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Abstract

Many studies have observed altered neurofunctional and structural organization in the aging brain.

These observations from functional neuroimaging studies show a shift in brain activity from the

posterior to the anterior regions with aging (PASA model), as well as a decrease in cortical

thickness, which is more pronounced in the frontal lobe followed by the parietal, occipital, and

temporal lobes (retrogenesis model). However, very little work has been done using diffusion MRI

(dMRI) with respect to examining the structural tissue alterations underlying these neurofunctional

changes in the gray matter. Thus, for the first time, we propose to examine gray matter changes

using diffusion MRI in the context of aging. In this work, we propose a novel dMRI based

measure of gray matter “heterogeneity” that elucidates these functional and structural models

(PASA and retrogenesis) of aging from the viewpoint of diffusion MRI. In a cohort of 85 subjects

(all males, ages 15–55 years), we show very high correlation between age and “heterogeneity” (a

measure of structural layout of tissue in a region-of-interest) in specific brain regions. We examine

gray matter alterations by grouping brain regions into anatomical lobes as well as functional

zones. Our findings from dMRI data connects the functional and structural domains and confirms

the “retrogenesis” hypothesis of gray matter alterations while lending support to the

neurofunctional PASA model of aging in addition to showing the preservation of paralimbic areas

during healthy aging.
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INTRODUCTION

Understanding normal human brain development and the processes involved in healthy

aging is quite important for understanding the mechanisms behind age related brain
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disorders such as Alzheimer's and Parkinson's disease. Several studies on animal models

have reported widespread changes in white and gray matter areas of the brain [Bronson et

al., 1993; Calderini et al., 1983; Mandybur et al., 1989; Sloane et al., 1999]. Advances in

neuroimaging technologies have enabled examining these brain changes in vivo during

healthy and pathological aging. In particular, in the last 2 decades, a lot of human studies

have used structural MRI (sMRI) to show a decrease in gray matter volume and thickness

with age [Allen et al., 2005; Kochunov et al., 2011; Lemaitre et al., 2012; Salat et al., 2004;

Sowell et al., 2003; Terribilli et al., 2011]. These measures have been correlated with a

decrease in performance on complex tasks in older adults [Sakai et al., 2012; Squarzoni et

al., 2012; Steffener et al., 2012].

With the advent of advanced imaging techniques such as functional MRI (fMRI) and

diffusion MRI (dMRI), a more detailed picture of the function and anatomy of the brain can

be obtained. Specifically, diffusion tensor imaging (DTI) has become an imaging modality

of choice for investigating the neural architecture of the brain. It has been extensively used

to study white matter changes during brain development and aging [Gunning-Dixon et al.,

2009; Madden et al., 2009; Salat et al., 2005; Schulze et al., 2011]. However, its application

to cortical gray matter analysis has been limited, with very few studies reporting age related

changes using diffusion imaging based measures [Bhagat and Beaulieu, 2004; Pfefferbaum

et al., 2010]. Although the first work [Bhagat and Beaulieu, 2004] proposed a CSF

(cerebrospinal fluid) suppressed DTI imaging sequence and examined its effect on aging, the

second work [Pfefferbaum et al., 2010] analyzed the effect of iron deposition on diffusion

measures in sub-cortical regions of older adults. Thus, very little work has been done on

analyzing gray matter changes in the various cortical regions (anatomical lobes and

functional zones) using diffusion MRI.

Conversely, fMRI, which captures dynamic neural activity in the gray matter based on

blood-oxygen level, has been used extensively in aging studies [Nashiro et al., 2012].

Specifically, fMRI is a useful imaging modality that can capture resting state as well as task

specific activation of neural processes in the cortical and sub-cortical areas of the brain. As

such, it has been widely used to understand the function of various regions of the brain. In

particular, several models of aging, namely, HAROLD (hemispheric asymmetry reduction in

older adults) and PASA (posterior-to-anterior shift in aging) have been proposed based on

fMRI activity patterns analyzed across the lifespan [Cabeza, 2002; Cabeza et al., 2002;

Davis et al., 2008; Grady et al., 1994]. These models have also found support from various

studies done in the domain of cognitive and behavioral neuroscience [Dolcos et al., 2002;

Huettel et al., 2001; Iidaka et al., 2002; Madden et al., 2002]. However, the underlying

structural changes in the tissue properties that can explain these phenomena have not been

explored.

In this work, we use diffusion MRI to understand the structural gray matter changes in early

aging. We use advanced dMRI models that go beyond the standard DTI model, wherein, the

diffusion signal is separated into an extracellular and a tissue compartment. We use

measures derived from this model to compute a novel measure of gray matter

“heterogeneity,” which characterizes the variability in tissue structure over a given region of

interest (ROI). We hypothesize that this measure of gray matter heterogeneity can provide a
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complementary explanation of the functional models of aging such as PASA. Further, it also

lends support to the “preservation of limbic structures” and the “first-in last-out” models

observed in structural MRI studies.

