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Great expectations: A predictive processing account of automobile driving 
 
Johan Engström, Jonas Bärgman, Daniel Nilsson, Bobbie Seppelt, Gustav Markkula, 
Giulio Francesco Piccinini, Trent Victor 

Predictive processing has been proposed as a unifying framework for 
understanding brain function, suggesting that cognition and behaviour can be 
fundamentally understood based on the single principle of prediction error 
minimization. According to predictive processing, the brain is a statistical organ 
that continuously attempts get a grip on states in the world by predicting how 
these states cause sensory input and minimizing the deviations between the 
predicted and actual input. While these ideas have had a strong influence in 
neuroscience and cognitive science, they have so far not been adopted in applied 
human factors research. The present paper represents a first attempt to do so, 
exploring how predictive processing concepts can be used to understand 
automobile driving. It is shown how a framework based on predictive processing 
may provide a novel perspective on a range of driving phenomena and offer a 
unifying framework for traditionally disparate human factors models.   

Keywords: Predictive processing, expectancy, driving, driver behaviour, 
perception, action 

 
Relevance to human factors / ergonomics theory: The objective of the paper is to 
explore how the predictive processing framework, which recently had a strong impact in 
basic neuroscience and cognitive science, can also offer novel perspectives on applied 
human factors problems, in this case related to automobile driving.  

 
Introduction 

In recent years, a novel framework for understanding brain function has emerged, 
suggesting that cognition and behaviour can be fundamentally understood in terms of 
the single principle of prediction error minimization. The key proposal is that that the 
brain is a statistical organ that attempts to “be in tune with”, or “get a grip on”, the 
world by continuously predicting its own sensory input and minimizing the deviations 
between the predicted and actual input. From a biological perspective, such a “grip” is 
needed to resist disorder (entropy), and maintain the body state (e.g., blood sugar level 
and temperature) within viable boundaries in the face of a constantly changing 
environment (Friston, 2010). While several variants of this general idea have been 
developed, Clark (2013, 2016) has suggested predictive processing as an umbrella term 
for these types of models which is also adopted in the present paper.  

Traditional information processing accounts of cognition suggest an essentially feed-
forward stream of processing (of information and/or neural activity) from sensory input, 
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via perception and higher-level cognition, to action1. Predictive processing turns this 
view on its head, suggesting that the brain continuously generates predictions of its own 
sensory input and uses the actual online sensory signal mainly to check and correct the 
predictions (Clark, 2016). This re-framing promotes a view of cognition as expectation-
driven active engagement with the world rather than as a set of sequenced information 
processing stages. 

In recent years, these ideas have had a strong influence in both neuroscience and 
cognitive science in general (e.g., Bar, 2007; Clark, 2013, 2016; den Ouden, Kok, and  
de Lange, 2012; Friston, 2010; Friston et al., 2016; Hohwy, 2013; Huang, 2008) and 
models based on predictive processing concepts have been developed for a wide range 
of neural and cognitive phenomena such as perception, action generation, attention, 
learning, decision making, and emotion, often in the form of detailed mathematical 
formulations and computer simulations (e.g., Feldman and Friston, 2010; Friston, 2005; 
Friston et al., 2010; Friston et al., 2016; Rao and Ballard, 1999; Pezzulo, 2013; Pezzulo 
et al., 2015; Seth, 2013). More specifically, the framework has offered new perspectives 
on classical cognitive phenomena such as visual illusions (Brown et al., 2013), 
binocular rivalry (Hohwy, Roepstorff and Friston, 2008) and psychiatric disorders such 
as schizophrenia (Fletcher and Frith, 2009; Friston et al., 2014). A particularly attractive 
feature of the predictive processing framework is that it offers a unified account of sub-
fields in cognitive science that have traditionally been studied more or less in isolation. 
As such, it has been proposed as a “unified theory of the brain” (Friston, 2010; Huang, 
2008) or a “package deal” for cognitive science (Clark, 2013, 2016).  

However, while existing human factors theories and models have often emphasized the 
key role of prediction and expectancy (e.g., Hollnagel, Nåbo and Lau, 2003; Endsley, 
1995; Rasmussen, 1985; Summala, 1988; Vicente, and Rasmussen, 1992; Wickens et 
al., 2003), the more specific concepts offered by predictive processing have so far not 
been adopted in applied human factors research. The present paper represents a first 
attempt to do so, exploring the application of predictive processing in the context of 
automobile driving. The paper begins with a review of the predictive processing 
framework and its key underlying ideas. These concepts are then applied to a range of 
driving phenomena, including driver reactions to unexpected hazards, visual scanning at 
intersections and interaction with automatic interventions and automated driving 
functions. This is followed by a discussion of how the predictive processing framework 
relates to existing human factors theories and models. The paper ends with a brief 
discussion of some common themes emerging from the example applications and some 
suggestions for future development of these ideas. 

Predictive processing 

As already mentioned, predictive processing has been suggested by Clark (2013, 2016) 
                                                 

1 It should be mentioned that several existing models in the information processing tradition do 
incorporate expectation and top-down processing as key features. This is particularly true for 
human factors models developed to account for operator behavior in real-world dynamic 
environments (e.g., Endsley, 1995, 2015; Rasmussen, 1985; see the review below). 
However, the basic concept of a feedforward chain of information processing through a set 
of distinct stages is still very prevalent both in cognitive science and applied human factors 
(see e.g., Wickens, 2002, Figure 2).    
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as an umbrella term encompassing several more specific accounts based on the common 
idea of the brain as a statistical prediction device. These include predictive coding (Rao 
and Ballard, 1999) and active inference/the free energy principle (Friston, 2010; Friston 
et al., 2010; Friston et al. 2016; see Huang, 2008, for a popular science account). A 
common source of these ideas is the work of von Helmholtz (1876), who viewed 
perception as a largely a top-down, constructive, process which can be understood in 
terms of  probabilistic inference, akin to statistical hypothesis testing in science. More 
recently, this concept has been further developed in terms of the Bayesian brain 
hypothesis (e.g., Knill and Poguet, 2004). At the same time, as emphasised by Clark 
(2016), predictive processing also has close links to embodied cognitive science, 
emphasizing that cognition is crucially enabled and constrained by the physical body 
and its interaction with a structured environment. See Clark (2013, 2016) for more 
comprehensive reviews of the historical origins of current predictive processing models. 

The central idea underlying predictive processing is that the key function of the brain is 
to capture statistical regularities in the environment and in the body by continuously 
trying to predict its own sensory input and acting on the resulting prediction errors (i.e., 
the mismatch between the predictions and the actual sensory input). Predictions can be 
thought of as generated by a hierarchical generative model embodied in the brain that 
has learned, over time, how states and events in the world, or one’s own body, generate 
sensory input. The brain then attempts to minimise the deviation between predictions 
and actual sensory input in two principal ways: 

 Perception: Updating the prediction based on the sensory input, and/or 
 Action: Moving the eye, the head and/or the whole body to bring about the 

predicted sensory input (thus aligning it with the prediction).  

In this way, the brain actively generates the expected sensory input (by perception and 
action) and, in case a prediction error occurs, updates the prediction or generates an 
action to cancel the error. Perception and action are thus closely intertwined, serving the 
common purpose of minimizing prediction error. A key notion that distinguishes 
predictive processing from most traditional accounts is thus that the brain processes and 
acts on sensory prediction errors rather than sensory input per se.2 According to 
predictive processing, the brain is constantly engaged in such prediction error 
minimization, where predictions encompass the complete array of incoming sensory 
signals in all sensory modalities (what Clark, 2013, refers to as the “sensory barrage”). 
Thus, in every situation the brain generates predictions for the complete sensory input 
array, although in novel situations these predictions may be considerably off target (thus 
generating large prediction errors).  

As these concepts may appear a little abstract at first, some concrete real-world 
examples may be useful before moving further. First, consider a driver following 
another vehicle on an otherwise empty highway. In this situation, the driver’s generative 
model typically predicts that there should be no visual expansion (looming) of the lead 

                                                 

2 This concept naturally explains some key features of brain anatomy and function that have 
been hard to fit within the traditional (feedforward information processing) view, 
including the abundance of backward (“top-down”) connections between neural areas and 
the observed “default” activity in the brain observed at rest (Bar, 2007). 
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vehicle (a percept signifying “I am keeping a fixed distance gap”). If visual expansion is 
nevertheless registered by the visual sensory system (e.g., due to the lead vehicle 
slowing down), there will be a mismatch between predicted and actual looming, that is, 
a sensory prediction error. This looming prediction error can then be cancelled by 
updating the prediction (i.e., accepting that the lead vehicle is closing) and/or 
performing a braking action which cancels the looming, thus actively changing the 
looming input to align with the original prediction (“I am keeping a fixed distance 
gap”).  

It should be noted that the idea that the brain operates on prediction error rather 
than sensory input per se holds not only for lower-level sensory signals such as 
looming, but also for more abstract information at higher levels in the generative model.  
For example, consider a driver that uses (symbolic) speedometer readings to maintain 
the legal speed. Here, higher-levels in the generative model predict that speedometer 
readings will not exceed the legal speed limit . If this prediction is violated (i.e., the 
actual speed reading exceeds the speed limit), the prediction may be updated 
(perception) and/or an action may be generated to slow the vehicle down (to align with 
the high-level prediction that the legal speed will be maintained). 

