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Abstract

The filter that removes from a binary image its con-
nected components with area smaller than a parameter
� is called area opening. From a morphological per-
spective, this filter is an algebraic opening, and it can
be extended to grayscale images. The properties of area
openings and their dual area closings are recalled. In par-
ticular, it was proved in [13] that the area opening of pa-
rameter � of an image I is the supremum of the grayscale
images that are smaller than I and whose regional max-
ima are of area greater than or equal to �. This theorem
is at the basis of an efficient algorithm for computing
grayscale area openings and closings. Its implementa-
tion involves scanning pixels in an order that depends
both on their location and value. For this purpose, the
use of pixel heaps is proposed. This data structure is
shown to be both efficient and low in memory require-
ments. In addition, it can be used in the computation of
various other complex morphological transforms. The
use of these area openings and closings is illustrated on
image filtering and segmentation tasks

1 Notations, Definitions

In this paper, the binary images or sets under study are
subsets of a connected compact set M � IR2 called the
mask. Similarly, grayscale images are mappings from
M to IR. For simplicity, only the 2-D case is considered
here, but the notions and algorithms discussed generalize
to arbitrary dimensions. By area is meant the Lebesgue
measure in IR2. B denotes the morphological opening
with respect to structuring element B.

Let us first recall the notion of connected openings
[9, 10]:

Definition 1 The connected opening Cx(X) of a set
X � M at point x 2 M is the connected component
of X containing x if x 2 X and ; otherwise.

The area opening a
�

can then be defined on subsets
of M as follows [13]:

Definition 2 (binary area opening) Let X � M and
� � 0. The area opening of parameter � of X is given
by

a
�(X) = fx 2 X j Area(Cx(X)) � �g: (1)

Intuitively, if (Xi)i2I denote the connected components
of X, a

�
(X) is equal to the union of the Xi’s with area

greater than or equal to �:

a
�
(X) =

[
fXi j i 2 I;Area(Xi) � �g: (2)

An example of binary area opening is shown in Fig. 1.
Note on this image that, by definition, the connected
components of the original image are either removed, or
entirely preserved.

(a) (b)

Figure 1: (a) original image; (b) binary area opening.

Obviously, a
�

is increasing, idempotent, and anti-
extensive. It is therefore an algebraic opening [6, 9, 10].
Its dual binary area closing can be defined as follows:

Definition 3 The area closing of parameter � � 0 of
X � M is given by:

�a�(X) = [a�(X
C )]C:

where XC denotes the complement of X in M, i.e. the
set M nX (n denoting the set difference operator). As
the dual of the area opening, the area closing fills in the
holes of X whose area is strictly smaller than the size
parameter �.



As shown in [13], the growth of these transformations
makes it possible to extend them to grayscale images:

Definition 4 (grayscale area opening) For a mapping
f : M �! IR, the area opening a

�
(f) is given by:

(a
�
(f))(x) = supfh � f(x) j x 2 a

�
(Th(f))g; (3)

or:

(a
�
(f))(x) = supfh � f(x) j Area(x(Th(f))) � �g:

In this definition, Th(f) stands for the threshold of f at
value h, i.e:

Th(f) = fx 2 M j f(x) � hg: (4)

In other words, to compute the area opening of f ,
the area openings a

�
(Th(f)) of the thresholds Th(f)

of f are considered. Since a
�

is increasing, Y �
X =) a

�
(Y ) � a

�
(X). Thus, the fa

�
(Th(f))gh2IR

are a decreasing sequence of sets which by definition
constitute the threshold sets of the transformed mapping
a
�
(f).
By duality, one similarly extends the concept of area

closing to mappings from M to IR. These area openings
and closings for grayscale images are typical examples
of flat increasing mappings (also called stack mappings)
[10]. Their geometric interpretation is relatively sim-
ple: unlike dynamics-based openings [2], which remove
structures based on their contrast, grayscale area open-
ings remove from an image all the light structures that
are “smaller” than the size parameter, i.e., based on their
area (number of pixels). Area closings have the same
effect on dark structures. Theorem 8 below provides a
more refined interpretation of this intuitive interpreta-
tion.

2 Properties

In this section, a completely different interpretation of
area openings and closings is given. For more details,
including proofs, refer to [13].

A well-known theorem by Matheron states that a
translation-invariant algebraic opening  is the supre-
mum of all the morphological openings B that are
smaller than or equal to  [6]. In the particular case of
area openings, a more precise characterization of these
morphological openings can be given:

Theorem 5 Denoting by A� the class of the subsets of
M which are connected and whose area is greater than
or equal to �, the following equation holds:

a� =
[

B2A�

B : (5)

Similarly, it can be proved that the area closing of
parameter � is equal to the infimum of all the closings
with connected structuring elements of area greater than
or equal to �.