MATERIALS AND METHODS

Diffusion MRI

The advent of diffusion magnetic resonance imaging (dMRI) has provided the opportunity

for non-invasive investigation of the neural architecture of the brain. To begin studying the

microstructure of fibers, we need a model to interpret the diffusion-weighted signal. One of

the simplest models is the diffusion tensor, which describes a Gaussian estimate of the

diffusion orientation and strength at each voxel [Basser and Pierpaoli, 1996]. However,

recent works have shown that adding an additional isotropic “free-water” term in the model

can better explain the diffusion signal and can also help isolate the signal corresponding to

the extracellular space [Panagiotaki et al., 2012; Pasternak et al., 2009; Zhu et al., 2011]. We

thus use a single tensor with an isotropic free-water compartment as our model of diffusion

as given below:

(1)

where S is the diffusion signal measured along direction u, D is the diffusion tensor to be

estimated, Diso is the diffusivity of isotropic free-water compartment known from brain

parenchyma to be 0.003 mm2/s (which is the typical value for freely diffusing water at body

temperature) and ω is the fraction of the signal corresponding to this free-water

compartment. The parameters of this model (D and ω) are estimated within a regularization

framework as given in [Pasternak et al., 2009]. In this manuscript, we refer to ω as the “free-

water” component and FA computed from D, as the tissue fractional anisotropy (FAt).

In our estimation procedure, we fix the diffusivity Diso of the isotropic free-water

compartment to be 3 × 10−3 mm2/ s which is at-least three times larger than the diffusivity

of gray matter (0.9 × 10−3 mm2/s) [Helenius et al., 2002]. Thus, separating the diffusion due

to the tissue compartment (gray matter in our case) from the free-water compartment is

possible due to the fact that these compartments have very different diffusivity coefficients.

Second, we constrain the maximum and the minimum eigenvalue of the diffusion tensor

(corresponding to the tissue compartment) leading to a constraint on the fractional

contribution of each compartment (please see Eq. (6) in [Pasternak et al., 2009]). This

further restricts the plausible range for the solution of the fractional part for each

compartment (ωmin <ω<ωmax). Note that, in this constrained space, one cannot arbitrarily

shift weight given to the free-water (FW) part by reducing the weight of the tensor, as the

overall diffusivity of the tensor is necessarily less than that of free-water. Further, from the

bio-physiology of brain tissue, we know that the overall diffusivity of the tissue

compartment should be quite low compared to free-water. We should however mention that

minor shifting of the weights (ω) from one compartment to the other is always a possibility

and to account for this, we use a spatial regularization term, which enforces a piece-wise

spatially smooth estimate of the anisotropic tensor compartment and consequently that of the

FW compartment. Thus, ω cannot change abruptly from one voxel to the next in a
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neighborhood. Additionally, spatial smoothness ensures that the noise in our estimation is

significantly reduced.

Fixing the free-water diffusivity Diso to a large value (3 × 10−3 mm2/s) dictates an average

molecular displacement in the range of a few tens of microns, that is, the signal originates

from water pockets, which in the brain could only appear in the extracellular space or CSF

areas [Pasternak et al., 2012b]. This has also been validated using histology in the work of

[Wang et al., 2011]. Thus, due to the way our model has been constructed, the free-water

compartment represents diffusion in the extracellular space or CSF areas. We should

emphasize that this does not imply that the tissue compartment is purely intracellular.

Conversely, the signal of the tissue compartment originates from all other water molecules

that are hindered or restricted by cellular structures (e.g., membranes and myelin sheaths).

These molecules include all of the intracellular molecules and some extracellular molecules

that are in proximity to cellular restrictions. Finally, we would like to point out that a better

estimate of the extracellular compartment could be obtained only if multiple b-value data is

available [Pasternak et al., 2012a; Zhang et al., 2012]. In our case, our data were acquired at

a single b-value and hence the above two-compartment model is best suited for our dataset.

We should note that using this isotropic free-water component is also useful in removing

CSF contamination due to partial-volume as described in [Metzler-Baddeley et al., 2012].

Heterogeneity: A Measure of Intrinsic Variability

Existing work using dMRI has traditionally looked at average values of a given measure

within a region-of-interest (ROI). Thus, most studies compute average FA or average mean

diffusivity (MD) to understand the aging process. However, in ROI-based studies, this may

not capture the entire information available about that region. For example, a given ROI in

two individuals could have the same “average FA” but vastly different variance. Thus, it is

necessary to not only to analyze the average values but also to look into the variability of

that measure within the region. We thus propose a measure called “heterogeneity,” which

can robustly capture the variability of any given diffusion measure (such as FAt) within a

ROI. This measure is less sensitive to outliers than the standard statistical measure of

“variance” or “standard deviation” and is mathematically defined as:

(2)

where N is the number of voxels in the ROI, and mi is the value of any given diffusion

measure (such as, FAt) indexed by i or j. Note that, the measure H does not change based on

the order of the indexing scheme (any ordering of FAt, within a given ROI will give the

same value for H). Further, a “global” change in the value of FAt, does not change the

heterogeneity, that is, increasing or decreasing the value of FAt by the same amount

throughout an ROI will not change heterogeneity of that region. Note that, the unit for H is

the same as that of the measure m, that is, for FAt it is dimensionless, while for mean

diffusivity (MDt) it is mm2/s. In this work, we compute heterogeneity H of the tissue FAt

(denoted by HFAt in the rest of this article) within the cortical and subcortical gray matter

and discuss its implication in aging.
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Note that, the tissue fractional anisotropy captures the coherence of water diffusion at each

voxel. Thus, a higher value of FAt would imply high coherence in diffusion along a

particular direction, whereas low values for FAt imply near-isotropic diffusion. Further, a

large variation in the tissue structure leads to a large variation in the coherence pattern of

diffusion from one location to another, which in turn leads to large variation in the values for

FAt in an ROI. This phenomenon is captured by our measure of heterogeneity. Figure 1

shows a schematic of cell layout that could lead to increased heterogeneity in a given ROI.

