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Abstract. This paper describes the new setup of the G-raz Brain-Computer 
Interface (BCI) system 1I, which is based on on-line classification of EEG 
patterns to determine which of three kinds of movement is planned by a 
subject. This classification can be exploited for on-line control which may 
constitute a great help for handicapped persons in the future. 

1 Introduction 

Theoretically, the thoughts of a person should be reflected in the person's brainwaves 
and therefore be measurable by electrodes on the person's scalp. In practice, several 
groups have shown that such 'thoughts' as mentally answering 'yes' and 'no' [1], 
intention to move a j~s t ick  [2] or planning of hand movement [3, 4] can be 
discriminated based on the recorded EEG with surprising accuracy. These findings 
have led to the idea to exploit the EEG for control in cases where other means of 
control are either impossible, e.g. in cases of handicapped persons, or infeasible, e.g. 
if both hands are occupied. 

A system which uses EEG to build a communication line between the brain and 
an electrical appliance has become known as a Brain-Computer Interface (BCI). 
Several teams all over the world are currently working at such systems [5, 6]; this 
paper describes the work done in Graz, a system which is mainly based on the 
discrimination of various types of movement planning [7, 8]. 

2 Experimental Paradigm 

The basic idea of the Graz BCI system has already been outlined in previous 
papers[7]. The Graz BCI I was a one-dimensional cursor control system which could 
discriminate between left and right hand movement planning whereby in the initial 
session the subject had to press a microswitch with either the left or right index 
finger. The conical areas involved in these two kinds of movement planning are 
primarily the left and right sensorimotor hand areas; the corresponding electrode 
positions overlying these areas are C3 and C4 (international 10-20 system) [3]. 

l Supported by the "Fonds zur FOrderung der wissenschaftlichen Forschung", project P9043 
and "ForschungsfOrderungstbnds filr die gewerbliche Wirtschaft" proj'ect 2/312.. 
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To increase the dimensions of control, additional EEG patterns have to be found 
which are discernable from left ,and right hand movement. Studies of foot and tongue 
movement showed that these two kinds of movement can indeed be discriminated 
from left and fight hand movement, especially in the movement planning phase [8] 
(see Fig. 1). Therefore, the additional movement type 'foot flexion' was built into the 
Graz BCI which, due to several changes in the recording scheme and experimental 
paradigm, is now called Graz BCI II. 

Fig. I. Topographic maps display alpha power decrease during planning of hand and foot 
movement. "Black" indicates cortical areas with large power decrease. The electrode positions 

and the approximate location of the central sutcus are indicated. 

The basics of a trial of the Graz BCI II are shown in Fig. 2. The subject is seated 
in a comfortable chair looking at a fixation cross on a monitor 1 meter in front of the 
subject's eyes. One second after an acoustic warning stimulus ("oeep') a cue in the 
form of an arrow, pointing either left, fight or dmvn. appears and indicates to the 
subject that as soon as the arrow vanishes (after 1250 msec) he should either press a 
microswitch with his left index finger, his fight index finger or move the toes of his 
right foot upwards (dorsal fie,don), respectively. A 1-second period starting 250 
mscc after presentation onset of the cue is classified into one of the three movement 
tasks and the corresponding classification of the system is fed back to the subject 
either as correctly identified ('+'), undecided ('o') or wrong classification ('-'). 
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Fig. 2. Experimental paradigm of the Graz BCI II 
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A PC486 with a DSP-board records and classifies the EEG and provides the 
feedback to the subject. Three bipolar EEG channels are used for on-line 
classification: C3-C'3, Cz-C'z and C4-C'4 (see Fig. 2). The signals are sampled at 64 
Hz, whereby the features extracted from the 1-second period of EEG and presented to 
the classifier are comprised of four power estimates, each representing 250 msec, per 
EEG channel. These power estimates are calculated by. squaring each sample and 
then averaging over 16 samples. The 12 features (3 EEG channels times 4 power 
estimates) are offered to a classifier which calculates both a classification and a 
measure describing the certainty with which the classification was obtained. 
Depending on this quality measure and the correctness of the classification, the 
system provides a feedback to the subject in the form of a small or large '+~ if the 
classification is correct and the quality, measure is in medium or large range, 
respectively, a small or large '-' if the classification is incorrect, and 'o' if the quality 
measure is ve~  small. 

i 
Fig. 3. Positions of the electrodes on the scalp 

Four subjects (1 female and 3 male students aged between 23 and 27 years) 
participated in four experimental sessions on different days within 2 weeks. Each 
session lasted about 1.5 h and comprised four blocks of 60 trials each with 5 min 
breaks benveen blocks. In the first session, data were collected for the creation of the 
classifier and therefore no feedback was provided. In the following sessions 2 and 3, 
the classifier was used to discriminate the 3 kinds of movement out of the movement 
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planning phase and to give feedback to the subject as described above. In session 4 
no physical behavior took place, using the same stimulation procedure as in the first 
sessions, the subject was asked to concentrate on left hand, fight hand or foot 
movement. In this session the classifier was applied to EEG data during mental 
activity and provided feedback about discriminability of three different mental states. 

