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Great Lakes Runoff Intercomparison Project Phase 3:
Lake Erie (GRIP-E)
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Tim Hunter®?; James R. Craig®®; and Alain Pietroniro3*

Abstract: Hydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evapo-
ration, and soil moisture. This study is the third in a sequence of the Great Lakes Runoff Intercomparison Projects. The densely populated
Lake Erie watershed studied here is an important international lake that has experienced recent flooding and shoreline erosion alongside
excessive nutrient loads that have contributed to lake eutrophication. Understanding the sources and pathways of flows is critical to solve
the complex issues facing this watershed. Seventeen hydrologic and land-surface models of different complexity are set up over this domain
using the same meteorological forcings, and their simulated streamflows at 46 calibration and seven independent validation stations are
compared. Results show that: (1) the good performance of Machine Learning models during calibration decreases significantly in validation
due to the limited amount of training data; (2) models calibrated at individual stations perform equally well in validation; and (3) most
distributed models calibrated over the entire domain have problems in simulating urban areas but outperform the other models in validation.
DOI: 10.1061/(ASCE)HE.1943-5584.0002097. This work is made available under the terms of the Creative Commons Attribution 4.0
International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

Hydrologic modeling efforts in the Great Lakes region of North
America are a fundamental component for the understanding
and management of water resources impacting more than 30 million
people in Canada and the United States (USEPA, n.d.). At the larger
scale, these models are used for operational forecasting of Great
Lakes water levels or for evaluating the impacts of climate change.
At the smaller or regional scales, these models can be used for res-
ervoir management, water supply, floodplain mapping, and a multi-
tude of other applications. Multimodel development and careful
model intercomparisons can be a critical part of improving simu-
lation or forecasting skills, as well as capturing the uncertainty in
any future climate assessments (Wada et al. 2013; Warszawski et al.
2014; McSweeney and Jones 2016; Rosenzweig et al. 2017; Frieler
et al. 2017; Huang et al. 2017).

There is a long history of hydrologic model comparison efforts,
many of which are outlined below. The following review of past
hydrologic model intercomparison studies is focused mainly on
studies that (1) compare models in watersheds of at least hundreds
of km? with a sample size of at least 10 watersheds; and (2) include
the participation of multiple independent modeling groups.

The River Forecasting Centers of the National Weather Service
(NWS) in the United States launched a Distributed Model Inter-
Comparison project (DMIP) in the early 2000s to explore the skill
of distributed hydrologic models for river forecasting compared with
the operational, lumped models in place at the NWS at that time. In a
first phase, 12 distributed models set up by 12 international groups
were compared to the lumped Sacramento (Burnash et al. 1973;
Burnash and Singh 1995) model (SAC-SMA) set up by the NWS
Office of Hydrologic Development (Smith et al. 2004) for flood
operations. The effort was initiated to create an organized and con-
trolled experiment to compare streamflow simulations using identi-
cal forcing, verification periods, and modeling points. Reed et al.
(2004) found that the skill of the model operator has a significant
impact on the model performance, and were not able to identify a
model that clearly outperforms other models. Similarly, in a very
recent paper by Menard et al. (2020) on snow-model intercompar-
ison, the skill of the modeler was found to be an overarching deter-
minant in model performance. In the second phase of the DMIP
experiment, DMIP-2 (Smith et al. 2012), data quality and quantity
were improved along with the selection of more evaluation points
and variables beyond traditional streamflow estimates. Fifteen par-
ticipating distributed models and two lumped models (SAC-SMA
and GR4J) were evaluated in DMIP-2. Results showed that the

distributed models outperform lumped models at modeled interior
points of watersheds regarding hourly streamflow. Although not
clearly emphasized in the study, one distributed model was superior
to other models in several aspects analyzed. That model is the
Hydrology Laboratory-Research Distributed Hydrologic Model
(HL-RDHM) set up by the NWS Office of Hydrologic Development,
referred to as the OHD model in their study.

Another relevant study is the Protocol for the Analysis of Land
Surface Models (PALS) for the Land Surface Model Benchmarking
Evaluation Project (PLUMBER) study by Best et al. (2015). This
study focused on land surface rather than traditional hydrologic
models. One novelty of this study was that the complex models
were compared against a baseline of purely data-driven regression
models. The study surprisingly found that these data-driven models
reliably outperformed the complex physically based models regard-
ing simulated sensible and latent heat fluxes, although the reason
for this was not explored.