Study Participants

Eighty-five subjects (age range: 15–55 years, 85 males) were recruited from the Boston area,

with IQ score greater than 80. All subjects were primarily right-handed, with an average

score of 0.81 on the Annett Handedness Scale, average education of 14.62 years, and an

average socioeconomic status (SES) score of 2.12. See Figure 1 for a distribution of the

subjects with age. Exclusion criteria for all subjects were: sensory-motor handicaps (e.g.,

severe visual or auditory problems), apparent psychiatric disorder, seizure disorder,

neurosurgical procedures, medical illnesses that significantly impair neurocognitive function

(e.g., renal disease), and conditions incompatible with MRI scanning (e.g., certain types of

metal in the body, cardiac pacemakers, claustrophobia, and pregnancy). All participants

gave written informed consent and the research protocol was approved by the Brigham and

Women's Hospital's local Internal Review Board.

MRI Acquisition

MR images were acquired on a 3-T whole body General Electric MRI scanner (GE Medical

Systems, Milwaukee) at Brigham and Women's Hospital. The MR sequences included a

high resolution 3D-T1 scan (IR-SPGR, TR 7.8 ms, TE 3 ms, TI 600 ms, flip angle 10°, FOV

256 × 256 mm2, matrix size 256 × 256, 176 slices, 1 mm slice thickness), a high resolution

3D-T2 (CUBE, TR 3 s, TE 90 ms, flip angle 90°, FOV 256 × 256 mm2, matrix size 256 ×

256, 176 slices, 1 mm slice thickness), and a high resolution diffusion acquisition (twice

refocused, TR 17 s, TE = 80 ms, flip angle 90°, FOV 240 × 240 mm2, matrix size 144 ×

144, 85 slices, 1.7 mm slice thickness, 51 gradient directions with b = 900 s/mm2 and eight

additional b = 0 images).

Image Processing

The data were manually inspected for any signal dropouts or artifacts and all subjects who

did not pass our quality control procedure were not included in this study. The diffusion data

were corrected for motion artifacts by means of affine registration with a reference b0

volume (FLIRT, FSL, Oxford). Diffusion gradients were compensated for rotations. Each

anatomical T1 image was parcellated using the FreeSurfer software (http://

surfer.nmr.mgh.harvard.edu), resulting into 176 gray matter (GM), white matter (WM), and

cerebrospinal fluid (CSF) sections. The resulting segmentation was mapped onto the

diffusion space by registering the T1 image with the T2 image (rigid registration, FLIRT,

FSL), and registering the T2 image with a b0 image (non-linear registration, FNIRT, FSL).

A variational algorithm [Pasternak et al., 2009] was used to calculate the tissue FA (FAt)

and free-water fraction (ω) at each voxel in the brain. The software for this algorithm was
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written in-house in Matlab (Mathworks). Subsequently, heterogeneity in tissue FAt (HFAt)

was computed for each desired ROI (e.g., cortical lobes—frontal, parietal, temporal, and

occipital). We should however note that any errors due to suboptimal correction of motion

or eddy current artifacts would also be reflected in the computation of average FAt and

heterogeneity (HFAt) (similar to all studies done using diffusion MRI). Given that these

values are averaged over a large ROI, we expect the effect of these errors to be significantly

reduced.

RESULTS

For all the subjects, we estimated a single diffusion tensor and an isotropic “free-water” term

at every voxel in the brain [Pasternak et al., 2009]. The free-water compartment provides the

volume fraction of the signal corresponding to the extracellular space, whereas the diffusion

tensor characterizes diffusion associated to brain tissue. From the diffusion tensor, we

computed the tissue fractional anisotropy (FAt) at each voxel, corresponding to the

anisotropy due to the tissue component. Freesurfer [Fischl, 2012] software was used to

parcellate the brain into various anatomical regions and heterogeneity in FAt (HFAt) was

computed for a desired ROI. This measure of heterogeneity captures the variability in FAt

within a region-of-interest. We should note that the tissue fractional anisotropy FAt is

different than the traditionally used FA values computed from single tensor estimation. We

expect that the traditionally computed FA values will in general be lower than FAt since the

isotropic component is not “removed” from the single tensor based FA values. Thus, the

values for FAt reported in our work are higher than those reported for FA in other works

[Pfefferbaum et al., 2010].

Age-Related Posterior to Anterior Increase in Heterogeneity

We computed average FAt and heterogeneity in tissue FAt (HFAt) in the cortical gray matter

for each of the anatomical lobes (both hemispheres): frontal, parietal, occipital, and

temporal. HFAt was computed for each ROI by first computing FAt at each voxel and then

using Eq. (2) by setting m=FAt (see Methods section). For each of the lobes, we computed

the correlation coefficient between age and HFAt. This (along with the statistical

significance) can be computed using the Matlab (www.mathworks.com) function

“corrcoef.” Figure 3 shows a color-coded map of the correlation coefficient displayed for

each of the lobes for both hemispheres. As can be seen, the rate of increase in heterogeneity

is fastest in the frontal lobe, followed by the parietal, occipital, and temporal lobes in that

order. Specifically, the increase in heterogeneity (HFAt) is statistically significant (P<0.001)

only in the frontal and parietal lobes, with the most increase in the frontal lobe (see Fig. 4

and Table I). No change in HFAt is seen for the temporal and occipital lobes. Furthermore,

the average FAt in all the gray matter lobes increases significantly with age (see Fig. 5 and

Table I).

