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ABSTRACT
Self-interacting dark matter (SIDM) is a collisional form of cold dark matter (CDM), origi-
nally proposed to solve problems that arose when the collisionless CDM theory of structure
formation was compared with observations of galaxies on small scales. The quantitative im-
pact of the proposed elastic collisions on structure formation has been estimated previously by
Monte Carlo N-body simulations and by a conducting fluid model, with apparently diverging
results. To improve this situation, we make direct comparisons between new Monte Carlo
N-body simulations and solutions of the conducting fluid model, for isolated SIDM haloes
of fixed mass. This allows us to separate cleanly the effects of gravothermal relaxation from
those of continuous mass accretion in an expanding background universe. When these two
methods were previously applied to halo formation with cosmological boundary conditions,
they disagreed by an order of magnitude about the size of the scattering cross-section required
to solve the so-called ‘cusp–core problem’. We show here, however, that the methods agree
with each other within 20 per cent for isolated haloes. This suggests that the two methods are
consistent and that their disagreement for cosmological haloes is not caused by a breakdown
of their validity.

The isolated haloes studied here undergo gravothermal collapse. We compare the solutions
calculated by these two methods for gravothermal collapse starting from several initial con-
ditions, including the self-similar solution by Balberg, Shapiro & Inagaki, and the Plummer,
Navarro–Frenk–White and Hernquist profiles. We compare for the case in which the collisional
mean free path is comparable to, or greater than, the size of the halo core. This allows us to
calibrate the heat conduction which accounts for the effect of elastic hard-sphere scattering
in the fluid model. The amount of tuning of the thermal conductivity parameters required to
bring the two methods into such close agreement for isolated haloes, however, is too small
to explain the discrepancy found previously in the cosmological context. We will discuss the
origin of that discrepancy in a separate paper.

Key words: methods: numerical – galaxies: haloes – galaxies: kinematics and dynamics –
cosmology: theory – dark matter.

1 IN T RO D U C T I O N

In the currently standard cosmological model [� cold dark matter
(�CDM)], a flat universe with a cosmological constant contains
collisionless CDM as its dominant matter component, perturbed by
primordial Gaussian-random-noise density fluctuations. This model
has been highly successful at explaining observations of the back-
ground universe and large-scale structure. On small scales, however,

�E-mail: junkoda@physics.utexas.edu (JK); shapiro@astro.as.utexas.edu
(PRS)

the distribution of DM in the coordinate and velocity space is not
fully understood. N-body simulations show that the density profiles
of the virialized regions (‘haloes’) that form in this collisionless DM
are cuspy, such as the Navarro, Frenk & White (1997, hereinafter
NFW) profile, in which ρ → r−1 towards the centre. Recent high-
resolution simulations show that the inner profile is not exactly a
power law (Hayashi et al. 2004; Diemand et al. 2005; Merritt et al.
2006; Gao et al. 2008; Stadel et al. 2009; Navarro et al. 2010), but it
diverges nevertheless. On the other hand, a cored profile (a profile
which flattens in the centre), such as a pseudo-isothermal profile, is
favoured by observations of dwarf and low surface brightness (LSB)
galaxies (de Blok, Bosma & McGaugh 2003; Gentile et al. 2004;
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Kuzio de Naray et al. 2006; Zackrisson et al. 2006; Gentile, Tonini
& Salucci 2007; de Blok et al. 2008; Kuzio de Naray, McGaugh
& de Blok 2008; de Blok 2010; Oh et al. 2011a). Dwarf spiral and
LSB galaxies are DM dominated. As such, it was originally thought
that their mass distribution should reflect the DM dynamics alone
and be relatively less affected by the complexity of the dissipative
baryonic component. This, as it was thought, makes these systems
ideal for studying the undisturbed, intrinsic, DM distribution on
small scales.

This apparent cusp–core conflict was one of the small-scale struc-
ture problems of the CDM model which prompted suggestions that
the DM might be something else, with microscopic properties that
would alter the structure on small scales without spoiling the suc-
cess of CDM on large scales. Spergel & Steinhardt (2000) proposed
self-interacting dark matter (SIDM) as a possible solution to this
cusp–core problem, adding hypothetical elastic-scattering collisions
to the otherwise collisionless particles of the standard CDM cos-
mology. Heat transfer within the virialized haloes, due to these non-
gravitational collisions, was then suggested to make the halo cores
expand. The latter idea was confirmed by several numerical and
analytical studies. Burkert (2000) introduced a Monte Carlo scat-
tering algorithm between DM particles to take the self-interaction
into account in a numerical N-body simulation and this method
was refined by Kochanek & White (2000). These N-body results,
however, suggested that SIDM haloes would undergo gravothermal
collapse, making them unsuitable to explain the observed haloes.

Balberg, Shapiro & Inagaki (2002, hereinafter BSI) applied a
conducting fluid model, originally invented to describe gravitational
scattering in star clusters, to isolated1 SIDM haloes. BSI derived
a self-similar gravothermal collapse solution at a large Knudsen
number (Kn � 1, where Kn is the ratio of the SIDM scattering
mean free path to the system size). The isolated halo collapsed
within a finite time. They also showed that the collapse is delayed
compared to their self-similar solution when the Knudsen number is
comparable to or smaller than 1, because the length-scale of energy
exchange is restricted by the mean free path. Their conclusion that
the collapse time would naturally exceed a Hubble time was more
optimistic about the SIDM hypothesis.

A realistic halo is not isolated, however, since it forms in a cos-
mologically expanding background universe, with infall and a finite
pressure at the virial radius (Shapiro, Iliev & Raga 1999). Cosmo-
logical simulations showed that a cross-section per unit mass of σ =
0.5–5 cm2 g−1 makes the profile cored and the cored profile is stable
(Yoshida et al. 2000; Davé et al. 2001). Colı́n et al. (2002) empha-
sized that the profile depends on the accretion history, especially
when the last major merger occurred.

With the importance of cosmological infall in mind, Ahn &
Shapiro (2005) (hereinafter A&S) derived a cosmological simi-
larity solution for this problem, with proper account taken of such
cosmological boundary conditions. This solution shows that the
gravothermal collapse, which occurs for the isolated halo, is pre-
vented by infall in the cosmological case, and the core has a constant
size in units of the virial radius, for a given SIDM cross-section.
When there is no self-interaction, this fluid approximation gives a
density profile similar to the cuspy profile found in N-body sim-
ulations. This shows that the fluid approximation also describes

1 The term ‘isolated halo’ shall refer here to an object of fixed mass with
vacuum boundary conditions, that is, not subject to cosmological boundary
conditions involving the mass infall or evolution by perturbation growth in
a Friedmann–Robertson–Walker universe.

the virialization of collisionless DM appropriately, providing in ef-
fect an analytical derivation of the NFW profile in the collisionless
limit. This is because the collisionless Boltzmann equation reduces
to fluid conservation equations for an ideal gas with the ratio of spe-
cific heats equal to 5/3 if the velocity distribution of the particles in
the frame of bulk motion is isotropic and skewless (see Section 2.2).
In the presence of SIDM scattering collisions, too, those analyti-
cal solutions are in qualitative agreement with the corresponding
Monte Carlo N-body simulations; SIDM haloes have cores and the
cores collapse within a finite time when they are isolated, but they
do not collapse within a Hubble time in a cosmological environ-
ment. However, the values of the cross-section necessary to explain
the observed DM density profiles are not in agreement. A&S find
that σ ∼ 200 cm2 g−1 fits the dwarf and LSB galaxy rotation curves
best, while N-body simulations suggest that the range of σ = 0.5–
5 cm2 g−1 gives the observed central density.