To explain the key principles underlying predictive processing in some further detail, 
we focus here on three principal mechanisms: (1) Active inference (accounting for the 
traditional concepts of perception and action), (2) precision (relating to the confidence 
in predictions but also to the traditional concept of attention) and (3) model tuning 
(relating to learning).3 

Active inference 
As mentioned above, a key notion in predictive processing is that the brain embodies a 
hierarchical generative model of how environmental (or bodily) states or events 
generate (or cause) sensory input (e.g., how a braking lead vehicle generates visual 
expansion on the retina, as in the example above). The generative model is hierarchical 
in the sense that it generates sensory predictions at different spatiotemporal scales, or 
levels of abstraction. Predictions at lower levels concern basic sensorimotor control 
(e.g., a predicted change in looming), whereas higher level predictions capture 
environmental (or bodily) regularities at larger scales (e.g., “we are approaching an 
intersection where the lead vehicle likely will slow down”) and contextualise and 
disambiguate lower levels (see Pezzulo et al., 2015 for a good discussion). Another 
example of contextualisation is when a higher (context-level) prediction such as “I am 
about to drive through an intersection” helps to improve my lower-level predictions on 
                                                 

3 Karl Friston and colleagues have developed a comprehensive mathematical framework for 
predictive processing known as the free energy formulation (e.g., Friston, 2010). Free 
energy is an information theoretic concept representing an upper bound on surprise, or 
self-information (formally defined as the negative log probability of an outcome). The 
general idea is that all cognition and behaviour could be understood based on the single 
mandate to minimise free energy (and thus surprise). Under certain simplifying 
assumptions, the minimization of free energy is equivalent to the minimization of 
prediction error, and, for present purposes, we will use this more intuitive 
conceptualization. Friston and colleagues have developed detailed simulation models 
based on the free energy principle which have been applied to explain a range of 
neuroscientific and psychological phenomena (see citations in the Introduction and in 
Clark, 2013, 2016). 
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where and when pedestrians are likely to enter the road. It is well-established that this 
hierarchical organization is reflected in the anatomy of the brain (e.g., Badre, 2008). 

The term active inference refers to how agents infer environmental and bodily states 
from sensory input, and corresponds to the traditional notions of perception and action. 
Figure 1 provides a conceptual illustration of the key mechanisms underlying active 
inference in a hierarchical generative model. Here, the generative model is represented 
by a converging hierarchy of levels, which may be thought of as hierarchically 
organised brain regions4. At the bottom of the figure, environmental and body states 
cause three general types of sensory input signals: (a) exteroceptive, (b) interoceptive, 
and (c) proprioceptive. Exteroceptive inputs are generated by external (environmental) 
states such as the relative positions, velocities and accelerations of other road users and 
infrastructure elements. Interoceptive input is generated by visceral states, referring to 
the states of internal organs in the body (the viscera), what Damasio (1994) refers to as 
emotions. In driving, such states include the bodily representations of feelings of 
comfort or threat, for example related to the distance to a lead-vehicle in a car-following 
situation (see e.g., Summala, 2007). Finally, proprioceptive sensory input is generated 
by the states of muscles and joints. In driving, this would be, for example, the extension 
and contraction of muscles when depressing the brake pedal, the relative location of the 
shoulder joints when holding the steering wheel at a certain angle, or the rotation of the 
head and eyes. Of crucial importance, the brain does not have direct access to any of 
these states, but has to infer them based on sensory input. 

As illustrated in Figure 1, the sensory input is continuously met by predictions at 
different levels in the generative model. At the lower levels such predictions concern 
detailed, modality-specific features such as visual looming and the shapes of objects 
while predictions at higher levels concern increasingly abstract and multimodal features 
extending over larger spatiotemporal scales such as “overtake”, “negotiate intersection” 
or, even more abstractly, “arriving on time”.  

                                                 

4 Hierarchical architectures are very common in the cognitive- and brain modelling literature 
(e.g., Deco and Rolls, 2005; Cooper and Shallice, 2000; Engström, Victor and Markkula, 
2013; Markkula, 2015). What the predictive processing account adds is a novel account of 
how the different levels interact with each other (in terms of predictions and precision-
weighted prediction errors – see below), and how this process is governed by the single 
mandate to minimise prediction error (see e.g. Friston, 2005; 2008 and Rao and Ballard, 
1999, for examples of more detailed hierarchical architectures for predictive processing).  
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Figure 1: Conceptual illustration of inference in a hierarchical generative model, where 
sensory prediction errors are propagated upwards and met by predictions at each 
hierarchical level. By minimizing the global prediction error, the system settles into a 
new state, generates new predictions, and so forth. Actions are generated by cancelling 
proprioceptive prediction errors, that is, deviations between actual and predicted muscle 
extension and/or relative joint angle, as shown to the lower right (see text for further 
explanation).  

 

When the input to a certain level in the hierarchy illustrated in Figure 1 does not match 
the prediction, a prediction error is generated. Active inference then amounts to 
cancelling this prediction error which, as noted above, is the fundamental joint role of 
perception and action: Perception here corresponds to updating the prediction to match 
the sensory input while action involves altering the sensory input to conform to the 
prediction, thus actively bringing about the predicted sensory input by means of 
movement (Clark, 2016). In most real-world situations, perception and action work 
closely in tandem with the common goal of minimizing prediction errors. 

If the prediction error cannot be resolved at the present level of the generative model, it 
is passed upward for potential resolution at higher levels in the hierarchy. When a 
higher-level prediction is updated, it generates new descending (top-down) predictions 
which attempt to cancel prediction errors at the lower level. To illustrate this dynamic 
interaction between higher and lower levels in the generative model, consider a scenario 
where a driver approaches an intersection in a right-turn-only lane with a green light. 
Let’s further assume that our driver has failed to understand that he is in a right-turn-
only lane and intends to go straight through the intersection. He thus enters the 
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intersection on the assumption that he has the right of way. The driver then notices that 
other vehicles (unexpectedly to our driver) are honking at him.  

Figure 2 illustrates a specific mechanism for how the resulting prediction error 
(unexpected honking) may be resolved through interaction between a lower 
(sensorimotor) level and a higher (context) level of the generative model, based on a 
greatly simplified version of the neural architecture proposed by Friston and colleagues 
(e.g., Friston 2005). The top panel represents the situation when the driver approaches 
the intersection with the context-level prediction that he will pass straight through the 
intersection in the correct lane. This generates various more specific top-down 
predictions of expected input at the sensorimotor level, in this case exemplified by 
“green light” and “no honking”. At this point, these top-down predictions are still 
consistent with the actual sensory input (given that the driver failed to perceive any cues 
indicating that he is in the wrong lane), and the driver enters the intersection as planned. 
However, at this point other road users start to honk their horns to alert our driver on his 
mistake, generating a large prediction error (unexpected honking; middle panel) that is 
passed upwards. Based on this error, a new context-level prediction is generated that 
better fits the evidence, namely “I’m in the right turn lane going straight and that’s why 
people are honking at me…”. This represents the best hypothesis available to the driver 
that explains the honking input and thus reduces the overall prediction error back to 
zero (lower panel). In this way, only unexplained sensory input is passed 
forward/upward and acted upon, and perception involves a dynamic process of 
interaction between levels until reaching a stable state where the prediction errors at all 
levels in the hierarchy have been resolved in a satisfactory way. This yields a stable 
percept (and, at higher levels, a stable “context understanding” or situation awareness5) 
which, from a Bayesian perspective, represents the “best guess” of the external (or 
bodily) states-of-affairs given the available sensory data and the generative model. A 
detailed mathematical account of how this inference process might work is offered by 
Friston (e.g., 2005, 2010; Friston et al., 2016). This dynamic, interactive, process of 
prediction error minimization can also be seen as analogous to the more traditional 
notion of evidence accumulation as the basis for optimal decision making (e.g., Gold 
and Shadlen, 2001). 
 

                                                 

5 See below for a discussion of the relation between predictive processing and the classical 
model of situation awareness (Endsley, 1995) 
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Figure 2: Illustration of a mechanism for how prediction errors may be resolved through 
interaction between levels in the generative model. This represents a greatly simplified 
version of the architecture proposed by Friston (e.g., 2005) with separate “state” units 
representing predictions (the grey boxes) and prediction error units (i) representing the 
deviation between higher-level and lower level predictions, passing the prediction error 
to the higher level. See the text for a description of the example scenario. 
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Predictive processing also offers a new perspective on how actions are generated. 
Conventional views on motor control suggest that actions are generated by the brain 
sending action commands to the muscles via the spinal cord (e.g., Wolpert and Miall, 
1996). By contrast, the predictive processing account suggests that the generation of 
action at the muscular level can be understood in terms of the cancelling of 
proprioceptive prediction errors. As illustrated at the bottom-right in Figure 1, 
proprioceptive prediction errors are generated through top-down predictions from 
higher levels such as “I will now press the brake”. If I am not yet braking (and the 
muscles and joints remain in their original position), the prediction will thus generate a 
proprioceptive prediction error at the spinal level that will automatically be cancelled by 
peripheral reflexes (such as the stretch reflex), thus generating the braking action. 
Viewed from this perspective, actions thus become “self-fulfilling prophecies” where 
predictions become equivalent to intentions (see Friston et al., 2010, and Adams, Shipp 
and Friston, 2013, for detail).  
 

Precision 

A key further notion in the predictive processing framework is that predictions from the 
generative model are probabilistic, thus representing the probability of sensory data 
given their causes. Thus, predictions (at every level in the hierarchical generative 
model) also involve an estimation of the expected precision (the inverse variance, or 
certainty) of the sensory input. This precision estimate then scales the resulting sensory 
prediction errors such that deviations resulting from certain (high-precision) predictions 
are given a higher weighting than prediction errors related to low-precision predictions. 
Thus, the ascending (bottom-up, upwards-flowing) prediction errors that drive active 
inference (perception and action) for a certain task are precision-weighted so that 
trusted sensory input is given a relatively stronger influence. This is analogous to 
statistical inference in hypothesis testing where, for example, the t-statistic (representing 
how much an experimental result can be trusted) is obtained by dividing the observed 
group differences with the estimated population variance. Thus, the t-statistic can be 
viewed as analogous to a precision-weighted predicted error (Feldman and Friston, 
2010). 

For example, when driving in reduced visibility conditions (e.g., fog or rain) it makes 
sense to selectively base corrective steering actions on those aspects of the visual scene 
that are reliably perceived (e.g., lane markings close to the vehicle) rather than on those 
harder to perceive in the adverse conditions (e.g., the curvature of the roadway in the 
distance). In this way, the precision-weighting of prediction error can be viewed as a 
means for selective enhancement of sensory input, and thus related to the traditional 
notion of attention (Feldman and Friston, 2010). Feldman and Friston (2010) further 
suggest that precision weighting may be implemented in the brain by means of 
established mechanisms such as neural synchrony and/or classical neuromodulation 
(e.g., transient changes in synaptic efficacy through the effects of e.g., dopamine or 
acetylcholine).  