Another relevant multimodel comparison project is the Model
Parameter Estimation Experiment (MOPEX), which primarily fo-
cused on model calibration techniques for hydrologic models, but
also allowed for hydrologic model comparison. One researcher
noted that “MOPEX workshops have been convened to bring to-
gether interested hydrologists and land surface modelers from all
over world to exchange knowledge and experience” (Duan et al.
2006). One important objective of the second and third MOPEX
workshops was to compare eight hydrologic models over 12 catch-
ments in the southeastern United States. Core findings of Duan et al.
(2006) are that model calibration has a huge potential to improve
model performance and that different models represent hydrologic
processes differently, hence suggesting that model ensembles may
be a way to improve predictions. This set of catchments has since
been used as a benchmark set of catchments for many further stud-
ies (Kavetski and Clark 2010; Herman 2012; Evin et al. 2014,
Cuntz et al. 2016; McInerney et al. 2017; Spieler et al. 2020).

A more recent intercomparison study by de Boer-Euser et al.
(2017) focused on the evaluation of multiple models by showing
that, although they perform similarly for the entire flow regime,
they show clear differences during specific events. In this study,
a blind validation was performed to test the models’ transferability
in space and time. For these experiments, the modelers were given
only forcing data but no discharge observations. The study found
that the 11 mostly lumped models performed similarly based on
general metrics such as the Nash—Sutcliffe efficiency (NSE). Sig-
nificant differences in performance could only be diagnosed with a
closer look at predictions on an event-by-event basis.
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As these previous studies have shown, model intercomparisons
can help to understand the differences between models. They can
identify locations where some models outperform others, and thus
they learn from each other. Model intercomparison projects (MIPs)
are usually time-intensive efforts that can be quite challenging be-
cause of the wide range of modeling approaches, especially in hy-
drology. Such differences arise from forcing, basin segmentation,
and physical detail differences in the modeling approach. Aggre-
gation or regridding of input forcing data are model specific, with
some models requiring many more surface variables. There are also
variations in the use of geophysical data—most conceptualized
models might not use geophysical data at all (e.g., GR4J, Perrin
et al. 2003), while more physically based models classify soil and
land cover types (e.g., VIC, Liang et al. 1994; Liang 2003) and
others might make direct use of gridded soil and land cover maps
at their native resolution (e.g., mHM, Samaniego et al. 2010;
Kumar et al. 2013).

After addressing the time-consuming nature and the need for
expert knowledge required to set up several models over the same
domain, one must then decide which model outputs to compare. In
hydrologic models, streamflow is the fundamental and most impor-
tant and common output variable because many other output var-
iables (e.g., soluble nutrients) depend on the accurate simulation of
streamflow. Note that the streamflow at a basin’s outlet is the in-
tegration of all hydrological processes within the basin. Other
hydrologic variables, such as evaporation, soil moisture, and snow
depth, are typically measured at the point scale, but often simulated
at a variety of spatial and temporal scales within each model, making
intercomparison difficult. Moreover, these state variables may or
may not be explicitly simulated in some conceptual or Machine
Learning models. Last, decisions about model evaluation metrics
and calibration strategies need to be made. Several of these decisions
are dependent on the region and the research questions in place.

International collaborators conducted a sequence of recent model
intercomparison studies in subregions of the Great Lakes, called the
Great Lakes Runoff Model Intercomparison Project (GRIP). The se-
quence started in 2014 with Lake Michigan (GRIP-M), which is
entirely located in the United States (Fry et al. 2014). The intercom-
parison was performed for five models ranging from lumped to dis-
tributed physical models. The simulated runoff was compared at 20
stations, while the models used different model inputs and forcing. In
2017, a study was performed for the Lake Ontario watershed (GRIP-
O) located on both sides of the Canada-US border (Gaborit et al.
2017a). Two lumped models were compared using two different pre-
cipitation forcings, resulting in very satisfactory simulation perfor-
mances independent of model and forcing used. This was even
true when using the simple area-ratio method to extrapolate mea-
sured flows to the entire watershed including ungauged locations.
Gaborit et al. (2017b) extended the set of models to three distributed
models (GEM-Hydro, MESH-CLASS, and WATFLOOD) setup
over Lake Ontario, similar to GRIP-O. The models are forced with
the same meteorologic variables and geophysical dataset. They share
the same calibration algorithm and objective function. The study
shows that GEM-Hydro is competitive with MESH and WAT-
FLOOD regarding streamflow.