In order to test the SIDM hypothesis by comparison with astro-
nomical observations, it is necessary to improve our understanding
of these theoretical predictions and reconcile them. That will be
the focus of this paper, as described below. In the meantime, re-
lated progress continues to be made on other fronts, in comparing
both SIDM and collisionless CDM with observations. For exam-
ple, non-circular motions may affect the density profile estimate
(Hayashi & Navarro 2006), but they are usually not strong enough
to make observations consistent with the theoretically predicted
cuspy profile (Oh et al. 2008; Trachternach et al. 2008; Kuzio de
Naray, McGaugh & Mihos 2009). The cusp–core conflict may be
mitigated by baryonic processes of gas outflow, induced by super-
nova feedback (Governato et al. 2010; Oh et al. 2011b). Central
dark matter densities could also be reduced, in addition, by bars
(Weinberg & Katz 2002) or by gas clumps sinking via dynamical
friction (El-Zant, Shlosman & Hoffman 2001), while the system
is baryon rich, but these two scenarios may not be strong enough
to make large enough cores in realistic situations (Sellwood 2008;
Jardel & Sellwood 2009). While observations of dwarf and LSB
galaxies generally prefer cored density profiles, some, however, are
also consistent with an NFW profile (Hayashi et al. 2004; Simon
et al. 2005; Hayashi & Navarro 2006; Valenzuela et al. 2007). The
wide diversity of dwarf/LSB cores has also led to a suggestion that
SIDM alone cannot be the full solution to the cusp–core problem
(Sánchez-Salcedo 2005; Kuzio de Naray et al. 2010).

There are also some constraints on the value of the SIDM cross-
section from the comparison of theoretical predictions with galaxy
clusters, for which DM velocity is much higher than for galaxies.
N-body results find that the core size of relaxed SIDM clusters
of galaxies becomes too large for a cross-section σ � 1 cm2 g−1

(Yoshida et al. 2000; Arabadjis, Bautz & Garmire 2002; Lewis,
Buote & Stocke 2003). The analytical cosmological self-similar so-
lutions of A&S, however, point out that the core sizes of clusters are
also small enough, not only for a small cross-section in the long-
mean-free-path regime, but also for a large cross-section in the
short-mean-free-math regime, that is, σ � 200 cm2 g−1, because
the short mean free path then limits the amount of heat conduc-
tion. However, such a large cross-section would also enhance the
fluid-like behaviour of SIDM, which may then conflict with ob-
servations of merging clusters. For example, observations of the
cluster 1E 0657−56, known as the ‘bullet cluster’, from which the
total matter density has been mapped by weak and strong gravita-
tional lensing measurements, while the density of the intergalactic
baryon-electron fluid was mapped by X-ray measurements, show
that the DM spatially segregated from the baryon-electron plasma,
as it would be if the DM is not highly collisional (Clowe et al.
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2006). The DM and galaxies of the subcluster have passed through
the main cluster without distortion while the baryon gas shows a bow
shock due to its collisional nature. This observation excludes the
possibility that SIDM is too highly collisional or fluid-like. Ana-
lytical estimates and Monte Carlo N-body simulations of the bullet
cluster by Markevitch et al. (2004) and Randall et al. (2008) con-
strain the velocity-independent cross-section to be σ < 0.7 cm2 g−1,
using the fact that the mass-to-light ratio of the subcluster is normal.
Larger cross-sections would make the mass-to-light ratio smaller
because the SIDM collisions scatter the DM out of the subhalo.
[On the other hand, see Mahdavi et al. (2007) for a possibil-
ity that SIDM with across-section ∼4 cm2 g−1 explains a cluster
Abell 520 which has substructures with anomalous mass-to-light ra-
tios.] If the cross-section is velocity-dependent, it puts a constraint
only at very large relative velocity. The relative velocity of the
merging haloes is estimated to be between 2500 and 4000 km s−1

at their observed separation, and even higher at centre passage
(Milosavljević et al. 2007; Springel & Farrar 2007; Mastropi-
etro & Burkert 2008). If the cross-section is too large, the SIDM
halo could also be too spherical compared to the observed ellipti-
cal matter distribution of galaxy clusters (Miralda-Escudé 2002).
In addition, large cross-sections result in too much heating and
evaporation of substructure haloes in clusters (Gnedin & Ostriker
2001). These constraints almost exclude the possibility that a
velocity-independent cross-section solves the cusp–core problem
for dwarf/LSB galaxies, but a velocity-dependent cross-section can
still be effective on dwarf scales and simultaneously negligible on
galaxy cluster scales: for example, inversely proportional to rela-
tive speed (Firmani et al. 2000; D’Onghia, Firmani & Chincarini
2003), or a short-range Yukawa interaction, whose scattering cross-
section has v−4 velocity dependence for large relative velocities
(Koda 2009; Loeb & Weiner 2010).

There was an additional motivation for the SIDM hypothesis
when it was first put forth, involving the overabundance of sub-
haloes in CDM N-body simulations compared to observations of
the Local Group. The number of substructures in the collisionless
CDM model has previously been thought to be about an order of
magnitude larger than the observed number of dwarf galaxies in
the Local Group. Although the number of substructures is reduced
by SIDM stripping, D’Onghia & Burkert (2003) claim that SIDM
does not solve this problem; the cross-section that makes the profile
cored (0.6 cm2 g−1) is apparently not efficient enough to reduce the
number of satellites down to the observed level. Recent findings of
nearby faint galaxies improve the agreement between observations
and collisionless CDM simulations, but still require some feedback
or reionization effect that suppresses star formation in low-mass
haloes (e.g. Koposov et al. 2009; Wadepuhl & Springel 2010, and
references therein).

Apart from the original motivation for proposing SIDM as a solu-
tion for the small-scale structure problem of the collisionless CDM
model, interest in the SIDM hypothesis remains strong for other
reasons as well. The fundamental nature of DM is still unknown.
Anomalous cosmic-ray detections, reported by PAMELA, Fermi and
ATIC, have recently stimulated new particle physics models for DM
that result in the scattering interaction of SIDM as a secondary effect
(Arkani-Hamed et al. 2009; Buckley & Fox 2010; Feng, Kaplinghat
& Yu 2010). Astronomical constraints on the SIDM cross-section
and its velocity dependence continue to be of importance, therefore,
in order to constrain such models.

Further progress along these lines requires that we reduce the
uncertainties in the theoretical productions for SIDM. As described
above, the quantitative estimates by Monte Carlo N-body simula-

tions and the conducting fluid model, of cross-section values that
are consistent with observations of dwarf galaxy rotation curves, are
in strong disagreement with each other. As long as this disagree-
ment is unresolved, many of the additional constraints on the SIDM
hypothesis described above, which also depend upon the validity
of the N-body results or related analysis, will remain suspect. It
is possible that either the N-body or the fluid model does not de-
scribe the system correctly. To remove such possibility, we directly
compare the two methods in the simplest case, namely, the isolated
spherically symmetric halo.

We will summarize the basis for the conducting fluid model in
Section 2. In Section 3, we will describe our Monte Carlo numeri-
cal algorithm for the SIDM elastic-scattering interaction in N-body
simulations. We test those two methods against each other for iso-
lated haloes in Section 4. The impact of our comparison results
on the cosmological similarity solution by A&S is discussed in
Section 5. Finally, our results are summarized in Section 6.

2 TH E C O N D U C T I N G F L U I D MO D E L

2.1 Background: gravothermal collapse in star clusters

The conducting fluid model (also known as the gaseous model)
was first developed to study the gravothermal collapse in globular
star cluster systems and has been shown to be successful in those
systems. Lynden-Bell & Eggleton (1980, hereinafter LBE) pro-
posed a thermal conduction formula for collisional, gravitationally-
bound systems based on dimensional analysis and derived an an-
alytical solution that describes the self-similar collapse of a star
cluster. That self-similar solution appears in the late stage of col-
lapse in a Fokker–Planck calculation (Cohn 1980) and in N-body
simulations (Makino 1996; Spurzem & Aarseth 1996; Baumgardt
et al. 2003; Szell, Merritt & Kevrekidis 2005). When the time-
evolution of a Plummer sphere is solved numerically by integrating
the partial differential equations of the fluid model, the resulting
collapse time agrees with that from other methods (Goodman 1987;
Heggie & Ramamani 1989). SIDM haloes and globular clusters are
both ‘collisional,’ self-gravitating systems, but the angular distri-
bution and velocity dependence of the collisions are different in
the two cases. Stars obey Rutherford scattering, which is domi-
nated by small-angle scattering and small-velocity encounters, σ

∝ v−4, while the SIDM cross-section we explore in this paper is
isotropic and velocity-independent. It is possible, however, that the
SIDM interaction also obeys Rutherford scattering via a ‘dark–
photon’ interaction (Ackerman et al. 2009; Feng et al. 2009). Grav-
itational Rutherford scattering between DM particles is negligible
unless they are all 105–106 M� mass black holes (Jin, Ostriker &
Wilkinson 2005).

