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Abstract. We study gravothermal evolution of dark matter halos in the presence
of differential self-scattering that has strong velocity and angular dependencies. We
design controlled N-body simulations to model Rutherford and Møller scatterings in
the halo, and follow its evolution in both core-expansion and -collapse phases. The
simulations show the commonly-used transfer cross section underestimates the effects
of dark matter self-interactions, but the viscosity cross section provides an accurate
approximation for modeling angular-dependent dark matter scattering. We investigate
thermodynamic properties of the halo, and find that the three moments of the Boltzmann
equation under the fluid approximation are satisfied. We further propose a constant
effective cross section, which integrates over the halo’s characteristic velocity dispersion
with weighting kernels motivated by kinetic theory of heat conduction. The effective
cross section provides a good approximation to differential self-scattering for most of the
halo evolution. It indicates that we can map astrophysical constraints on a constant
self-interacting cross section to an SIDM model with velocity- and angular-dependent
scatterings.

ar
X

iv
:2

20
5.

03
39

2v
3 

 [
as

tr
o-

ph
.C

O
] 

 2
2 

A
ug

 2
02

2

mailto:danengy@ucr.edu
mailto:haiboyu@ucr.edu


Contents

1 Introduction 1

2 Differential dark matter self-scattering 2
2.1 Differential scattering cross sections 2
2.2 Simulation setup 5
2.3 Numerical comparisons 7

3 Thermodynamic properties of dark matter halos 9
3.1 Luminosity and specific heat 9
3.2 Fluid description 11
3.3 Heat conductivity 12

4 The constant effective cross section 14
4.1 The effective cross section and its validation 14
4.2 Gravothermal collapse: an extreme test 16
4.3 Roles of dark matter self-scattering in different regions of the halo 18
4.4 Different halo initial conditions 18

5 Conclusions 19

A Validation of the SIDM module 20

B Convergence tests 21

Contents

1 Introduction

Self-interacting dark matter (SIDM) is a well-motivated scenario where dark matter is
assumed to have strong self-interactions, analogous to the nuclear interactions, see [1] for
a review. In SIDM, the interactions can thermalize the inner regions of dark matter halos,
and change its structure accordingly [2–5], while it keeps all the success of the prevailing
cold dark matter model on large scales. Recent studies show that SIDM predicts diverse
dark matter distributions in both main [6–11] and satellite [12–16] halos, a feature that
is favored in explaining observations on galactic scales, see [17–20].

Most SIDM studies assume a constant self-interacting cross section. However, recent
work shows that the required cross section per mass is σ/mχ & 1 cm2/g to explain the
observations of galaxies, see [1], while it is σ/mχ . 0.1 cm2/g in galaxy clusters [21–24].
Reconciling these observations requires the cross section to be velocity-dependent. In
addition, a strong velocity-dependent cross section is needed for explaining dark matter
densities of dwarf spheroidal galaxies of the Milky Way in SIDM [25–30]. From the
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perspective of particle physics, it is almost inevitable to consider differential scattering
cross sections which depend on both relative velocity and scattering angle [31–37]. Recent
simulations have implemented velocity-dependent cross sections [4, 38–43]. In particular,
Ref. [44] investigated how well an isotropic cross section could capture the evolution of
an SIDM halo if the actual scattering is anisotropic. Refs. [45–47] simulated frequent
self-interactions with small angles.

In this work, we perform high-resolution controlled N-body simulations to study
gravothermal evolution of dark matter halos in the presence of differential self-scattering,
which has strong velocity and angular dependencies. We consider Rutherford and Møller
scatterings in the halo, and follow the evolution of its density and velocity dispersion in
both core-expansion and -collapse phases. We also perform simulations with the transfer
and viscosity cross section, which are velocity-dependent, but angular-independent. We
will show that the viscosity cross section provides a good approximation for modeling
differential self-interactions for both Rutherford and Møller scatterings. This result holds
in the expansion and collapse phases.

We study thermodynamic properties of the simulated halo and understand its evo-
lution history from the perspective of thermodynamics. In particular, we reconstruct
radial profiles of the luminosity, specific heat, entropy change rate and heat conductivity,
and centripetal acceleration. We will show that the three moments of the Boltzmann
equation under the fluid approximation are satisfied for the simulated halo, and heat
conduction is in the long-mean-free-path regime. We further propose an effective cross
section for modeling halo evolution, with weighting kernels as sin2 θ and v5, motivated
by kinetic theory of heat conduction. For a given halo, we specify a single characteristic
velocity, such that the effective cross section can be expressed using a constant value,
which does not explicitly depend on the velocity and angle. We will use simulations to
confirm the validity of the constant effective cross section.

The rest of the paper is organized as follows. In Sec. 2, we introduce the microscopic
description of dark matter self-interactions, discuss our simulation setup and show nu-
merical comparisons among the simulation results. In Sec. 3, we study thermodynamic
properties of the halo. In Sec. 4, we introduce a constant effective cross section and test it
with the simulations. In Sec. 5, we conclude. In Appendix A, we provide the comparison
that validates our SIDM module implemented in N-body simulations. In Appendix B,
we discuss convergence tests of our SIDM simulations.

2 Differential dark matter self-scattering

In this section, we will discuss Rutherford and Møller scatterings for SIDM and provide
essential formulae for calculating various self-scattering cross sections. In addition, we
will discuss implementations of N-body simulations for modeling velocity- and angular-
dependent dark matter self-interactions and show numerical comparisons.

2.1 Differential scattering cross sections

We consider a scenario where a light gauge boson mediates elastic dark matter self-
interactions, see [1] for a review of SIDM models. Depending on the production mech-
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anism, dark matter could be symmetric or asymmetric. In the symmetric case, both
particles (χ) and anti-particles (χ̄) present in the halo, there are three types of scat-
tering processes, i.e., χχ → χχ, χ̄χ̄ → χ̄χ̄ and χχ̄ → χχ̄. In the asymmetric case
where the halo is dominated by one species, say χ, the relevant process is χχ → χχ.
If two initial states are different, we only need to include a t-channel Feynman diagram
in calculating the scattering amplitude at the leading order, analogous to Rutherford
scattering in nuclear physics. However, if the initial states are indistinguishable, both t-
and u-channel diagrams contribute, similar to Møller scattering. Thus in general both
Rutherford and Møller scatterings are relevant for symmetric SIDM, while the latter is
relevant for asymmetric SIDM.