In the discrete domain, any connected set of area
greater than or equal to � 2 IN contains a connected
set of area equal to �. The theorem can thus be made
more specific as follows:

Corollary 1 Let ZZ2 be the discrete plane equipped with
e.g., 4- or 8-connectivity. For X 2 ZZ2 \M and � 2 IN,

a�(X) =
[
fB(X) jB 2 ZZ2 connected ;Area(B) = �g:

Theorem 5 is easily extended to grayscale as follow:

Proposition 6 Let f : M �! IR, be an upper semi-
continuous mapping [8, pp. 425–429]. The area opening
of f is given by:

a
�
(f) =

_

S2A�

S (f): (6)

A dual proposition can be stated for grayscale area clos-
ings.

The previous proposition leads to a different under-
standing of area openings (respectively closings). As a
maximum of openings with all possible connected el-
ements of area greater than or equal to a given �, it
can be seen as adaptive: at every location, the (con-
nected) structuring element adapts its shape [1] to the
image structure so as to “remove as little as possible”
(see Fig. 2).

Figure 2: Local shape of an“adaptive structuring ele-
ment” when centered at the pixel shown in black in the
left image.

3 Relation with Regional Extrema

A third and more geometric interpretation of area open-
ings is provided in this section (only openings are dealt
with here, the dual case of the closings being easy to de-
rive). Theorem 8 below is at the basis of the algorithm



proposed in section 4, so its proof will be given. Let
usfirst recall the notion of maximum on a mapping [8,
page 445].

Definition 7 Let f be an upper semi-continuous (u.s.c.)
mapping from M to IR. A (regional) maximum of f at
level h 2 IR is a connected componentM of Th(f) such
that

8h0 > h; Th0 \M = ;: (7)

The following theorem can now be stated:

Theorem 8 Let f be a u.s.c. mapping from M to IR,
� � 0. Denoting M� the class of the u.s.c. mappings
g : M 7�! IR such that any maximum M of g is of area
greater than or equal to �,

a
�(f) = supfg � f j g 2M�g: (8)

Proof: Let g 2 M�, g � f , and let h 2 IR. Let A be an
arbitrary connected component of Th(g). Since g is u.s.c.,
A is a compact set and therefore, there exists x 2 A such
that g(x) = maxfg(y) j y 2 Ag. Let h0 = g(x) and B =
Cx(Th0 (g)). B is obviously a maximum of g at altitude h0 .
Indeed, if there existed a y 2 B such that g(y) > h0, we
would have y0 62 A (the maximal value of g on A is h),
and thus A � A [ B � Th(g). Furthermore, A [ B is
connected as the union of two connected sets with non-empty
intersection, which would be in contradiction with the fact
that A is a connected component of Th(g). B is therefore a
maximum at altitude h0 of g andB � A. Since by hypothesis,
Area(B) � �, we therefore have Area(A) � �.

Thus, for every h 2 IR, a�(Th(g)) = Th(g). Besides,
Th(g) � Th(f). Therefore, by growth of a�, a�(Th(g)) =
Th(g) � a

�
(Th(f)). This being true for every threshold, we

conclude that g � a�(f).
Conversely, 8h 2 IR, any connected component A of

Th(
a

�(f)) is of area � �. Thus, all the maxima of a�(f)
are of area � �. It follows that a�(f) 2 M� and (anti-
extensivity) a�(f) � f , which completes the proof. ut

4 Computation of Area Openings and
Closings

Computing area openings in binary images is a straight-
forward matter: after a labelling of the connected com-
ponents, the histogram of the image provides the area
of each of its components. The too small ones are then
removed.

However, things are rather more complicated in the
grayscale case:

� Obviously, applying definition 2 and computing
a
�
(I) for every threshold of the original grayscale

image I then “piling up” the resulting binary im-
ages is a much too computationally expensive op-
eration. Furthermore, its time complexity increases
exponentially with the number of bits per pixel: : :

� Similarly, following proposition 6, the computa-
tion of all the possible openings with all the pos-
sible connected structuring elements with � pixels
becomes an impossible task as soon as � is greater
than 4 or 5. Indeed, the number of possible structur-
ing elements becomes tremendous! Note however
that an approximate algorithm based on such prin-
ciples was proposed for � � 8 [1]. It is however
still very slow, inaccurate and the constraint � � 8
does not leave area openings and closings enough
“punch” for most applications.

