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A new comprehensive derivation of normal form maps for grazing bifurcations in piecewise-
smooth flows is presented. This links grazings with so-called border-collisions in piecewise-smooth
maps. Contrary to previous literature, piecewise-linear local maps are derived only at non-smooth
discontinuity boundaries. All other maps have either square-root or (3/2)-type singularities.

Many physical systems characterized by the occurrence
of non-smooth events, such as discrete state transitions,
can exhibit complex dynamics [1,2]. Examples include
vibro-impacting machines, switching circuits and physi-
ological systems which are intrinsically non-smooth on
macroscopic time-scales [1]. These systems are often
piecewise smooth (PWS), and are modelled by sets of or-
dinary differential equations (ODEs) which are smooth in
regions S; of phase space; smoothness being lost as trajec-
tories cross the boundaries ¥; ; between adjacent regions,
see Fig. 1. They exhibit a richness of bifurcation phe-
nomena, unique to their non-smooth character. These in-
clude so-called grazing bifurcations occurring when a part
of the system trajectory hits tangentially the boundary
sets ¥; ;. Such grazing events frequently lead to a mul-
titude of complex dynamical transitions, such as period-
adding cascades and sudden transitions from a periodic
orbit to a chaotic attractor [3,2].

To classify the transitions observed in physical sys-
tems one must derive appropriate normal form maps de-
scribing the system behaviour in a neighborhood of the
grazing event. In the literature dealing with bifurca-
tions of non-smooth systems (e.g. [4]), it is often con-
jectured that such mappings are piecewise linear if the
piecewise smooth vector field is continuous across the
boundaries. If this conjecture were true then their bi-
furcations could be studied by using the theory of border
collisions of piecewise-linear maps developed in [5] or of
C-bifurcations [4]. In contrast, if the system states are
discontinuous, such as for a restitution law in impact os-
cillators, then the maps are known to have a square-root
singularity [3,6]. It remains to be proved whether grazing
in a PWS system with a continuous vector field leads to a
piecewise-linear map in general. Our analysis presented
here indicates that this is often not the case (see also [7]
for hypotheses that lead to a (3/2)-type map).

In this Letter, we propose a unified analytical frame-
work for studying the local dynamics near grazing of gen-
eral PWS systems. We establish a clear relationship be-

tween the continuity properties of the vector field at the
grazing point and the functional form of the local map
associated with it. We find that if grazing occurs with a
smooth boundary (see Fig. 1(a)) the local map is indeed
piecewise smooth but never piecewise linear. In con-
trast, if the boundary is itself non-smooth and grazing
takes place at a corner-type singularity where the vector
field is discontinuous (see Fig. 1 (b)) then the mapping is
piecewise linear. We term this event a corner-collision bi-
furcation and we claim that this implies a border-collision
of the corresponding local map.

These findings have immediate theoretical and exper-
imental relevance for understanding phenomena caused
by transitions between different smooth systems in
macroscopic time-scales. According to the nature of the
system under investigation, we show that grazing events
yield bifurcation scenarios which can be classified using
different local maps. The overall results are summarized
in Table 1. Note that while there exist classification
strategies for bifurcations in piecewise-linear or square-
root maps [5,6], the dynamics of maps with (3/2)-type
singularities have not been fully analysed.

The analytical framework we propose uses formal
power series expansions and asymptotics which together
give a synthetic analytical description of the grazing nor-
mal form map for a generic PWS system. We begin by
assuming that sufficiently close to the grazing or corner-
collision point, the phase space region under consider-
ation is divided into two regions S; and S» by some
boundary, ¥ (see Fig. 1). This comprises either a smooth
manifold (Fig. 1(a)) or a triangular wedge when pro-
jected onto a general plane (Fig. 1(b)). In the former
case, the discontinuity boundary is described by the zero
set of a smooth codimension-one surface H(z) = 0. In
the latter, the wedge is described instead by two smooth
codimension-one surfaces ¥; and ¥ which are given by
the zero sets of differentiable functions Hy(z) and Ha(z).
These sets are supposed to intersect along a smooth
codimension-two surface C' (the corner) at a non-zero an-



gle,i.e. VH; X VHy # 0. In either case, the system near
grazing can be described by the PWS ODE:

. Fi(x),
z:=F(z) = {F;E:Eg’

where z € R*,Fy, F5 : R® — R" are supposed to be suf-
ficiently smooth and defined over the entire local region
under consideration. For the sake of simplicity we fur-
ther assume that the surfaces defined by the zero-sets of
H(z),H;(z) and Ha(z) are flat up to a sufficiently high
order. Note that this may be assumed without loss of
generality by making an appropriate sequence of near-
identity transformations [8].