Consider an SIDM particle (χ) that couples to a light gauge boson (φ) with an
interaction strength of gχ as igχ̄γµχφµ. In the weakly-coupled perturbative limit, the
differential cross section in the center of momentum frame for Rutherford scattering
(χχ̄→ χχ̄) is [32, 48]

dσ

d cos θ
=

σ0w
4

2
[
w2 + v2 sin2(θ/2)

]2 , (2.1)

where σ0 ≡ g4
χ/(4πm

2
χw

4) = 4πα2
χ/(m

2
χw

4) with αχ ≡ g2
χ/4π, w ≡ mφc/mχ, v is the

relative velocity between the two initial particles, and θ the scattering angle. We have
assumed mχ and mφ to be masses of dark matter and mediator particles, respectively. In
addition, in writing the expression in Eq. 2.1, we have used the parametrization with σ0

and w proposed in [44]. Integrating out the angular distribution, one obtains the total
cross section as σtot = σ0/(1 + v2/w2).

For Møller scattering (χχ→ χχ), we calculate the differential cross section as

dσ

d cos θ
=
σ0w

4
[(

3 cos2 θ + 1
)
v4 + 4v2w2 + 4w4

](
sin2 θv4 + 4v2w2 + 4w4

)2 , (2.2)

where we have already included a symmetry factor of 1/2 to take into account the fact
that the particles in the final state are identical, and the scattering angle θ takes the
value from 0 to π as in the case of Rutherford scattering; see also [49] for a derivation.
The corresponding total scattering cross section is

σtot = σ0w
4

[
1

v2w2 + w4
+

1

v4 + 2v2w2
ln

(
w2

v2 + w2

)]
. (2.3)

Fig. 1 shows the angular dependence of normalized differential cross sections for
Rutherford (left panel) and Møller scatterings (middle panel). In both cases, the depen-
dence becomes significant as the velocity increases with respect to w = mφc/mχ. For
Rutherford scattering, the cross section peaks towards small angles (θ → 0) and the sig-
nificance increases with the relative velocity. For Møller scattering, it peaks towards both
small and large angles (θ → 0, π), and the distribution is symmetric around θ = π/2. In
addition, the interference effect manifests in the perpendicular direction θ = π/2 when
the velocity is low.
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Figure 1. Left: Angular dependence of differential cross sections for Rutherford scattering
Middle: Angular dependence of differential cross sections for Møller scattering. In both panels,
v is the relative velocity of dark matter particles and w = mφc/mχ. Right: Velocity dependence
of viscosity cross sections for Rutherford and Møller scatterings, where σ0/mχ = 2.4×104 cm2/g
and w = mφc/mχ = 1 km/s.

It is well known that for Rutherford scattering the enhancement of the differential
cross section in the forward direction (θ → 0) is spurious in changing halo structure.
Thus using the total cross section σtot is not a good measure as it likely overestimates
the self-scattering effects. To regulate the forward scattering, a “transfer” cross section
is often considered [32, 33, 50]

σT =

∫
d cos θ(1− cos θ)

dσ

d cos θ
, (2.4)

where the factor (1 − cos θ) is related to the momentum transfer ∆p = −mv(1 − cos θ)
during the collision.1 The transfer cross section regulates forward collisions (θ → 0), but
it rewards backward ones (θ → π), which hardly change the halo structure. Another
disadvantage is that the transfer cross section is not well defined when the interference
between t- and u-channels is present as in Møller scattering. Ref. [35] first suggested
using a “viscosity” cross section to model dark matter self-interactions, see also [52–56],

σV =
3

2

∫
d cos θ sin2 θ

dσ

d cos θ
, (2.5)

where we have included a normalization factor of 3/2 such that the relation σV = σtot

holds for isotropic scattering. The “viscosity” cross section regulates both backward and
forward scatterings. In addition, it weighs most the perpendicular direction θ = π/2, at
which the collisions thermalize the system mostly, as we will discuss later.

1In kinetic theory of gases [51], σT in Eq. 2.4 is called the “transport” cross section that characterizes
diffusion of colliding gaseous particles. In this paper, we refer to σT as the “transfer” cross section.
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For Rutherford scattering, the transfer and viscosity cross sections are

σT =
2σ0w

4

v4

[
ln

(
1 +

v2

w2

)
− v2

v2 + w2

]
, (2.6)

σV =
6σ0w

6

v6

[(
2 +

v2

w2

)
ln

(
1 +

v2

w2

)
− 2v2

w2

]
, (2.7)

respectively. For Møller scattering, we calculate the corresponding viscosity cross section
as

σV =
3σ0w

8

v8 + 2v6w2

[
2

(
5 + 5

v2w2

w4
+
v4

w4

)
ln

(
1 +

v2

w2

)
− 5

(
v4

w4
+ 2

v2

w2

)]
. (2.8)

Ref. [44] performed N-body simulations for Rutherford scattering to test whether
the transfer cross section in Eq. 2.6 accurately describes the evolution of an SIDM halo
for t-channel anisotropic scattering. They showed that the core size of a halo simulated
using σT is 20% smaller, compared to the one using a differential cross section. The
agreement can be reached within 5% if one uses a modified version of the transfer cross
section defined as σ′T = 2

∫ π
0 (1− | cos θ|)(dσ/dΩ)dΩ proposed in [45].

In this work, we simulate gravothermal evolution of SIDM halos using the velocity-
and angular-dependent differential cross section dσ/d cos θ, as well as angular-independent
viscosity σV and transfer σT cross sections. We will show that σV provides an excel-
lent approximation for modeling differential dark matter self-interactions in both core-
expansion and -collapse phases for Rutherford and Møller scatterings.

We choose the following model parameters in our simulations based on dσ/d cos θ
σV and σT , σ0/mχ = 2.4 × 104 cm2/g and w = 1 km/s. With these parameters, we
have σV /mχ = 10 cm2/g for Rutherford scattering in a halo with v = 15 km/s. With
such a large value of σ0/mχ, we need to make sure that the perturbative approximation
is valid. For a Yukawa interaction, the condition is αχmχ/mφ < 1 [35]. For example,
we can consider αχ = 10−6, mχ = 9.7 GeV and mφ = 32 keV. With the choice of the
model parameters, the self-scattering cross section has a strong velocity dependence and
it is enhanced towards low velocities, while being consistent with constraints from cluster
scales. Our simulations focus on halos with v ∼ 10 km/s, as velocity-dependent SIDM is
particularly interesting for dwarf halos.