Instead, the algorithm introduced now is based on
the third interpretation given for grayscale area open-
ings, namely that formalized in theorem 8. The general
principle of the proposed algorithm is to successively
consider all the maxima m of the image; for each m, a
“local threshold” around it is progressively lowered until
its area becomes larger than the parameter �. In other
words, an iso-intensity line is drawn around m and its
intensity is decreased until the enclosed region is of area
� �. Denoting by I be the original grayscale image,
the successive steps of the proposed algorithm are as
follows:

� Extract the regional maxima of I. For this step,
refer to [14, 12, 2]).

� For each regional maximum m of I, do the follow-
ing:

� If the area of this maximum is larger than �,
go to the next maximum.

� Recursively scan the neighbors of m, in de-
creasing order of their gray value, until either
of the following two condition is fulfilled:
? the number of pixels scanned is larger than

�� Area(m)
? the next pixel on the ordered list of pixels

to be visited has a gray value larger than the
gray-level of the current pixel.

� Give all the corresponding pixels of I (in-
cluding pixels belonging tom) the gray value
of the last pixel visited.

In this algorithm, the second condition deals with the
case of several (say n) regional maxima of I getting
merged into one maximum of J (see Fig. 3a). In such
cases, we avoid to scan this new maximum n times by
preventing a scanning to proceed when it would lead to
other maxima of I. This rule also correctly deals with
the case of maxima of small area located next to a large
and brighter area. Notice that in order for this method
to work, the algorithm has to proceed in a sequential
manner [12], i.e., modify the original image after the
processing of each maximum! If the maxima of Iwere to
be processed as above, but in a parallel fashion, then the



algorithm would have to be iterated until convergence
in order to properly deal with hierarchically organized
maxima of the kind of Fig. 3b.

λλ

(a) (b)

Figure 3: (a) set of maxima that get merged into one by
area opening; (b) hierarchy of maxima.

The sensitive point of this implementation is the re-
cursive ordered scanning of the neighbors of each maxi-
mum. Since the neighboring pixels of the current region
have to be processed in decreasing order of gray-level, a
simple queue of pixel pointers cannot be used [12]. One
has to use a structure which keeps track of the “priority
level” (i.e., gray-level) of each pixel. So-called hier-
archical queues [7] constitute one approach, but have
rather large memory requirements: for an image with
M different gray-levels, one would have to allocate as
much as M arrays of size �, which is completely irre-
alistic for large values of � and images with, say, 12
significant bits.

Instead, we propose to use data structures that have
classically been used in sorting and searching algo-
rithms, namely priority queues or heaps [3]. A pixel
heap is basically a balanced binary tree of pixel pointers
which satisfies the heap condition: the grayscale value
of any heap pixel is larger than the value of its chil-
dren. Among other operations that can be performed on
a heap, the operations of:

� inserting a new pixel

� removing the pixel with largest value

can be executed in timeO(log(N )),N being the number
of elements in the heap. These two operations each
involve the scanning of at most one full branch of the
tree in order to preserve its balanced state as well as
the heap condition. An example of insertion of a new
element is shown in Fig. 4.

In the present algorithm, the use of a pixel heap is par-
ticularly appropriate. Its memory requirements (array of
pointers of size �) are negligible compared to what a
hierarchical queue would need! Equally negligible is
the speed gain provided by these queues. The heap im-
plementation of the algorithm described above on a Sun
Sparc Station 2 computes area openings of size 100 on
a 256 � 256 image in less than 3 seconds on average!
Adapting it to area closings is a straightforward task.
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Figure 4: Insertion of a new pixel of value 7 in the pixel
heap. Modified nodes are shown in gray.

5 Applications

5.1 Image filtering tasks

It was mentioned earlier that area openings can be seen as
morphological openings with structuring elements that
adapt their shape to the underlying image structure. This
clearly is important for some filtering tasks. Consider
for example Fig. 5a, which is a microscopy image of a
metallic alloy. It is “corrupted” by some black noise that
one may wish to remove. In order to do so without dam-
aging the inter-grain separating lines, a standard method
consists of using a minimum of linear closings: one ex-
pects that the separating lines are straight enough that
they will be preserved at least for one orientation of the
linear structuring element. This operation is followed by
a dual grayscale reconstruction [4, 14] that reconnects
the inter-grains lines that may have been broken by the
process. The result is shown in Fig. 5b.

(a) (b)

Figure 5: (a) Original image; (b) minimum of linear
closings followed by dual grayscale reconstruction.

The problem with this method is that in order to as-
sure a correct preservation of the separating lines, a large
number of linear elements with different orientations
may be needed. This increases the computational com-



plexity of the algorithm while still requiring that the
inter-grains lines be straight enough in places. If these
lines wiggle too much, they will also be removed.