This sequence of GRIP model intercomparisons is extended in
this study to Lake Erie, which is the shallowest of the Great Lakes.
Lake Erie is prone to algae blooms with toxic concentration
(Michalak et al. 2013; Schmale et al. 2019). The Lake Erie watershed
is significantly affected by urban and agricultural runoff such as
overfishing, pollution, and eutrophication (Thompson et al. 2019;
Ho and Michalak 2017; Dolan and McGunagle 2005) as well as re-
cord high water levels resulting in lakeshore flooding, erosion, and
record high outflows to Lake Ontario (IJC 2019a, b; USACE 2020).
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The Lake Erie watershed is, however, home to about one-third of the
population of the entire Great Lakes basin. Approximately 12 million
people live in 17 metropolitan areas such as metro Detroit (MI),
Cleveland (OH), Toledo (OH), Buffalo (NY), and ondon (ON).

There is significant interest among researchers and operational
modelers to have various research and operational models assessed
for agility and adequacy across the watershed, as demonstrated by
the number of operational and research groups (14) agreeing to par-
ticipate in the intercomparison. The goals of this study are to assess
if models can be identified that outperform others, and if there are
locations in the watershed that cannot be modeled reliably; further-
more, a third goal is to evaluate differences between modeling
agencies and model classification, such as comparing lumped and
distributed models against data-driven models. It is worth noting that
previous model intercomparison initiatives in hydrology (except
PLUMBER) have largely focused on investigating process-based
models (conceptual or physically based) but did not include data-
driven models as we did in this study.

In this study, we compared three distinct groups of models,
with 17 models in total. These models comprise two data-driven
systems serving as baseline benchmarks, seven lumped and lo-
cally calibrated, and eight distributed and globally calibrated
models. The models are configured and implemented by a group
of 33 international collaborators over the Lake Erie watershed us-
ing data derived from the same gridded forcing inputs and ob-
served streamflow as the calibration target. These models were
evaluated at 46 calibration sites, and seven validation sites were
tested in a blind validation similar to de Boer-Euser et al. (2017).
The setup used in this study was intended to be a living database,
making it easy to add additional models for evaluation if future
model revisions lead to more accurate streamflow simulations.
The study informs how to design and then formulate research
questions for a follow-up model intercomparison over the entire
Great Lakes (GRIP-GL) similar to the DMIP and DMIP-2 ap-
proach. GRIP-E is also meant to identify a subset of higher quality
models for inclusion in the future GRIP-GL study.

Materials and Methods

This section will introduce the major study organization: the study
domain; the comparison of the two objectives regarding the mod-
els; and the streamflow gauging stations at which the models are
compared. The participating models will then be briefly introduced,
while the more detailed model descriptions are provided in the Sup-
plemental Materials. Following this, the meteorologic forcing and
geophysical datasets will be introduced Last, the model comparison
procedure will be explained.

Study Organization and Decision Making

This study represents a significant multiyear effort requiring the
collaboration of more than 30 researchers from 20 organizations.
Prior to inviting teams to participate in the study, the project leads
made three key study design decisions: (1) participating teams
would be forced to utilize exactly the same forcing data; (2) the
project datasets and model outputs would be archived in a way that
this study could serve as a living intercomparison benchmark; and
(3) all other study design decisions would be made by consensus by
all collaborators in the project. This required participants to agree to
monthly meetings, and these meetings continued over a period of
2 years. In addition, as the final study design matured, we contin-
ued to advertise open participation widely and brought in several
new participating teams, even into the second year of the project.
These key decisions and our collaborative approach to study design
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created buy-in and trust, and helped motivate participating teams
(almost all of which had no explicit funding to participate) to stay
involved.

Modeling Domain

The modeling domain for Lake Erie is specified by the Great Lakes
Aquatic Habitat Framework (GLAHF 2016) (Wang et al. 2015)
(Fig. 1). The total area of the local Lake Erie watershed is
103,666 km?, of which 76,352 km? is the land surface draining into
the lake. The shapefile of the modeling domain and subwatersheds
are available in the folder “shapefiles” on the GitHub associated with
this publication (see Data Availability Statement for URL).