The concepts of precision and precision weighted prediction error are illustrated in 
Figure 3. Here, environmental or bodily states and events generate sensory input with a 
certain probability distribution, illustrated at the bottom of the Figure. The generative 
model predicts these sensory inputs with a level of precision, as represented by the 
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probability distribution at the top. To match the sensory input, the model predictions 
thus need to account for both the mean and the variance (over time) of the sensory 
input. For each sensory input and prediction, the resulting prediction error is weighted 
by the precision associated with the prediction.  
 

 
Figure 1 Illustration of the concepts of precision and precision weighted prediction 
error. 
 

As discussed at length by Clark (2016), precision weighting of prediction error also 
provides a more general mechanism for controlling behaviour, or “sculpting the flow” 
in the generative model beyond the selective enhancement of sensory input discussed so 
far. In particular, this mechanism may be used to shift the balance between higher and 
lower levels in the generative model in the control of behaviour. Shifting control to 
higher levels means increasing the trust in your knowledge relative to the actual sensory 
input. Thus, by increasing the precision of prediction errors at higher levels (relative to 
lower levels) in the generative model, behaviour may be controlled in a more flexible 
manner, driven top-down by longer-term predictions, relating to the traditional notion of 
cognitive control (Miller and Cohen, 2001)6. This may be applicable in situations with 
high levels of uncertainty (e.g., driving through a complex intersection), when 
overriding lower-level, automatized behaviours in order to adapt to novel contexts (e.g., 
looking right instead of left when crossing the street in the UK) or achieve more distal 

                                                 

6 This idea is in line with the extensive literature suggesting a key role of dopamine in “gating” 
access to higher level brain areas such as the pre-frontal cortex (e.g., Braver and Cohen, 
2000).  
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goals (e.g., reduce traveling speed to improve fuel efficiency). The same mechanism 
may also be used for blocking actions during planning; by reducing the weighting of 
prediction errors at the proprioceptive level, actions may be contemplated without 
actually being executed (Clark, 2016).  

Finally, as discussed in Clark (2016) and Friston et al. (2015), precision plays a key role 
in the arbitration between pragmatic (or extrinsic) and epistemic (knowledge-oriented) 
action, relating to the classical distinction between exploitation and exploration (e.g., 
Aston, Jones and Cohen, 2005). For example, consider that you are trying to find your 
way out in a dark room. Walking towards the exit is the pragmatic action that fulfils the 
main current prediction (that you will leave the room). If the room is familiar, you may 
be able to walk directly to the exit based on memory. However, in case you are 
uncertain of your location or the layout of the room, you may need to sense your way by 
touching the walls with your hands, which is an example of epistemic action. Thus, 
epistemic actions (e.g., in a driving context, checking for oncoming cars before 
overtaking) serve to increase the precision of the main current prediction (e.g., “I will 
overtake successfully”). In circumstances where the agent is confident in her predictions 
(i.e., the predictions are associated with high precision), prediction errors are usually 
most effectively cancelled by carrying out the predicted action directly (i.e., pragmatic 
action). For example, consider a scenario where a driver looks back to the road to find 
that the vehicle is slightly off the predicted path. This driver may assess the situation 
with a high-degree of confidence (precision) and immediately cancel the prediction 
error with a steering correction. However, if the prediction is associated with high 
uncertainty (low precision), it is generally better (from a global prediction error 
minimization standpoint) to first perform epistemic actions (e.g., visual sampling) to 
increase precision before performing the predicted pragmatic action. For example, if our 
driver looks up and discovers that a lead vehicle is slowing down (on a multi-lane 
motorway) she may generate a new prediction that entails overtaking the lead vehicle. 
However, this prediction is associated with some uncertainty since other vehicles may 
approach from behind. Thus, a mirror check (an epistemic action) is needed to increase 
precision before initiating the overtaking (it may be noted that, in this example, the 
concept of “prediction” becomes almost synonymous with “decision”). 
 

Model tuning 

This third principal mechanism underlying the predictive processing framework relates 
to the modification of the generative model itself, with the general purpose to minimise 
prediction error in the long term, thereby tuning the brain to behaviourally relevant 
statistical regularities in the environment. Thus, in contrast to (perceptual) inference 
which, as described above, deals with the moment-to-moment update of predictions and 
their precision based on incoming sensory data, model tuning occurs more gradually 
over longer time scales. When this occurs during the organism’s lifetime, it corresponds 
to the traditional concept of learning7.  

                                                 

7 Model tuning also occurs over evolutionary time scales (through natural selection) but, since 
this is less relevant for driving, it is not further addressed here. 
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Learning, according to predictive processing, involves a kind of “bootstrapping” (see 
Clark, 2016) where the novice’s crude attempts to predict the sensory input initially 
generates large prediction errors. By gradually adjusting model parameters (e.g., 
synaptic strength at the neural level; Hebb, 1949) to improve predictions, the model will 
begin to capture behaviourally relevant regularities in the sensory input. If these 
regularities are consistently and frequently encountered, a strong model will eventually 
develop yielding skilled, fluent behaviour. This has a close correspondence with 
traditional accounts of reinforcement learning (e.g., Rescorla and Wagner, 1972; Sutton 
and Barto, 1998; Montague, Hyman and Cohen, 2004), where model parameters are 
gradually adjusted in order to maximise expected reward or utility. For example, in 
temporal difference (TD) learning, encountering unexpected reward (as indicated by 
reward prediction error) leads to reinforcement of the behaviour that produced the 
reward by strengthening the model parameters associated with that behaviour. 
Conversely, if a behaviour does not lead to the expected reward, the corresponding 
model parameters are weakened. However, the concepts of reward, value or utility can 
be (conceptually and mathematically) subsumed under the more general framework of 
prediction error (or free energy) minimization (Friston, et al., 2015). From this 
perspective, valuable states are simply those states expected to minimise prediction 
error. For present purposes, the key point is that learning, according to predictive 
processing, involves a gradual modification of the generative model which improves 
predictions (across time-scales) and thus tunes the agent to behaviourally relevant 
statistical regularities in the world reflected in the sensory input (see e.g., Friston, et al., 
2015 and Pezzulo et al., 2015, for more detailed discussions of these mechanisms).  

Those statistical regularities in the sensory input that occur consistently and frequently 
will eventually result in strong, high-precision predictions with highly-weighted 
prediction errors, likely to be directly perceived and/or acted upon. In this situation, one 
could say that the agent has become attuned to the relevant statistical regularities in the 
world. Furthermore, according to the free energy formulation, what is minimised during 
learning is actually prediction error plus model complexity, as discussed in detail by 
Friston (2010) and FitzGerald et al., (2014) based on concepts from model selection in 
mathematical statistics. Thus, as suggested by Clark (2016), successful learning will 
result in minimally complex (cheap and frugal) models which are nevertheless sufficient 
to “do the job”. This speaks to the classical notion of bounded rationality (Simon, 
1955), or satisficing, which has become a key concept also in driver behaviour research 
(Boer, 1999; Goodrich, Stirling and Boer, 2000; Summala, 2007). A good example of 
this in the driving context is the task of lane keeping (in benign conditions), which is 
generally governed by highly consistent and frequent sensory input (e.g., lane markings 
and optical flow patterns) with predictable sensory consequences of corrective actions 
(e.g., steering corrections). Lane keeping is thus quickly learned and governed by a 
simple but strong generative model, yielding high-precision predictions. This notion is 
supported by the fact that lane keeping is typically not negatively influenced by 
secondary tasks imposing a high cognitive (or working memory) load (Engström, 2011; 
Engström et al., in press).  

The predictive processing framework thus offers a straightforward account of 
automaticity, which traditionally refers to behaviours that are consistently triggered by 
specific stimuli and for which task performance is unaffected when simultaneously 
performing another, secondary, task (Shiffrin and Schnedier, 1977). As suggested by 
Shiffrin and Schnedier (1977), automaticity develops through repeated exposure to 
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consistent sensory-motor mappings in the task environment. As sketched above, the 
predictive processing framework offers a similar but more detailed account for how 
automaticity develops in terms of the gradual tuning of a generative model to statistical 
regularities in the sensory input, driven by the criteria of minimizing prediction error 
and model complexity. If the generative model tuning is viewed in terms of altering 
synaptic strength (Hebb, 1949), this view becomes closely aligned with existing 
accounts where automaticity is modelled in terms of neural pathway strength (e.g., 
Cohen et al., 1990; an idea applied in the driving context by Engström et al., in press). 
 

Summary 

According to the predictive processing framework, the brain is viewed as a statistical 
organ continuously trying to “get a grip” on, or “get in tune” with, statistical regularities 
in the world (including its own body) through sensorimotor interaction. The brain does 
this by constantly predicting sensory input and minimizing the resulting sensory 
prediction error (both instantly and over time).  

The predictive processing framework, as outlined here, involves three principal 
mechanisms governing this on-going minimization of sensory prediction error: First, 
active inference refers to the moment-to-moment minimization of prediction error, 
which may be achieved by updating the prediction (perception) and/or changing the 
sensory input to conform to the prediction through motor activity (action). Perception 
and action are thus two sides of the same coin serving the joint purpose of minimizing 
prediction error. Second, prediction errors are weighted by the precision (certainty) of 
the corresponding prediction. This mechanism is related to the traditional notion of 
attention, and can be used to control behaviour in several different ways, including the 
selective enhancement of sensory input, altering between bottom-up and top-down 
driven behavioural control by shifting the relative weighing of prediction error between 
hierarchical levels in the model, and managing the trade-off between pragmatic and 
epistemic actions. Pragmatic actions refer to actions that directly cancel prediction error 
while epistemic (or knowledge-seeking) actions, such as explorative eye movements, 
serve the purpose to increase precision of predictions related to pragmatic action, thus 
minimizing the overall prediction error over time. Finally, the parameters of the 
generative model are tuned over time. By constantly predicting the sensory input, and 
gradually adjusting model parameters to yield better predictions (with less prediction 
error), the model eventually learns to capture statistical structures in the sensory input 
and, on this basis, infer external (and bodily) causes of the sensory input. Frequent 
exposure to consistent environmental regularities leads to less complex models yielding 
high-precision predictions. This suggests a mechanism for the development of 
automaticity.  
 