Fig. 1 (right panel) shows the viscosity cross section vs. velocity for Rutherford
(blue) and Møller (red) scatterings. In the very low velocity limit v � w, σV ≈ σtot → σ0

and σ0/2 for Rutherford and Møller scatterings, respectively. For the latter case, there is
a destructive interference and the cross section is reduced as the de-Broglie wavelength
of dark matter particles (1/mχv) is larger than the Yukawa interaction range (1/mφc).
In the opposite limit v � w, i.e., mχv � mφc, both cases have the same σV that scales
as σV ∝ 1/v4. This is the classical regime [32] and the interference effect vanishes.

2.2 Simulation setup

We use controlled N-body simulations to test the accuracy of isotropic scattering cross
sections σV and σT in capturing gravothermal evolution of isolated SIDM halos that
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involve anisotropic collisions. We develop an SIDM module and implement it to the
public GADGET-2 program [57, 58], following the instructions in [59]. Our module uses
similar techniques as in [5, 60] to model dark matter self-interactions. For each particle,
we search for its neighbors within a sphere of radius that equals the gravitational softening
length h from its Cartesian coordinate positions. We select some of the neighbors to
interact with the particle based on the scattering probability

Pij =
1

2Sij
σ(vij)vijW (rij , h)∆t, (2.9)

where σ(vij) is the total, transfer and viscosity cross sections for dσ/d cos θ, σT and σV
simulations, respectively, ∆t a small time interval, W (r, h) a weighting kernel, and the
factor 1/2 removes double counting from looping over the particle indices i, j. The factor
Si,j equals two for identical i, j particles and equals one otherwise. It removes double
counting in the phase space of two identical particles.

We choose the kernel function be the same as the smoothing kernel in GADGET-2 [57],
which reads

W (r, h) =
8

πh3


1− 6

(
r
h

)2
+ 6

(
r
h

)3
, 0 ≤ r

h ≤
1
2 ,

2
(
1− r

h

)3
, 1

2 <
r
h ≤ 1,

0, r
h > 1.

(2.10)

It is normalized such that 4π
∫ h

0 dxx
2W (x, h) = 1. We set the size of the kernel to be

h = 2.8ε, where ε is the gravitational softening length, motivated by the test performed
in [60]. Note our choice of the kernel function is different from that in [60], where a
top hat kernel was used, but consistent with [5]. We set the timestep ∆t in calculating
the scattering probability in Eq. 2.9 to be the same as the one for calculating gravity
in GADGET-2. Our implementation allows a candidate particle to interact with multiple
neighbors within one timestep ∆t, and we randomize the ordering of the selected particles
to scatter with the candidate. After the collision, we update kinematics of the colliding
particles and ensure that both momentum and energy are conserved.

After determining the neighboring particles to interact, we need to model the angu-
lar distribution in dark matter collisions. For the σV and σT simulations, the scattering
is isotropic and we use the standard method, see, e.g., [5]. For Møller scattering, we
sample the angular distribution using the method of rejection sampling, which can be
applied to any generic angular distribution. For Rutherford scattering, since the cumu-
lative distribution function can be inverted analytically, we follow the method in [60],
which is more efficient. We have verified that the two approaches lead to identical results
in the Rutherford case.

In practice, we prepare the same initial state for both Rutherford and Møller scat-
terings. Since simulation particles are distinguishable and collisions could occur among
all of them, we do not directly include the symmetry factor Sij in Eq. 2.9 in calculating
the scattering probability. Instead, we take the following procedure to interpret our sim-
ulation results for different scattering types. For the scenario with Rutherford scattering,
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Name M200 (M�) c200(z = 2) ρs

(
M�
kpc3

)
rs (kpc)

BM1 1× 107 20.4 2.99× 108 0.108
BM2 2× 107 19.7 2.74× 108 0.141
BM3 3× 107 19.3 2.60× 108 0.164

Table 1. Parameters of the simulated halos. From the left to right columns: labeling name,
halo mass, halo concentration, scale density, and scale radius. For all the initial halos, their
concentration is four times the standard deviation higher than the cosmological median.

a dark matter halo contains two distinct species and each of them comprises half of the
simulation particles. Thus the actual cross section between the two species is four times
larger than the simulated value (σ0). For Møller scattering, a halo contains one species
and the actual cross section is a factor two larger than the simulated value (σ0), in or-
der to restore the symmetry factor 1/2 for identical particles in the initial state when
computing the scattering probability.

We consider three benchmark sets of initial halo parameters named as BM1, BM2,
and BM3, see Table 1. To explore the full stage of gravothermal evolution, we choose
the halos with a high concentration, based on the concentration-mass relation from cos-
mological simulations at redshift z = 2 [61], such that the timescale for the onset of
gravothermal collapse is considerably short. We further assume an initial Navarre-Frenk-
White (NFW) density profile [62] and use the SpherIC code [63] to generate initial
conditions. We set the softening length as ε = 4r200/

√
N [64], where r200 = c200rs is

the radius at which the average density is 200 times the critical density of the universe,
and N is the number of simulation particles. The gravitational force between pairs of
particles is Newtonian when their separation is larger than 2.8ε. As discussed, we set the
size of the kernel function 2.10 to be h = 2.8ε.

We have tested and validated our SIDM implementation using the results in [44], see
Appendix A. In addition, we have performed convergence tests for the model parameters
we consider in this work, see Appendix B for details. In particular, we have explored the
number of simulation particles and the timestep that are required to achieve convergence.
With our simulation setup, we find if the particle number N and the accuracy parameter
η controlling timestep satisfy (N = 4 × 106, η = 0.025) or (N = 106, η = 0.0025), the
evolution of the halo central density converges. We will present our main simulation
results, which pass the tests, based on the BM2 initial halo. Only in Sec. 4.4, we will
compare simulation results with all three benchmark halos. When we show the evolution
of the central density, it is evaluated as the average density within r = 0.03 kpc from the
halo center, which is well resolved.