Increase in heterogeneity in FAt in the fronto-parietal lobes indicates an increase in

variability of the tissue diffusion properties. This indicates that the neurobiological structure

of the fronto-parietal gray matter is more similar throughout the region at young age, but

becomes distinct, patchy and dissimilar with increasing age (see Fig. 2). Thus, the cell
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bodies within the gray matter have very different structural layout in neighboring voxels

(spatial locations) in older adults compared to younger ones. This can potentially affect the

way these neurons “fire” (excite) in the gray matter of older adults.

Furthermore, there is virtually no change in heterogeneity in the temporal and occipital

lobes, even though the FAt in these regions increases significantly (see Fig. 5). A similar

phenomenon is seen in task-based functional neuroimaging studies, that is, there is an age-

related reduction in occipital activity coupled with an increase in frontal activity [Davis et

al., 2008; Grady et al., 1994] indicating a posterior to anterior shift in aging (PASA model).

Thus, examining the structural changes in terms of the heterogeneity in FAt (HFAt) provides

a complementary view to the observed functional alterations seen in aging.

We performed a similar analysis using the tissue mean diffusivity (MDt) by computing the

average MDt and heterogeneity in MDt (HMDt) in the four anatomical lobes of all subjects.

HMDt showed an analogous trend as that of HFAt with the frontal lobe showing the highest

correlation with age, followed by the parietal, temporal, and occipital lobes (see Fig. 6 and

Table II). These results support the “retrogenesis” hypothesis of aging, which states that the

regions that are last to develop (e.g., frontal lobe) are the first to deteriorate [Reisberg et al.,

1999].

Examining Heterogeneity in the Cortical Hemispheres

Figure 7 shows the correlation between age and heterogeneity in FAt (HFAt) in the cortical

gray matter of both the hemispheres (right hemisphere—correlation coefficient [cc]=0.58,

P=10−9), and left hemisphere (cc =0.49, P = 10−6). In general, HFAt is higher in the right

hemisphere than the left hemisphere. Also, a two-tailed t-test shows that the heterogeneity

HFAt in the right hemisphere is statistically different than in the left with a P-value of 1.2 ×

10−8. This can also be seen in Figure 3 (see the contrasts in the colors of the corresponding

lobes in each hemisphere). Another fact that can be deduced from the results on

heterogeneity examined above (Fig. 3, Fig. 5, and Fig. 7) is that the right and left

hemispheres of the brain become increasingly dissimilar to each other during aging. Figure 7

shows that the slopes of the lines for both hemispheres diverge with increasing age

indicating increasing dissimilarity with age. This is also confirmed from Figure 8, which

was computed by subtracting the heterogeneity of the left hemisphere (cortex) from the

right, indicating that the hemispheric differences in heterogeneity (HFAt) increase with age.

Note that, this age-related hemispheric dissimilarity is statistically significant with P =

0.005. Thus, the gray matter in the right hemisphere becomes more distinct and dissimilar in

its structure with age, indicating that it “ages faster” than the left hemisphere, thus

reinforcing the “right-hemi” aging model.

Further, note that in only about 6 cases out of a total of 85, the hemispheric differences in

HFAt is negative, that is, in only about 6 cases (out of 85) HFAt in the right is less than in

the left hemisphere (see Fig. 8 above). From the data presented above, we can draw the

following conclusions:

1. HFAt in the right hemisphere is statistically different than in the left hemisphere

(P=1.2 × 10−8).
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2. A t-test with the null-hypothesis that the hemispheric differences in HFAt are

different from zero gave a P-value of 10−24. This implies that HFAt in the right

hemisphere is higher than in the left hemisphere (at a group statistical level). Note

that the difference in HFAt between the right and left hemisphere is positive for

most cases (see Fig. 8).

3. Hemispheric differences in HFAt between the right and left hemispheres increase

statistically significantly with age (from Fig. 8, P = 0.005).

Examining Heterogeneity in the Functional Zones

We grouped the Desikan parcellation [Desikan et al., 2006] of gray matter cortices obtained

from Freesurfer [Fischl, 2012] into three functional zones: primary, paralimbic, and

associative. The primary motor, somatosensory, and visual cortices formed the primary

areas; cingulate, entorhinal, parahippocampal, temporal pole, and medial orbitofrontal

cortices formed the paralimbic areas; and the remaining cortices were grouped into the

associative areas. As seen in Figure 9, heterogeneity (HFAt) increased significantly in the

primary and the association areas but remained virtually unchanged in the paralimbic areas.

Further, average FAt increased in all the three zones as detailed in Table III. Thus, the

increase in FAt is “global” in the paralimbic areas, but local and distributed in the primary

and association cortices resulting in an increase in heterogeneity in these regions. We should

note that a global uniform change in FAt does not change the heterogeneity (HFAt) of an

ROI, but local and isolated changes can cause an increase in HFAt. Thus, the paralimbic

areas seem to be quite resilient during early aging, which offers structural evidence to

support studies indicating better emotional regulation in older adults [Leclerc and

Kensinger, 2008].