Both these speed and accuracy deficiencies can be
addressed by using an area closing instead. An area
closing of Fig. 5a is shown in Fig. 6a. At first sight, the
difference between this image and Fig. 5b is not striking.
However, a pixelwise algebraic difference of these im-
ages followed by a thresholding extracts the inter-grains
zones that have been better preserved by the area clos-
ing. This shows that the “adaptive structuring element”
of the area closing has played a decisive role. Notice in
particular that the better preserved zones are mostly ori-
ented in non vertical, horizontal or diagonal directions.
Besides, the computation time of the area closing is far
inferior to that of the closing-reconstruction.

(a) (b)

Figure 6: (a) Area closing of Fig. 5a; (b) zones where
the area closing outperforms the closing-reconstruction.

Another example of these useful filtering capabilities
is shown in Fig. 71. Fig. 7a is a noisy image of fibers,
where the black noise needs to be removed while pre-
serving the fibers at best, even the thinnest ones. Once
again, the filter that was experimentally found to be best
suited for this task is an area closing (see Fig. 7b). It
considerably simplifies the image, thus making the au-
tomatic extraction of its fibers easier.

In summary, grayscale area openings and closings
are particularly suited to filtering tasks where thin and
elongated image structures have to be preserved. They
can be applied in a relatively systematic fashion, are fast,
and usually outperform more standard morphological
filtering techniques. Moreover, as described in [13],
they can be combined into other kinds of filters, like area
Alternating Sequential Filters [8, 13]. In addition, area
openings/closings yield filtered images that do not have
the “boxy” look sometimes observed when using, e.g.,
openings/closings with squares: they have nice detail-
preserving capabilities.

1Image provided by Hugues Talbot, Ecole des Mines de Paris.

(a) (b)

Figure 7: (a) Noisy image of fibers; (b) area closing of
(a).

5.2 Use of area openings and closings for image seg-
mentation

Just as with classic openings and closings, one can very
well perform top-hats [8] with area openings and clos-
ings. This allows the straightforward extraction of small
light or dark structures regardless of their shape. As an
example, let us consider Fig. 8a, an angiographic image
of eye blood vessels where microaneurisms have to be
detected. The latter are:
� small and light

� disconnected from the network of the blood vessels,

� predominantly located on the dark areas of the im-
age, i.e. here, the central region.

The algebraic difference between an area opening (of
size larger than any possible aneurism) and the original
image itself can be called area top-hat and is is shown in
Fig. 8b. The aneurisms are clearly visible in this image,
and no blood vessel remain.

(a) (b)

Figure 8: (a) Angiography of eye blood vessels with
microaneurisms; (b) area top-hat.

Here, in order to finish the segmentation, more work is
necessary: one has to account for the fact that aneurisms
are primarily located in dark areas of the image. A
solution to this is proposed in [13], and the aneurisms
finally extracted are shown in Fig. 9.



Figure 9: Extracted microaneurisms.

6 Conclusions

In this paper, three different interpretations have been
provided for the area opening (resp. closing) of param-
eter � of a grayscale image I:

� definition as a flat mapping from the binary area
opening

� supremum of all the morphological openings with
connected structuring elements of area larger than
or equal to the size parameter �

� supremum of all the grayscale images that are
smaller than I and whose regional maxima are of
area greater than or equal to �.

While the first two interpretations do not translate into
viable algorithms, the third one leads to a very efficient
implementation of these transformations.

The practical use of grayscale area openings and clos-
ings was reviewed on a few examples. These operations
were shown to be particularly suited to the filtering of
noisy images of thin and elongated structures like fibers.
Moreover, they can be used for image segmentation via
the proposed area top-hat.

Last but not least, the use of a pixel heap for mor-
phological algorithms was introduced. Pixel heaps are
both efficient and low in terms of memory requirements.
They allow to recursively scan the neighbors of a set of
pixels with decreasing (resp. increasing) gray-level, and
therefore play a key-role in the proposed area opening
algorithm. They also lead to very efficient implementa-
tions of a good number of other grayscale morphological
algorithms, like:

� watersheds (algorithm derived from [15])

� grayscale reconstruction [14]

� morphological dynamics [2]

� Euclidean skeletons and bisectors [11].

The description of these new methods will constitute the
topics of future publication.

References

[1] F. Cheng and A. Venetsanopoulos. Fast, adaptive mor-
phological decomposition for image compression. In
25th Annual Conference on Information Sciences and
Systems, pages 35–40, 1991.

[2] M. Grimaud. A new measure of contrast: Dynamics.
In SPIE Vol. 1769, Image Algebra and Morphological
Image Processing III, pages 292–305, San Diego CA,
July 1992.

[3] D. E. Knuth. The Art of Computer Programming, Vol. 3:
Sorting and Searching. Addison-Wesley, 1973.
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