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Abstract
Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast accumula-
tion of HTS data, there has been a growing need and interest for developing tools for HTS data processing and 
communication. In particular, a number of bioinformatics tools have been designed for analysing metabarcod-
ing data, each with specific features, assumptions and outputs. To evaluate the potential effect of the applica-
tion of different bioinformatics workflow on the results, we compared the performance of different analysis 
platforms on two contrasting high-throughput sequencing data sets. Our analysis revealed that the computa-
tion time, quality of error filtering and hence output of specific bioinformatics process largely depends on 
the platform used. Our results show that none of the bioinformatics workflows appears to perfectly filter out 
the accumulated errors and generate Operational Taxonomic Units, although PipeCraft, LotuS and PIPITS 
perform better than QIIME2 and Galaxy for the tested fungal amplicon dataset. We conclude that the output 
of each platform requires manual validation of the OTUs by examining the taxonomy assignment values.
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Introduction

Fungi are major ecological and functional players in terrestrial ecosystems. The full 
diversity of fungi remains largely uncharted due to their largely unculturable nature, 
the lack of tangible morphological manifestations and shortcomings of the mycologi-
cal community to sample beyond traditional habitats and substrates (Grossart et al. 
2016; Hibbett et al. 2017; Lücking et al. 2018). As a result, identification of fungi has 
come to rely mainly on direct DNA sequencing of material containing fungal hyphae 
or spores. In this regard, several DNA barcoding regions have been evaluated and the 
current consensus is that the nuclear ribosomal internal transcribed spacer (ITS) region 
is the best region for delimiting fungal taxa at the species level across a variety of fungal 
groups (Schoch et al. 2012).  Recent advances in high-throughput sequencing (HTS) 
have made it possible to sequence millions of reads and identify thousands of fungal 
taxa from a single sample. Handling this enormous amount of data is often compli-
cated and requires extensive bioinformatics expertise. 

Multiple analysis platforms have been introduced to facilitate the bioinformat-
ics treatment of HTS data. However, most of these software suites were developed 
for the prokaryotic 16S rRNA gene and may therefore perform poorly with other 
markers and other organisms, in particular ITS sequences due to their length varia-
tion and non-alignability across taxonomic expanses. To accommodate this, several 
tailored platforms have recently been developed to specifically address fungal ITS data-
sets (Anslan et al. 2017; Gweon et al. 2015; Hildebrand et al. 2014; Vetrovský et al. 
2018). These platforms cover multiple steps of the analysis procedure, including qual-
ity control, clustering, taxonomic assignment and generating Operational Taxonomic 
Unit (OTU) abundance tables. Many of these platforms cover all these analysis steps, 
whereas others do not. 

The application of different bioinformatics workflows may introduce variation in 
the data quality and output OTU tables (Majaneva et al. 2015; Sinha et al. 2017). 
However, to date, there are no data on the relative performance of the available tools 
for fungal HTS data analysis. In this study, we report on the relative performance of 
the most popular software pipelines on two contrasting HTS datasets.

Methods

Sequence data and general workflow

We compared the performance of bioinformatics analysis platforms on two fungal ITS 
datasets. Tested datasets included Illumina MiSeq paired-end ITS2 amplicons from 
arthropod substrates (Anslan et al. 2018) and full ITS circular consensus sequences 
from Pacific Biosciences (PacBio) Sequel machine, amplified from soil samples. PacBio 
data set is available through PlutoF database (Abarenkov et al. 2010b), https://plutof.
ut.ee/#/datacite/10.15156%2FBIO%2F781236). For bioinformatics analyses, we 

https://plutof.ut.ee/#/datacite/10.15156/BIO/781236
https://plutof.ut.ee/#/datacite/10.15156/BIO/781236
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used multiple platforms that support all steps in the analysis of HTS-based metabar-
coding datasets: QIIME2 (v2018.2; Caporaso et al. 2010), LotuS (v1.59; Hildebrand 
et al. 2014), Galaxy (v.2.1.1; Afgan et al. 2016), PipeCraft (v1.0; Anslan et al. 2017) 
and PIPITS (v2.0; Gweon et al. 2015) (Table 1; Figure 1). Depending on the analysis 
platform, quality filtering was performed using either VSEARCH (Rognes et al. 2016), 
trimmomatic (Bolger et al. 2014), DADA2 (Callahan et al. 2016), sdm  (Hildebrand et 
al. 2014) or fastx (http://hannonlab.cshl.edu/fastx_toolkit). Quality filtered sequences 
were passed through chimeric reads removal algorithms as implemented in USEARCH 
(Edgar 2013; Edgar et al. 2011) or VSEARCH. Using PipeCraft, LotuS and PIPITS, 
reads were also subjected to ITS extraction using ITSx (Bengtsson-Palme et al. 2013) 
to remove conservative flanking genes of the ITS region. OTU formation (clustering) 
was performed using USEARCH or VSEARCH as outlined below (Platform specific 
options). For each platform, we relied on de-novo single linkage clustering, which is the 
most popular approach in fungal community studies, knowing that reference-based 
clustering methods can provide similar results (Cline et al. 2017). Taxonomic affilia-
tions were assigned to OTUs using DP Naive Bayesian rRNA Classifier (RDP classifier 
v2.11; Wang et al. 2007) with the Warcup Fungal ITS trainset 2 (confidence threshold: 
80%; Deshpande et al. 2016) as well as BLAST+ (Camacho et al. 2009) search (e-value 
= 0.001, word size = 7, reward = 1, penalty = -1, gap open = 1, gap extend = 2) against 
the UNITE v7.2 reference database (Abarenkov et al. 2010a).