Increase in heterogeneity in the primary areas indicates the need to use more resources

during manual tasks, which has been seen in functional studies [Fling et al., 2012; Riecker et

al., 2006]. Further, there is evidence from neurochemical analysis of the motor cortices

indicating changes in the dopaminergic system during healthy aging [Kaasinen and Rinne,

2002]. Our work confirms that structural changes do occur in the primary cortices during

early aging. In fact, the proposed measure of heterogeneity is an early indicator of structural

changes occurring in the brain.

Examining Heterogeneity in the Sub-cortical Regions

Heterogeneity was computed in the following sub-cortical regions of both the hemispheres:

thalamus, globus pallidus, ventral DC, caudate, putamen, amygdala, nucleus accumbens, and

hippocampus. Regions were grouped based on whether HFAt correlated positively,

negatively, or remained unchanged with age (see Fig. 10). It was observed that the regions

involved in memory systems, that is, hippocampus and caudate showed an increase in

heterogeneity (HFAt) along with a significant increase in the average FAt (Fig. 10, Table

IV). Thus, these regions showed a neural degeneration with age implying a possible

decrease in performance on memory related tasks, as has been recorded in other published

works [Singh-Manoux et al., 2012; West et al., 1992]. Regions such as the thalamus, nucleus

accumbens, and amygdala, which are involved in emotional regulation and reward
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mechanism, did not show any change in heterogeneity or average values of FAt across the

age-range analyzed in this work. This observation concurs with other cognitive studies,

which have also reported little effect of age on emotional regulation [Nashiro et al., 2012].

Conversely, sub-cortical structures such as, putamen, globus pallidus, and ventral DC, which

are involved in involuntary motor function, show a statistically significant decrease in

heterogeneity. This is in sharp contrast to the average FAt in these areas, which shows no

correlation with age (Table IV, Fig. 11). Thus, age seems to be having a homogenizing

effect in these regions, with the diffusion MRI deduced tissue properties becoming

increasingly similar.

In addition, as the hippocampus is composed of several diverse structures, in Figure 12, we

show the estimated heterogeneity (HFAt) separately for this region. As expected,

heterogeneity increased significantly (P<0.001) with age in both hemispheres indicating an

age-induced increased dissimilarity in structural organization of this region.

Accounting for Partial-Volume Effects

The dMRI data used in this study had a spatial resolution of 1.7 × 1.7 × 1.7 mm3, which is

the highest one can achieve on a 3T clinical scanner without significantly affecting the

signal-to-noise ratio (SNR). Yet the data are affected by partial-volume effects especially at

the boundary between gray-white and gray-CSF areas. Although the free-water model used

in this study can significantly reduce the effects of CSF contamination [Metzler-Baddeley et

al., 2012], the effect of gray-white partial-voluming at the boundary between the gray and

white matter regions is difficult to remove [Alexander et al., 2001]. To ensure that partial

volume effects do not primarily drive the results reported in this work, we removed every

voxel from the gray matter ROI (say, the frontal lobe) if at-least one of its neighbors (in a 3

× 3 × 3 voxel neighborhood) was classified as white matter by the Freesurfer software.

Thus, all gray matter voxels that shared a boundary with white matter were removed and

heterogeneity (HFAt) was recomputed using the remaining voxels. Figure 13 shows the

heterogeneity (HFAt) computed for the four lobes: frontal, parietal, temporal, and occipital.

As seen in this figure and Table V, a similar pattern as seen in Figure 4 emerges with HFAt

increase being the highest in frontal lobe, followed by parietal, occipital, and temporal lobe.

This indicates that partial-volume effects do not drive our results and that the tissue gray

matter structure indeed degenerates with age as quantified by our measure of heterogeneity.

DISCUSSION

In this work, we analyzed gray matter alterations in the brain in early aging using diffusion

MRI. To the best of our knowledge, this is the first report that analyzes the alterations in

gray matter structure of anatomical lobes, functional zones and sub-cortical areas using

diffusion MRI. We proposed a novel measure called “heterogeneity” which can measure the

variability of any diffusion measure in a given region of interest. This is in contrast to

traditional studies where only the “average” value of FA or mean diffusivity (MD) is used.

Note that, the average value does not necessarily capture the entire statistical knowledge that

is known about FA (or MD) in a given ROI. Thus, examining heterogeneity can provide

additional insight into the underlying changes within an ROI.
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Further, we used an advanced model of diffusion, which includes computing an isotropic

“free-water” compartment corresponding to the extracellular space. This model can better

explain the observed signal as has been reported by several works [Panagiotaki et al., 2012;

Pasternak et al., 2009]. The tissue heterogeneity in FAt (HFAt) computed using this model in

several gray matter areas showed region specific changes with age. In particular, the

proposed analysis provided the much-needed structural evidence to support functional

patterns of aging seen in fMRI studies. We believe that this is a first such study that has

attempted to connect the observations from fMRI studies (PASA, HAROLD, right-hemi

models of aging) to a measure computed from diffusion MRI.