2.3 Numerical comparisons

In Fig. 2 (left panel), we show the central dark matter density vs. evolution time for
Rutherford scattering based on simulations with the differential (dσ/d cos θ, red), vis-
cosity (σV , orange) and transfer (σT , magenta) cross sections. The halo first enters the
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core-expansion phase and the central density becomes lower. Then it evolves further into
the core-collapse phase and the density increases accordingly. We see that the simulation
results based on dσ/d cos θ and σV are very similar. Both predict almost identical central
densities during the core-expansion phase and they reach minimum at t ∼ 3 Gyr. In the
core-collapse phase, the agreement in the central density is within about 10% for a given
snapshot. On the other hand, the transfer cross section systematically underestimates
the effects of dark matter self-interactions. In particular, the central density reaches its
minimum at t ≈ 10 Gyr in this case, a factor of 3 longer than the actual one as found in
the dσ/d cos θ and σV simulations.

We can understand the discrepancy as follows. From Eqs. 2.6 and 2.7, both σV
and σT are normalized such that σV = σT = σtot = σ0 for v � w, i.e., the velocity-
independent limit. For v � w, σV = 6σ0[ln(v2/w2)−2]/(v/w)4, while σT = 2σ0[ln(v2/w2)−
1]/(v/w)4. Since w = 1 km/s and v ∼ 10 km/s for the halo, σT /σV ∼ 0.4. Thus the
transfer cross section underestimates the SIDM effects in the simulations. Since the col-
lapse timescale is inversely proportional to the size of the cross section [65–67], the onset
of the collapse is longer for σT . It is also useful to check the total cross section in this
limit, σtot = σ0/(v/w)2, which is a factor of 5 larger than σV for the case we consider.
Thus in the regime where the self-interactions are strongly velocity-dependent, the total
cross section does not provide a good measure, as it overestimates the actual impacts on
the halo.

Fig. 2 (right panel) shows excellent agreement between dσ/d cos θ and σV sim-
ulations for Møller scattering in both expansion and collapse phases. In this case, the
viscosity cross section regulates both forward and backward scattering, it provides a good
approximation for modeling Møller scattering, where the transfer cross section cannot
even be properly defined.

Our simulations have demonstrated that the viscosity cross section in Eq. 2.5 can
accurately model gravothermal evolution of the SIDM halo. For the choice of our model
parameters, i.e., the relative velocity v ∼ 10 km/s and w = mφc/mχ = 1 km/s, the
scattering is extremely anisotropic, as indicated in Fig. 1. Nevertheless, even in this limit,
the viscosity cross section provides a good approximation for modeling differential dark
matter collisions for both Rutherford and Møller scatterings. Since σV has no angular
dependence, it is relatively easy to implement in N-body simulations. In addition, σV
itself regulates forward and backward scatterings simultaneously, and hence we can avoid
dealing with those “spurious” events in the simulations. The success of σV is due to the
fact that its weighting kernel sin2 θ characterizes the effect of heat conductivity in the
halo; we will come back to this point in Sec. 3.3.
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Figure 2. Gravothermal evolution of the central dark matter density for Rutherford (left panel)
and Møller (right panel) scatterings. The red and orange curves denote simulations using angular-
dependent differential (dσ/d cos θ) and angular-independent viscosity (σV ) cross sections, respec-
tively. For Rutherford scattering, the magenta curve denotes simulation results using the transfer
cross section σT .

3 Thermodynamic properties of dark matter halos

We can understand the gravothermal evolution of the halo shown in Fig. 2 from the
perspective of thermodynamics. In fact, there are tremendous studies in using a semi-
analytical conducting fluid model to study the evolution of SIDM halos [12, 65–69].
Refs. [6, 21] apply the ideal gas law and derive the density profile of an SIDM halo
in static equilibrium. We take a complementary approach by reconstructing thermody-
namic quantities from our simulations directly, examining their relations and studying
the implications. In this section, the reconstruction is based on the dσ/d cos θ simulation
for Rutherford scattering.

3.1 Luminosity and specific heat

We consider luminosity and specific heat profiles of the simulated halo at different evo-
lution times. As the first step, we fit the radial profile of the velocity dispersion of the
simulated halo with the ansatz

σr(r) =
a(r + b)

(r + c)(r + d)
, (3.1)

where the parameters a, b, c and d are determined by fitting to the simulated σr(r) profile
at each snapshot. Fig. 3 (left panel) shows the fitted velocity dispersion profiles (solid)
for six snapshots, as well as their corresponding simulated one (dashed). We see that the
agreement is reasonably well in both expansion and collapse phases. The smooth fitting
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function helps us avoid numerical noises in calculating luminosity and specific heat. Our
initial condition assumes that the velocity distribution is isotropic, and we set the 1D
velocity dispersion to be the radial one, σ1D = σr.

We calculate the specific energy as E(r) = 3
2σ

2
1D(r) + Φ(r) for particles within a

spherical shell at r, where the gravitational potential is given by

Φ(r) = −4πG

[
1

r

∫ r

0
ρ(r′)r′2dr′ +

∫ ∞
r

ρ(r′)r′dr′
]
. (3.2)

In practice, we set the upper limit of r′ to be the virial radius of the halo r200. For each
snapshot, we interpolate the simulation results and obtain a smooth density profile. We
then calculate the dimensionless specific heat capacity as C(r) = dE/dσ2

1D [70].
In addition, we calculate the luminosity profile as

L = −4π

∫ r

0
dr′r′2ρ(r′)

DE(r)

Dt
, (3.3)

where DE/Dt is the Lagrangian derivative of the specific energy. To compute DE/Dt,
we search for the radius rM such that the total enclosed mass within rM at t+ ∆t equals
to the mass within r at time t, and we take ∆t = 1 Gyr. For a scalar quantity such as
the specific energy E(r, t), we evaluate its Lagrangian derivative as:

DE

Dt
=
E(rM, t+ ∆t)− E(r, t)

∆t
. (3.4)

In Fig. 3, we show radial profiles of the luminosity (middle panel) and the specific
heat capacity (right panel) at different evolution times. At the early stage t ∼ 0–5 Gyr,
the luminosity is negative in the inner region r . rs ≈ 0.11 kpc, indicating that that
energy is transferred inwards. Since the heat capacity is positive in the region during
the time window, the inner halo is heated up. For t ∼ 5 Gyr, the inner luminosity is
vanishing and the radial gradient of σ1D becomes small, heat conduction is suppressed,
while the heat capacity is still positive. Consider t & 15 Gyr, both gradients of the
velocity dispersion and heat capacity are negative for the whole halo, but the luminosity
is positive. At this stage, the halo is deeply in the collapse phase. The central halo
becomes hot and its density increases continuously as dark matter self-interactions pump
the heat outwards.