The average elevation along the shoreline is 132 m, while the
highest elevation in the local Lake Erie watershed is 697 m south of
Buffalo (eastern-most corner of watershed), making this basin rel-
atively low relief. The mean elevation of the study area is 238 m
based on the 15 arcsec (/=500 m) resolved NASA’s shuttle radar
topography mission (SRTM)-conditioned HydroSHEDS digital
elevation map (Lehner et al. 2008). Besides water (25.6%), the study
area is primarily cropland (51.3%), savannas (e.g., 10%—60% tree
cover with canopy >2m, 12.2%), forest (2.7%), and urban areas
(5.9%). The largest urban areas are metro Detroit (MI), Cleveland
(OH), Toledo (OH), Buffalo (NY), and London (ON). These esti-
mates were derived using the MODIS/Terra+Aqua Land Cover
Type Yearly L3 Global 500m SIN Grid V006 (MCD12Q1_006)
provided by the USGS (Friedl and Sulla-Menashe 2019). The main
soil classes are heavy clay (15.7%) mostly north of Lake Erie, some
patches of silt loam (4.9%) also north of the lake, and a patch of silty
clay (2.8%) northwest of the lake. Everywhere else, the soil is
predominately silt (50.0%) or covered with waterbodies (26.6%).
These estimates were derived using the Harmonized World Soil
Database v1.2.

Objectives of Model Intercomparison

This study focused on two different objectives to compare the mod-
els: (1) model performance in absence of human impacts; and
(2) model performance and reliability for simulating lake water
budgets. The first objective is regarded to be an easier task for
hydrologic models when nonnatural impacts, such as reservoir op-
erations, urban sealed areas, and irrigation do not need to be con-
sidered. The second objective was selected to evaluate the models’
performance in generating reliable inflows to the lake to capture the
important requirements of understanding the lake water budget.
Participating groups were given the option of contributing model
results for one or both of these objectives.

Streamflow Gauging Stations

The streamflow gauging stations were selected based on institution-
ally important streamflow gauge stations from both NOAA-GLERL
(Hunter, personal communication, 2018) and Environment and Cli-
mate Change Canada (Seglenieks, personal communication, 2018)
and have been used in previous studies (Haghnegahdar 2015). From
this proposed set of stations, only stations with drainage areas above
200 km? were selected to avoid catchments with flashy behavior. To
classify regulation in their databases, the Water Survey Canada
(WSC) and USGS labels of nonregulated/regulated and reference/
nonreference were used to group stations. Only stations with tag non-
regulated and reference were selected for objective 1. For the second
objective, the most downstream stations of the set were selected re-
gardless of whether they are regulated or not. The lower limit of a
200-km? drainage area was also applied to objective 2. The data were
then collected from WSC and USGS and formatted into NetCDF
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Fig. 1. (Color) The subbasins used in this study for (a) objective 1
(low-human impact watersheds); and (b) objective 2 (most downstream
gauges) are highlighted with their colored delineated shape. Blue
shapes indicate subbasins used for calibration and red shapes indicate
validation basins. The Lake Erie watershed is shown as reference as a
light grey shaded area. (c) The 15-km gridded forcing data are shown
for one point in time (January 1, 2012. 6:00 p.m. UTC). (d) Some mod-
els processed the gridded forcings into, for example, lumped forcings
per subbasin.

including unit conversion to (m3s~") for USGS stations that are re-
ported in imperial units (ft’s~!). The data are available in the folders,
“data/objective_1" and “data/objective_2” on the GitHub associated
with this publication (see Data Availability Statement for URL). In
total, 28 stations were used for objective 1 and 31 stations for ob-
jective 2, while 13 appear in both objectives because they are most
downstream and of low human impact. A detailed list of these
gauges, including their drainage areas and locations, can be found
in the Supplemental Materials (Table S1). The delineated subwater-
sheds draining to the selected stations are shown in Figs. 1(a and b)
for objectives 1 and 2, respectively. An additional set of seven
streamflow gauge stations was used for spatial validation. Please
note that there was no temporal validation performed in this study
due to the short period of available meteorologic forcings. All seven
stations have a drainage area larger than 200 km? and are not sep-
arated into objective 1 or objective 2 stations, but rather were used to
evaluate both objectives. Based on results obtained during calibra-
tion, an improved quality check in selecting these validation stations
was applied. All stations were visually inspected and stations in
highly urbanized areas were discarded.