In this work, we studied lobar parcellations of the brain since work done in other domains

(cognitive, structural as well as functional) used these regions in their analysis in the context

of healthy aging. Thus, connecting the findings from other domains becomes natural and

straightforward (“right-hemi” aging model, PASA, retrogenesis, etc.). Analyzing the four

anatomical lobes (frontal, parietal, temporal, and occipital) in terms of heterogeneity in FAt

(HFAt) revealed a pattern that is strikingly similar to that observed during task-based fMRI

and PET studies. These studies have reported an age-related reduction in occipital activity

coupled with an increase in frontal activity [Davis et al., 2008; Grady et al., 1994]. This

pattern is known as the posterior-anterior shift in aging or the PASA model. This model has

been found across a variety of cognitive functions, including visual perception and attention

[Huettel et al., 2001; Iidaka et al., 2002; Madden et al., 2002], visuospatial memory [Nyberg

et al., 2003], working memory [Grossman et al., 2002; Rypma and D'Esposito, 2000], and

episodic memory encoding and retrieval [Cabeza et al., 2004; Gutchess et al., 2005]. Thus,

the PASA pattern has been widely observed in functional neuroimaging studies on aging.

However, to the best of our knowledge, this is the first study that has provided a

complementary view of the PASA model using measures derived from diffusion MRI. In

particular, Figures 3 and Figure 4 show a significant increase in heterogeneity with age in

the frontal and parietal lobes, but not in the occipital and temporal lobes. Increase in

heterogeneity implies increased dissimilarity in the structure of gray matter in these regions.

We speculate that an increase in heterogeneity could imply less efficient neural processing

of information or increased degeneration of the gray matter tissue as has been reported in

several studies [Kalpouzos et al., 2009; Montembeault et al., 2012].

Another model observed from fMRI studies is the HAROLD (hemispheric asymmetry

reduction in older adults) model of aging. This model states that, under similar

circumstances, prefrontal activity during cognitive performances tends to be less lateralized

in older adults than in younger ones. This model is further supported by evidence from the

domains of episodic memory, semantic memory, working memory, perception, and

inhibitory control [Cabeza, 2002]. We believe that due to the increasing hemispheric

differences in heterogeneity with age (Fig. 8, P=0.005), a given task might require more

resources from both hemispheres in older adults as compared to younger ones. Specifically,

in this work, all our subjects are right-handed males. Thus, several tasks that require bilateral

activation (language, speech, visual and auditory processing, etc.) are highly lateralized,

with the left hemisphere being the dominant hemisphere. Thus, during these tasks, the left
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hemisphere is more “activated” than the right (which leads to laterality observed in fMRI

studies).

We speculate that increase in heterogeneity implies increase in tissue dissimilarity, which

could lead to an increase in “activation” during functional tasks to maintain the same level

of functional performance. As HFAt is higher in the right hemisphere (compared to left) at

older age, it could imply more resources required from that hemisphere, thus reducing the

laterality. In other words, since the right hemisphere is aging faster than the left one (Fig. 8),

much more resources are used by the right hemisphere to perform the same task compared to

younger adults, thus causing a reduction in laterality (laterality will be maintained if both the

hemispheres “aged” in a similar fashion or had equal increase in heterogeneity). This idea

(of reduced laterality) due to increased activity in the right hemisphere to maintain the same

level of syntactic function has also been shown in functional MRI studies by [Tyler et al.,

2010]. Our results on heterogeneity are also in-line with these functional observations

defined by the HAROLD model of aging [Cabeza, 2002; Dolcos et al., 2002]. We should

note that, this “speculation” is valid only for right-handed subjects and in tasks that are

bilateral but predominantly processed in the left hemisphere.

Analyzing heterogeneity in the functional zones (primary, paralimbic, and association)

provides a different view of the process of aging. Primary area, which is composed of the

motor and visual cortices, shows a marked increase in heterogeneity indicating deterioration

in these regions (and the corresponding functions). This is also supported by studies from

other domains that have reported an age-related decline in fine motor function [Rypma and

D'Esposito, 2000]. Structural MRI (sMRI) studies [Salat et al., 2004] have also shown a

decrease in cortical thickness in the primary motor and somatosensory cortices with age.

Further, fMRI studies have shown over-recruitment of bilateral motor cortices by older

adults while performing unimanual movements indicating inefficient use of brain resources

[Fling et al., 2012; Riecker et al., 2006]. In addition, there are significant differences in the

brain neurochemistry between young and older adults, many of which have been directly

linked to deficits in motor performance for older adults [Bartus et al., 1982; Kaasinen and

Rinne, 2002; Seidler et al., 2010]. Thus, there is increasing evidence that the cortices

associated with motor function deteriorate with age. We should however note that, the

proposed work shows increased heterogeneity in the primary cortices in early aging (ages

less than 55 years) indicating that the diffusion MRI-based measure of heterogeneity is an

early and sensitive marker of gray matter alterations.

This study also shows that the paralimbic areas are quite resilient to the effects of aging in

terms of heterogeneity. Volumetric studies based on structural MRI have also shown similar

results [Grieve et al., 2005; Terribilli et al., 2011]. Further, cognitive studies have found

little effect of age on emotional regulation, which is primarily processed by the limbic and

paralimbic structures [Leclerc and Kensinger, 2008; Nashiro et al., 2012]. Thus, the

proposed work supports these observations from the perspective of diffusion MRI.

