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Abstract

ZnO nanoparticle array has been fabricated on the Si substrate by a simple thermal chemical vapor transport and

condensation without any metal catalysts. This ZnO nanoparticles array is constructed from ZnO quantum dots

(QDs), and half-embedded in the amorphous silicon oxide layer on the surface of the Si substrate. The

cathodoluminescence measurements showed that there is a pronounced blue-shift of luminescence comparable to

those of the bulk counterpart, which is suggested to originate from ZnO QDs with small size where the quantum

confinement effect can work well. The fabrication mechanism of the ZnO nanoparticle array constructed from ZnO

QDs was proposed, in which the immiscible-like interaction between ZnO nuclei and Si surface play a key role in

the ZnO QDs cluster formation. These investigations showed the fabricated nanostructure has potential

applications in ultraviolet emitters.

Introduction

Recently, ZnO has attracted very great attention because

of its particular properties in broad fields. For example,

it has a large direct band gap of 3.37 eV and exciton-

binding energy of 60 meV, while the Bohr radius of

exciton is as small as approx. 2.34 nm. Thus, ZnO is a

promising candidate for the high efficient ultraviolet

(UV) laser device [1-3]. Interestingly, when the size of

ZnO nanoparticles is smaller than the Bohr radius (i.e.,

ZnO quantum dots, QDS), the quantum confinement

has a notable influence on the band gap and further

causes a series of novel characteristics such as the blue-

shift of luminescence [4-7]. Therefore, there have been a

variety of techniques to fabricate ZnO QDs [6-10].

Usually, the size of ZnO QDs is slightly larger than or

just comparable with the exciton Bohr radius [8-13].

However, few research reports have been involved in the

ZnO QDs, showing that their dimension is rigorously

smaller than the Bohr radius [4-13].

In this study, we have fabricated the unique ZnO

nanoparticle arrays that are constructed from ZnO QDs

blocks on silicon substrates using a simple thermal che-

mical vapor transport and condensation without any

metal catalysts. Importantly, we measure a great blue-

shift of luminescence in the cathodoluminescence (CL)

spectrum of the fabricated nanostructure, which implies

that this ZnO QDs structure would be applicable to

optoelectronic and spintronic applications.

Experimental

The ZnO nanoparticle array is fabricated by a simple

thermal vapor transport method, and the detailed

experimental process has been reported in our previous

study [13]. Simply, Si wafers serving as substrates are

loaded downstream in a quartz tube. Zinc oxide pow-

ders and graphite powders are mixed and heated to

1050°C under the argon gas flow at the rate of 50 sccm

with a pressure of 9.0 × 104 Pa. Half-an-hour later, the

source powders and the substrate are all taken out from

the furnace and allowed to cool down to room tempera-

ture naturally. Field emission scanning electron micro-

scopy (FESEM), X-ray diffraction (XRD), and

transmission electron microscopy (TEM) coupled with

electron-energy loss spectroscopy (EELS) are employed

to characterize the morphologies and structures of the

prepared samples. The CL measurement is carried out

at room temperature using a Gatan Mono-CL system
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coupled to FESEM with the accelerating voltage of 10

kV.

Results and discussion

The fabricated nanoparticle array is shown in Figure 1.

Clearly, these nanoparticles are relatively uniform in size

and array, isolated, and elliptical. They are half-

embedded in the surface of the Si substrate. The corre-

sponding XRD pattern (Figure 1b) can be indexed to be

the wurtzite ZnO structure with (100) and (110) peaks.

Therefore, these results show that the prepared nano-

particles are ZnO. Note that we can control the size of

the fabricated nanoparticles by the growth conditions

such as the growth time.