Participating Models

The models participating can be grouped into three groups of ap-
proaches: Machine Learning models; models that are calibrated for
each individual subwatershed; and models that are calibrated for
the entire domain.The individual models in each group are briefly
described, respectively, in the following subsections, and a much
more comprehensive description of the specific model setups
and details about the calibration can be found in the Supplemental
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Table 1. List of participating models specifying coauthors responsible for model setups, calibration, and runs

Model Lead Calibration Temporal Spatial
Name Modeler(s) Strategy Resolution Resolution
Machine Learning models:
ML-LSTM Gauch & Lin Global Daily Subwatersheds (46)
ML-XGBoost Gauch & Lin Global Daily Subwatersheds (46)
Hydrologic models with calibration of each gauge individually (local calibration):
LBRM Fry & Bradley Local Daily Subwatersheds (28)
GR4J-1p Shen & Tolson Local Daily Subwatersheds (46)
GR4J-sd Shen & Tolson Local Daily Subwatersheds (154 obj. 1; 466 obj. 2)
HYMOD2-DS Roy & Wi Local Daily Subwatersheds
(each containing multiple cells of 15 km)
SWAT-EPA Ni & Yuan Local Daily HRU
SWAT-Guelph Shrestha & Daggupati Local Daily HRU
mHM-Waterloo McLeod, Kumar, & Basu Local Hourly Gridded: 0.125°

Hydrologic and land-surface models with calibration of entire domain (global calibration):

mHM-UFZ Rakovec, Samaniego, & Attinger Global
HYPE Awoye & Stadnyk Global
VIC Shen & Tolson Global
VIC-GRU Gharari Global
GEM-Hydro Gaborit Global
MESH-SVS Gaborit & Princz Global
MESH-CLASS Haghnegahdar, Elshamy, & Princz Global
WATFLOOD Seglenieks & Temgoua Global

LSS 30 min; Rout. 30-600 s

Hourly Gridded: 0.125°

Daily Subwatersheds (644)
Hourly Gridded: tiles (~1,390)
Hourly GRUs (~2,380)

LSS 5 min; Rout. 30-600 s
LSS 5 min; Rout. 30-600 s

Gridded: LSS 10 km; Rout. 1 km
Gridded: LSS 10 km;

Rout. 10 km (calib) and 1 km (final run)
Gridded: LSS 10 km; Rout. 1 km

Hourly Gridded: 10 km (calib); 1 km (final run)

Note: Models were either calibrated for each individual gauging station (local) or had a global setup for all gauges or gauges of one objective. Further, the
temporal and spatial resolution for each model was specified. The models were separated into three groups (see italic captions in table): machine learning (ML)
models, hydrologic models that are calibrated at each gauge, and models that have a global setup. The datasets used to setup the models are listed in Table 2.
A more detailed specification, including version numbers and forcing data preparation, is available in the “Model_setups_GRIP.xIsx” on the GitHub
associated with this publication (see Data Availability Statement for URL). Please be aware that different resolutions might be used for the land-surface

scheme (LSS) and the routing component (Rout.).

Materials. A list of all models including the leading modelers, cal-
ibration strategy, and spatiotemporal resolution can be found in
Table 1. A much more detailed version of this table, including
details on data preparation, can be found online in the “Model_
setups_GRIP.xIsx” on the GitHub associated with this publication
(see Data Availability Statement for URL).

Note that the decision was made that all participating modeling
teams would be free to decide how to calibrate their models. Most
were calibrated automatically. Some were calibrated stepwise and
in a combination of manual and automatic calibration. It was agreed
that unifying the calibration methods would not present a fair
comparison, given the range in complexity and type of models.
Details about the parameters calibrated, calibration budgets, and
algorithms and strategies can be found in the Supplemental
Materials.

Machine Learning Models

Two types of data-driven models were used in this study: gradient-
boosted regression tree (GBRT) framework XGBoost (Chen and
Guestrin 2016) and long short-term memory (LSTM) architec-
ture (Hochreiter and Schmidhuber 1997). The models are called
ML-XGBoost and ML-LSTM in this study. The models were
trained for the entire domain corresponding to a global calibration
similar to the models discussed in the Models Calibrated for Entire
Domain: Global Calibration section. The global setup allowed a
seamless computation of the spatial validation results. Objectives
1 and 2 streamflow gauging stations were handled together, mean-
ing that the models were trained with all 46 stations together lead-
ing to a single final model setup. The Machine Learning models
were built and fitted to data just like the traditional hydrologic

© ASCE

05021020-5

models in that streamflow before day ¢ is not considered an inde-
pendent variable to predict streamflow on day 7.

Models Calibrated for Individual Subbasins: Local
Calibration

Seven models were set up and calibrated for each of the 46 stream-
flow gauging station subwatersheds. These models range from con-
ceptual lumped systems to gridded semidistributed approaches;
however, they were all calibrated individually for each specific
subwatershed.