HFAt was also analyzed in the various sub-cortical regions by grouping them based on

whether heterogeneity was positively or negatively correlated with age. This grouping

revealed that aging affects the sub-cortical regions differently based on their function
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(emotional processing, motor control, or memory). Thus, increased heterogeneity was found

in areas associated with memory (caudate and hippocampus) indicating a negative effect on

the functioning of these systems. Specifically, the hippocampus showed a very high increase

in heterogeneity with age (Fig. 12), which coincides with a decrease in memory performance

with age, consistent with results reported in cognitive studies [Singh-Manoux et al., 2012;

West et al., 1992]. Aging hardly affects areas involved in emotional regulation [Nashiro et

al., 2012], an effect also seen in this study where little to no change in heterogeneity is

observed in areas such as thalamus, amygdala and nucleus accumbens. Conversely, sub-

cortical structures such as, putamen, globus pallidus, and ventral DC, which are involved in

involuntary motor function, show a statistically significant decrease in heterogeneity (but no

change in average FAt). This implies that the structural layout of cells in these regions

becomes increasingly similar with age and could potentially lead to a more efficient

processing during a given task.

Another phenomenon that finds support from this work is the “right-hemi” aging model. As

seen in Figure 8, the right hemisphere has consistently higher heterogeneity than the left

throughout the age span analyzed here. We should however note that, all our subjects were

primarily right-handed males. Thus, little can be said about the effect of handedness or

gender on the “right-hemi” aging model.

Studies on cortical gray matter maturation [Gogtay et al., 2004; Lebel et al., 2008] have

shown that the first cortices to develop are in the temporal and occipital lobes, followed by

the parietal and frontal regions. In contrast, the “first-in last-out” (retrogenesis) hypothesis

of brain atrophy states that the regions that are last to develop are the first to atrophy

[Bartzokis et al., 2004; Salat et al., 2004]. From Figures 3 and Figure 4, we also see that

HFAt (heterogeneity) increases mainly in the fronto-parietal regions, but not in the temporal

and occipital lobes during early aging. Thus, our work on heterogeneity also shows similar

trends, that is, increased degeneration (heterogeneity) is seen in areas that are last to develop

(frontal lobes). Moreover, our observations that the heterogeneity increases were statistically

significant in the primary and association zones, but not in the paralimbic areas further

emphasize this concept. We thus believe, that this work further strengthens the “first-in last-

out” (retrogenesis) hypothesis of aging.

In general, an increase in average FAt with age is seen throughout the cortical gray matter

regions (Fig. 5). We should specifically note that, the average values of FAt are higher than

those reported for FA using the single tensor model. This is because our model removes the

isotropic free-water compartment, leading to a more anisotropic estimation of the single

tensor. Increase in FAt indicates a more anisotropic layout in the gray matter. This could be

due to dendrite pruning that occurs with increasing age, as has been shown in animal and

human post-mortem studies [Hof and Morrison, 2004; Jacobs et al., 1997]. Dendrite pruning

could potentially lead to a more directionally specific diffusion of water as opposed to a

more isotropic diffusion observed in young age due to the presence of dendrites in all

directions. In addition, an increase in gray matter FA has been shown in cases of mild

traumatic brain injury (mTBI), which was correlated with an increase in glial fibrillary

acidic protein (GFAP) in gray matter [Budde et al., 2011; Bouix et al., 2013]. We should
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note that this could be one of the many reasons for an increase in FAt. Thus, while dMRI is

sensitive to small changes, it cannot pinpoint the exact cause of those changes.

We have also observed a statistically significant increase in the amount of extracellular free-

water component throughout the brain with increasing age (P<0.001). Further (see

Supporting Information), we also see an increase in average mean diffusivity (MDt) in all

anatomical lobes, while the heterogeneity in MDt (HMDt) follows similar trends to HFAt in

all regions of the brain. This could be due to a combined effect of brain atrophy and

increased inflammation during aging, as has been reported by several studies on

neurochemical analysis of the brain [von Bernhardi et al., 2010]. Inflammation is mainly

driven by increased microglial cell reactivity [Lovell et al., 2001] along with an increasing

level of circulating cytokines [Streit et al., 2004]. Uneven distribution of these

neurochemicals and the microglia cells could be one of the contributing factors in increased

heterogeneity seen in the cortical gray matter regions of older adults. Further, changes in the

laminar structure of the gray matter as well as the organization of the dendrites could also

affect heterogeneity in addition to other changes in tissue structure.

We should also note a limitation of this study. Because of the limited sample size, our work

may be characterizing the increase in heterogeneity in terms of a linear model (straight line

fit), whereas the actual variation could be nonlinear (quadratic or cubic), as has been

reported for FA changes in white matter [Kochunov et al., 2011]. Thus, this analysis needs

to be repeated on data with larger sample size, to better characterize the change in

heterogeneity across the lifespan.

As mentioned earlier, several models of aging (HAROLD, PASA, right-hemi aging,

retrogenesis) have been proposed based on observational studies done using functional and

structural neuroimaging. Although the cognitive aspects of these models have been

analyzed, very little is known about the structural gray matter alterations that provide a

complementary view of these models. Thus, one of the main themes of this article was to

examine gray matter changes in early aging using a measure derived from diffusion MRI

data. This is extremely important, as it connects the structural and functional domains and

provides a better understanding of the aging process.
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Figure 1.
Histogram of subjects (x-axis is age) participating in this study. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 2.
A schematic depicting “less heterogeneous” and “more heterogeneous” spatial layout of

cells. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 3.
Color-coded map of the correlation between age and heterogeneity in FAt (HFAt) for

cortical gray matter areas (frontal, parietal, temporal, and occipital) in both hemispheres.

