufficiently large to
imply that they may propagate largely unimpeded to
much greater altitudes. This is potentially a very sig-
nificant result, as there has been little attention to date
devoted to the effects that such fast, large-scale motions
may have in forcing the mesosphere and lower ther-
mosphere. Finally, these results may have interesting
implications for the parameterization of gravity wave
effects and transports given that at least at higher alti-
tudes, an increasing fraction of the effects may be due
to radiated waves rather than waves that have propa-
gated from sources at lower altitudes in a deterministic
manner.
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APPENDIX A

Validity of Linear Boussinesq Theory for Zonal
Forcings

The linear Boussinesq zonal-forcing solutions de-
rived in this paper are only valid for forcing amplitudes
that are ‘‘small.’’ The flow Mach number must be less
than 1, or u 0 , 2.2HN . 300 m s21 . In addition,
nonlinear wave–wave and wave–mean interactions
must be small; we estimate that | (v · =)v | , | ]v/]t | ,
and | (v · =)Q | , | ]Q/]t | . We estimate the derivatives
of the mean responses using the results of section 5b
(e.g., | ] /]y | . /2Dy), and calculate the derivativesu u
of the gravity wave responses using the fast-forcing
solution frequencies and wavelengths determined in
section 4a (e.g., | ]uGW/]y | . uGW2p/9sy). Following
section 5e, we crudely estimate the maximal mean and
gravity wave amplitudes by calculating the spectral
amplitudes of the solutions at their characteristic wav-
enumbers. In order that nonlinear interactions are small
1) u 0 , 2 fsy for zonally symmetric forces and 2) u 0

, Nsz for meridionally symmetric forces with negli-
gible rotation. Slower forcings would result in larger
allowable forcing amplitudes. These estimates are con-
servative even for impulsive forcings because the av-
erage mean and gravity wave amplitudes are less than
the maximal values.A1

A1 Vadas et al. 2001 (unpublished manuscript) contains a better
calculation of the validity of the linear equations.
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APPENDIX B

3D Initial Value and Impulsive Forcing Spectral
Solutions

We obtain the spectral vertical velocity by calculating
the functional form of the Laplace inversion integral of
Eq. (3.2) when AF 5 BF 5 0. The other variables are
determined similarly. The 3D initial value and impulsive
body forced spectral solutions are then

BIw̃(t) 5 A cosvt 1 sinvt, (B.1)I v

A BI I2˜ ˜Q(t) 5 Q(0) 2 N sinvt 2 (cosvt 2 1) , (B.2)
2[ ]v v

2i N
P̃(t) 5 2 1 2 (2A v sinvt 1 B cosvt)I I21 2[m v

2B NI˜2 Q(0) 1 , (B.3)
2 ]v

m B lB 2 fkAI I Iỹ (t) 5 2 lA 1 fk cosvt 1 sinvtI2 21 2[ ]k v vH

k BI1 fm 1 kỹ (0) 2 lũ(0) ,
2 2[ ]k vH

(B.4)

m B kB 1 f lAI I Iũ(t) 5 2 kA 2 f l cosvt 1 sinvtI2 21 2[ ]k v vH

l BI2 fm 1 kỹ (0) 2 lũ(0) ,
2 2[ ]k vH

(B.5)

where

A 5 w̃(0),I

1
2 ˜B 5 [k Q(0) 1 fm(lũ(0) 2 kỹ (0))]. (B.6)I H2k

If m 5 0, then w̃(t) 5 w̃(0) cosNt 1 ( (0)/N) sinNt,Q̃
(0) cosNt 2 Nw̃(0) sinNt, ũ(t) 5 ũ(0), (t) 5˜ ˜Q(t) 5 Q ỹ

(0), and P̃(t) 5 2ifũ(0)/l. If 5 0, then ũ(t) 5 ũ(0)2ỹ kH

cos ft 1 (0) sin ft and (t) 5 (0) cos ft 2ũ(0) sin ft. Ifỹ ỹ ỹ
k2 5 0, then P̃(t) 5 0.