2.2 The basic equations

In this section, we review the conducting fluid model developed by
LBE and BSI before we compare its results with our simulations.
As in these papers, we shall here restrict the conducting model
to the case of particle distributions that are spherically symmetric,
isotropic in velocity dispersion and quasi-static. The quasi-static ap-
proximation means that, while the fluid evolves thermally, it always
satisfies hydrostatic equilibrium at each moment. For the problem at
hand, it is a good approximation, because the collapse time-scale is
always much longer than the dynamical time. The conducting fluid
model is not, in general, restricted to quasi-static systems, however
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(Bettwieser 1983; A&S). The deviation from isotropic velocity dis-
persion is also possible to consider, but it plays only a minor role
for the problem of interest here.

The Boltzmann equation, which is a partial differential equation
in phase space, can be written as an infinite series of moment equa-
tions in position space by integrating over all velocities. When third
moments are negligible (skewless), the series of moment equations
can be closed by truncating at second order, as described in A&S.
The equations which result in this case are what we shall hereinafter
refer to as ‘the fluid approximation’. The same equations would re-
sult from assuming a Gaussian velocity distribution (not necessarily
isotropic or Maxwellian), an approximation called ‘Gaussian clo-
sure’ (Levermore 1996, and references therein). If velocity isotropy
is imposed in addition, the fluid approximation gives the familiar
Euler equation for an ideal gas with the ratio of specific heats γ =
5/3. This fluid approximation can describe the structure formation
of collisionless CDM and accurately reproduce the CDM halo prop-
erties found in 3D N-body simulations when applied to the problem
of spherical cosmological infall (A&S).

When collisions are important (e.g. either gravitational scattering
between stars or DM self-interaction), thermal conduction, which
is a third-order moment, should not be neglected. However, the
accurate evaluation of third moments is only successful in the small
Knudsen number regime, Kn � 1. In this regime, the Navier–
Stakes equation can be derived from the Boltzmann equation with
the Fourier law of heat flux,

Lsmfp

4πr2
= −3

2
a−1bρ

λ2

tr

∂v2

∂r
, (1)

where ρ(r, t) is the mass density, v(r, t) is the one-dimensional
velocity dispersion, σ is the scattering cross-section per unit mass,
λ ≡ 1/ρσ is the mean free path and b ≡ 25

√
π/32 ≈ 1.38 is a con-

stant2 (Chapman–Enskog theory, e.g. Chapman & Cowling 1970;
Lifshitz & Pitaevskii 1981). The local relaxation time is defined
as tr(r, t) ≡ 1/(aρσv), where the constant a ≡ √

16/π ≈ 2.26
describes the collision rate of particles that follow a Maxwellian
distribution, defined in BSI.

In the other limit, Kn � 1, LBE found that an empirical thermal
conduction formula with λ replaced by the gravitational scaleheight
(or Jeans length), H ≡ √

v2/4πGρ, explains the gravothermal
catastrophe of star clusters very well, that is,

Llmfp

4πr2
= −3

2
Cρ

H 2

tr

∂v2

∂r
, (2)

where C is an unknown constant of order unity. The scaleheight H
characterizes the length-scale that particles (or stars) orbit under the
action of the gravitational force.

BSI combined the two limiting forms of this thermal conduction
into one as follows:

L

4πr2
= −3

2
ρ

[(
C

H 2

tr

)−1

+
(

a−1b
λ2

tr

)−1
]−1

∂v2

∂r
. (3)

The first term inside the brackets is the LBE formula, equation (2),
which dominates in the large Knudsen number limit, λ � H. In the
other limit (λ � H), the second term inside the brackets dominates,
and the conduction converges to equation (1), instead. BSI’s formula
is an empirical interpolation between those two heat conductivity
limits. BSI assumed C = b, but the exact value cannot be determined

2 BSI used a value b = 25
√

π/(32
√

6) ≈ 1.002, but it should be 25π/32.

analytically. We determine the value of C by fitting the Monte Carlo
N-body data in Section 4.1.1.

The conducting fluid model is a set of moment equations closed
empirically by this conductive heat flux L/4πr2 as follows:

∂

∂r
(ρv2) = −ρ

GM

r2
, (4)

− 1

4πr2

∂L

∂r
= ρv2 D

Dt
ln

(
v3

ρ

)
, (5)

where M is the mass enclosed by radius r and D/Dt is the La-
grangian derivative with respect to time. The first equation describes
hydrostatic equilibrium. The second equation is the first law of ther-
modynamics, in the form of relating energy transfer and entropy,
‘dQ = TdS = dE + pdV’.

When λ � H, the fluid equations (4) and (5) with the heat
conduction equation (2) have a self-similar solution. In general, if a
self-similar solution exists, if density is static as r → ∞ and if the
evolution time-scale ρc/ρ̇c is proportional to the relaxation time at
the centre, tr,c(t) ≡ tr(r = 0, t), then the central quantities evolve as

ρc(t)/ρc(0) = (1 − t/tcoll)
−2α/(3α−2) , (6)

v2
c (t)/v2

c (0) = (1 − t/tcoll)
−(2α−2)/(3α−2) , (7)

tr,c(t)/tr,c(0) = 1 − t/tcoll, (8)

for some constants α and tcoll, by dimensional analysis (LBE). The
exponents of 1 − t/tcoll depend on the form of the relaxation time
and therefore different from those for star clusters. BSI obtained

α = 2.190, (9)

tcoll = 290 C−1tr,c(0), (10)

by solving an eigenvalue problem of a system of ordinary differen-
tial equations.

For the non-self-similar time-evolution considered in Sec-
tions 4.1.2, 4.1.3 and 4.2, we must integrate the time-evolution
of fluid variables, ρ and v2, numerically by alternative steps of the
heat conduction and adiabatic relaxation to hydrostatic equilibrium,
as described in BSI.

3 N- B O DY ME T H O D W I T H M O N T E
C A R L O SC AT T E R I N G

3.1 Scattering algorithm

In this section, we will describe the Monte Carlo algorithm we
implemented to model the non-gravitational scattering of DM par-
ticles by other DM particles, within a pre-existing gravitational
N-body method. Our scattering algorithm is similar to Kochanek
& White (2000). Each particle can collide with one of its k near-
est neighbours with a probability consistent with a given scattering
cross-section. For simplicity, we assume that collisions are elas-
tic, velocity-independent and isotropic in the centre of the mass
frame, but the Monte Carlo method can handle any differential
cross-section. We first outline the Monte Carlo N-body method and
then explain, in detail, the algorithm that we have implemented in the
parallel N-body code GADGET 1.1 (Springel, Yoshida & White 2001),
which uses the tree algorithm to calculate gravitational forces.

Monte Carlo algorithms for particle–particle scattering (known
as direct simulation Monte Carlo) have been used for more than
30 yr to solve the physics and engineering problems of collisional
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Gravothermal collapse of isolated SIDM haloes 1129

molecules, giving reasonable results (Bird 1994). For example,
the results agree with an exact solution of the spatially homoge-
neous Boltzmann equation that describes the relaxation towards a
Maxwellian distribution; they also agree with the Navier–Stokes
equation solutions and experiments, including the thermal conduc-
tivity, in the small-Kn regime (e.g. Nanbu 1984; Bird 1994; Gallis,
Torczynski & Rader 2004).

Consider N-body particles at positions xj and velocities vj with
equal mass m. We discretize the distribution function f with

f (x, v) =
∑

j

mW
(

x − xj ; rkth
j

)
δ3(v − vj ), (11)

where W (x; rk) is a spline kernel function of size rk, rkth
j is the

distance from particle j to its k ≈ 32nd nearest neighbour and
δ is the Dirac delta function. Our choice of kernel is often used in
smoothed particle hydrodynamics, including GADGET. Our algorithm
is identical to that of Kochanek & White if a top-hat kernel is used
for W instead of a spline. The result does not depend on the details
of the kernel, however. We tested with k = 128 but did not see any
difference.