It is interesting to note that the timescale for the gradient of the inner velocity
dispersion becoming negative (t & 10 Gyr) is much longer than that for forming a
density core. As shown Fig. 2 (left panel, red), the density core forms quickly around
t ∼ 1 Gyr and it remains rather stable before the collapse starts. Since Φ(r) increases
monotonically with r and a negative specific heat capacity requires dσ(r)/dr < 0, which
takes a long evolution time to achieve. In addition, although the heat capacity of the
inner halo evolves and changes from positive to negative values, the heat capacity of the
outer halo rarely evolves and remains negative. This is because for the outer halo, the
self-scattering rate is low and the velocity dispersion has a negative radial gradient.
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Figure 3. Left: Profiles of the radial velocity dispersion from the dσ/d cos θ simulation for
Rutherford scattering (dashed) and the reconstructed one using the analytical fitting function in
Eq. 3.1 (solid). Middle: Profiles of the luminosity. Right: Profiles of the specific heat capacity.

3.2 Fluid description

For SIDM, the phase space density of dark matter particles f can be modeled by the
Boltzmann equation with a collision term C[f ],

df

dt
=
∂f

∂t
+ v · ∇f −∇Φ

∂f

∂v
= C[f ], (3.5)

together with Poisson’s equation ∇2Φ = 4πGρ = 4πG
∫
d3vf .

When dark matter particles collide frequently, one may close the first three moment
equations of the Boltzmann equation in Eq. 3.5 by introducing thermal conductivity and
viscosity [51]. This leads to a fluid approximation, which has been used extensively for
modeling the evolution of SIDM halos. However, it is not obvious that the fluid de-
scription applies to self-gravitating systems, like dark matter halos, as many results from
statistical mechanics are no longer valid, see the discussion in box 7.1 of Ref. [70]. For
example, energy is not an extensive quantity for a self-gravitating system because the
contribution from distant particles is important, the microcanonical probability distribu-
tion cannot be defined properly as its energy hypersurface is unbounded, and the heat
capacity is negative as the total energy is negative [70]. We use our simulation results to
explicitly test the moment equations and confirm the validity of the fluid description.

The zeroth moment gives rise to the continuity equation dM(r)/dr = 4πr2ρ, which
is trivially satisfied in N-body simulations. From the first moment of the Boltzmann
equation, we get

∇(ρσ2
1D) = −ρ∇Φ. (3.6)

For a system in hydrostatic equilibrium, the “buoyancy” force generated by the gradient
of the pressure ρσ2

1D is balanced by gravity. The second moment describes the heat
transport, relating the gradient of the luminosity to the change rate of the entropy as

1

4π

∂L

∂r
= −ρσ2

1D

Ds

Dt
, (3.7)
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Figure 4. Left: The profiles of centripetal acceleration due to gravity (dashed) and buoy-
ancy (solid) from the simulated halo. Right: The profiles of Ds/Dt (solid) and (1/σ2

1D)DE/Dt
(dashed), see Eq. 3.8.

where s = lnσ3
1D/ρ is the specific entropy [70], and D/Dt is the Lagrangian derivative. In

addition, L/4πr2 = −κ∇T , where κ is the heat conductivity and T is the temperature.
For a system that reaches local equilibrium, T = mχσ

2
1D. Combining Eqs. 3.3 and 3.7,

we have
1

σ2
1D

DE

Dt
=
Ds

Dt
=

D

Dt
ln
σ3

1D

ρ
. (3.8)

We use our simulation results to explicitly examine the conditions given in Eqs. 3.6
and 3.8.

Fig. 4 (left panel) shows the centripetal acceleration due to gravity dΦ(r)/dr (dashed)
and buoyancy acceleration −(1/ρ)d(ρσ2

1D)/dr (solid) for five snapshots. We see that the
quasi-equilibrium condition Eq. 3.6 is well satisfied for different stages of gravothermal
evolution of the SIDM halo, even in the collapse phase. Fig. 4 (right panel) shows the
radial profiles of Ds/Dt (solid) and (1/σ2

1D)DE/Dt (dashed) for three representative
snapshots, and they match reasonably well, indicating the condition 3.8 is satisfied for
the simulated halo. The small oscillatory features in both panels are numerical noises in
computing the derivative of the density profile from the simulations.

3.3 Heat conductivity

As discussed, the luminosity is related to the gradient of temperature as L/4πr2 =
−κ∇T . In kinetic theory, the heat conductivity κ is calculated in the following way, see,
e.g., [51]. The collisions lead to a small deviation from a local equilibrium Maxwellian
distribution, and we can parametrize the distribution perturbation as δf = (f̄/T )g · ∇T
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and compute the conductivity as [51]

κ = − 1

3T

∫
d3v

v2

2
v · gf̄ , (3.9)

where the vector function g can be evaluated as a series expansion of the associated
Laguerre polynomials. Based on the first non-vanishing contribution to g, one obtains [51]

κ =
75

16

[
1

4
√

2π(
√

2σ1D)9

∫
dvd cos θ exp

[
− v2

2(
√

2σ1D)2

]
v7 sin2 θ

dσ

d cos θ

]−1

, (3.10)

where v is the relative velocity between two initial states and θ is the scattering angle.
The conductivity calculated in Eq. 3.10 is valid in the short mean-free-path regime,

and hence we will denote it as κsmfp. For a constant cross section σ, κsmfp ≈ 2.1σ1D/σ.
In this regime, the length scale of heat conduction is characterized by the mean free path
between two consequential interactions λ = 1/(nσ), where n is the number density of
particles and σ is the self-scattering cross section. However, it is well known that for
an SIDM halo, it is in the long-mean-free-path regime for the majority of its evolution
history. Only at late stages of gravothermal collapse, the central halo may have frequent
enough dark matter scattering and κsmfp applies. In the long-mean-free-path regime, the
conducting fluid model introduces an empirical conductivity klmfp ≈ 0.27βnσ3

1Dσ/(Gmχ)
for a constant cross section [68, 71], where the numerical factor β can be determined by
calibrating to N-body simulations. Studies show that β ≈ 0.75 and 0.60 for isolated and
cosmological simulations with a constant cross section [67].