The correlation coefficient or the rate of increase in heterogeneity with age is maximal in

frontal and decreases in parietal, occipital, and temporal lobes in that order (correlation

decreases from yellow to red). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Figure 4.
Correlation between age and HFAt in the gray matter (GM) of the four anatomical lobes of

both the hemispheres (right hemisphere—red, left hemisphere—blue). The correlation is

highest and statistically significant (P < 0.001) in the frontal lobe followed by the parietal

lobe. Not much statistically significant correlation is seen in the temporal and occipital

lobes, indicating very little change in heterogeneity in early aging. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 5.
Statistically significant (P < 0.001) correlation is seen between age and average FAt for all

the four lobes in both hemispheres. The correlation is maximal in the frontal lobe followed

by parietal, occipital, and temporal lobes in that order. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Figure 6.
Correlation between age and HMDt (mm2/s) in the gray matter of the four anatomical lobes

of both the hemispheres (right hemisphere—red, left hemisphere—blue). The correlation is

statistically significant (P < 0.001) only for frontal and parietal lobe. No statistically

significant correlation is seen in the temporal and occipital lobes. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 7.
Cortical (right and left) gray matter heterogeneity in FAt increases with age. Further, the

increase in HFAt in the right hemisphere is more pronounced than the left. Notice that the

right hemisphere starts with a higher value of heterogeneity at an early age. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Rathi et al. Page 24

Hum Brain Mapp. Author manuscript; available in PMC 2014 August 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://wileyonlinelibrary.com


Figure 8.
Cortical hemispheric differences in heterogeneity (HFAt) increase with age (P = 0.005).
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Figure 9.
Cortical gray matter heterogeneity (HFAt) in the three functional zones (primary,

paralimbic, and association—left to right) for both the hemispheres. Statistically significant

increase can be seen in the primary and the association zones, but not in the paralimbic

areas. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 10.
Heterogeneity in FAt (HFAt) in the sub-cortical regions grouped according to whether HFAt

increases, decreases, or remains unchanged. Combined plots are shown for the grouped

regions. Significant increase is seen the caudate (CD) and hippocampus (HP), significant

decrease is seen in globus pallidus (GP), ventral DC (VDC), and putamen (PU), while no

change is observed in the thalamus (TH), amygdala (AM), and nucleus accumbens (AC)

areas. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 11.
Average FAt in the sub-cortical regions, grouped as described in Figure 7. A sharp increase

in FAt (P = 10−11) is seen in the caudate (CD) and hippocampus (HP), but only a minor

increase is seen in the left amygdala (AM), with no change in the thalamus or accumbens

areas (in either hemispheres). Also, no correlation is seen in the GP, VDC, and PU areas,

even though HFAt decreases significantly in these regions. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 12.
HFAt increases in hippocampus significantly (P< 0.001) with age in both hemispheres.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 13.
Heterogeneity (HFAt) computed in all the four lobes frontal, parietal, temporal, and occipital

with gray-white boundary voxels removed. HFAt increases similar to that in Figure 4 with

statistically significant increase seen in the frontal and parietal lobes, but no increase in

temporal and occipital lobes. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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TABLE I

Correlation coefficient for heterogeneity in FAt (HFAt) and average FAt

Left HFAt Right HFAt Left FAt Right FAt

Frontal 0.57a 0.60a 0.57a 0.64a

Parietal 0.39a 0.48a 0.49a 0.50a

Occipital 0.20 0.18 0.38a 0.44a

Temporal 0.10 0.16 0.40a 0.34a

a
Indicates statistically significant correlation with P< 0.001.
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TABLE II

Correlation coefficient for heterogeneity in MDt (HMDt) and average MDt

Left HMDt Right HMDt Left MDt Right MDt

Frontal 0.74a 0.65a 0.60a 0.54a

Parietal 0.66a 0.62a 0.23 0.09

Occipital 0.21 0.31 0.02 0.17

Temporal 0.31 0.34 0.39a 0.18

a
Indicates statistically significant correlation with P< 0.001.
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TABLE III

Correlation coefficient for the three functional zones

Left HFAt Right HFAt Left FAt Right FAt

Primary 0.69a 0.70a 0.64a 0.63a

Paralimbic 0.20 0.03 0.38a 0.39a

Association 0.46a 0.48a 0.55a 0.58a

a
Indicates statistically significant correlation with P < 0.001.

Hum Brain Mapp. Author manuscript; available in PMC 2014 August 01.



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Rathi et al. Page 34

TABLE IV

Correlation with age in the sub-cortical regions

Regions Left HFAt Right HFAt Left FAt Right FAt

CD, HP 0.52a 0.48a 0.61a 0.54a

TH, AM, AC 0.21 −0.04 0.29b 0.18

GP, VDC, PU −0.63a −0.55a −0.01 0.03

a
Indicates P < 0.001.

b
Indicates trend level with P = 0.007. CD, caudate; HP, hippocampus; TH, thalamus; AM, amygdala; AC, nucleus accumbens; GP, globus

pallidus; VDC, ventral DC; PU, putamen.
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TABLE V

Correlation coefficient for heterogeneity in FAt (HFAt) and average FAt with gray-white boundary voxels

removed to account for partial-volume effects

Left HFAt Right HFAt Left FAt Right FAt

Frontal 0.51a 0.54a 0.55a 0.62a

Parietal 0.29b 0.39a 0.46a 0.46a

Occipital 0.20 0.18 0.36a 0.43a

Temporal 0.001 0.08 0.39a 0.32a

a
Indicates statistically significant correlation with P < 0.001.

b
P = 0.003.
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