The collision rate 
 for a particle at position x with velocity v to
collide with this distribution f is


 =
∑

j

mW
(

x − xj ; rkth
j

)
σ |v − vj |, (12)

where σ is the scattering cross-section per unit mass. Therefore,
the probability that an N-body particle ‘0’ collides with particle j
during a small time-step �t is

P0j = mW
(

x0 − xj ; rkth
j

)
σ |v0 − vj |�t. (13)

One can generate a random number and decide whether this
collision happens and re-orient velocities when they collide. This
method is similar to a variant of direct simulation Monte Carlo
called Nanbu’s method (Nanbu 1980). His Monte Carlo algorithm,
with the pairwise collision probability, equation (13), can be derived
from the Boltzmann equation as described in his paper. Conversely,
results of Nanbu’s numerical method converge, mathematically, to
the solution of the Boltzmann equation as the number of particles
goes to infinity (Babovsky & Illner 1989). In Nanbu’s method, only
one particle is scattered per collision (only particle 0 but not j). The
philosophy is that the N-body particles are samples chosen from
real sets of microscopic particles and those samples should col-
lide with a smooth underlying distribution function, not necessarily
with another sampled N-body particle. However, then the energy
and momentum are not conserved per collision. Moreover, the ex-
pectation value of the energy decreases systematically (Greengard
& Reyna 1991). In our case, the error in the energy rises by 10 per
cent quickly, so we decided to scatter N-body particles in pairs,
not using Nanbu’s method. Scattering in pairs is common in direct
simulation Monte Carlo (e.g. Bird’s method).

When particles are scattered in pairs, other particles j can scatter
particle 0 during their time-step as well, but the scattering proba-
bility P0j, in equation (13), is similar to, but not exactly equal to
Pj0 due to the difference in kernel sizes. Therefore, we symmetrize
the scattering probability by taking the average scattering rate. Note
that it is not trivial to generalize the pairwise scattering algorithm
to simulations with unequal N-body particle masses, because P0j

and Pj0 would then differ by a factor of their mass ratio; there is no
reason to symmetrize two intrinsically different probabilities into a
single pairwise scattering probability.

In the following, we describe our algorithm in detail. Each par-
ticle, say, particle 0, goes through the following steps, (i) to (iii),

during its time-step �t0. Let particles 1, . . . , k be the k nearest
neighbours of particle 0 (k = 32 ± 2). Particle 0 collides with its
neighbours with probabilities Pj0/2 (equation 13) during its time-
step. The factor of 2 is the symmetrization factor that corrects
the double counting of pairs. Particle j would also scatter parti-
cle 0 during its time-step, which results in a symmetrized scatter-
ing rate. Imagine a probability space [0, 1], with disjoint subsets
Ij ≡ [

∑j−1
l=1 Pl0/2,

∑j
l=1 Pl0/2) that represent scattering events be-

tween particles 0 and j. We neglect the possibility of multiple scat-
tering in the given time-step. Particle 0 collides with at most one of
its neighbours. We restrict the time-step so that it is small enough
that this approximation is good enough (see equation 15 below). We
generate a uniform random number x in [0, 1] and scatter particles
0 and j if x falls in a segment Ij, as described below.

(i) In the large-Kn regime, most of the particles do not collide
with another particle in a given time-step. Therefore, we can reduce
the computation by estimating the rough scattering probability first
and compute the accurate probability P0j only if necessary. First,
we calculated an upper bound to the scattering probability,

P̄ = ρ̃σvmax�t0, (14)

where ρ̃ is the approximate density calculated from rkth
0 via ρ̃ =

km/ 4
3 π(rkth

0 )3 and vmax is the maximum speed of all the particles. If
the generated random number x is larger than P̄ , this means that x
is not in any segment Ij; therefore, particle 0 does not collide during
this time-step.

(ii) If the possibility of a collision was not rejected in step (i),
we calculate the pairwise scattering probability Pj0 and determine
which neighbour particle 0 collides with. The index j of the collision
partner is the smallest integer that satisfies x ≤ ∑j

l=1 P0j , that is,
x ∈ Ij, if such j exists (otherwise, the particle does not collide with
any neighbours).

(iii) For particle pairs that collide, we re-orient their velocities
randomly, assuming an elastic scattering which is isotropic in the
centre-of-mass frame. Isotropic random directions can be generated
by one square root operation, without using trigonometric functions
(e.g. Vesely 2001). The velocities are updated in the kick phase of the
leap-frog time-integration in the GADGET 1.1 gravitational N-body
method. At that time, we also update the centre-of-mass velocities
of the nodes around the scattered particles in the oct-tree, used for
the gravity calculation. This is because the centre-of-mass velocities
can be changed drastically by scattering.

We allowed at most one scattering per time-step per particle. In
order to suppress the error due to possible multiple scattering, we
restrict the time-step so that

P̄ < 0.1. (15)

This restriction makes the Monte Carlo method computationally
costly in the small Kn regime, because then the time-step becomes
much smaller than the dynamical time – of the order of the time-
step in collisionless N-body simulations. This time-step problem
may seem to be avoided by performing multiple scatterings per
dynamical time-step, but there is another limit when the Knudsen
number is small. The distances to kth neighbours must be smaller
than the mean free path λ = 1/(ρσ ),

rk � λ. (16)

Otherwise, particles more than a mean free path away would be
allowed to collide and, thereby, make the heat transfer larger than
it should be in the diffusion limit. If one tries to avoid this by
choosing a kernel size smaller than the mean particle separation
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1130 J. Koda and P. R. Shapiro

Table 1. The long-mean-free-path regime: parameters used for each run. N is the number of N-
body particles, Nmax

c is the maximum number of particles inside the core, rf is the radius of the
reflecting boundary and ε is the Plummer-equivalent gravitational softening length [where ε for
cases BSI and P is adjusted downward periodically each time the central density increases by
another factor of 10; ε ∝ rc(t) ∝ v2

c /
√

ρc]. The constant C is the LBE pre-factor used for the
conducting fluid model.

Run name Initial condition Cross-section N Nmax
c rf ε C

BSI BSI self-similar σ̂c = 0.067 4 × 643 473 600rc 0.1rc 0.75
P Plummer σ̂c = 0.067 4 × 323 1455 58.5rc 0.1rc 0.8
H Hernquist profile σ̂0 = 0.16 2 × 643 1493 100rs 0.03rs 0.9
NFW NFW profile σ̂0 = 0.088 2 × 643 794 100rs 0.03rs 0.75

length, then the particles simply freely stream beyond the mean
free path, which is again incorrect. The only way to overcome
this problem is to increase the number of the particles in inverse
proportion to the volume within the mean free path, Nparticles ∝
λ−3 = (ρσ )3, which increases very rapidly during core collapse
as ρ increases. Conditions (15) and (16) prevent us from running
simulations with a small mean free path.

3.2 Dimensions and units

We use the following characteristic scales in the rest of this pa-
per. For the initial BSI self-similar profile (Sections 4.1.1 and
4.2) and the Plummer model (Section 4.1.2), we describe densi-
ties and velocities in units of central quantities, ρc(t) ≡ ρ(0, t)
and v2

c (t) ≡ v2(0, t); ρ(r, t) and v(r, t) denote the density and the
one-dimensional velocity dispersion, respectively, in spherical sym-
metry. We use the core radius rc(t) ≡ vc/

√
4πGρc as a standard

length-scale.
For the Hernquist and NFW profiles (Section 4.1.3), which have

singularities at the centre, we use the scale radius rs and density ρ0

that appear in the density profiles as units, instead. We use v0 ≡
rs

√
4πGρ0 as the velocity scale, which is similar to the definition

of the core radius above.
The relaxation times at the centre tr,c(t) ≡ tr(0, t) for the BSI and

Plummer models or tr,0 ≡ 1/(aρ0σv0) for the NFW and Hernquist
profiles are used as unit time-scales.

We express cross-sections in a dimensionless way as σ̂c ≡ ρcσrc

and σ̂0 ≡ ρ0σrs, where σ is the scattering cross-section per unit
mass. The inverses are the Knudsen numbers, the mean free path in
the unit of the system size (rc or rs). The evolution of the system
is characterized by the Knudsen number Kn only, not depending on
the overall physical scale.