In order to verify the detailed structure of the fabri-

cated nanoparticle array, we prepare the cross-sectional

sample for TEM characterization, and the results are

shown in Figure 2. In the low magnification of TEM

image in Figure 2a, the thickness of the layer is uniform

of approx. 25 nm, while two high contrast particles are

implanted in the layer. The sizes of the two particles

are, respectively, 50 and 57 nm at the interface. The

FFT pattern (the inset of Figure 2a) of one particle indi-

cates that it is polycrystalline. The HRTEM image in

Figure 2b is taken from the upper ZnO nanoparticle in

Figure 2a. Clearly, we can see that several small crystal-

line particles gather together and form one nanoparticle.

The average size of these small ZnO particles is 5.5 nm,

which are the so-called ZnO QDs [4-13]. One ZnO QD

has been emphasized and marked with the interplanar

spacing of 0.265 nm in the inset of Figure 2b, which is

corresponding to the plane (002) of the wurtzite ZnO.

Actually, all the interplanar spacings of QDs in Figure

2b and other HRTEM data can be assigned to the

spacings of the wurtzite ZnO structure. In addition, we

can easily observe that these ZnO QDs are embedded in

the amorphous silicon oxide layer on the surface of the

Si substrate. Therefore, these results show that the fabri-

cated ZnO nanoparticle array is constructed from ZnO

QDs.

The EELS spectra of the Zn-L, O-K, and Si-L edges on

the particle zone of the sample exhibited in Figure 2c,d,e

show that the ZnO nanoparticles contain Zn, O, and Si

elements. The sets of Zn-L edge with the peak centered

at 1050 eV and the O-K edge with the feature peak at

538 eV demonstrate that the nanoparticles are zinc

oxide, in accordance with reports and the analytic

results shown above, while the spectra shift due to the

native defects, such as Zn and O vacancies on the sur-

face of ZnO QDs [14-17]. As we see the Si-L edge in

Figure 2e, the distinct features are at 100, 107, 114, 127,

and 157 eV, respectively. This Si-L edge is very similar

with the spectrum of silicon monoxide that is over-

lapped by spectra of elemental silicon and of SiO2

whose onsets of the L2,3-edge are approx. 100 and 107

eV, respectively [18-23]. Thus, these results reveal that

the ZnO QDs disperse in the silicon monoxide.

In order to explore this fabricated nanostructure’s

potential applications, we measure the optical properties

as shown in Figure 3. Figure 3 shows the CL measure-

ment of the sample. The panchromatic CL image in

Figure 3b exhibits that the intense luminescence is

mainly from the ZnO nanoparticles. Interestingly, we

can observe that the luminescence peak is centered at

363 nm as shown in Figure 3c, which is known as the

near-band edge emission of ZnO. However, there is

a great blue-shift compared to bulk ZnO in the CL

spectrum. Based on previous reports [1,10,24,25], the

Figure 1 The feature and structure of the prepared sample. SEM image (a) and corresponding XRD pattern (b) of the fabricated ZnO

nanoparticle array.
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blue-shift of the CL spectrum of ZnO QDs in our stu-

dies is attributed to the quantum-size confinement effect

as follows [5,26]

E(gap,dot) = E(gap,bulk) +
π

2h̄
2

2R2

(

1

m∗
e

+
1

m
∗

h

)

− 0.248E
∗

Ryd (1)

where ћ is the Planck’s constant, R is the radius of

ZnO QDs, m
∗

e and m
∗

h are, respectively, the effective

masses of electron and hole (taking m
∗

e = 0.24m0 and

m
∗

h = 1.8m0[27]), E(gap, bulk) is the bulk ZnO band gap

(3.377 eV), and E
∗

Ryd is the exciton-binding energy (60

meV [2]). Based on Equation 1, we can obtain the rela-

tionship between the size and band gap of ZnO QDs as

shown in Figure 4. In our case, the radius of ZnO QDs

is in the range of 1.6-6.1 nm are also shown in Figure 4.

The corresponding band gap and emission wavelength

ranges of the prepared ZnO QDs with the radius of 1.6-

6.5 nm are also shown in Figure 4. Meanwhile, the peak

of 363 nm in the CL spectrum in Figure 3c is corre-

sponding to the size of 5.7 nm for ZnO QDs according

to Equation 1. Therefore, the experimental observations

are consistent with the theoretical values in our studies.