Platform specific options

Using QIIME2, reads were assembled (Illumina data) and quality filtered using 
DADA2 (Callahan et al. 2016) with default options, except --p-trunc-len = 0, --p-
max-ee = 1 and --p-chimera-method = none (with chimera-method = consensus, 
QIIME2 reported error for our data). Clustering was performed with VSEARCH 
cluster-features-de-novo (--p-perc-identity 0.97). 

In LotuS pipline, data was assembled (Illumina data), quality filtered (minimum 
length = 170, minAvgQuality = 27, TruncateSequenceLength = 170, maxAccumulat-
edError = 0.75) and demultiplexed with sdm (pdiffs = 1, bdiffs = 1). Chimera filtering 
was undertaken using USEARCH de novo chimera filtering (abundance annotation 
= 0.97, abskew = 2) and USEARCH reference-based chimera filtering using UNITE 
v7.2  as reference database. Flanking genes of the ITS region were discarded using 
ITSx (v1.0.11; default options). ITS reads were clustered to OTUs with USEARCH/
UPARSE algorithm (-id = 3, -minsize = 2). 

Using web-based Galaxy pipeline, Illumina data were assembled with Fastq join-
er (Galaxy Version 2.0.1.1; Blankenberg et al. 2010) with default options. Quality 
filtering was performed with Trimmomatic (Galaxy Version 0.36.3) ‒ SLIDING-
WINDOW; number of bases to average across = 15, average quality required = 30, 
minimum length of kept reads = 45. Fastq files were converted to FASTA files using 
FASTQ to FASTA converter (Galaxy Version 1.0.0). Fasta files were demultiplexed 

http://hannonlab.cshl.edu/fastx_toolkit
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Figure 1. Outline of workflow in different analysis pipelines.

using mothur (Galaxy Version 1.39.5.0; Schloss et al. 2009) ‒ pdiffs = 2, bdiffs = 1. As 
sequences were of mixed orientation in the files (5’-3’ and 3’-5’), the demultiplexing 
step was repeated for reverse orientated sequences (reads were reversed using mothur 
reverse.seqs). Chimera filtering was undertaken using VSEARCH chimera detection 
(Galaxy Version 1.9.7.0) with default settings (abundance annotation = 97% similarity 
threshold) and using the UNITE v7.2 database as reference. Clustering was performed 
using VSEARCH (--cluster-fast, --id 0.97, --iddef 1). 

In PipeCraft, platform reads were assembled (Illumina data) and quality filtered 
using VSEARCH (minimum overlap = 15, minimum length = 100, E max = 1, max 
ambiguous = 0, allowstagger = T). Demultiplexing was undertaken using mothur 
(pdiffs = 2, bdiffs = 1). In this step, sequences are also re-orientated into the 5’-3’ ori-
entation based on primers (2 mismatches allowed).

Chimeric sequences were removed using VSEARCH de novo (abundance anno-
tation = 0.97, abskew = 2) and reference-based (UNITE v7.2 as reference) chimera 
filtering algorithms. In the chimera filtering step, the PipeCraft supported option for 
“primer artefact” removal was also used (sequences where primer strings were found 
in the middle of the sequence were removed). ITS reads were extracted using ITSx 
(default options). Clustering was performed using USEARCH/UPARSE algorithm 
(id = 3, minsize = 2). 