Participating teams each decided independently that locally cali-
brated models are either transferred to validation basins using
proximate donor basins and an area-ratio method (Fry et al. 2014)
or the nearest-neighbor approach. Details on which donor station
was used to derive the estimate of each validation station can be
found in the README files for each of the models described
in this section (e.g., “data/objective_1/lake-erie/validation/model/
HYMOD2-DS/README.md” on the on the GitHub associated
with this publication).

The large basin runoff model (LBRM) was described in Croley
(1983), with recent modifications described in Gronewold et al.
(2017). LBRM is a lumped conceptual model that propagates daily
precipitation and temperature into subbasin runoff. LBRM is the
only rainfall-runoff model that is used operationally to produce
forecasts of runoff for use in water-level forecasts on a seasonal
to interannual basis. It is set up and run by the USACE—-Detroit
District. Hence, the model is discretized into the 29 subwatersheds
important for the USACE. Because the primary application of
LBRM is simulating total runoff contribution to the Great Lakes,
calibration conventionally uses area-ratio estimates of runoff for
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each operational subbasin of interest (which are defined by outlets
typically downstream of gauging stations) as observations, rather
than using streamflow gauge data directly. This approach was used
in the current study. In reality, some of the project validation gauges
may have been incorporated to the area-ratio estimates used for cal-
ibration. As a result, information from those validation gauges may
be contained within the calibration dataset. The results for LBRM
at the validation stations are, hence, not considered in the results
and discussion (although they are shown for completeness).

The GRA4J rainfall-runoff model is a parsimonious lumped
model with four parameters and is usually operated at a daily scale
(Perrin et al. 2003). The original four-parameter GR4J model is
coupled with the two-parameter CemaNeige snow module (Valéry
et al. 2014). The GR4J models are implemented in the Raven
hydrologic modeling framework (Craig et al. 2020). The model
is set up in two different modes: a fully lumped version where each
of the 46 subwatersheds are handled as one production storage, and
a semidistributed version where each subwatershed is discretized
into subunits that are then routed to the outlet. In this study, these
models are called GR4J-Raven-lp and GR4J-Raven-sd, respec-
tively. The nearest-neighbor method is used to derive the stream-
flow time series for the validation stations.

HYMOD (Boyle et al. 2000) is a conceptual hydrologic model
for catchment-scale simulation of rainfall-runoff processes. In this
study, we used a modified version of the original HYMOD model,
the new HYMOD2 (Roy et al. 2017) in a distributed setup (DS),
named HYMOD2-DS. The 12 parameters of the model were cali-
brated for each subwatershed independently and validation esti-
mates were derived using the nearest-neighbor method.

The soil and water assessment tool (SWAT) model is a semidis-
tributed process-based hydrologic and water quality model consid-
ering the physical characteristics of the watershed including surface
elevation, soil type, land use, and factors affecting water routing
within the watershed (Arnold et al. 1993; Neitsch et al. 2011). Two
setups of SWAT contriubted to this study: The first one is set up by
USEPA and will be referred to as SWAT-EPA herein. The second
one, SWAT-Guelph, is set up by the University of Guelph. Due to
personnel adjustments at USEPA during the course of this project,
SWAT-EPA only contributed a setup for objective 1 in calibration
mode, but was not able to provide objective 2 calibration results
and any validation results. The validation results for SWAT-Guelph
are derived using the area-ratio method.

The mesoscale hydrologic model (mHM) (Samaniego et al.
2010; Kumar et al. 2013) is a distributed hydrologic model that
uses grid cells as a primary hydrologic unit and accounts for a
variety of hydrologic processes including canopy interception,
root-zone soil moisture, infiltration, evapotranspiration, and runoff
generation, as well as river flows along the stream network (Thober
et al. 2019). A unique feature of mHM is its novel multiscale
parameter regionalization (MPR) scheme to account for the subgrid
variability of basin physical properties that allows for the seamless
predictions of water fluxes and storages at different spatial resolu-
tions and ungauged locations (Rakovec et al. 2016; Samaniego
et al. 2017). The key parts of the MPR scheme are (1) utilization
of transfer functions to translate high-resolution spatial data into
high-resolution model parameters; and (2) upscaling of high-
resolution model parameters to the model spatial scale. For this
study, mHM was applied to simulate the water balance only, but the
model is capable of simulating land-surface temperature that is rel-
evant for the energy balance calculations (Zink et al. 2018). It should
be noted that two versions of mHM were setup independently by two
different participating teams in this study. The first version is a lo-
cally calibrated setup leading to 46 optimal mHM setups, one for
each of the 46 subwatersheds. The nearest-neighbor method was
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then used to derive estimates for the validation stations—this version
will be called mHM-Waterloo in the following. The second setup,
named mHM-UFZ, is the global version of mHM and will be ex-
plained briefly in the next section.