3 Class i f ica t ion  M e t h o d  

The classifier built into the Graz BCI II system is a Learning Vector Quantizer 
(LVQ) [9, I0]. Its classification speed and ease of use in the Graz BCI I system have 
suggested its further use in on-line EEG classification of more than two categories. 

Basically, a LVQ is a nearest-neighbour classifier whereby a labelled codebook is 
generated such that for each training example the nearest codebook vector is of the 
same category as the given example. Thereby, LVQ tries to optimize the 
representation of the training examples by the codebook vectors (also known as 
Vector Quantization) and at the same time to minimize the classification error. The 
labelled codebook is generated using an iterative learning procedure where in each 
iteration a randomly selected training example of known classification is compared 
to the codebook and the two closest codebook vectors are found. Depending on the 
class labels of the given example and of the two codebook vectors the latter two are 
updated by either pushing them towards the example (if the class labels are identical 
to the known classification of the example, correct classification) or pushing them 
away from the example (for a detailed description of the algorithm see [9, 10]. The 
overall aim of this learning algorithm is to increase the probability of correct 
classification the next time the given example is presented. 

Extensive off-line analyses have shown that only a very, small number of 
codebook vectors is needed to provide satisfactory performance, usually 3-4 codebook 
vectors per category, suffice. Searching twelve (4 codebook vectors times 3 
categories) 12-dimensional vectors for the nearest codebook vector is an extremely 
simple and fast form of classification. 

The quality measure of the classification can be obtained by not only searching 
for the nearest codebook vector but also for the nearest codebook vector of a second 
category. By comparing the distances of these two codebook vectors it can be 
determined whether the given example lies near a class boundary, in which case the 
distances to the two codebook vectors dl and d2 will be very similar, or whether the 
given example clearly belongs to the category of the closest codebook vector, in 
which case distance dl will be much smaller than d:. Therefore, the quality measure 
can be computed as 

qu(dt,d_~) = 1 -d-L. 
d. 

It is obvious that this formula will provide values close to zero if the distances d~ and 
d2 are about the same and values close to one if distance dl is much smaller than d2. 
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'A6' big + + o - big - 

Session2 21,7% 37,5% 21,7% 16,7% 2,5% 
, t  

Session3 25,0% 34,6% 23,8% 13,3% 3,3% 

Session4 20,8% 24,2% 24,2% 24.6% 6,3% 

'B9' 

Session 2 

Session 3 

Session 4 

big + 

20,0% 

18,8% 

12,9% 

+ o big - 

21,7% 15,4% 30,4% 12,5% 

23,3% 15,8% 28,8% 13,3% 

20,8% 22,5% 28,8% 15,0% 

'AI' big + + o big - 
L . . . . . . .  

Session2 22,9% 27,5% 18,8% 23,3% 7,5% 

Session3 20,0% 21,3% 20,8% 26,7% 11.3% 

Session4 19,6% 24,2% 20,4% 21,3% 14,6% 

q38 ~ big + + o big - 

Session2 10,4% 27,9% 21,7% 33,3% 6,7% 

Session3 21,7% 25,0% 13,8% 29.6% 10,0% 

Session4 14,2% 26,3% 24,6% 26,3% 8.8% 

Table 1. On-line performance (%) of four subjects in three sessions. 

4 Results and Discussion 

The on-line l~rformance for the last three sessions (the first was used for training the 
classifier) of each subject are given in Table 1. All subjects showed more than 
random on-line performance (random performance in 3 categories would be 33,33% 
correct). 

From Table 1 can be seen: 
(i) There are always more trials classified correct (+) compared with 

incorrect (-). 
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(ii) About 20% of the trials are not classified into any of the 3 classes. This 
number depends on the threshold used and is a potential for further 
improvement. 

(iii)In the first "mental" session (session 4) for three subjects the majority of 
trials were correctly classified 

These results are far from optimal but they show for the first time that after only 4 
sessions a discrimination between 3 different EEG patterns is possible. It has to be 
kept in mind. that the systems of Clark and Tizard [1], Hiraiwa et al. [2] and 
Wolpaw et al. [5] were all designed for a 2-class discrimination problem and none of 
these systems were applied to 3 classes. 

There are different possibilities for further improvement: 
(i) Selection of the optimal frequency band with the largest EEG reactivity. 

For the parameter estimation not only the alpha but also the beta band 
can be used. 

(ii) Selection of the optimal electrode positions. It was shown recently, that 
classification results depend on the location of the electrodes [11] 
whereby the optimal positions are not the same for each subject. Such 
electrode positions should be selected in a pre-experiment, where the 
EEG is recorded from a large number of electrodes. 

(iii) Increase the number of sessions. 

5 Conc lus ion  

The design of the Graz BCI is based on mental preparation of different kinds of 
movement. It was shown, that 3 "movement patterns" can be differentiated in an on- 
line experiment within fractions of a second. It is planned to extend the Graz BCI to 
4 classes, whereby the 4th class can be e.g. visual imagination. 

There are, however, still a number of problems to be solved in relation to optimize 
the performance of the system. Among these are the improvements in the 
ex-perimental paradigm including a more effective feedback, the estimation of more 
specific EEG parameters and improvements in the learnable classifier. As already 
mentioned, a very important task is also the selection of the optimal electrode 
positions. 
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