Application to driving 

In this section, we explore how the predictive processing framework outlined above 
may be applied in the context of automobile driving. We begin by considering how the 
framework may offer a more precise characterization of classical hierarchical models of 
driving (e.g., Michon, 1985). We then discuss a number of more specific applications, 
starting with drivers’ emergency responses to a braking lead vehicle, focusing in 
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particular on how observed differences in responses (and the lack of response) may be 
explained in terms of the extent to which the braking event was initially predicted by the 
driver. We then address an intersection scenario and consider how the present 
framework may account for visual scanning patterns and different types of expectation 
“failures”. Finally, we discuss how predictive processing concepts may help to 
understand drivers’ interaction with automatic steering interventions and automated 
driving functions. These examples are intended to provide a first illustration of how the 
proposed framework can improve our understanding, and generate testable hypotheses 
of different aspects of driver behaviour, and encourage its application to other driving-
related phenomena. 
 

Characterizing hierarchical levels of driving  

One of the most persistent ideas in driving research is to characterise the driving task in 
terms of a hierarchy of goals or sub-tasks (Allen, Lunenfeld and Alexander, 1971; 
Michon, 1985). We will here adopt the terminology of Michon (1985) who 
distinguished between (1) the operational level, related to the momentary control of the 
vehicle (e.g., steering and braking), (2) the tactical level, relating to the current driving 
situation (e.g., selecting speed or deciding to overtake) and (3) the strategic level, 
relating to general goals of driving, such as destination and route choice.  

The proposed framework potentially offers a more precise characterization of these 
levels which will be useful when addressing the specific applications below. In 
predictive processing terms, driving can generally be understood as active inference 
related to a set of driving-related sub-tasks. As outlined above, active inference entails 
continuously generating predictions and cancelling prediction errors by means of 
perception and action. Such inference can occur at different hierarchical levels of the 
driving task. 

At the operational level, predictions concern sensory input relating to, for example, the 
momentary evolution of speed, headway, heading as well as proprioceptive input related 
to motor actions (e.g., steering, accelerator and brake pedal inputs). Operational driver 
behaviour can thus be understood as the minimization of prediction errors relative to 
those predictions, for example, by means of perceiving lane keeping deviations (by 
updating the prediction based on the prediction errors) and/or cancelling the error 
directly by steering corrections. 

At the tactical level, predictions and prediction errors concern how the current situation 
will develop, for example, “I will change lane and then exit the road”. Top-down 
predictions from the tactical level contextualises the operational level. The resulting 
prediction errors then contribute to the updating of predictions at both the operational 
and tactical levels (thus, in a sense, being on the operational control loop; see Gibson et 
al., 2016). A simple example of such interaction between higher and lower levels was 
illustrated in Figure 2 above. 

Finally, predictions at the strategic level (being on the tactical control loop) concerns 
driving-related states on even longer spatiotemporal scales, such as the end destination 
and how to get there. This contextualises the tactical level by generating top-down 
predictions about expected traffic situations (e.g., “I will travel during rush hour and 
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thus traffic cues ahead are likely to occur”). Of course, a more fine-grained set of levels 
may also be considered which, for example, distinguishes between sub-levels of 
operational control (e.g., between actions driven purely by spinal reflexes and those 
related to higher-level sensorimotor control). 
 

Responding to a braking lead vehicle  

In this section, we address the operational-level task of responding to a braking lead 
vehicle in a critical rear-end scenario, which, as we shall see, may also be strongly 
influenced by higher-level predictions. Traditionally, drivers’ emergency avoidance 
reactions in critical situations have been mainly considered based on the concept of 
reaction time, or more precisely, perception-response time (Green, 2000; Olson, 1989; 
Olson and Sivak, 1986). Reaction time is usually considered a property of the individual 
driver influenced by various factors such as, for example, age, expectancy, and 
cognitive load (Green, 2000). However, recent analyses, both on driving simulator data 
(Ljung Aust, Engström and Viström; 2011) and naturalistic crash/near-crash data 
(Victor et al., 2015; Markkula et al, 2016) have shown that the timing of driver 
reactions in unexpected emergency situations are mainly determined by the situation 
kinematics rather than driver-specific perception-response times. In rear-end scenarios, 
the situation kinematics are largely reflected by the optical expansion (looming) of the 
lead vehicle. For example, the quantity k (tau, the optical angle subtended by a front 
object, し, divided by the angular rate, ߠሶ) provides an optically specified estimation of 
time-to-collision, and has been proposed as a key source of information that guides 
braking (Lee, 1976). Markkula et al. (2016) showed that drivers involved in rear-end 
crashes or near crashes typically did not initiate braking, or exhibit a physical response, 
until looming (here quantified as 1/k) reached a certain level. 

These accounts are all based on the traditional assumption that what drives the braking 
response is the sensory signal (e.g., looming) itself. Predictive processing adds a new 
twist by suggesting that drivers rather act on sensory (in this case looming) prediction 
error. In other words, this suggests that drivers in emergency rear-end situations react to 
unexpected (unexplained) looming rather than to looming per se8. As we shall see, this 
brings a new perspective that emphasises aspects of the braking response process that 
have been difficult to conceptualise based on the traditional view.  

A predictive processing account of avoidance responses to looming suggests that the 
generative model constantly produces predictions of expected looming (or the lack of 
looming) and that drivers initiate avoidance actions (by braking and/or steering) when 
the looming prediction does not match the actual looming, with the purpose to eliminate 
the discrepancy. Importantly, such predictions may originate both from the operational 
and tactical levels of the generative model. First, consider a scenario where a driver is 
following a lead vehicle and the lead vehicle suddenly brakes in a manner unexpected to 
the driver. The driver’s generative model thus initially predicts zero looming. In this 
special case, the looming prediction error simply reflects the looming input and the 

                                                 

8 The same argument can be made for the brake light signal, although the brake light seems to 
play a less significant role than looming in determining driver reactions in real rear-end 
crashes and near crashes (Markkula et al., 2016). 
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predictive processing perspective does not really bring anything new to the table with 
respect to explaining when the driver will initiate braking9. Now consider the alternative 
scenario pictured in Figure 2 (based on a real near crash scenario in the naturalistic 
crash/near crash dataset used in Engström et al., 2013, and Markkula et al., 2016). Here, 
the driver approaches a truck about to exit the road. Despite strong looming indicating 
that a collision may be imminent, the driver does not slow down, presumably based on 
the assumption that the truck will be off the road well in time before she reaches the 
intersection. In terms of the present framework, the generative model predicts that 
looming will occur initially but that it will eventually go away (when the truck exits). 
This prediction is the result of exposure to many similar situations in which the lead 
vehicle did exit the road as expected, which has tuned the generative model to these 
types of scenarios. Thus, since the predicted looming (at the operational level) initially 
matches the actual looming, there is initially no prediction error that needs to be 
cancelled and no avoidance action ensues, despite strong looming cues being present. 
However, on this particular occasion, the exiting vehicle is blocked by another vehicle 
(not detected by our driver) and thus stopped in the middle of the road. Thus, at a 
certain point the actual looming is no longer predicted and will hence generate a strong 
prediction error that the driver will react upon (by steering and/or braking) in order to 
avoid a crash. 
 

 

Figure 4: Example scenario where looming is initially expected. 
 

                                                 

9 However, as demonstrated by Markkula (2014), a driver model acting on looming prediction 
error may be useful for reproducing on-going braking control. 
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This example shows how mismatching expectations may lead to critical situations when 
the driver erroneously predicts (based on previous exposure and the resulting tuning of 
the generative model) that the scenario will develop in a certain way and initially acts 
based on this prediction. A similar case is represented by a scenario, observed in three 
out of thirty heavy vehicle crashes in analysed in Engström et al. (2013; a more detailed 
analysis can be found in Engström, Bärgman and Lodin, 2016), where a driver enters an 
on-ramp to a motorway with a stopped vehicle ahead. These drivers kept up their speed 
to be able to merge onto the motorway, and initially accepted strong looming, 
presumably based on the expectation that they would eventually be able to merge. 
When dense traffic on the motorway prevented merging, the crash was unavoidable. 

Based on traditional concepts (such as perception-response time) it would be easy to 
overlook this interpretation and misinterpret the type of scenario exemplified in Figure 
2 (or the on-ramp crashes just discussed) as being due to a delayed driver response, 
caused, for example, by cognitive load or “looked-but-failed-to-see” phenomena (e.g., 
Koustanaï et al., 2008). The present account, suggesting that drivers react specifically to 
looming prediction error, offers a natural way to conceptualise this type of phenomenon 
and distinguish it from truly delayed reactions, related, for example, to driver 
distraction. It would be interesting to conduct a detailed analysis of a larger set of 
naturalistic crashes and near-crashes to further investigate the actual prevalence of the 
crash causation mechanism implied by the examples above. 
 

Negotiating an intersection 

Now, consider the scenario illustrated in Figure 5 where the driver intends to turn right 
at a non-signalised intersection, with a crossing bicycle lane. The tactical-level 
prediction in this case can be understood as something like “I will perform a successful 
right turn at a T-junction”.  
 

 
Figure 5: Example intersection scenario: Right turn at non-signalised intersection. 
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While turning, the generative model will continuously produce operational-level 
predictions of all sensory inputs expected to occur during the turn. This includes 
exteroceptive signals, in particular visual signals that guide heading. For example, as 
described by Wann and Land (2000), steering along a curved path towards an intended 
target could be achieved by fixating the target and then keep velocity and the rate of 
change of the visual angle to the target constant. Sensory predictions also concern 
proprioceptive signals (e.g., the relative position of joint angles in the arms and legs) 
and interoceptive signals (e.g., emotional signals from the body representing 
comfort/discomfort). Some hypothetical examples of predicted and actual sensory input 
time series at the operational level are illustrated in Figure 6. The figure also illustrates 
how the precision of the visual guidance prediction (here the predicted visual angle rate 
relative to the target location) is continuously updated based on incoming sensory data. 
In this example, the precision of the visual guidance prediction is reduced when looking 
away from the forward roadway (e.g., to scan for hazards to the left, as indicated by the 
glance signal) and increased again when looking back.  
 