APPENDIX C

Special Case of the Forced Interval Solutions
When m 5 0, w̃(t) and (t) are the solutions in sectionQ̃

3b with v 5 N. When 5 0,2kH

1
ũ(t) 5

2 2fs (â 2 f )

˜3 {a(F â[â sin f t 2 f sinât]x

2 2˜1 F [â (1 2 cos f t) 2 f (1 2 cosât)])y

2 ˜ ˜1 bâ (F S 2 F C )}, (C.1)x y

1
ỹ (t) 5

2 2fs (â 2 f )

˜3 {a(F â[â sin f t 2 f sinât]y

2 2˜2 F [â (1 2 cos f t) 2 f (1 2 cosât)])x

2 ˜ ˜1 bâ (F C 1 F S )}, (C.2)x y

regardless of m, where S and C are evaluated at v 5 f ,
a 5 1 and b 5 0 when t # s, and a 5 0 and b 5 1
when t $ s. When k 5 l 5 m 5 0, then P̃(t) 5 0.

APPENDIX D

Newtonian Solution for a Ball-and-Block System

Here, we derive the equations of motion governing
the ball-and-block Newtonian system described in sec-
tion 3g. The system kinetic and potential energies are
MẊ2/2 1 m( 1 )/2 and mgl(1 2 cosj) 2 # Fblock

2 2ẋ żlab lab

dX, respectively, where the dot denotes ˙ 5 ]/]t and
where (xlab, zlab) is the ball’s location in the lab frame.
Using the small-angle approximation (i.e., | j | K 1), the
Lagrangian is

1 1 1
2 2 2 2 2˙ ˙ ˙L 5 MX 1 m(l j̇ 2 2lj̇X 1 X ) 2 mglj

2 2 2

1 F dX. (D.1)E block

The equations of motion, ]L/]qi 2 d/dt(]L/]q̇i) 5 0,
where qi 5 X and j, are

¨ ¨mlj̈ 5 mX 2 mgj, MX 5 F 2 mgj.block (D.2)

Defining the natural pendulum frequency to be v 5 ((g/
l)(1 1 m/M))1/2, the solution isD1

2 2V â v0j(t # s) 5 1 2 cosvt 1 cosât ,
2 2 2 2[ ]gs â 2 v â 2 v

(D.3)
2V â0j(t $ s) 5

2 2gs (â 2 v )

3 [sinvs sinvt 2 (1 2 cosvs) cosvt].
(D.4)

The block’s postforcing, horizontal velocity (U 5 Ẋ)
oscillates in time about the mean V0:

2mâ
U(t $ s) 5 V 1 10 2 25 Mvs (â 2 v )

3 [(1 2 cosvs) sinvt 1 sinvs cosvt] .6
(D.5)

D1 It can be shown that the ball-and-block solution is well defined
when â 5 v.
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The oscillatory motion is multiplied by â2/vs(â2 2 v2),
which is the same factor as for the gravity waves [see
Eqs. (3.13)–(3.17)]. The postforcing total system energy
is the work done:

s

E(t $ s) 5 F dX 5 F U dtE block E block

0

4 21 4m â sin (vs /2)
25 (m 1 M )V 1 1 .0 2 2 2 2[ ]2 M (vs) (â 2 v )

(D.6)

The first and second terms in square brackets are due
to the mean and oscillatory responses, respectively. The
multiplying factor for the energy due to oscillatory mo-
tions, 4â4 sin2(vs/2)/(vs)2(â2 2 v2)2, is the same as
for the gravity wave spectral energy density [see Eq.
(3.27)]. Therefore, the oscillatory amplitudes and en-
ergy are small and large when v k â and vs K 1,
respectively. In the fast-forcing limit, the fraction of
energy in oscillatory motions is (1 1 M/m)21 from Eq.
(D.6). Comparing this with Eq. (5.10), we identify m/
M with (sy/R)2 1 (sy/sx)2 for atmospheric zonal forc-
ings.
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