We use our simulation results to directly estimate the conductivity κ in the long
mean-free-path regime and compare it with the empirical one. Taking the relations
L/4πr2 = −κ∇T and T = mσ2

1D, we have κmχ = L/[4πr2dσ2
1D/dr]. From the luminosity

profile reconstructed from the simulated halo as shown in Fig. 3 (middle panel), we
estimate the conductivity at r = 0.5 kpc as

(κmχ)est ≈
L

4πr22σ1D(dσ1D/dr)

≈ 5× 106 M�kpc2Gyr−3

4π(0.5 kpc)2(2× 5 kpc/Gyr)(3 kpc/Gyr/(1 kpc))
≈ 0.5× 105 M�/kpc/Gyr,

which agrees the empirical conductivity evaluated at r = 0.5 kpc

κlmfpmχ = 0.27× 0.75ρσ3
1D

σV
G
≈ 105 M�/kpc/Gyr, (3.11)

where we take the viscosity cross section σV in evaluating κlmfpmχ. Note that the recon-
structed conductivity depends both radius and time, and we have taken characteristic
values for the variables L, σ1D and dσ1D/dr in estimating (κmχ)est. Thus the small
difference between (κmχ)est and κlmfpmχ is not surprising. For comparison, we further
calculate κsmfpmχ at r = 0.5 kpc directly using Eq. 3.10 and find

κsmfpmχ ≈ 5× 109 M�/kpc/Gyr, (3.12)

being ∼ 4–5 orders of magnitudes larger. Thus our simulations directly confirm the
validity of the empirical conductivity for the long-mean-free-path regime.
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4 The constant effective cross section

In Sec. 2.3, we have shown that the viscosity cross section σV provides a good approxi-
mation to model differential dark matter self-scattering. The viscosity cross section does
not have an explicit angular dependence and it regulates spurious forward and back-
ward scatterings. However, σV is still velocity-dependent. In this section, we propose a
constant effective cross section, which integrates over a characteristic velocity dispersion
for a given halo. Our simulations show the constant effective cross section provides an
approximation to differential self-scattering for most of the halo evolution.

4.1 The effective cross section and its validation

As we discussed, for an SIDM halo, the scattering is mostly in the long-mean-free-path
regime, and hence the heat conductivity introduced in Eq. 3.10, which is valid in the short-
mean-free-path regime, cannot be used in the conducting fluid model for studying the
evolution of the entire halo. However, heat conduction is based on dark matter collisions,
which occur locally in both short- and long-mean-free-path regimes. The fluid model uses
κlmfp to incorporate effects of orbital evolution of a particle after the collision [71], while
N-body simulations automatically take them into account by construction. We expect
the heat conductivity in Eq. 3.10 provides a good approximation for capturing local heat
transport properties of dark matter self-interactions.

We first introduce a local conductivity cross section motivated by Eq. 3.10,

σκ(r) =
2
∫
v2dvd cos θ dσ

d cos θ sin2 θv5 exp
[
− v2

4σ2
1D(r)

]
∫
v2dvd cos θ sin2 θv5 exp

[
− v2

4σ2
1D(r)

] , (4.1)

where the differential cross section dσ/d cos θ is both angular and velocity-dependent and
the σ1D(r) is the radial 1D velocity dispersion profile. The normalization is chosen such
that a cross section with no angular- and velocity-dependence integrates to give the total
cross section. In practice, it will be more convenient if there is a single characteristic
velocity dispersion for a given halo, such that we can remove the radial dependence in
σκ. The conductivity cross section introduced in Eq. 4.1, the weighting kernel for the
angular dependence is sin2 θ, which is the same as the viscosity cross section defined in
Eq. 2.5. This is not surprising because viscosity of the fluid is also related to σκ [51],
which motivates the definition in Eq. 2.5.

Suppose such a characteristic velocity dispersion σeff
1D exists. After replacing σ1D(r)

with σeff
1D, we perform the integration for the denominator and obtain an effective cross

section:

σeff =
1

512(σeff
1D)8

∫
v2dvd cos θ

dσ

d cos θ
v5 sin2 θ exp

[
− v2

4(σeff
1D)2

]
. (4.2)

We first consider a trial case with σ/mχ = 10 cm2/g, corresponding to σeff
1D =

Vmax/
√

3. For the BM2 halo, Vmax/
√

3 ≈ 4.6 km/s, which is roughly an averaged value of
the velocity dispersion within 0.1 kpc of the NFW initial halo. A more optimal choice is to
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Figure 5. Gravothermal evolution of central dark matter densities for Rutherford scattering
from simulations with a constant effective cross section σeff/mχ = 7.1 cm2/g (solid blue) and
differential cross section dσ/d cos θ (solid red) as in Fig. 2 (left panel). For comparison, the
results with σ/mχ = 10 cm2/g (green dashed) and 13 cm2/g (dotted black) are also shown.

take the 1D central velocity dispersion when the halo reaches the maximal core expansion
at which the central density is lowest. In this case, σeff

1D ≈ 5.14 km/s at t ≈ 4 Gyr from
the dσ/d cos θ simulation (BM2), and we have σeff

1D ≈ 1.1Vmax/
√

3 ≈ 0.64Vmax, resulting
in an effective cross section of σeff/mχ = 7.1 cm2/g. Ref. [72] used a semi-analytical
fluid model and found that the dispersion is 0.64Vmax when an SIDM halo has the lowest
central density for different choices of model parameters. Thus σeff

1D ≈ 0.64Vmax could
hold universally.

Fig. 5 shows the central density vs. evolution time for σ/mχ = 10 cm2/g (dashed
green), σ/mχ = 7.1 cm2/g (solid blue), compared to the dσ/d cos θ simulation (solid red).
We see that overall σ/mχ = 10 cm2/g is slightly too large, but σ/mχ = 7.1 cm2/g well
captures the halo evolution in the core-collapse regime. At earlier stages, the effective
cross section underestimates the self-scattering effect, and one needs to consider a larger
cross section σ/mχ = 13 cm2/g for a precise match (dotted black). For the results with
the constant cross sections shown in Fig. 5, only the σ/mχ = 10 cm2/g case is based
on N-body simulations, while the two others are obtained by using a rescaling method
based on the relation t ∝ (σ/mχ)−1, see Appendix B for the justification of the method.