 
Figure 6: Conceptual illustration of sensory predictions as a multidimensional time 
series continuously updated based on and actual sensory input. Precision is only 
illustrated in the top graph, showing how the confidence bounds around the prediction 
of steering-related visual input are reduced as the result of visual scanning away from 
the future path (second graph from the top). Note that the predictions have been shown 
as extending just immediately beyond the present time, to emphasize that the main point 
of the predictions is not to say something about a distant future, but rather to 
continuously provide an estimate of what the next sensory input will be (thus, in a 
sense, “predicting the present”; Clark 2016). 
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The driver then acts to fulfil the predictions. At the operational level, this entails 
generating vehicle movements to sample sensory input that matches the prediction 
(Friston et al., 2010). For example, in terms of the steering model cited above (Wann 
and Land, 2000), this involves predicting constant velocity and angular rate and then 
controlling the vehicle in a way that generates sensory input fulfilling this prediction. 
As described above, actions, according to the proposed framework, are generated by 
cancelling proprioceptive prediction errors by peripheral reflexes. Thus, since the 
tactical-level prediction in this case is a successful right turn, the operational-level 
proprioceptive predictions entail changes in arm joint angle and muscle contraction that 
would result from turning the steering wheel to the right while keeping velocity and 
angular rate constant. When these proprioceptive predictions do not match the actual 
(sensed) proprioceptive signals (obtained from proprioceptors in the joints and 
muscles), the prediction error is smoothly cancelled by spinal reflexes contracting the 
relevant muscles to produce the steering action. Specifically, note in Figure 6 that, when 
looking back to the future path, the driver detects a small deviation from the desired 
constant visual angle rate, and responds to these by modifying the on-going prediction 
of shoulder joint angle. 

Thus, successful turning at the intersection involves a tactical-level prediction (“I will 
perform a successful right turn at a T-junction”) generating operational-level 
exteroceptive, proprioceptive, and interoceptive predictions illustrated in Figure 6 (see 
also Figure 1). The tactical-level prediction (which is not included in Figure 6) is 
initially associated with a great deal of uncertainty since both cars and bicyclists are 
relatively likely to cross the driver’s path. Thus, epistemic action (visual sampling) is 
needed to reduce uncertainty (increase precision) before the turn can be performed. As 
suggested by Friston et al. (2012), predictions may be conceptually viewed as 
hypotheses while epistemic actions (e.g., visual sampling) can be thought of as 
experiments testing these hypotheses. It thus makes intuitive sense to sample those 
locations likely to provide information of relevance to the prediction (the hypothesis) at 
hand, just like it makes sense for the scientist to conduct experiments that confirm or 
disconfirm the general hypothesis that motivated the research. In any given situation, 
there is an optimal trade-off between pragmatic and epistemic action (i.e., between 
exploitation and exploration) and, as shown by Friston et al. (2015, 2016), this optimal 
trade-off is defined by the single mandate to minimise overall (across abstraction levels 
and over time) sensory prediction error (or, in their terms, minimize free energy). 
Hence, the tactical right turn prediction will include a mix of pragmatic and epistemic 
actions at the operational level which, for the experienced driver, represents a (near-) 
optimal prediction error minimization in this scenario. Thus, in a sense, a driver attuned 
to this intersection scenario expects that he will turn right and scan the road for hazards 
in a certain way, generating a time series of exteroceptive, proprioceptive and 
interoceptive sensory predictions which are continuously compared to the actual input 
(as illustrated in Figure 6). The observed driver behaviour can then, according to 
predictive processing, be fundamentally understood in terms of attempts to minimise the 
overall prediction error by means of perception and action.  

If the scenario consistently and frequently plays out in a certain way (e.g., other road 
users almost always appear from the left), the gradual tuning of the generative model 
will eventually result in a simple but strong model generating more or less automatized 
scanning patterns and vehicle control actions. This has two important implications: 
First, for a driver that is well attuned to the scenario, visual scanning patterns would be 
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expected to approximate an optimal trade-off between pragmatic and epistemic actions 
(based on the common mandate to minimise overall sensory prediction error). Hence, 
these patterns largely depend on (and can, at least in theory, be predicted from) the 
statistical properties of the traffic/roadway environment. While the account sketched 
here is purely conceptual, the mathematical framework outlined by Friston et al. (2015, 
2016) may possibly be used to predict drivers’ scanning patterns based on known 
scenario statistics. As further discussed below, this has interesting parallels with 
existing information-theoretic models of visual sampling (Senders, 1964, 1983; Kujala 
et al., 2016) and the SEEV (Salience, Effort, Expectancy, Value) model (Wickens et al., 
2003).   

A second implication is that problems may occur if the statistical regularities of the 
environment (that drivers’ generative models are attuned to) suddenly change. A classic 
example of this type of situation is demonstrated by the work of Summala and 
colleagues (Summala and Räsänen, 2000; Räsänen and Summala, 1998), who set out to 
identify underlying causal mechanisms behind car-bicycle crashes at intersections and 
roundabouts in Sweden and Finland. In the 1990’s, two-way bicycle lanes were 
becoming increasingly common in these countries and crash records indicated that car-
bicycle crashes were more frequent at right turns with the bicycle approaching from the 
right than in other scenario configurations (Räsänen and Summala, 1998). Based on 
roadside observation of drivers’ visual scanning behaviour, the authors suggested that 
these car-bicycle crashes often occurred due to the erroneous expectation that hazards 
would only approach from the left, which led to insufficient scanning to the right. As a 
result, bicyclists coming from the right, who had right of way and believed that the 
driver saw them, appeared outside the drivers’ field of view and thus failed to capture 
the drivers’ attention (Summala and Räsänen, 2000).  

The present framework offers a straightforward interpretation of the origin of such 
expectancy problems: The Swedish and Finnish drivers’ generative models had, over 
the years, been shaped by repeated exposure to right-turn situations where other road 
users typically appeared from the left. In this situation, looking to the right does not 
reduce uncertainty or overall prediction error much. Hence, with experience, drivers 
developed strong generative models yielding high-precision predictions that strongly 
biased automatized visual scanning towards the left. However, when two-way bicycle 
lanes were introduced, and bicyclists more frequently started to appear from the right, 
the drivers’ generative models were suddenly “out of tune” with the statistical 
regularities of the environment, inducing expectancy mismatches when bicyclists 
appeared from the right which, in some cases, led to crashes. This represents a 
particularly problematic situation in which the drivers’ predictions are inaccurate but 
still associated with high precision (i.e., you are in fact wrong but strongly believe that 
you are right).  

This suggests a way to conceptualise expectancy mismatches in driving in terms of how 
the generative model is tuned to statistical regularities in the driving environment. 
Below, some prototypical cases are briefly discussed and illustrated by the type of 
representation introduced in Figure 3.   
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Inaccurate model and probable event  

This corresponds to the mechanism observed by Summala and Räsänen (2000) just 
discussed, and is illustrated in Figure 7. Here, the generative model yields high-
precision predictions in the current scenario, but the model is inappropriately tuned to 
the actual environmental statistics of that scenario. Thus, a crash may be generated by a 
relatively common event such as a bicyclist coming from the right, which the poorly 
tuned generative model fails to predict.  
 

 
Figure 7: Inaccurate model and probable event. 
 

Accurate model but improbable event (“bad luck”)  

This represents a situation where the generative model is well-tuned to the environment 
but the event is highly unlikely, as illustrated in Figure 8. This can be conceived of as 
(more or less) “bad luck” relating to the fact that a system adapting to statistical 
regularities cannot account for all extreme cases (or “one cannot protect oneself from all 
eventualities”, relating to Moray’s, 2003, discussion on eutactic behaviour). An 
example of this would be when driving straight through an intersection with the right of 
way, where one normally (and for good reasons) assumes that no other road user will 
enter the road. An analysis of intersection crashes in naturalistic data reported in 
Engström et al. (2013) indicated that drivers on a straight path through an intersection 
with the right of way who crashed with a turning vehicle (which typically did not have 
the right of way) often did not slow down or visually scan the intersection, which would 
likely have prevented many of these crashes, even if these drivers were not “at-fault”. In 
terms of predictive processing, this behaviour can be explained in terms of a strong 
(high-precision) prediction, shaped by extensive previous exposure to similar situations, 
that no other road users will appear in the intersection.  
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Figure 8: Accurate model but improbable event. 
 

False certainty  

This category is characterised by the application of a generative model yielding accurate 
predictions with high precision, which, however, fail to match an inherently uncertain 
(i.e., variable, low-precision) environment. Thus, as illustrated in Figure 9, a relatively 
frequent event (e.g., a lead vehicle braking in dense traffic) would come as a surprise to 
a driver with a generative model erroneously predicting a low probability of such 
events.  It should be noted that the only difference to the previous category is in the 
environmental statistics where, in the present case, the precision of the prediction is too 
high, leaving the driver vulnerable to relatively frequent events (and not just extremely 
rare events). Thus, in this case it is the precision estimate that does not match reality (it 
is too high), while the average prediction does match how things normally play out. An 
example of this would be a novice driver following another vehicle deciding to look 
away from the road to send a text message. Due to her limited experience of such 
situations, she may judge that it is unlikely that the lead vehicle will brake in this 
situation while it is in fact relatively likely.  
 

 
Figure 9: False certainty. 
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False uncertainty  
This type of expectation mismatch, illustrated in Figure 10, represents the opposite to 
the previous category: the predictions generated by the model have low precision and 
are thus not trusted by the driver, while the actual traffic environment, and the resulting 
sensory input, is relatively stable and predictable. This may be the case when driving in 
a novel, but yet reliable and predicable, environment. This type of situation often leads 
to a reduction in crash risk since uncertain predictions lead to more cautious behaviour, 
for example in terms of a stronger propensity for epistemic action (e.g., visual scanning) 
to reduce the (overestimated) uncertainty. A classic example of this is the shift from 
left-hand to right-hand traffic in Sweden in 1967, which was expected by many to 
increase crash rate. However, the actual outcome was the opposite, with a significant 
drop in the number of crashes that only after two years returned to the pre-existing level 
(Alexandersson, 1972). In terms of the present framework, this could be understood in 
terms of reduced precision of drivers’ predictions leading to more cautious behaviour, 
thus effectively preventing the three previous types of expectation mismatches (which 
all involved relatively high-precision predictions). However, with extensive exposure to 
right-hand traffic, the Swedish drivers’ generative models eventually adapted, yielding 
predictions with higher precision which, again, left drivers more vulnerable to 
expectation mismatches. 
 

 
Figure 10: False uncertainty. 
 