These results thus show that the great blue-shift com-

pared to bulk ZnO is attributed to the quantum size

confinement. However, the theoretical emission peak of

ZnO QDs with the radius in 1.6-6.1 nm seems about

340 nm that is corresponding to the average radius of

the fabricated ZnO QDs in our case based on Equation

1. In fact, the experimental peak actually shifts to the

low energy or high wavelength in Figure 4. As we know,

the intensity of emission of big QDs is stronger than

that of small QDs. Therefore, the emission from big

QDs is easily measured in experiment, which cases the

measured emission peak shifting to the low energy or

the high wavelength as shown in Figure 4.

Figure 2 The TEM and EELS analysis of the structure details of the sample. TEM image with the inserted FFT pattern of the sample in a

large area (a), HRTEM image with a highlighted ZnO nanoparticle and the corresponding interplanar spacing (b), EELS of the Zn-L edge (c), O-K

edge (d), and Si-L edge (e).
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According to our previous study [28,29], the fabrica-

tion mechanism of the nanoparticle array is suggested a

vapor-solid process. First, ZnO molecules form the ther-

mal chemical vapor transport of source deposit on the

substrate and then thermally diffuse on surface. Second,

many small ZnO clusters would form by ZnO molecules

by ZnO molecules continuously diffusing and colliding

as shown in Figure 5b. Then, these small ZnO clusters

still thermally diffuse on the surface, because there is an

immiscible-like interaction between ZnO cluster and Si

surface. In the inset in Figure 5b, we can see that the

contact angle between ZnO cluster and Si surface is

about 110° [28-33]. Thus, this contact angle is so large

that ZnO clusters could easily thermal diffuse on Si sur-

face, which seems a driving force to push ZnO cluster

moving on surface. Third, large ZnO clusters would

form by small clusters continuously diffusing and collid-

ing as shown in Figure 5c. Actually, the nucleation of

ZnO could take place when the size of clusters reaches

to that of the critical nucleus in this stage. Then, these

small ZnO nuclei still thermally move on surface

because of the immiscible-like interaction between ZnO

cluster and Si surface. Finally, these particle constructed

from small nuclei would stop moving on surface and

grow up step by step when their size is sufficiently large

as shown in Figure 5d. In other words, the large cluster

will stand on surface when the immiscible-like interac-

tion cannot provide sufficiently large driving force to

push those big particles. In addition, Si surrounding

ZnO QDs would be oxidized to form silicon oxides.

Figure 3 The CL measurements of the ZnO nanoparticle array.

SEM image (a), the panchromatic CL image (b), and the

corresponding CL spectrum (c).

0 2 4 6 8 10 12 14
3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

E
n

e
r
g

y
 (

e
V

)

Radius (nm)

2 4 6 8
240

280

320

360

 

w
a

v
e
le

n
g

th
 (

n
m

)

Radius (nm)

Figure 4 The dimension of QDs dependence of band gap

according to formula (1) and the inset of the relevant emission

wavelength dependent on the dimension of QDs. The triangle

spot signifies the energy and wavelength which are related to the

experimental peak of 363 nm.
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Thus, we can see that the ZnO nanoparticles are half-

embedded in the amorphous silicon monoxide.

Conclusion

In summary, we have fabricated the ZnO nanoparticle

array which is constructed from ZnO QDs on the Si

substrate by the thermal chemical vapor transport and

condensation without any metal catalysts. This fabri-

cated ZnO nanostructure exhibited a great blue-shift of

luminescence in the CL spectrum. These novel proper-

ties show that the ZnO nanoparticle array has potential

applications in UV emitters.

Abbreviations

CL: cathodoluminescence; EELS: electron-energy loss spectroscopy; FESEM:

field emission scanning electron microscopy; QDs: quantum dots; TEM:

transmission electron microscopy; UV: ultraviolet; XRD: X-ray diffraction.
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