3.3 Simulation setup

We generate the initial conditions for N-body particle positions and
velocities randomly from the distribution functions using the re-
jection method (Aarseth, Henon & Wielen 1974).3 The distribution
functions of BSI’s self-similar solution and the NFW profile are cal-
culated numerically by Eddington’s formula (Binney & Tremaine
1987). The distribution functions of the Plummer model and the
Hernquist model (Hernquist 1990) have known analytical forms.
We set the initial centre-of-mass velocity of the system of N-body
particles to zero by an overall boost.

We truncate the initial profile at some radius rf and put a simple
reflecting boundary, which flips the direction of the radial velocity

3 See also The Art of Computational Science, vol. 11, by Hut P. and Makino
J.; http://www.artcompsci.org/kali/vol/plummer/title.html

if particles are moving outwards past the reflecting boundary. We
use rf = 600rc for the BSI self-similar profile, rf = 58.5rc for
the Plummer model and rf = 100rs for the Hernquist and NFW
profiles. The density at rf is smaller than 2 × 10−7ρc and the
heat flux (L/4πr2 in Section 2) at rf , calculated from the equation
for the conducting fluid model, is smaller than 0.02 per cent of
its maximum value. Nevertheless, the collapse time is sometimes
sensitive to the position of this reflecting boundary. The collapse
was slower by a factor of 2 when we first used the truncation radius
rf = 58.5rc for the BSI profile, even though this rf is large enough
to satisfy Antonov’s criterion for gravothermal catastrophe (Endoh,
Fukushige & Makino 1997). We also tested rf = 300rc, for the BSI
profile, and the collapse time changed by only 3 per cent compared
to rf = 600rc. Hence, our choice of rf = 600rc is large enough to
bring about a converged solution to high accuracy.

We use two time-step criteria in addition to equation (15). The
time-step must also satisfy �t ≤ ηvvc(0)/a, and �t ≤ ηG/

√
Gρ̃,

where vc(0) is the initial one-dimensional velocity dispersion, a is
the local acceleration and ρ̃ is the local density calculated from
k = 32 nearest neighbours (see below equation 14). We choose the
dimensionless parameters to be ηv = 0.02 and ηG = 0.005. With
this choice, the initial conditions are static for several dynamical
times when scattering is turned off. Energy conservation is satisfied
to better than 1 per cent in all runs.

The number of particles, gravitational softening length and other
parameters are summarized in Table 1. For runs BSI and P, we reset
the gravitational softening length ε to 0.1rc(t) every time the central
density increases by a factor of 10, to avoid the numerical effect of
softening on the density profile.

We tested that the numerical scattering rate is correct, by count-
ing the number of scatterings in the simulation of a non-singular
isothermal sphere4 and comparing it to the analytical rate. The scat-
tering rates agree within 3 per cent when 643 particles are used
and the isothermal sphere is truncated at 58.5rc. The difference is
due to the fluctuation in the randomly generated initial condition,
not due to the Poisson fluctuation in the number of scatterings.

3.4 Analysis methods

We calculate the central quantities for each snapshot from N-body
particles within a sphere of radius rc around the density-weighted
centre of mass (Casertano & Hut 1985), assuming an isothermal
sphere inside rc. Namely, we find a consistent rc iteratively that
satisfies

rc =
√

v2
c /4πGρc, (17)

4 The solution of hydrostatic equilibrium (equation 4) with constant v(r) ≡
vc and finite central density.
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Gravothermal collapse of isolated SIDM haloes 1131

where ρc is the central density estimated from M(rc), the mass inside
rc,

ρc ≡ 1.10 × M(rc)

/
4

3
πr3

c , (18)

and vc is the velocity dispersion inside rc. The value 1.10 in equa-
tion (18) is the ratio of the central density to the average density
inside rc for the non-singular isothermal sphere. In this way, we
can use as many particles as possible without any systematic error
for the calculation of the central quantities. The velocity dispersion
inside the core quickly becomes isothermal due to collisions.

We calculated the smoothed density and velocity dispersion field
at each point in space using an adaptive kernel, similar to that used
in the well-known SPH method, with a Gaussian kernel whose
size is r32 – the distance to the 32nd nearest neighbour. These
smoothed-particle density and velocity dispersion fields were then
averaged over spherical surfaces on different radii r to give the radial
profiles of these quantities. In practice, this amounts to summing
the spherically averaged Gaussian kernels evaluated at each radius
r (e.g. Reed et al. 2005).

4 R ESULTS

We compare our Monte Carlo N-body simulations with the con-
ducting fluid model, first in the large-Kn regime for various initial
conditions and then in the transitional regime Kn ∼ 1.

4.1 Long-mean-free-path regime

4.1.1 Self-similar gravothermal collapse solution

In this section, our Monte Carlo N-body simulation for large Kn,
σ̂c(0) = Kn−1 = 0.067, is compared with the BSI self-similar
solution. Fig. 1 shows the evolution of the density and velocity dis-
persion profiles. The right-hand panels, plotted in self-similar vari-
ables, show that when the N-body particles are initialized according
to a given time-slice of the self-similar solution, they indeed evolve
self-similarly in the Monte Carlo N-body simulation thereafter.

Fig. 2 shows that our Monte Carlo N-body simulation is in ex-
cellent agreement with the self-similar solution (equations 6–10),
by adjusting the value of one parameter, C, in the heat conduction
equation (2). We determine the collapse time tcoll = 385tr,c(0) by fit-
ting the time-evolution of the relaxation time data (Fig. 2, left-hand
side bottom panel) by the linear function, equation (8). The pre-
factor of the thermal flux C = 0.75 follows from equation (10). The
best-fitting power-law index of v2

c ∝ ρ(α−2)/α
c (equations 6 and 7)

gives a value α = 2.22 (Fig. 2, right-hand side bottom panel), which
agrees reasonably well with the value of the self-similar solution,
2.19 (equation 9).

To test convergence, we simulated the self-similar solution with
three different numbers of particles, 2 × 323, 4 × 323 and 16
× 323, which give the initial number of particles inside the core
Nc(0) = 227, 376 and 1527, respectively. At the time of our resolu-
tion test, we used the reflecting radius rf = 58.5rc. Numerical errors
due to a finite number of particles should only depend on the N-body
particle density, independent of the choice of boundary conditions.
As a result, it was not necessary to run an additional convergence
test for the case with rf = 600rc, used in our final runs. Other
parameters are the same as run BSI. In Fig. 3, we plot the evolution

Figure 1. Monte Carlo N-body results for evolution from BSI self-similar
initial conditions. Profiles of the density (top panels) and velocity dispersion
(bottom panels) for σ̂c = 0.067 plotted in units of fixed, initial central values
(left-hand column), as labelled, and in units of the time-varying self-similar
quantities (right-hand column) at t/tr,c(0) = 0, 275, 356, 376 and 383. The
evolution is indeed self-similar.

Figure 2. Comparison of N-body results and the BSI similarity solution for
the case shown in Fig. 1. Central quantities plotted as a function of time.
N-body results are in good agreement with the self-similar solution (smooth
curves, equations 6–9), with tcoll = 385 tr,c(0) or C = 0.75. Fluctuations are
of the order of Poisson noise; error bars represent �ρc/ρc = �tr,c/tr,c =
2/

√
Nc, and �v2

c /v2
c = 1/

√
Nc, plotted for every 10 data points, where Nc

is the number of particles inside rc.
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1132 J. Koda and P. R. Shapiro

Figure 3. Same as Fig. 2, except for simulations with different total numbers
of N-body particles. The density deviates from the BSI solution when Nc �
100. Collapse times are different from those in run BSI because the reflecting
boundary is set at 58.5rc. Density curves (left-hand panel) are shifted towards
the left-hand side by 50 and up by a factor of 2 for readability; three smooth
curves are all the same BSI self-similar solution.

of the density and number of particles inside the core as a function
of time. The three smooth curves in the left-hand panel are the same
analytic self-similar solution (equation 6) with tcoll = 705tr,c(0).
The results for the runs with N = 4 × 323 and 16 × 323 agree very
well, while those for N = 2 × 323 deviate from the other two runs
systematically when Nc � 100. Our run BSI contains 470 particles
inside the core at t = 0 (Table 1), which is better than the converged
N = 4 × 323 run here. Other runs in the following sections have
better resolution inside the core, because of the smaller fraction
of particles for r > rc, resulting from the steeper decline in their
density profiles.