Using PIPITS, sequences were assembled with VSEARCH and quality-filtering 
was undertaken with fastx through the PIPITS command pispino_createreadpairslist. 
The ITSx was executed through the PIPITS command pipits_funits. Chimera filter-
ing and clustering were undertaken using VSEARCH through the PIPITS command 
pipits_process. 
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Table 1. Used software, sequence and OTU counts (values in bold) by a) Illumina and b) PacBio analysis 
platforms. The number of sequences denotes raw input reads and remaining reads after each analysis step. 
Singleton OTUs were excluded from the OTU counts.

a) LotuS Qiime2 PipeCraft Galaxy PIPITS
Raw reads 7,981,812a 7,335,838b 7,981,812a 7,981,812a 7 335 838b
Assembly FLASH/ NA DADA2/ NA VSEARCH/ 

7,511,274
FASTQ joiner/ 

7,911,554
VSEARCH/ 
7,198,094

Quality filtering sdm/NA DADA2/ 
5,428,563

VSEARCH/ 
7,511,274

trimmomatic/ 
7,879,960

fastqx/ 7,142,354

Demultiplexing sdm/ 6,727,631 NP mothur/ 
6,558,772

mothur/ 
1,643,879

NP

Chimera filtering USEARCH/ 
6,486,802

NP VSEARCH/ 
6,300,085

VSEARCH/ 
1,621,330

VSEARCH/ NA

ITS extractor 5,919,084 NP 6,262,000 NP 6,401,097
Clustering 
(OTUs)

UPARSE/ 8,659 VSEARCH/ 
7,477

UPARSE/ 7,598 VSEARCH/ 
23,167

VSEARCH/ 
7,887 

b) LotusS PipeCraft Galaxy
CCSc reads 720,222a 720,222a 720,222a
Quality filtering sdm/ NA VSEARCH/ 

462,010
trimmomatic/ 

672,292
Demultiplexing sdm/ 258,085 mothur/ 380,722 mothur/ 457,173
Chimera filtering USEARCH/ 

255,746
VSEARCH/ 

341,154
VSEARCH/ 

405,025
ITS extraction 192,485 338,150 NP
Clustering 
(OTUs)

UPARSE/ 942 UPARSE/ 4,176 VSEARCH/ 
8,338

amultiplexed input data; bdemultiplexed input data; ccircular consensus sequences; NA: indicate not avail-
able; NP: not performed. 

Additional filtering

The additional manual OTU table filtering was based on the BLAST similarity scores 
when run against UNITE (v7.2) reference database. Any OTUs that had no BLAST hit 
or that were not classified to the kingdom Fungi were discarded from the OTU table. The 
remaining OTUs were filtered based on BLAST e-value and query coverage. OTUs with 
higher e-value than 1e-25 and query coverage less than 70% were excluded from the dataset 
(as putative artefacts or non-fungal OTUs). Additionally, OTUs with low numbers of se-
quences per sample were removed (less than 10 sequences per sample; Brown et al. (2015)). 
Finally, the LULU (Frøslev et al. 2017) algorithm was applied (minimum_ratio_type = 
“min”, minimum_match = 97) to merge consistently co-occurring ‘daughter’ OTUs.

Data pooling

To detect the effect of analysis platform choice on the OTU composition, we pooled 
sequences originating from different platforms and applied the common clustering 
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method to generate a single OTU table. For Illumina data, filtered reads from Pipe-
Craft, LotuS and PIPITS were pooled and clustered using CD-HIT (Fu et al. 2012) 
at 97% sequence similarity (Table 1). The pooled PacBio dataset included filtered se-
quences from LotuS, PipeCraft and Galaxy platform, clustering was performed using 
UPARSE algorithm with 97% sequence similarity threshold (Table 1).

Statistical analysis

We used PERMANOVA analysis (Anderson and Walsh 2013; Type III SS, 4,999 per-
mutations) on Bray-Curtis distances of Hellinger-transformed OTU matrices, using 
PRIMER6 (Clarke and Gorley 2006). Outliers were screened and removed using anal-
ysis of non-metric multidimensional scaling (NMDS). The numbers of sequences per 
sample were included in the analysis as covariates. Rarefaction curves were generated 
based on OTU abundance matrices for each dataset using the RTK package (Saary et 
al. 2017) of R (R-Core-Team 2015).

Results and discussion

Properties of bioinformatics analysis platforms

All tested bioinformatics platforms offer straightforward installation. While Galaxy pro-
vides a freely available online platform, the benefits of PipeCraft and QIIME2 include 
easy-to-use graphical user interfaces and multiple options for data analysis. These plat-
forms bundle many tools for diverse tasks. LotuS and PIPITS represent command-line 
based platforms. PIPITS offers a limited number of tools, but data analysis is easily per-
formed with a straightforward pipeline. LotuS has been developed to minimise compu-
tational time and memory requirements. Specifically, for accuracy of ITS-based analyses 
of fungi and other eukaryotes, PipeCraft, LotuS and PIPITS implement the ITSx tool 
(Bengtsson-Palme et al. 2013), which removes the fragments of conservative flanking 
genes for precise clustering purposes. There is no such option in QIIME2 and Galaxy.