We say that a grazing occurs when a trajectory inter-
sects a smooth boundary ¥ tangentially. Without loss
of generality this can be assumed to occur at the point
x = 0 at which we further require that (a) H® = 0; (b)
VH® # 0; (c) (VH®,F?) = 0; (d) (VH,Fi,F{) > 0.
Here a superscript 0 represents a quantity evaluated at
the grazing point x = 0. In contrast, if the discontinuity
boundary is non-smooth at z = 0, then a corner-collision
bifurcation is said to occur under similar generic hypothe-
ses, when the trajectory intersects ¥ at this point. In
both cases, we assume that ¥ is never simultaneously
attracting from regions S; and Ss, so that so-called Fil-
ippov solutions (or sliding modes) cannot exist. This fi-
nal assumption can be similarly expressed by appropriate
inequalities which we omit for brevity.

To perform the analysis, we make use of the concept
of discontinuity mapping (DM), see [7]. This is the local
map that describes the correction that must be made to
the global Poincaré map from surfaces in S; in order to
describe trajectories that pass through region S5 close to
x = 0. The DM is derived analytically by considering e-
perturbations of a grazing or corner-colliding trajectory
in the presence of the discontinuity boundary (see Fig.
2) by considering Taylor expansions of the flows ®; and
®, defined by

ifz €S
if z €Sy (1)
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As the vector fields are smooth, the flows ®;(z,t) can be
expanded in Taylor series about the grazing point (0, 0):

®;(x,t) =z + F2t + a;t* + byt + c;t® + d;x’t + e;xt® +
fit* + gie®t + hiz®t* + jizt® + O(5), (2)

where a;, b;, c;, d;, e, fi, gi, hi, j; are the matrix and ten-
sor coefficients of the expansion and O(5) is a shorthand
for terms of order at least 5.

Consider first the case of a grazing bifurcation and
let 4(t) = ®1(0,t) be the trajectory which grazes the
boundary at x = 0 when ¢ = 0. Now, consider perturba-
tions to x4 of size € such that z(t) = ®1(exo,t) for some
unit vector zo, which satisfies (VH, zy) < 0. Then, by
assumptions (a)-(d), there will exist some t; = —6 < 0 at
which the perturbed trajectory, z(t), crosses ¥ at x = T

passing from S; into S;. The analysis can be split into
three different stages: motion in S; before the first cross-
ing of the switching manifold; motion in S2; and finally
motion after the second crossing of ¥ from S to 5.

The first step is to use the Taylor expansions (2) in
order to derive an asymptotic expression for §. In so do-
ing, we find a unique positive solution for § which can
be expressed as an asymptotic expansion in 1/ of the
form 6 = yie2 + 2 + 1362 + O(e2), where the coeffi-
cients 71,72, y3 are expressed solely in terms of Fj » and
their derivatives evaluated at the grazing point. Simi-
larly, know1ng 6, one can derive an estimate for Z. That
is, T = X162 + Xa€ + X3€2 + O(?).

In the second stage, the motion evolves on the other
side of the boundary until after some time t2 = A > 0,
Y is crossed again at © = Z. Here, we have H(Z) =
®,(Z,A) = 0. Using the Taylor series expansion of ®,
about the grazing point and the quantities computed in
the previous stage, A can now be obtained as an asymp-
totic expansion in e. Ignoring the trivial solution A = 0,
we get A = VIET + Use + 13e3 + O(g?), where again the
coeflicients can be expressed in terms of the vector field
and its derivatives evaluated at the grazing point.

In order to finally arrive at the DM, we proceed
through the third stage as follows. We solve from the
point & = ®5(Z, A), backwards in time through a time
—t5 using flow ®; until we hit the Poincaré section con-
taining the initial point ez¢. Here, we present the case of
relevance to a periodically forced non-autonomous sys-
tem where the appropriate Poincaré section is defined
stroboscopically by ¢ = 0. The more general case of
autonomous systems can be treated similarly but leads
to algebraically more cumbersome expression. The dis-
continuity mapping is then the map from the initial
point exzg to the final point z; = ®4(&, —t2), where for
the zero-time Poincaré section t = A — §. Using the
asymptotic expansions for §, Z, A and the expansion for
& = ®5(Z, A) we can then systematically express z¢ as a
Taylor series in /€.