4.1.2 Plummer model

We compare the Monte Carlo N-body simulation with the conduct-
ing fluid model when the initial condition is the Plummer model in
the large-Kn regime. The Plummer model, a standard initial condi-
tion used to study gravothermal instabilities, has a spherical mass
distribution given by

ρ(r) = MT

4πa3
pl/3

1

(1 + r/apl)5/2
. (19)

In this case, the characteristic scales defined in Section 3.2 can be
shown to be vc = (2GMT/apl)1/2/12 and rc = apl/(3

√
2). We evolve

this system according to the conducting fluid model in the large Kn
limit with the quasi-static approximation described in Section 2,
equations (2), (4) and (5). The N-body simulation is also performed
in the large-Kn regime, σ̂c(0) = 0.013. The time-evolution for
this quasi-static system is independent of the actual value of σ for
the large-Kn regime, if the time for solutions with different σ is
expressed in units of the relaxation time.

We plot the time-evolution in Fig. 4. The fluid model agrees with
the N-body results reasonably well if the coefficient C is assigned a
value of 0.80. This is in reasonably good agreement with the value of
C = 0.75, found for the self-similar solution. The logarithmic slope
(right-hand side top panel) has a plateau at about −α, which is
the asymptotic slope of the self-similar profile. This implies that
the inner part is converging to the self-similar solution, with an
asymptotic logarithmic slope −α, which was well known in the
gravothermal collapse of star clusters.

Figure 4. Collapse of the Plummer model for σ̂c(0) = 0.013. Top panel:
snapshots of the Monte Carlo N-body simulation, taken at t/tr,c(0) = 0.0,
24.338.552.0, 56.7, 58.6 and 59.3. Bottom panel: central density and relax-
ation time-evolution as functions of time for both the N-body results and
the one-dimensional calculation of the fluid model with C = 0.8 (smooth
curves).

4.1.3 NFW and Hernquist profiles

We also considered the case of an initial condition with the spherical
mass distribution given by the NFW profile to test the consistency
of the Monte Carlo N-body simulation and the conducting fluid
model with each other for the typical halo profile seen in cosmo-
logical N-body simulations. The gravothermal collapse time-scale
is interesting as a way to put constraints on the SIDM cross-section,
because the result of gravothermal collapse is a divergent profile
with ρ ∝ r−2.2, which is not seen in observations. We note that
gravothermal collapse is prevented by cosmological infall or major
mergers, but when a halo decouples from cosmological growth, the
halo could experience gravothermal collapse. The NFW profile is
given by

ρ(r) = ρ0
1

r/rs(1 + r/rs)2
. (20)

In addition, we perform a test with initial conditions based upon
a Hernquist profile (Hernquist 1990):

ρ(r) = ρ0
1

r/rs(1 + r/rs)3
, (21)

which has the same inner profile, ρ ∝ r−1, and is sometimes used
to approximate the NFW profile. As we will demonstrate below,
the gravothermal collapses for the NFW and Hernquist profiles are
significantly different and it is therefore dangerous to use the results
for the Hernquist profile (Kochanek & White 2000) to describe real-
istic haloes. As for the Plummer model, our conducting fluid model
calculations adopt the large Kn limit and the N-body simulations
use a small, but non-zero, σ (cf. Table 1).

Figs 5 and 6 show that the fluid model agrees reasonably with
N-body results. In particular, the density profiles in the two cases
evolve through a sequence which is close to the N-body results,
although the agreement is better if the following adjustments are
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Gravothermal collapse of isolated SIDM haloes 1133

Figure 5. Gravothermal collapse of SIDM haloes starting from the NFW
and Hernquist profiles: the density and velocity dispersion profiles. Left-
hand panel: N-body snapshots with the NFW initial condition at t/tr,0 =
0, 197, 336, 462 and 515, and profiles of the fluid model when they have the
same central density. Right-hand panel: same as the left-hand panel, except
with the Hernquist initial profile, plotted at t/tr,0 = 0, 16, 111, 129 and 139.

Figure 6. Central density versus time, starting from the NFW (left-hand
panel) and Hernquist profiles (right-hand panel). We use C = 0.75 for the
NFW profile and C = 0.9 for the Hernquist profile. In the left-hand panel,
the origin for the fluid curve is shifted to the right-hand side along the time-
axis by 100tr,0 to show the agreement in the gravothermal collapse phase.
The minimum density of the fluid is ±20 per cent different from that of the
N-body. Error bars show �ρc/ρc = 2/

√
Nc for every 10 data points.

made to the time-axis of the fluid model solutions (6). For NFW,
N-body and fluid model central densities agree best when compared
at times which differ by a small shift equal to 100tr,0, or 20 per cent
of the collapse time. For the Hernquist initial profile, the agreement
is best if the time-axis is scaled by a factor of the order of unity
which is equivalent to adjusting the value of C in the conductivity
from C = 0.75 (found in the BSI run) to 0.9, which also differs by
only 20 per cent. For both the NFW and Hernquist initial conditions,
density profiles agree very well when the central densities are equal,
but the values of the central densities differ by about 20 per cent at
the maximum core expansion.

We note that the initial NFW profile evolves very differently
from the initial Hernquist profile, for the same parameters ρ0 and

rs. The NFW run has a central density about three times smaller at
the maximum core expansion and a collapse time about four times
longer than for the H run. This is because the NFW profile has larger
heat flux at r � rs due to its larger density there, which heats and
expands the central mass more than does the Hernquist profile.

Our simulation results are qualitatively similar to those of
Kochanek & White (2000), but the time-evolutions differ by a factor
of 2. We do not know the reason for this difference. We show how
our units convert to those in Kochanek & White (2000) as follows:
ρKW

0 = 2πρ0, tKW
r,c = 1.7 × 2

√
2atr,0 = 11tr,0 and σ̂ KW

DM = 2πσ̂0.
Their simulation for σ̂ KW

DM = 1, which has the same cross-section
as ours, reached the minimum density at t ≈ tKW

r,c = 11tr,0 and
collapsed gravothermally to ρc = 2ρKW

0 = 13ρ0 at t ≈ 3.2tKW
r,c =

35tr,0, while our simulation reached those densities at 20tr,0 and
70tr,0, respectively (Fig. 6). Their evolution is about twice as fast as
in our simulation. The origin of this discrepancy is unknown.

4.1.4 The source of difference

Our Monte Carlo N-body simulations agree with the solutions of
the conducting fluid model in the self-similar gravothermal collapse
phase, but in general have about a 20 per cent difference in the cen-
tral density and the collapse rate. This modest disagreement is not
surprising in view of the fact that the conducting fluid model is not
an exact theory derived from first principles. Heggie & Stevenson
(1988) compared the thermal conductivity of the conducting fluid
model with that calculated from the orbit-averaged Fokker–Planck
equation for star clusters with several profiles, including polytropes
and lowered Maxwellians, evaluated at the centres. They find that
the coefficients of conductivity C varied from one profile to another
by factors of 2 or 3. The overall collapse rates are not that different,
probably because the profiles quickly converge to the self-similar
solution around the centre. Indeed, for star clusters, the value of C
= 0.88, which makes the fluid model match the asymptotic collapse
rate in the isotropic Fokker–Planck calculation (Cohn 1980) and
also gives the correct collapse time of the Plummer model, 15.4
half-mass relaxation times (Goodman 1987; Heggie & Ramamani
1989). This means that C does not need to be different for the cases
of a self-similar collapse solution and the collapse of the Plummer
profile.