Models Calibrated for Entire Domain:

Global Calibration

The third group of modeling approaches are those where models
are calibrated for the entire domain, and hence provide one final
model setup after calibration, allowing for a seamless derivation
of streamflow time series at any point within the study domain.
Almost all models were calibrated using using the complete set
of 46 gauging stations regardless of the objective (low human im-
pact versus most downstream gauges), except for two models (VIC
and mHM-UFZ), which were calibrated once with only gauges of
objective 1 and a second time with only gauges of objective 2, lead-
ing to two final model setups. A brief description of each model is
provided below.

The globally calibrated version of the mHM (Samaniego et al.
2010; Kumar et al. 2013) is the mHM-UFZ, set up by UFZ Leipzig.
The mHM-UFZ model is the same as the one used for the local
calibration (see last paragraph in previous section), but is globally
calibrated once for objective 1 stations and once for objective 2
stations. The setup also used different input datasets for a digital
elevation map (DEM), soil, and landcover (Table 2) than the locally
calibrated version (mHM-Waterloo).

The hydrological predictions for the environment (HYPE)
model is an operational hydrologic model developed at the Swed-
ish Meteorological and Hydrological Institute. HYPE includes
hydrologic processes such as snow/ice accumulation and melt,
evapotranspiration, soil moisture, frozen soil infiltration, ground-
water movement and aquifer recharge, surface-water routing
through rivers and lakes, and human perturbations through diver-
sion, reservoirs, regulation, irrigation, and water abstractions
(Lindstrom et al. 2010).

The variable infiltration vapacity (VIC) model is a macroscale
distributed hydrologic model that balances both the water and sur-
face energy budgets (Liang et al. 1994; Liang 2003). VIC simulates
land surface-atmospheric fluxes of moisture and energy such as
evapotranspiration, surface runoff, baseflow, radiative fluxes, tur-
bulent fluxes of transport, and sensible heat within the grid-cell.
The gridded runoff components, comprising surface runoff and
baseflow, are then routed to the basin outlet. VIC was represented
twice in this study—once in its native setup using grid-cells to dis-
cretize watersheds, and in a second, independent setup using the
concept of grouped response units (GRUs) (Gharari et al. 2020).
The model will hence be called VIC-GRU. VIC was calibrated
twice—once with only objective 1 stations and once with only ob-
jective 2 stations—while VIC-GRU used all stations and provided
only one final, calibrated setup.

The last four models described below (GEM-Hydro, MESH-
SVS, MESH-CLASS, WATFLOOD) are closely related in that they
all share the same preprocessed model input data and a similar
basin segmentation approach.

GEM-Hydro is a physically based, distributed hydrologic model
developed at Environment and Climate Change Canada (ECCC). It
relies on GEM-Surf (Bernier et al. 2011) to represent five different
surface tiles (glaciers, water, ice over water, urban, and land). The land
tile is represented with the SVS (soil, vegetation, and snow) hydro-
logic land surface scheme (HLSS) (Alavi et al. 2016; Husain et al.
2016). GEM-Hydro also relies on WATROUTE (Kouwen 2010), a
1D hydraulic model, to perform 2D channel and reservoir routing.
See Gaborit et al. (2017b) for more information on GEM-Hydro.

J. Hydrol. Eng.

J. Hydrol. Eng., 2021, 26(9): 05021020



308V ©

£-020}2c0S0

"Buz "joipAH

Table 2. Geophysical datasets used to set up models, including their source and native resolution

ML- ML- GR4J- GR4J- HYMOD2- SWAT- SWAT- mHM- mHM- VIC- GEM- MESH- MESH-
Name Resolution Src LSTM XGBoost LBRM Raven-Ip Raven-sd DS EPA  Guelph Waterloo UFZ HYPE VIC GRU Hydro SVS CLASS WATFLOOD

Digital elevation model (DEM):