Countersteering  

Safety functions generating automatic braking and steering interventions in critical 
situations have a strong potential to prevent crashes. While automatic braking is 
becoming a standard feature in modern vehicles, a fundamental problem in the design of 
automatic steering interventions is the phenomenon of countersteering. This has been 
experimentally demonstrated to occur in response to automatic steering interventions 
(Benderius, 2014; Brockmann et al., 2013), and may be explained as due to activation 
of the automatic spinal stretch reflex. When the arm muscles are stretched by the 
steering wheel movement induced by the steering intervention, this is sensed by 
proprioceptors in the muscle (muscle spindles) which activate alpha neurons in the 
spinal cord which, in turn, generate a muscle contraction countering the steering 
intervention (Benderius, 2014). This is clearly an undesired phenomenon since it 
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counteracts the intended purpose of the steering intervention.  

The predictive processing framework offers a natural interpretation of this phenomenon 
which leads to some specific ideas on how it may be mitigated. Recall that action, 
according to predictive processing, is generated by spinal reflexes automatically 
cancelling proprioceptive prediction errors. These prediction errors may be understood 
as the difference between the proprioceptive input (e.g., the muscle state signal from 
muscle spindle) and descending (top-down) proprioceptive predictions from higher 
levels in the brain to the spinal cord (traditionally conceived as action commands). 
When the steering intervention is initiated unexpectedly to the driver, the muscle 
spindle indicates that the muscle has been stretched while the top-down prediction 
suggests that it should remain in its original position, thus generating a prediction error 
that is automatically cancelled by the stretch reflex, producing the countersteering 
movement. 

Based on this, it may be suggested that countersteering may be mitigated if the steering 
action is cued or gradually ramped up so that the steering intervention is already 
accommodated by the top-down proprioceptive prediction once it occurs. In this case, 
the predicted muscle extension will match the actual extension and no prediction error 
will be generated. Thus, the stretch reflex will be disabled and no countersteering will 
occur. However, the proposed framework further suggests that this requires frequent 
exposure to the steering intervention so that the behaviour of the steering intervention is 
learned, and eventually predicted, by the generative model. This may be accomplished 
by a system that generates gradual steering interventions also in less critical situations, 
such as in response to lane deviations (see Abbink et al., 2012, and Abbink, Mulder and 
Boer, 2012, for existing work along these lines). The predictive processing framework 
thus leads to quite specific predictions and design suggestions that could be tested 
experimentally.  
 

Interacting with automated driving functions  

Automated driving (AD) is an increasingly important technology development area 
today in the automotive industry. Some automated functions are already on the market, 
such as adaptive cruise control with lane centering and automated parking, and others 
with higher levels of automation (e.g., cars that drive autonomously in pre-defined 
scenarios or automated truck platoons), are being tested on public roads. A key concept 
used in contemporary discussion on AD is levels of automation (NHTSA, 2013; SAE, 
2014), representing increasingly more advanced forms of automation in terms of the 
degree to which the driver needs to supervise the automation and intervene in situations 
in which the automation is not able to respond appropriately. For example, in SAE 
Level 2 automation, the driver is required to participate in the dynamic driving task by 
monitoring the driving environment and by providing immediate fallback if needed. In 
Level 3, the driver is not required to monitor the driving environment but is expected to 
respond appropriately to a request to intervene. In a Level 4 AD function, responsibility 
for safe operation lies solely with the vehicle, as long as the autonomous driving occurs 
in certain, pre-defined, scenarios (Seppelt and Victor, 2016). 

Key human factors challenges related to AD include the role of the human during 
automated driving, the transfer of control between the AD function and the driver, and 
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the design of human machine interfaces (HMIs) that support system transparency (e.g., 
communicates system limitations and capabilities; Gibson et al., 2016; Seppelt and 
Victor, 2016). Here, we explore how predictive processing may provide a novel 
perspective on these challenges, focusing on three key concepts that are frequently used 
in discussions about human factors challenges for AD: (1) drivers’ mental models, (2) 
trust in automation and (3) being in or out of “the loop”. 

A mental model is a concept commonly used for representing a driver’s understanding 
of an automation function, for example in terms of its different modes of operation and 
limitations. Mismatches between the driver’s mental model and actual system 
functionality have been suggested as a potential cause of road crashes (Seppelt and Lee, 
2015). The predictive processing framework suggests a way to extend the concept of a 
mental model in terms of a hierarchical generative model generating predictions on how 
the actions of an AD function generate sensory input.  

As outlined above, predictive processing suggests that frequent exposure to reliable 
statistical regularities in the driving environment will lead to a gradual attunement of the 
generative model and increasingly automatized performance. This idea may be extended 
to AD; as long as an AD function works reliably and is frequently used, the generative 
model will eventually produce predictions of sensory input resulting from how the 
automation controls the vehicle in response to the environmental state. Thus, with 
learning, the effects of the automation on vehicle control eventually become part of the 
vehicle-environment statistical regularities that the driver becomes attuned to. For 
example, a driver attuned to Adaptive Cruise Control (ACC) will implicitly predict the 
visual (e.g., looming) and kinaesthetic (e.g., perceived deceleration) sensory input that 
is generated by ACC when it slows the vehicle down to maintain a set headway to a 
slower lead vehicle. This implies that, in case of a system failure (e.g., the ACC fails to 
slow down), the driver will respond to sensory prediction error (rather than sensory 
signals per se) in a similar fashion as discussed above for braking reactions in critical 
rear-end situations 

These concepts may be useful for understanding drivers’ failures in interaction with 
imperfect automation. As discussed by Seppelt and Lee (2015), problems may occur if 
the driver’s mental model does not properly account for the functional limitations of the 
automation (e.g., the maximum braking level that the ACC is able to exhibit). The 
present framework extends this notion by suggesting that such failures may be 
understood in terms of limited exposure to situations where the automation approaches 
its functional limitations, thus establishing an inappropriately tuned generative model 
that fails to account for such situations. Based on this, it may be further suggested that, 
for the generative model to become appropriately attuned to the AD function (i.e., 
making accurate predictions with a warranted degree of precision; cf. Figures 7-10), the 
AD function needs to provide transparent feedback on the state of the automation 
(Bennett & Flach, 2011; Flemisch et al., 2015; Seppelt & Lee, 2007). Such feedback, 
which may be provided through ecological displays (Vicente and Rasmussen, 1992), 
then becomes a key part of the statistical regularities of sensory input that the model can 
tune into. If appropriately designed, the human-machine interface will then support the 
development of a generative model that properly accounts for the functional limitations 
of the system, thus correctly predicting what the AD function can and cannot do. 

Trust is another key concept in automation research (e.g., Lee and Moray, 1994; Lee 
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and See, 2004). A key issue here concerns the extent to which operators trust the 
automation more than warranted, what is often referred to as overreliance. As reviewed 
in Lee and See (2004), trust is a complex psychological phenomenon involving both 
analytical and affective components and potentially influenced by a wide range of 
individual, organizational, cultural and environmental factors. A complete account of 
trust is thus clearly beyond the scope of the present paper. Here, we focus on exploring 
some implications of the idea that trust in automation may be viewed in terms of the 
precision associated with the generative model’s predictions regarding (the sensory 
consequences of) AD function operation10. The actions of a reliable automation function 
system will, with exposure and attunement, be predicted by the generative model with 
increasingly higher precision (implying increasingly automatized interaction as the 
driver becomes increasingly attuned to the function). Problems related to overreliance 
may thus occur if the generative model does not accurately predict actual AD operation 
(relating to the case of an inaccurate model discussed above in the context of 
expectancy mismatches, see Figure 7) or if the precision estimates for the model 
predictions on AD function operation do not match the actual variability in function 
performance (corresponding to the case of false certainty; see Figure 9). For example, if 
an active steering function does not work reliably when the road is covered by snow, 
and this condition is rarely encountered, a driver may predict with an unwarranted 
degree of precision that the system will handle this condition. Furthermore, even if the 
predictions and associated precision estimates match actual AD operation, high 
precision (trust) will increase the vulnerability of the driver to (rare) technical failures 
(corresponding to the case of “accurate model but improbable event” discussed above, 
see Figure 8). In this way, one can conceive of different potential “failure modes” of an 
AD function and how they relate to how the driver’s generative model is attuned to the 
function, with respect to both the accuracy and the precision of model predictions.  

A further a key aspect of trust in AD is that a highly trusted automation tends to be 
monitored less frequently (Lee and See, 2004). Based on the present framework, such 
monitoring can be viewed as a form of epistemic action. Recall that the role of 
epistemic (knowledge-seeking) actions such as visual scanning is to increase the 
precision (reduce uncertainty) associated with predictions for pragmatic actions. In this 
case, if the precision of the prediction that the AD function will keep the vehicle safely 
on the road is sufficiently high (i.e., the driver AD function is highly trusted by the 
driver), the monitoring is no longer needed as it will not contribute to the minimization 
of prediction error (just like drivers in the intersection scenario above found it 
unnecessary to scan to the right as hazards typically appeared from the left). In such a 
situation, the driver may decide to give up monitoring (partially or completely), for 
example to be able to engage in other tasks, as further discussed below.               

Lee and See (2004) emphasizes the affective aspects of trust, suggesting that “…trust 
also seems to depend on an affective response to the violation or confirmation of 
implicit expectancies” (p. 61). In terms of predictive processing, such affective 
responses may be understood in terms of interoceptive predictions of emotional signals 
                                                 

10 This idea resonates with some existing definitions of trust from research on interpersonal 
relationships, such as that suggested by Rempel et al., 1985, quoted in Lee and See (2004, 
p. 54): “ expectations related to the subjective probability an individual assigns to the 
occurrence of some set of future events”. 
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(see Pezzulo, 2013; Seth, 2013) associated with exteroceptive predictions of external 
stimuli, such as looming, generated by the AD function. Thus, such embodied inference 
(Pezzulo, 2013) seems to be an key component in a more comprehensive predictive 
processing-based account of trust in automation. 

A third concept, abundant in discussions on AD, is being “in or out of the loop” 
(Endsley and Kiris, 1995; Seppelt and Victor, 2016). For example, being in the loop 
during automated driving generally refers to monitoring the driving environment and 
being aware of the status of the automation. Conversely, driver out-of-the-loop 
unfamiliarity (OOTLUF) has been defined as a decreased ability to detect system errors 
and to intervene and perform the task(s) manually in response to failures (Seppelt and 
Victor, 2016). However, a detailed, mechanistic, account of “the loop” and what it 
means to be “in” or “out” of it is currently lacking. Such an account is sketched below 
based on the PP framework. 