One possible distinction between the one-dimensional conduct-
ing fluid model and the three-dimensional N-body/Monte Carlo
simulations is that the former assumes that particle velocity distri-
butions are isotropic in the frame of the bulk flow while the latter
do not. The anisotropy in velocity dispersion affects the collapse
time (Bettwieser 1983; Louis 1990). Fokker–Planck calculations
with anisotropy show that the collapse time of the star clusters ini-
tialized by the Plummer model is 20 per cent larger than for the
isotropic case (Takahashi 1995) and agrees with the N-body simu-
lation (Khalisi, Amaro-Seoane & Spurzem 2007). In Fig. 7, we plot
the radial (v2

r ) and tangential [v2
⊥ = (v2

θ + v2
φ)/2] velocity disper-

sions of our simulation when the central density has increased by a
factor of 10. We do not see anisotropies near the centre, but we do
see at r � 5rc for runs P, NFW and H. When particles scatter from
the centre to large radii, their nearly radial orbits bring anisotropy to
the initially isotropic velocity distribution at large radii. If the orig-
inal unscattered particles at large radii are less numerous, because
the density profile is steeper, the anisotropy that results from scat-
tering particles from small to large radii will be relatively larger.
This is why anisotropy is larger if the logarithmic slope of the
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1134 J. Koda and P. R. Shapiro

Figure 7. Velocity anisotropy for N-body results. The radial and tangential
velocity dispersions for each run. The snapshots are taken when the densities
at the centre are 10ρc(0) for runs BSI and P, 25ρ0 for run NFW and 125ρ0 for
run H. The velocity dispersion is calculated in 40 equally spaced logarithmic
bins. The error bars show the Poisson fluctuations when they are larger than
1 per cent, �v2 = v2/

√
N , where N is the number of particles in each bin.

density profile is steeper. Anisotropy may therefore play some role
in the collapse rate of runs P and H.

In short, the conducting fluid model has been shown to describe
the gravothermal collapse relatively accurately, but we cannot ex-
pect very high precision in general. Therefore, the 20 per cent match
in the minimum core density of runs NFW and H, and 20 per cent
match in the gravothermal collapse time for runs P, NFW and H run
are a very reasonable agreement.

4.2 Transitional regime

When Kn becomes comparable to, or smaller than, 1, the self-
similar collapse solution of BSI no longer applies because of the
presence of the second term in the heat conduction equation (3). The
smaller Kn is, the slower the time-evolution in units of the relaxation
time becomes, because a smaller mean free path suppresses particle
transport more, which results in smaller heat conduction (BSI). To
test the heat conduction equation (3) when both long and short
mean-free-path terms are important (i.e. transitional regime), we
compared the time-evolution of Monte Carlo N-body simulations
with those of the conducting fluid model, derived numerically when
no self-similar solution exists, with the initial Knudsen numbers
Kn−1(0) = σ̂c(0) = 0.25, 0.5, 0.75 and 1.0. The initial condition
is the same as in Section 4.1.1: the particle distribution of the BSI
self-similar collapse solution. See Table 2 for the summary. The
N-body simulation with larger σ̂c becomes very difficult because of
the mean-free-path requirement (equation 16). The initial ratio of
the mean free path to the kernel size, λ/r32 ∝ ρ−2/3, at the centre is
listed in the table. Our σ̂c(0) = 1.0 run violates λ > r32 at ρc(t) ∼

Table 2. The transitional regime simulations. σ̂c

is the initial dimensionless cross-section, N is the
number of N-body particles, λ/r32(0) is the ratio
of the mean free path to the kernel size at the
centre at t = 0 and t10 is the time for the density
to increase by a factor of 10. Other parameters
are the same as for the BSI run.

σ̂c(0) N λ/r32 t10/tr,c(0)

0.25 4 × 643 10.3 374
0.5 4 × 643 5.2 417
0.75 2 × 1283 5.5 510
1.0 2 × 1283 4.1 585

Figure 8. Gravothermal collapse in the transitional regime: central density
against time from Monte Carlo N-body simulations and the conducting fluid
model. Cross-sections of N-body runs are σ̂c(0) = 0.25, 0.50, 0.75 and 1.0,
from the left-hand to right-hand side, shifted to the right-hand side by 300
for readability. Four copies of smooth curves are the solutions of the fluid
model with the cross-sections σ̂c(0)/

√
b = 0, 0.25, 0.5, 1.0, 1.5 and 2.0,

from the left-hand to right-hand side. The first two curves, σ̂c/
√

b = 0 and
0.25, are indistinguishable, and σ̂c/

√
b = 0.5, 1.0, 0.15 and 2.0 overlap

with the N-body results for σ̂c = 0.25, 0.5, 0.75 and 1.0, respectively. This
match suggests b = 0.25.

8. The number of particles required to follow the collapse scales as
σ̂ 3

c beyond this density or cross-section.
For the fluid model, the pre-factor C is chosen to be 0.75

to make an agreement at small σ̂c (Section 4.1.1). We ran the
fluid code with the initial dimensionless cross-section σ̂ (0)/

√
b =

0, 0.25, 0.5, 0.75, 1.0, 1.5 and 2.0. The time-evolution of the
fluid model in units of the initial relaxation time depends only on
the combination σ̂ /

√
b, which can be seen from the heat conduction

equation (3).
We plot the evolution of the central density for both N-body

and fluid model results in Fig. 8. In units of the relaxation time,
the collapse is slower for larger cross-sections. Fluid model results
for σ̂c(0)/

√
b = 0.5, 1.0, 1.5 and 2.0 evolve similarly to N-body

simulation results for σ̂c(0) = 0.25, 0.5, 0.75 and 1.0, respectively.
This suggests that the effective value of the coefficient is b = 0.25
in the transitional regime, Kn � 1.

To show the agreement between our N-body results and the fluid
model solution with b = 0.25, we plotted the normalized collapse
rate as a function of the cross-section in Fig. 9, where t10 is the
time for the density to increase by a factor of 10, and the fiducial
time-scale t∗

10 is the time at which the self-similar solution with
σ̂c(0) = 1 has a density increase by a factor of 10. The collapse rate
is proportional to the cross-section in the large-Kn regime (small
σ̂ ), but deviates from the linear relation in the transitional regime
σ̂ � 0.5, as predicted by BSI. The collapse rate should reach some
maximum at some cross-section and then decrease as t−1

10 ∝ σ̂−1
c

as σ̂c → ∞. Furthermore, since the value of b can be calculated
from first principles in the small-Kn regime, b should converge to
the Chapman–Enskog value (b = 1.38 in Section 2) as Kn → 0.
However, due to the numerical limit in equation (16), we cannot go
into the small-Kn regime to see the convergence to the Chapman–
Enskog theory or the turn-over of the collapse rate. Our N-body
results are consistent with a constant b = 0.25 in the range we are
able to simulate.

5 D I SCUSSI ON: IMPLI CATI ONS FOR TH E
C O S M O L O G I C A L SI M I L A R I T Y S O L U T I O N

In this section, we discuss the consequences for the cosmological
similarity solution derived by A&S by replacing the values of the
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Gravothermal collapse of isolated SIDM haloes 1135

Figure 9. Collapse rate plotted as a function of the cross-section for a self-
similar solution (dotted line), a fluid model with a previously assumed value
b = 1.0 (dashed line), with b = 0.25 (solid line) and N-body simulations
(crosses). See the text for the definition of the collapse rate. A value of
b = 0.25 makes the fluid model solution (with its conductivity that maps
smoothly between the limits of the long and short mean free paths) agree
with N-body simulations even in the transitional regime.

pre-factors [in the heat conduction equation (3)] C = b = 1.0 by C =
0.75 and b = 0.25, as calibrated by our Monte Carlo N-body simu-
lations. Until now, we have limited our attention to the gravothermal
relaxation of isolated SIDM haloes. However, the haloes that form
in a cosmological context are not isolated but rather build up over
time from the non-linear growth of small-amplitude initial density
perturbations in the expanding cosmological background universe,
which results in a continuous infall of additional mass. To model
this cosmological formation and evolution of SIDM haloes, A&S
added the BSI heat conduction term to the fully time-dependent con-
servation equations of the fluid approximation in one-dimensional,
spherical symmetry, as described in A&S. They used these equations
to derive an analytical solution for the so-called ‘secondary infall’
problem, in an Einstein–de Sitter universe, with the initial pertur-
bation given by the spherical overdensity profile δM/M̄ ∝ M̄−1/6,
where M̄(r) is the unperturbed mass in a sphere of radius r at the
mean density of the universe, and δM(r) = M(r) − M̄(r) is the
mass perturbation inside the radius. The solution with this initial
overdensity is self-similar, that is, the solution is time-independent
if the radius and density are measured in units of the time-varying
turnaround radius rta and background critical density ρb, respec-
tively. The family of similarity solutions is parametrized by the
dimensionless cross-section,

Q ≡ ρbσrvir, (22)

where rvir is the halo virial radius, the radius at which an accretion
shock occurs. The density profile has a core whose density and size
depend upon the value of Q.