Fig. 6 (left panel) shows the conductivity cross section in Eq. 4.1 at different evo-
lution times (solid), compared to the constant effective cross section calculated using
Eq. 4.2, i.e., σeff/mχ = 7.1 cm2/g (dashed). At early stages t� 5 Gyr, σκ/mχ > σeff/mχ

at the center because σκ/mχ is enhanced as the velocity dispersion decreases towards the
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Figure 6. Left: The profiles of the local conductivity cross section σκ/mχ (solid) in Eq. 4.1
at different evolution times for the simulated halo and the effective cross section σeff/mχ =
7.1 cm2/g calculated using Eq. 4.2 (dashed). Right: The profiles of 〈σV v〉 /(〈v〉mχ) (dotted) and
σκ/mχ (solid) evaluated for the initial halo t = 0 Gyr, as well as σeff/mχ = 7.1 cm2/g (dashed).

center of an NFW halo. Thus the core formation is faster for the velocity-dependent dif-
ferential cross section, as shown in Fig. 5. The constant cross section σ/mχ = 13 cm2/g
is a better approximation to σκ/mχ for t < 2 Gyr, as indicated in Fig. 5. At later
stages, especially in the collapse phase t > 5 Gyr, the velocity dispersion increases in
the central region and σκ becomes suppressed and smaller than σeff gradually. Over the
evolution history of the halo up to 20 Gyr, σeff/mχ = 7.1 cm2/g provides a reasonable
approximation to σκ/mχ in the inner regions r . 0.5 kpc.

The success of the effective cross section relies on its angular and velocity weighting
kernels, which are sin2 θ and v5, respectively, see Eqs. 4.2 and 4.1. Note the v2 factor
belongs to the integration measure. Alternatively, one may consider weighting the cross
section with kennels of sin2 θ and v, resulting a normalized cross section 〈σV v〉 / 〈v〉, where
〈...〉 represents thermal averaging. The factor v comes from a conventional estimate of the
collision rate. Fig. 6 (right panel) show profiles of 〈σV v〉 /(〈v〉mχ) and σκ/mχ, assuming
σ1D(r) for the BM2 initial halo. We see 〈σV v〉 /(〈v〉mχ) is a factor of ∼ 5 larger than
σκ/mχ and σeff/mχ, too large to be consistent with the dσ/d cos θ simulation.

4.2 Gravothermal collapse: an extreme test

From Fig. 5, we have seen that the constant effective cross section well captures the evolu-
tion of the SIDM halo with angular- and velocity-dependent dark matter self-interactions
at least up to t ∼ 20 Gyr. This is highly non-trivial, as with our choice of the param-
eters, the scatterings are mostly in the classical regime and they are largely anisotropic
and strongly velocity-dependent. For the initial halo, we have deliberately chosen a high
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Figure 7. Profiles of the density (left panel) and velocity dispersion (right panel) at different
evolution times from the dσ/d cos θ (solid) and σeff/mχ = 7.1 cm2/g (dashed) simulations.

concentration, about four times the standard deviation from the cosmological median,
see Table 1. In a realistic cosmological setup, most dark matter halos would have lower
concentrations and the evolution time is the age of the universe t ∼ 13.8 Gyr, and thus
the effective cross section should provide a good approximation. In Fig. 7, we further
show detailed profiles of the density (left panel) and velocity dispersion (right panel)
from the dσ/d cos θ (solid) and σeff (dashed) simulations at different evolution times. Up
to t ∼ 20 Gyr, both simulated halos have a similar evolution history of the density and
velocity dispersion profiles.

It is interesting to test SIDM predictions for some extremely compact halos at late
times in their gravothermal evolution. The central velocity dispersion further increases
and dσ/d cos θ decreases accordingly. Thus σκ can be much smaller than the effective
cross section calculated using σeff

1D = 0.64Vmax. In this case, we may see differences
in the halo evolution between dσ/d cos θ and σeff/mχ simulations. This is relevant for
testing SIDM in extreme limits, in particular if the central halo enters the short-mean-
path regime. For example, Refs. [69, 73] studied a mechanism that the central region
of an SIDM halo collapses into a seed black hole [68], which could further grow into a
supermassive black hole in the early universe, and they assumed a constant cross section.
If the actual timescale for collapsing into the seed could be shorter than that estimated
in [69, 73], and the mechanism would be further favored in explaining the origin of
supermassive black holes at high redshifts. N-body simulations in the deep collapse
phase are computationally expensive and we will leave the study for future work.
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r > 0.5 kpc (magenta), compared to the regular case where the scatterings occur in the whole
region of the halo (red) and the collisionless limit (black).

4.3 Roles of dark matter self-scattering in different regions of the halo

In Fig. 6 (left panel), we see that σκ/mχ can be much higher than σeff/mχ = 7.1 cm2/g in
the outer regions for r > 0.5 kpc. It is interesting to check how the collisions in the inner
and outer regions affect the gravothermal evolution of the halo. We take the snapshot
from the the dσ/d cos θ simulation at t = 10 Gyr, and re-simulate it to t = 12 Gyr, while
restricting the dark matter scatterings within or outside a radius of 0.5 kpc. As shown
in Fig. 8, the density evolution of the simulation with the scatterings confined within
r = 0.5 kpc (orange) is similar to the regular case (red), although the former has slightly
lower densities overall. On the other hand, when we keep the scatterings only in the outer
regions r > 0.5 kpc (magenta), the halo evolution is almost identical to the collisionless
limit (black). Thus the gravothermal evolution of an SIDM halo is mainly driven by
the scatterings in the inner regions. This justifies the use of the constant effective cross
section, although it underestimates heat conductivity in the outer regions.

4.4 Different halo initial conditions

The simulation results we have shown so far are based on the BM2 halos, see Table 1. We
extend our study to two other halos. For the BM1, BM2 and BM3 halos, their 1D velocity
dispersions, calculated using σeff

1D = 0.64Vmax, are σeff
1D ≈ 4.1, 5.1 and 5.8 km/s, and the

corresponding effective cross sections are σeff/mχ = 15, 7.1 and 4.6 cm2/g, respectively.
We have taken σ0/mχ = 2.4× 104 cm2/g and w = 1 km/s as before.