In predictive processing terms, being in the loop for a driving task can be defined as 
being engaged in inference related to that task. Being engaged in inference means 
continuously generating sensory predictions and cancelling prediction errors by means 
of perception and/or action. If prediction errors are not only minimized by updating 
predictions but also by actively cancelled by action (e.g., steering and braking) this 
corresponds to active inference. Importantly, as discussed above, such inference can 
occur at different levels of the driving task (e.g., operational, tactical and strategic; 
Michon, 1985). Driving manually without AD usually entails being in the loop at all 
three levels, where the higher levels generate top-down predictions for the level below, 
as discussed above. However, driving with AD alters this picture. In Level 2 
automation, as mentioned above, the vehicle performs steering and speed/headway 
control while the driver is still expected to continuously monitor the situation and 
quickly resume control if required. In this situation, the driver is no longer engaged in 
active inference but merely in purely perceptual inference, similar to a passenger that 
monitors the road ahead and the operation of the driver. At the operational level, the 
generative model may thus make predictions of how sensory signals (e.g., looming) will 
change due to the operation of the automation. If so, the driver is still engaged in 
inference at the operational level, and thus, according to the proposed definition, still in 
the loop at that level. However, this type of passive inference could be expected to be 
qualitatively different from the full active inference in operation during manual driving 
(whether this is actually the case is an interesting empirical question).  

Alternatively, the driver may choose to just monitor the general situation, in which case 
she is out of the operational loop but remaining in the tactical and strategic control 
loops. As discussed above, the monitoring required during Level 2 driving can be 
viewed as a form of epistemic action with the purpose to reduce uncertainty of 
predictions (in this case related to the drivers’ trust in the AD function). Thus, if the 
driver does not fully trust the automation (or the passenger don’t fully trust the driver), 
she will perceive a need for monitoring to reduce uncertainty. Conversely, if the driver 
has a high degree of confidence in the AD system she may feel less inclined to monitor 
its operation. At very high levels of trust, the driver may find the need for monitoring at 
the operational level unnecessary and thus only engage in more cursory monitoring at 
the tactical level, or even engage in secondary tasks such as reading a newspaper. In the 
latter case, the driver is no longer engaged in inference at the operational and tactical 
levels and can be regarded as being out of the loop at these levels, left only in the 
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strategic loop11. This is clearly a great safety concern given the limited ability of Level 
2 AD systems to handle critical situations. 

In Level 3 automation, the driver may still be engaged in monitoring, but there is no 
requirement to do so. Thus, inference at the operational or tactical levels are at best very 
limited (again depending on the degree of trust in the function). This may explain why it 
takes drivers surprisingly long to resume control from Level 3 automation mode (e.g., 
5-7 seconds, as suggested by Gold et al., 2013); when requested to take over control 
when being out of the operational and tactical loops, the driver first needs to re-establish 
predictions at the operational and tactical level in order to generate prediction errors that 
can be acted upon.   
 

Relation to existing human factors theories and models 
In this section, we review some of the main theoretical approaches in contemporary 
human factors research and discuss how they relate to the predictive processing 
framework.  

Mental models, schemata and the abstraction hierarchy    

As already mentioned, a common approach for conceptualizing driver knowledge (e.g., 
of driving support and automation functions) and expectancy in driving is in terms of 
mental models (e.g., Rouse and Morris, 1985; Seppelt and Lee, 2015). As discussed in 
the context of automated driving functions, the concept of a hierarchical generative 
model may be viewed as a specific form of mental model, representing how sensory 
input is generated by states (or “causes”) in the external world and the own body. A 
closely related construct is schemata (e.g., Arbib, 1995; Engström et al., 2013; 
Theeuwes and Godthelp, 1995). A schema may refer to basic motor actions such as 
“brake”, routine action sequences such as “overtake” or more general tasks such as 
“drive home”, and are often viewed in terms of long-term memory structures 
established through experience and training (Endsley, 1995). Schemata are typically 
viewed as hierarchically organized, where higher-level schemata (e.g., “turn right at T-
junction”) provide context for the lower-level schemata (e.g., “look-left”). Like mental 
models, schemata are hence closely related to the concept of a hierarchical generative 
model, in which individual sub-schemata (e.g., “brake” or “drive home“) would 
correspond to predictions at different levels.  
 
A related framework is the abstraction hierarchy proposed by Rasmussen (1985) which 
represents goal-relevant constraints operating in a work domain at different levels of 
abstraction. Higher levels represent more abstracted, lower resolution properties of a 
domain as compared to the lower, more concrete levels. The levels are linked by 
structural means-ends relations, spanning the gap from functional purpose (at the 
highest level) to material form (at the lowest-level). In order to successfully control a 
process in a specific domain, the operator must embody a hierarchical model of the 
constraints operating at the different levels (Vicente and Rasmussen, 1992). Again, this 
                                                 

11 However, even when engaged in a secondary task, the driver may still to some extent be 
engaged in passive inference in other sensory modalities, for example, by continuously 
predicting somatosensory and proprioceptive input. 



29 
 

resonates well with the predictive processing concept of a hierarchical generative model 
representing how external states or causes (corresponding to constraints in Rasmussen’s 
terms) produce sensory input. In particular, predictive processing offers a specific 
mechanistic proposal for the cognitive mechanisms governing the inference of causal 
relationships represented in the abstraction hierarchy.  

What mainly distinguishes the present account from these more traditional hierarchical 
frameworks is the fundamental role assigned to prediction and the single unifying 
principle of prediction error minimization. In particular, viewing schemata or means-
end relations in the abstraction hierarchy in terms of predictions leverages the concepts 
of inference, precision and model tuning which, as we have seen, yield new insights into 
a range of different driver behaviour phenomena. Predictive processing further offers a 
solid mathematical foundation for hierarchical modelling and is, by contrast to most 
traditional human factors models, firmly based in contemporary neuroscience.  

Automaticity and the skills, rules, knowledge (SRK) taxonomy 

We have already discussed how the predictive processing framework may offer an 
account of learning and the development of automaticity in terms of a gradual tuning of 
the generative model to statistical structures in the environment. This is closely related 
to the skills, rules, knowledge (SRK) taxonomy proposed by Rasmussen (1983). Like 
predictive processing, this framework suggests that, with increasing experience, 
operators become attuned to perceptual features of the environment, leading to a shift 
from (controlled) knowledge-based to (automatized) skill and rule-based performance. 
This leads to the concept of ecological interface design, emphasizing the reciprocity 
between the operator and the work environment (Vicente and Rasmussen, 1992). The 
present framework seems fully in line with these concepts and additionally offers a 
concrete mechanistic account for how operators become attuned to their work 
environment through gradual adjustment of generative model parameters driven by the 
goal to minimize prediction error. A concrete example of this, discussed above, is 
drivers’ attunement to automated driving functions and how this may be supported by 
ecological interfaces properly conveying their functional limitations.     

Situation awareness 

Another very influential theoretical construct in human factors is situation awareness 
(SA). SA was developed to address how an operator (or a team of operators) functions 
in a dynamical environment and is typically described in terms of three levels or phases: 
(1) perceiving and attending to cues in the situation, (2) comprehending the meaning of 
the perceived information and (3) projecting the future state of the situation (Endsley, 
1995).  

SA can thus be seen as representing the current state of knowledge or, alternatively, as a 
mental model of the current situation (Endsley, 1995). This model is enabled by various 
mental processes and knowledge structures in long-term memory, where the latter are 
traditionally conceived of in terms of schemata established through experience and 
training, as discussed above.  

The SA account outlined by Endsley (1995, 2015) has several key ideas in common 
with the present framework. In particular, the proposed mechanism for updating the 
situation model (SA) corresponds closely to (perceptual) inference in predictive 
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processing:  

“The main clue to erroneous SA will occur when a person perceives some new 
piece of data that does not fit with expectations based on his or her internal model. 
When a person’s expectations do not match with what is perceived, this conflict 
can be resolved by adopting a new model, revising the existing model, or changing 
one’s goals and plans to accommodate the new situation classification. If the new 
data can be incorporated into the model, this may merely indicate that a new 
prototypical situation (state of the model) is present that calls up different goals and 
plans accordingly. If the new data cannot easily fit into the existing model, the 
model may be revised. A common problem is whether to continue to revise the 
existing model to account for the new data or choose an alternate model that is 
more appropriate. For the latter to occur, something about the data must flag that a 
different situation is present.” (Endsley, 1995, p. 57) 

 

Moreover, Endsley (1995, p. 44), based on Holland et al. (1986), suggests a mechanism 
for the development of mental models which directly parallels the “bootstrapping” 
account of learning and model tuning outlined above (and in Clark, 2016), where the 
generative model parameters are gradually tuned to minimise prediction errors. 
Endsley’s framework also addresses the confidence level of SA (1995, p. 45), which is 
closely related to the concept of precision in predictive processing. 

However, while the traditional SA framework relies heavily on various traditional 
information processing concepts deriving from the computer metaphor (storage, limited 
capacity, pointers in memory etc.), predictive processing potentially offers a more 
detailed, biologically grounded account of the cognitive mechanisms underlying the key 
SA concepts. Furthermore, while prediction plays a key role in SA, it comprises only 
one out of three key elements in the theory (the other two being perception and 
comprehension). By contrast, in the present framework prediction takes centre stage 
with prediction error minimization as the single unifying principle based on which all 
other cognitive functions can be understood. Hence, “perception” and “information 
integration” emerges as a result of the prediction and the resulting prediction error 
minimization. 

Finally, while SA emphasizes the role of action, the inference mechanism outlined in 
the quote above from Endsley (1995) focuses on passive perceptual inference. The 
active inference concept in the present framework extends this notion to action, thus 
offering a more complete framework for how perception and action are interrelated 
when an operator interacts with a dynamic environment. This also potentially enables a 
closer contact between the SA concept and action-oriented approaches to cognition such 
as active vision (Hayhoe and Ballard, 1995), ecological psychology (Gibson, 1979) and 
embodied cognitive science (Clark, 2013; 2016).  