Considering the case of discontinuity of the vector
field at the grazing point F? # FY, we find the lead-
ing order term in zy is O(e?). Specifically, we have
z; = (FY — F))rie? + O(e). (Note that a square-root
singularity is also observed in the case where F' has a
6-function discontinuity at 2 = 0 [6].)

If, on the contrary, the vector field is continuous at
the grazing point but has discontinuous Jacobian, i.e.
F? = FP and F?, # F2,, then the O(e?) contributing
to xy van1shes In fact, it is possible to show that in
this case the discontinuity mapping is the identity up to
O(g) and the leading-order non-trivial term is at least
O(e?). This is also true if the Jacobian is continuous
but the Hessian is not, i.e. FY = FY, F), = FY but
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Lengthy algebraic manipulations [8] allow the analyti-
cal derivation of the leading-order part of the discontinu-
ity mapping in the two cases treated above. This in turn



allows explicit expressions for the normal forms associ-
ated with hyperbolic periodic orbits undergoing grazing
in general n-dimensional PWS systems. Specifically, we
present here formulae for the case when the grazing tra-
jectory is part of a hyperbolic mT-periodic orbit p(t) of
a T-periodically forced system. That is (omitting the
superscript 0 on each quantity involving F' and H):

I. If the vector field is discontinuous at grazing, we
have:

| Na+ My, if (VH,z) >0
T Nw/[(VELZ)] + Mp + hot. if (VH,z) <0,

where

w=2(F; — F1)

?

(VH, Fy, F}) 2 3
(VH, Fop F5) \(VH, FiFy

grazing occurs at 4 = 0, and N and M are the linear
parts of the Poincaré map calculated using flow ®; alone.

II. If the vector field is continuous at z = 0, ie
F, = F, := F, but has discontinuous Jacobian (or Hes-
sian):

Nz + My,
N (z+vi((VH,2)) 3+

T Vew((VH, z)])% +
v3(VH, FM)(WH,:C)D%) + My if (VH,z) <0
where
1 2 2
Y= {3( vee — Fia)

2
2Fp FioF — 3 [(Fio)® +2 (Foe)?] F—

2
(O, Ry e~ F)
; <VH, (F2:c:cF22 + (Fz@)Q F2)>

+(VH, (FoaF1o —2(F3,)") F) + (VH, Fons F*)] }

2
Vo= ———— (F2z — Fi2)
(VH,Flchl)
2
V3= (FZmF2 _FlmFl)-
(VH, F2, F>)+/(VH, F1,F)

So, contrary to what has been assumed in the liter-
ature, our results rule out the possibility of piecewise-
linear maps associated to grazing events involving a
smooth discontinuity boundary. However, experiments
on a certain class of electronic circuits, so-called DC/DC
power converters, indicate that piecewise-linear maps can
indeed be observed at a corner collision point [9]. To
prove that this is true, we must adapt the above analyt-
ical framework in order to take into account the geome-
try of the corner. For brevity, we will consider only the
so-called external corner-collision depicted in Fig. 1(b);
the internal case, where the orbit intersects the corner
transversally, can be studied similarly [10].

if (VH,z) >0

With careful consideration of higher-order terms, the
discontinuity mapping can again be constructed by ex-
panding the system flows about the corner-collision
point. Now, though, the linear terms in the expansions
can be shown to be sufficient to completely describe the
local dynamics near the corner. This can be explained
heuristically that in the grazing case a locally parabolic
tangency occurs while at a corner collision the time spent
“inside” the corner varies linearly with €. Specifically, it
is possible to show that, taking into account trajecto-
ries that do not cross the wedge, the entire DM can be
simplified to read

z, if non-crossing,
T\ 24 (FO — ), z) + o(|z|) if crossing
where a = Jo — (J2, F)J1 with J; = VHY /(VH, F?).
Example 1. As a simple representative example we
consider the case of one-degree-of-freedom forced damped
harmonic motion in a medium whose characteristics
change at z = 0:

.. . . 1 if
i+ G + K2z = B cos(t), 22{2 hiig (3)

In this case, the boundary between the two regions of
smooth dynamics S; and S, is the line ¥ := {& = 0}. The
change in the medium is modelled by a variation of the
linear stiffness (k1 # k2), damping coefficient ({1 # (2) or
amplitude of the forcing term (8; # (B2). Recasting, (3)
as a set of first-order ODEs, it is possible to see that the
vector field is continuous but has discontinuous Jacobian
if 1 = B2 and k1 # ko or (1 # (2 while it is discontin-
uous if B1 # B2. Therefore, the above analysis predicts
that the local behaviour near grazing is described by a
map with a square-root singularity in the latter case or
a (3/2)-type singularity in the former. This agrees per-
fectly with the numerics depicted in Figs. 3-4.