The heat conduction equation (3) has a dependence on σ̂ = H/λ

given by

L ∝ σ̂ (a−1C−1 + b−1σ̂ 2)−1. (23)

This function takes its maximum value
√

abC/2 at σ̂ =√
a−1b C−1. Compared to previously assumed values, C = b =

1.0, our calibrated heat conduction has a maximum that is smaller
by a factor of

√
bC ≈ 0.4, which occurs at a value of σ̂ that is

smaller by a factor of
√

bC−1 = 0.58. There is a minimum central
density and largest core size which occur approximately when the
dimensionless cross-section at the centre, σ̂c, defined in Section 3.2,

Figure 10. The cosmological similarity solution by A&S with our calibrated
pre-factors (C = 0.75, b = 0.25; solid line) and the original pre-factors (C =
b = 1.0; dotted line). Left-hand panel: the maximally relaxed density profiles,
with the density and radius in units of the background critical density ρb and
turnaround radius rta. The maximally relaxed solution for new pre-factors
has a 30 per cent larger central density. Right-hand panel: the central density
for old and new pre-factors for different cross-section values.

maximizes the heat flux with the value σ̂c = √
a−1b C−1. The so-

lution with that σ̂c is defined as the maximally relaxed solution and
the corresponding cross-section Q is denoted by Qth (A&S). This
maximally relaxed halo has a density profile almost identical to the
empirical Burkert profile (Burkert 1995), which fits the observed
rotation curves of dwarf and LSB galaxies well.

We used the same numerical code as A&S to solve for the cos-
mological similarity solutions with our calibrated pre-factors and to
compare with their original solutions. In Fig. 10, we plot the maxi-
mally relaxed density profile (left-hand panel) and the dependence
of the central density on the dimensionless cross-section σ̂c (right-
hand panel). For the pre-factors C = b = 1.0 adopted by A&S,
the solution is maximally relaxed for Qth = 7.35 × 10−4, with the
central density ρc = 1.17 × 104ρb. For C = 0.75 and b = 0.25,
the maximally relaxed solution shifts to Qth = 3.95 × 10−4, with a
central density ρc = 1.50 × 104ρb.5 This central density is about
30 per cent larger than that of the original solution. For σ̂c � 1, a
cross-section that is 1.33 times as large is required to achieve the
same central density, due to the change in the coefficient C from
1.0 to 0.75.

A&S estimated the cross-section values that brought dwarf galaxy
rotation curves into agreement with the cosmological self-similar
halo profiles. In order to translate a given value of Qth into a cross-
section value σ , the typical formation time for haloes that host dwarf
galaxies in the �CDM model of structure formation was used to
relate rvir and ρb in the definition of Q, as described in A&S. Using
the same argument, our corrected Qth value corresponds to a cross-
section of 117 cm2 g−1, which is smaller than the original value
218 cm2 g−1 but still much larger than the values, 0.5–5 cm2 g−1,
found in Monte Carlo N-body simulations that produce cored pro-
files for galactic haloes formed from cosmological initial conditions
(Davé et al. 2001).

We will discuss this apparent discrepancy between the values
of the SIDM cross-section which are able to match the observed
rotation curves of dwarf and LSB galaxies best, from the A&S

5 The value of σ̂c which defined the maximally relaxed solution, σ̂c =√
a−1bC−1, changes from 0.666 to 0.384 if the conductivity parameters

change their values in A&S to our new values here. However, the actual
minimum densities occur at slightly higher σ̂ . For C = b = 1.0, the central
density takes its minimum value ρc = 1.15 × 104ρb at σ̂c = 0.85, or Q
= 9.78 × 10−4. For C = 0.75 and b = 0.25, the minimum density ρc =
1.46 × 104ρb is found at σ̂c = 0.55, or Q = 3.95 × 10−4.
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similarity solutions and cosmological N-body/Monte Carlo simula-
tions, respectively, in a separate paper. Here, we have demonstrated
that this discrepancy is not likely to result from the break-down
of the conducting fluid model. We have found good agreement, in
fact, between the Monte Carlo N-body simulations and the con-
ducting fluid model for the thermal relaxation and gravothermal
collapse of isolated haloes (of fixed mass), at least with regard to
the long mean-free-path regime and the transitional regime in which
the mean free path is comparable to the system size. These are the
regimes of greatest relevance to the SIDM halo problem. We have
also shown that, when we use the agreement between our Monte
Carlo N-body results and the conducting fluid model solutions for
isolated haloes to calculate the dimensionless parameters on which
the heat conduction depends, the impact of the modified param-
eters on the A&S similarity solution is relatively small. We must
therefore seek a different explanation for the different values of
σ required by the cosmological N-body/Monte Carlo simulations
and the similarity solutions of A&S to produce the same observed
degree of relaxation of the SIDM halo density profiles.

As we shall discuss in our next paper in this series, the essen-
tial difference between the self-similar solution of A&S and the
cosmological N-body simulations is that the self-similar halo is
continuously heated by the accretion shock, while the inner part of
a more realistic halo, on the galaxy scale, is eventually unaffected
by infall when the infall rate slows down after the halo forms. We
will compare cosmological Monte Carlo N-body simulations with
the conducting fluid model with non-self-similar infall in our next
paper.

6 C O N C L U S I O N S A N D S U M M A RY

The ability of the SIDM hypothesis to resolve the cusp–core prob-
lem of collisionless CDM haloes on the galaxy scale and the cross-
section values required to accomplish this remain uncertain, as long
as the previous conclusions drawn from N-body simulations and the
conducting fluid model differ so strongly. To rectify this situation,
we have developed a new Monte Carlo N-body code of our own,
based on the pre-existing GADGET 1.1 N-body code, and applied it to
compare the N-body simulations with the conducting fluid model
for isolated, spherically symmetric self-gravitating SIDM haloes.
The collisions were assumed to be velocity-independent, elastic
and isotropic. Our results include the following:

(i) Our Monte Carlo N-body simulations are in very good agree-
ment with the analytical self-similar gravothermal collapse solution
of BSI, when the coefficient of thermal conduction is set to C = 0.75
(Section 4.1.1); the density and velocity dispersion profiles evolve
self-similarly; the central density and velocity dispersion follow the
self-similar time-evolution formulae with the predicted constant
α = 2.19; and the time to collapse is always proportional to the
central relaxation time at that time (equations 6–10).

(ii) The conducting fluid model agrees with Monte Carlo N-
body simulations reasonably well for different initial conditions:
Plummer model, Hernquist profile and NFW profile in the large-
Kn regime. The collapse time and the central density at maximum
core expansion agree within 20 per cent. The shape of the density
profile and the central density evolution as a function of time during
gravothermal collapse agree very well.

(iii) We also showed that the collapse time becomes longer in
units of the relaxation time as the system transitions from the large-
to the small-Kn regime, as predicted by the conducting fluid model.
The N-body results agree with the conducting fluid model for Kn ≥

1, or σ̂ ≤ 1, with the pre-factor b = 0.25. However, this pre-factor
is more than five times smaller than the Chapman–Enskog value,
valid asymptotically in the small Kn limit. The conducting fluid
model must be further calibrated against N-body simulations if it is
used beyond the transitional regime, for σ̂ � 1.

(iv) Our calibration of the pre-factors C and b does not change the
cosmological similarity solutions of A&S significantly. The cross-
section that gives the minimum central density on the dwarf galaxy
scale is altered from 220 to 117cm2 g−1, but this is still much larger
than the values that cosmological Monte Carlo N-body simulations
used to make cored SIDM haloes (σ ∼ 0.5–5 cm2 g−1). We will
investigate this problem in our subsequent paper. Our results here
suggest that this apparent discrepancy is not the result of a break-
down of either the conducting fluid model or the Monte Carlo
scattering algorithm in the N-body simulations. As we shall show
in a companion paper, in fact, the discrepancy results, instead, from
the gradual departure of halo evolution from self-similarity as the
infall rate during cosmological structure formation drops below the
self-similar rate at late times after halo formation.
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