Predictive processing thus aligns closely with the traditional SA framework at the 
general level and several of the general concepts presented here were already addressed 
in Endsley’s (1995) seminal paper. However, the predictive processing framework 
potentially extends the traditional SA framework in several ways. These include, in 
particular, the view of prediction as primary, the unifying role of prediction error 
minimization and the role of action in fulfilling predictions (active inference). These 
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concepts may potentially offer a more precise and biologically grounded foundation for 
SA and its underlying mechanisms. 

The SEEV model  

SEEV (Salience, Effort, Expectancy, Value) was originally developed for modelling 
visual sampling patterns in aviation (Wickens et al., 2003) but is also frequently used in 
the automotive domain (e.g., Horrey, Wickens and Consalus, 2006). In SEEV, 
expectancy and value are viewed as top-down knowledge-driven factors while salience 
and effort are considered bottom-up factors. Expectancy is defined in terms of 
information content or, more precisely, information bandwidth. The bandwidth of a 
“channel” (e.g., an area of interest in a visual scene) represents the amount of 
information per time unit (bits/s) in that location. A location with a high rate of 
information is expected to be sampled frequently, as empirically supported by the early 
visual occlusion studies by Senders (1963, 1980; see also Kujala et al., 2016). 
Information sampling is also assumed to be driven top-down by value, which represents 
the perceived utility of sampling certain information. The probability that information 
will be observed at a particular location and the value of this information combine in an 
expected value model of scanning, in which both high event frequency and high value 
regions drive sampling rates. 

The basic ideas behind the SEEV model bear a close resemblance to the predictive 
processing account of visual sampling (Friston et al., 2012) which, as described above, 
is also based on information theoretic principles. In particular, the idea that operators 
sample the environment based on expected bandwidth is directly paralleled by the 
present proposal that the key role of visual sampling (or epistemic action in general) is 
to minimize uncertainty, thus minimizing overall prediction error. Indeed, in 
information theoretic terms, prediction error corresponds to surprise, which is 
equivalent to (self-) information (the negative log probability of an outcome; Friston, 
2010). From the general mandate to minimize prediction error, it follows that areas 
should be sampled in proportion to where the expected surprise (i.e., information 
content) is largest, which is also the key notion underlying SEEV. The predictive 
processing framework further suggests that valuable information is simply that which 
minimizes surprise, thus suggesting a unified view of expectation and value that seems 
to sit comfortably with the SEEV notion of expected value.  

What predictive processing offers beyond SEEV is a broader theory for the how visual 
sampling strategies emerge from the single imperative to minimize prediction error. 
While outside the scope of the present paper, a more formal comparison between the 
predictive processing account of visual sampling, SEEV, the related classical work by 
Senders (1964, 1983) and more recent accounts such as Kujala et al. (2016) is clearly an 
interesting topic for future exploration. 
 
Motivational models 
A strong tradition in applied driving research has focused on understanding adaptive 
driver behaviour, in particular behavioural adaptation to safety interventions. This has 
involved the development of a number of influential driver behaviour models, which are 
often referred to as motivational (Ranney, 1994). Motivational driver models typically 
have their roots in cybernetics and control theory, and generally suggest that drivers 
regulate their behaviour (e.g., selected speed) against some criterion, or reference value 
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(although the nature of this reference value has been hotly debated). Examples include 
the risk homeostasis theory (Wilde, 1982), the zero-risk theory (Summala, 1988), the 
threat avoidance model (Fuller, 1984) and the Extended Control Model (Hollnagel, 
Nåbo and Lau, 2003; see Engström and Hollnagel, 2007, for a review). More recently, 
there has been a convergence towards the idea that drivers regulate behaviour based on 
emotions and feelings, building on Damasio’s (1994) concept of somatic markers (e.g., 
Fuller, 2007 Summala, 2007; Vaa, 2007). More specifically, Summala (2007) suggested 
that drivers regulate behaviour in order to avoid feelings of discomfort, thus attempting 
to remain in a subjectively defined comfort zone which defines the minimum accepted 
safety margins adopted (Engström and Ljung Aust, 2011; Ljung Aust and Engström, 
2011).  

While only briefly touched upon above, the predictive processing framework offers a 
range of concepts that could extend these notions toward a more detailed, mechanistic 
account of how driver behaviour is governed by emotions and feelings. In particular, 
this includes the notion that the generative model not only producing predictions in the 
exteroceptive and proprioceptive domains, but also interoceptive predictions on 
expected emotional responses (see Figure 1 and Figure 6). In the predictive processing 
literature, models of interoceptive inference has been developed in particular by Pezzulo 
(2013) and Seth (2013) (see also Pezzulo et al. 2015). This leads to the idea of 
embodied inference (Pezzulo, 2013), suggesting that exteroceptive (e.g., looming) 
predictions become correlated with interoceptive, emotional predictions (e.g. relating to 
discomfort). Applying these ideas to driving may offer a novel perspective on the nature 
and origin of drivers’ comfort zones (Summala, 2007), adaptive driver behaviour as 
well as affective aspects of trust, as briefly discussed above. This clearly constitutes a 
very interesting avenue for further research. 

Ecological psychology and visual guidance 

Finally, predictive processing also fits well with accounts of visually-guided vehicle 
control deriving from ecological psychology (e.g., Gibson, 1979). There is a long-
standing research tradition studying how humans and other animals use optical 
invariants to guide behaviour, including several applications to driving. For example, 
Lee, (1976) showed that controlling braking by keeping the optical variable tau-dot at a 
constant value of -0.5 will lead to a smooth stop just in front of an obstacle. Similarly, 
Land and Lee (1994) showed that steering in a way that keeps the perceived tangent 
point at a constant visual angle will generate a smooth path around a bend and (as 
mentioned above) Wann and Land (2000) showed that, in the absence of a tangent 
point, a smooth turn towards a desired target is generated by fixating the target and 
keeping speed and keeping the visual angular rate constant.  

These types of models dovetail nicely with the present concept of active inference, 
where the key role of action is to actively align sensory input with current predictions, 
thus minimizing prediction errors. Thus, in terms of predictive processing, the use of 
perceptual invariants to guide control amounts to predicting that a certain perceptual 
quantity will remain constant and then acting (e.g., by steering or braking) to minimize 
deviations from this prediction.  

Thus, again, the present account seems fully in line with ecological psychology models, 
but additionally offers a framework for unifying ecological models of perception and 
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action with other, traditionally disparate, cognitive phenomena such as attention and 
learning, based on the fundamental unifying principle of prediction error minimization. 
 

Conclusions 

This paper offered an initial exploration of how predictive processing concepts could be 
applied in the domain of automobile driving. A central general theme that emerges from 
the predictive processing account of driving is how drivers’ expectations are shaped 
gradually by the tuning of an internal generative model to statistical regularities of the 
environment. Such statistical regularities may, for example, include typical movement 
patterns of other road users in a certain type of scenario (e.g., “hazards typically appear 
to the left”) or the operation of driving support and automated driving functions (e.g., 
“the active steering function reliably keeps the vehicle in the lane”). In particular, the 
present account suggests that expectancy “failures” leading to crashes and overreliance 
on automation can both be understood in terms of inappropriate tuning of the generative 
model leading to inaccurate and/or overconfident predictions. This further suggests that 
a key goal in the design of vehicle systems and road infrastructure should be to support 
predictions that are both accurate and associated with precision estimates that match the 
actual variability of the operating environment (i.e., yield predictions with an 
appropriate level of confidence). According to predictive processing, preventing too 
high precision estimates (false certainty) will promote epistemic actions (e.g., increased 
visual scanning, slowing down to increase the time available to sample the environment 
or, in the case of AD, increased monitoring of the road environment) to control 
uncertainty, resulting in more cautious driving behaviour. 

Another general implication is that, at least for experienced, well-attuned drivers, 
driving behaviour can, to a large extent, be predicted from the statistical environmental 
regularities that shaped the behaviour. Concrete examples of this include the finding 
that driver reactions in emergency situations is largely determined by situation 
kinematics (Markkula et al., 2016) and the observation of stereotypical scanning 
patterns in intersections, governed by statistically frequent configurations of traffic 
elements (Räsänen and Summala, 1998).  

There are also several other potential application areas that could not be covered here 
due to space limitations. This includes the understanding of driver distraction and 
inattention (Engström, Monk et al., 2013; Lee, Regan and Young, 2008) as well as the 
development of individual driving styles and behavioural change programs intended to 
promote safer and more efficient driving behaviour (Sagberg et al., 2015).  

As reviewed above, several of the general concepts underlying the present framework, 
such as hierarchical mental models, the interaction between top-down and bottom-up 
processing, the key role of expectation, confidence in expectations and reinforcement 
learning are accounted for by existing human factors frameworks and models such as 
the Abstraction Hierarchy, Situation Awareness and the SEEV model. Thus, predictive 
processing should not be viewed as a radical alternative to these existing models but 
rather as a framework for bringing together different strands of human factors research 
based on the unifying principle of prediction error minimization. Due to the generality 
of this basic underlying principle, predictive processing has been proposed as a unifying 
framework for basic cognitive science (Clark, 2013, 2016) and neuroscience (Friston, 
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2010; Huang, 2008) as well as psychiatry (Friston et al., 2014) and seems possible that 
it could also play a similar future role in applied human factors and the study of driver 
behaviour. In particular, predictive processing may offer a more precise characterization 
of traditional human factors concepts such as (hierarchical) mental models, situation 
awareness, expectancy and learning, supported by a solid mathematical framework and 
grounded in contemporary neuroscience. 

In addition, the predictive processing framework offers a set of specific concepts which 
can be regarded as novel contributions to human factors research. These include in 
particular: 

 
 The extended view of a mental model as a generative model of how sensory input is 

produced by external or bodily states 
 The view of action as the minimization of prediction errors by aligning sensory input 

with the prediction (i.e., “bringing about” the predicted input) 
 The idea that prediction/expectancy is primary and always present (“there is always a 

prediction of something”) 
 The concept of precision and the versatile ways in which it can be used to control 

behaviour 
 The idea of embodied inference (Pezzulo, 2013) enabled by correlations between 

exteroceptive and interceptive (emotional) predictions 

 

The present paper was intended as a first exploration of the application of predictive 
processing to driving and we hope that it will encourage others to apply and further 
develop these ideas. Efforts towards more specific quantitative driver behaviour models 
based on predictive processing concepts are currently underway and will be reported in 
future publications.  
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