Example 2. To illustrate the corner-collision case, we
now take system (3) but suppose that the discontinuity
boundary is now a non-smooth wedge defined by the zero-
sets of Hy2(z) =  F 4 (as for instance in the so-called
tri-linear oscillator [1]). In this case, the analysis gives lo-
cal dynamics described by a piecewise-linear map, which
is indeed confirmed by numerical results (Fig. 4(b)).

In conclusion, we have presented a rigorous analytical
framework for deriving normal form maps of grazing bi-
furcations in any PWS dynamical system. In so doing,
we have for the first time provided a consistent link be-
tween the concepts of grazing bifurcations in PWS flows
and border-collisions in PWS maps. We have addition-
ally defined corner-collision as the special case involving
grazing with a boundary that itself has a corner-type
singularity. Our principal result is that piecewise-linear
normal forms can be observed only in this latter case.
In all other circumstances, the behaviour near grazing
is described by mappings which reduce the dynamics to
its essentials: namely the occurrence of a square-root or



a (3/2)-type singularity as given in Table 1. The func-
tional forms of these mappings are essential in order to
understand and classify the bifurcation scenarios follow-
ing grazings. A complete classification of the dynamics
associated with these maps remains an open question.

We acknowledge insights from Arne Nordmark and the
support of EPSRC and Nuffield Foundation.

[1] B. Brogliato, Nonsmooth Mechanics (Springer—Verlag,
New York, 1999).

[2] J. de Weger, D. Binks, J. Molenaar, and W. van de Wa-
ter, Physical Review Letters 76, 3951 (1996).

[3] A. B. Nordmark, J. Sound Vib. 2, 279 (1991).

[4] M. di Bernardo, M. Feigin, S. Hogan, and M. Homer,
Chaos, Solitons and Fractals 10, 1881 (1999).

[6] L. E. Nusse and J. A. Yorke, International Journal of
Bifurcation and Chaos 5, 189 (1995).

[6] M. Frederiksson and A. Nordmark, Proc. Royal Soc. Lon-
don A 456, 315 (2000).

[7] H. Dankowicz and A. Nordmark, Physica D 136, 280
(1999).

[8] The detailed proofs of the results announced here, to-
gether with further numerical examples illustrating the
theory will be published in a future paper, which will also
contain details of all the algebraic manipulations.

[9] G. Yuan, S. Banerjee, E. Ott, and J. Yorke, IEEE Trans.
Circ. Sys.-I 45, 707 (1998). M. di Bernardo, C.J. Budd
and A.R. Champneys, Nonlinearity 11, 858 (1998).

[10] detailed proofs may be found in [M. di Bernardo, C.J.
Budd and A.R. Champneys, Corner-collision implies
border—collision bifurcation, preprint (2000)].

|System at grazing pt.]Map Singularity |

non smooth boundary piecewise-linear
smooth boundary:

F'| discontinuity in

x square-root [6]
oM F square-root
ct F, (3/2)-type
02 Fww (3/2)'type

TABLE 1. Relationship between the properties of the
system at the grazing point and the type of singularity in
the corresponding local map.

FIG. 1. Two-dimensional sketch graphs of (a) grazing and
(b) corner-collision bifurcations.

Discontinuity Map
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FIG. 2. Local analysis of grazing. A sketch graph of the
three-dimensional case
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FIG. 3. Theoretical prediction (dashed line) and numerical

simulation (solid line) of the change to the local behaviour of
Eq. (3) near grazing, when (a) the stiffness or (b) the damp-
ing is varied across ¥. xy — exo is plotted against €. The
parameters are set to be: (a) k1 =1, k2 =2, (1 = (2 = 0.1;
(b) k1 =k2=2,¢ =1, (2 =0.1; while 81, = 3> = 1.
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FIG. 4. Comparison between theory and numerics defined

similarly to Fig. 3 for: (a) Eq. (3) near grazing, when the
amplitude of the forcing term is varied across X (k1 = k2 = 2,
(1 =¢ =0.1, 1 = 1,82 = 2); (b) for a corner-collision in
the modified Eq. (3) (tri-linear oscillator) with k1 = k2 = /5,
(1 =C2=0.55, B1 =4.04, B> = 6.04.