Fig. 9 shows the evolution of the central densities for BM1 (left panel), BM2 (mid-
dle panel) and BM3 (right panel) from simulations using the differential cross section
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Figure 9. Gravothermal evolution of the central density from simulations with the differential
cross section (solid) and the effective cross section (dashed) for the BM1 (left panel), BM2 (middle
panel) and BM3 (right panel) initial conditions as listed in Table 1. For comparison, results with
a constant cross section of σ/mχ = 7.1 cm2/g are also shown for BM1 and BM3 (dotted).

dσ/d cos θ (solid) and the effective cross section (dashed). In the core-expansion phase
t . 4 Gyr, the three halos evolve in a similar way. However, after they deeply enter
the collapse phase, their central densities differ significantly, especially for t & 8 Gyr.
Among the three, the central density of BM1 increases fastest, while BM3 slowest. Since
their masses are similar and concentrations are almost identical, the difference is mainly
caused by the velocity dependence of the cross section as dσ/d cos θ ∝ v−4. BM1 has the
highest effective cross section, while BM3 has the lowest.

For the BM1 and BM3 halos, the agreement between dσ/d cos θ and σeff simula-
tions is as good as the one for BM2. For comparison, we also show the results using
σ/mχ = 7.1 cm2/g for BM1 and BM3 in Fig. 9 (dotted). We see that it significantly
underestimates the evolution for BM1, while overestimates for BM3, because of the mis-
match with their corresponding σeff/mχ values. This further validates our approach with
the effective cross section.

5 Conclusions

We have studied gravothermal evolution of dark matter halos with differential self-
scattering. With the choice of the model parameters, the scattering is highly anisotropic
and strongly velocity-dependent. We designed an SIDM module and performed a number
of N-body simulations to study the evolution of an isolated halo with the differential,
transfer and viscosity cross sections. Our simulations show that the viscosity cross sec-
tion, which is angular-independent, provides a good approximation in modeling differ-
ential dark matter collisions for Rutherford and Møller scatterings. This result holds in
both core-expansion and -collapse phases.

We investigated the thermodynamic properties of the simulated halo and explored
its evolution history from the perspective of thermodynamics. To a good approxima-
tion, the halo is in pressure equilibrium at which gravity well balances buoyancy. We
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further explicitly verified the second moment of the Boltzmann equation that describes
the heat transport in the halo, and showed that dark matter self-scattering is in the
long-mean-free-path regime. We proposed an effective cross section, which is specified by
a characteristic velocity dispersion for a given halo. Our simulations show that the ef-
fective cross section, which is velocity- and angular-independent, works well in modeling
the halo evolution.

It would be interesting to extend our work to different scenarios. For example, the
presence of baryons can deepen the potential and speed up the onset of the collapse [73–
75], and we could examine the validity of the viscosity and effective cross sections in
simulations with baryonic potential. In addition, we could also test them in substructures,
where there is a dynamical interplay between dark matter self-interactions and tidal
interactions. Furthermore, we could study whether the notion of an effective cross section
is valid in cosmological simulations for both main halos and subhalos. This is particularly
useful for testing and constraining SIDM with observations from galaxies over a wide
range of mass scales. We will leave these investigations for future work.

Note added: During the completion of this work, a related study [72] appeared,
which is based on the conducting fluid model. Ref. [76] introduced an averaged cross
section with the v5 weighting kernel, similar to the effective cross section proposed in
this work.
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A Validation of the SIDM module

To validate our SIDM module, we simulate some of the examples in Ref. [44] and show
in Fig. 10 that they are in good agreement.
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Figure 10. The evolution of the core size simulated using our code, compared to the one from
Ref. [44].

B Convergence tests

We perform convergence tests for the SIDM simulations based on the BM2 halo. The
total number of simulation particles is taken to be N = 0.1 × 106, 106, 4 × 106 and
10 × 106. We also investigate the role of the timestep. In the GADGET-2 program [57],
which we use in our work, the timestep is computed as

∆t =

√
2ηε

|a|
(B.1)

where |a| is the absolute value of a particle’s acceleration, ε is the gravitational softening
length, and η is an accuracy parameter. We use the timestep defined in Eq. B.1 to
calculate gravity and self-scattering probabilities, see Eq. 2.9, and set the softening length
to be ε = 4r200/

√
N .

Fig. 11 (left panel) shows the evolution of the central density for dσ/d cos θ sim-
ulations with N = 106 (dotted blue), 4 × 106 (solid red) and 10 × 106 (dashed black),
where we fix the accuracy parameter as η = 0.025. We see that N = 4× 106 is needed to
reach the convergence for η = 0.025. For N = 106, the agreement in the central density
is within 20% for t < 10 Gyr, but the deviation becomes more significant for t > 10 Gyr
as the halo enters into the deep collapse regime. For the simulation with N = 0.1× 106,
the convergence is worse, and we do not report the result here.

Fig. 11 (right panel) shows the evolution of the central density for the σ/mχ =
10 cm2/g simulations with (N = 106, η = 0.025) (dotted blue), (N = 4×106, η = 0.025)
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Figure 11. Convergence tests for dσ/d cos θ (left panel) and σ/mχ = 10 cm2/g simulations
(right panel).

(solid red), as well as (N = 106, η = 0.0025) (dashed black). Compared to the dσ/d cos θ,
the simulations of the constant cross section converge better in the collapse regime. The
density evolution from the simulation with (N = 4 × 106, η = 0.025) agrees well with
that from the one with (N = 106, η = 0.0025) in particular for t > 1 Gyr. Given the
test results, we conclude that simulations with (N = 4 × 106, η = 0.025) or (N = 106,
η = 0.0025) converge well for the purpose of this work. The results shown in the main
text are based on high-resolution simulations that pass the convergence tests. Our results
focus on a particular halo example, and it would be interesting to perform convergence
tests for SIDM simulations systematically; see [77] for the tests in different simulation
programs.

In addition, we test a rescaling method for a constant cross section. Fig. 12 shows
that the evolution of the central density simulated for σ/mχ = 6.5 cm2/g (dashed black),
compared to the one (solid blue) obtained using the the σ/mχ = 10 cm2/g simulation
(dotted green) after shifting t by factor of 10/6.5 ≈ 1.54. In order to save computational
time, we will use this method to obtain results for a constant cross section different from
σ/mχ = 10 cm2/g.
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