Bioinformatics platforms differ by specific requirements to the input data, with 
the options being a raw multiplexed file (a single file containing all sequences from one 
run) and multiple demultiplexed files (reads split into separate files based on indexes). 
PipeCraft and Galaxy use raw multiplexed data, whereas QIIME2 and PIPITS require 
demultiplexed files. Only LotuS allows both, multiplexed and demultiplexed files as 
input. As the raw data files are multiplexed by default, QIIME2 and PIPITS platforms 
required additional steps of analyses outside these tools to meet the input require-
ments. Using a Python script, we demultiplexed the raw Illumina data, allowing 2 and 
1 mismatches to primer and index strings, respectively. However, PacBio data analysis 
was dropped for QIIME2 and PIPITS as the present versions of these platforms are 
limited to analysis of short read (Illumina) data.



Great differences in performance and outcome of high-throughput sequencing data ... 35

Performance of bioinformatics platforms on sequence data

For both the Illumina and PacBio datasets, the final OTU richness (singleton OTUs 
excluded) differed considerably amongst the tested workflows (Table 1). We found that 
pipelines, which produced roughly comparable numbers of total OTUs (QIIME2, 
PipeCraft, PIPITS and LotuS for Illumina data), still exhibited large variations in 
OTU richness per sample (Figures 2 and 3). By performing joint de-novo clustering for 
filtered sequences from different pipelines (total number of OTUs = 16333), we ob-
served a weak but significant effect of pipeline choice on overall OTU composition for 
the Illumina data set (PERMANOVA: pseudo-F2,868 = 5.88, R2

adj = 0.012, P < 0.001). 
For the PacBio dataset (total number of OTUs = 4448), differences amongst platforms 
were slightly stronger (pseudo-F2,512 = 9.174; R2

adj = 0.033, P < 0.001).
Taxonomic annotation tools differed in the ability to classify OTUs. In general, 

BLAST searches revealed many cases of high-quality matches to non-fungal organisms 
(in some cases for hundreds of OTUs), while RDP when combined with the Warcup 
Fungal ITS trainset optimistically classified all OTUs to Fungi (100% confidence). 
Numerous papers have evaluated the performance of different methods on the accu-
racy of taxonomic assignment and performance inevitably hinges on the completeness 
of the reference database used (e.g. Gdanetz et al. 2017; Richardson et al. 2017). In 
spite of its relatively rapid performance, the RDP Fungal ITS trainset does not include 
any non-fungal data, which explains its shortcomings in detecting non-fungal OTUs. 
However, the confidence score of an RDP classifier did not exceed 64% for non-fungal 
OTUs, mostly overestimating the group of unclassified fungi. 

We also observed that the quality-filtered datasets included up to ~10% of obvious 
erroneous/chimeric OTUs that produced matches with low query coverage and confi-
dence scores. A long tail of satellite OTUs, assigned to a single species hypothesis with 
99–100% BLAST identity and RDP classifier confidence level, were also common – 
especially in the results where a relatively high number of OTUs was observed (Galaxy 
platform). After filtering the spurious OTUs manually (see Methods), we found that 
richness estimates per sample became more homogeneous across pipelines (Illumina 
data: Figure 3). When OTU table filtering was applied to jointly clustered reads from 
different pipelines, the significant effect of pipeline choice on the community com-
position diminished (Illumina data: pseudo-F2,837 = 0.955, R2

adj = 0.007, P = 0.779).
In conclusion, our results indicate that bioinformatics analysis pipelines greatly 

differ in their relative performance on ITS datasets targeting fungi, although roughly 
similar quality-orientated settings were implemented. Overall, our recommended Illu-
mina data workflow would be PipeCraft, PIPITS or LotuS, which provide a good bal-
ance between speed, mycological accuracy (including support for ITS Extractor) and 
technical quality. For PacBio, the tools implemented in PipeCraft were most suitable 
for the long-read analysis. Conversely, the widely used platform in prokaryote 16S-
based studies, our options chosen in Galaxy, performed relatively poorly on the ITS 
data. While QIIME2 implements an accurate quality filtering algorithm of DADA2, 
the lack of ITS region extraction lowers the accuracy for mycological studies. Of clas-
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Figure 2. OTU accumulation curves of the evaluated pipelines for a) PacBio and b) Illumina datasets.
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sification tools, BLAST searches against the UNITE database provided more accurate 
results on the kingdom and phylum levels compared with the RDP and Warcup ITS 
trainset combined. We emphasise that none of the tested bioinformatics workflows 
is able to fully filter out the errors that accumulated during sample preparation and 
sequencing, even when using the most elaborate error-filtering options. Therefore, 
manual curation of OTU tables continues to be an important step in obtaining robust 
datasets, although semi-automatic tools to assist evaluation are becoming available 
(Frøslev et al. 2017). It is also important to rely on high-coverage reference databases 
to be able to recognise non-target organisms and metagenomic reads.
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