HydroSHEDS 3in. ~90 m [1]
HydroSHEDS 15in.~500 m  [1]
HydroSHEDS 30 in. &~ 1 km [1] x* x?
Printed topo map Similar to HUC8 —
Global multiresolution 7.5in.~250 m [2]
terrain elevation data
(GMTED; 2010)
USGS GTOPO30 (1996) 1 km [3] x?
Soil database:
FAO HWSD vl1.2 30 in. ~ 1 km [4]
GSDE 30 in. ~ 1 km [5] X X
SoilGrids 250 m [6]
SSURGO (US) 1:12,000 [7]
STATSGO2 (US) 1:250,000 [7]
SLC v3.2 (CA) 1:1 million [8]
Landcover:
MODIS MCDI12ql v6 500 m 9]
NALCMS 2005 250 m [10]
ESA-CCI LC 2015 300 m [11] X X
ESA-CCI GlobCover 0.002778° ~ 300 m [12] X
2005-06 v2.2
ESA-CCI GlobCover 0.002778° ~ 300 m [12] X X X
2009 v2.3
USDA Croplayer 30 m [13] X
database (CDL) 2010
(US)
Others:
Thickness of soil, 30in.~ 1 km  [14] X
regolith, and sedim.
deposit layers
Groundwater table depth 30in.~ 1 km  [15] X
Canadian national 1:50,000 or better [16] x¢ x¢ x¢
hydrology network
(NHN)
National hydrography Up to 1:24,000 [17] x© x© x©

dataset of the United
States (NHD)
Global depth to bedrock 250 m [18] X

Sources: [1] (HydroSHEDS 2021), [2] (USGS 2010), [3] (USGS 2018), [4] (FAO 2008), [5] (Shangguan et al. 2008), [6] (SoilGrids 2020), [7] (USDA, n.d.), [8] (Agriculture and Agri-Food Canada 2010), [9]
(USGS 2019), [10] (CEC 2010), [11] (ESA 2017), [12] (ESA 2005), [13] (USDA 2021), [14] (ORNL and DAAC 2016), [15] (USC 2013), [16] (Natural Resources Canada 2020), [17] (USGS 2021), and [18]
(Shangguan et al. 2017).

Note: The datasets might have been postprocessed before being used for individual models. These details can be found online in the “Model_setups_GRIP.xlsx” on the GitHub associated with this publication (see
Data Availability Statement for URL). All models used the same meteorologic forcings (Table 3).

“Dataset used for delineation and routing.

"Dataset used for surface/soil slope computation.

“Dataset used for computation of drainage density (km/km?).
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MESH (modélisation environnementale communautaire—surface
and hydrology) is a complimentary community hydrologic model-
ing platform maintained by ECCC (Pietroniro et al. 2007). The
MESH framework includes SVS among its HLSSs, as well as
the Canadian LAnd Surface Scheme (CLASS) (Verseghy 2000),
which is a physically based land surface scheme requiring several
forcing data and simulates vertical energy and water fluxes for veg-
etation, soil, and snow. The two models are referred to as MESH-
SVS and MESH-CLASS in this study. MESH uses a grid-based
modeling system and accounts for subgrid heterogeneity using
the GRU concept from WATFLOOD (Kouwen et al. 1993). GRUs
aggregate subgrid areas by common attributes (e.g., soil and veg-
etation characteristics) and facilitate parameter transferability in
space. Like GEM-Hydro, MESH also uses WATROUTE (Kouwen
2010) for channel and reservoir routing. MESH-SVS was used to
calibrate GEM-Hydro: MESH-SVS was calibrated first and the SVS
parameters were transferred to GEM-Hydro. MESH-CLASS partic-
ipants inadvertently used two of the stations that are later used for
validation during calibration.

The WATFLOOD model is a partially physically based, distrib-
uted hydrologic model (Kouwen 1988). The hydrologic processes
modeled in WATFLOOD include, but are not limited to, intercep-
tion, infiltration, evaporation, snow accumulation, interflow, re-
charge, baseflow, and overland and channel routing. The most
important concept of WATFLOOD is the GRU approach, as de-
scribed above for MESH. The runoff response from each unit with
an individual GRU is calculated and routed downstream (Cranmer
et al. 2001).

Meteorologic Forcing Dataset

One key point of this study is that all participating models had to
use the same forcing dataset, here the Regional Deterministic Re-
analysis System version 1 (RDRS-v1).

The RDRS dataset is a preliminary sample of an atmospheric
reforecast and precipitation/ land-surface reanalysis dataset that
has recently been developed and released by ECCC (Gasset and
Fortin 2017; Gasset et al., forthcoming). The data had previously
been provided to this project before its public release. The dataset
was chosen because of its high spatial and temporal resolution,
and the availability of all variables required to set up hydrologic and

Table 3. Variables available in the reanalysis dataset, RDRS-v1

land-surface models. A full list of variables, including units and vertical
level, can be found in Table 3. The table also contains the information
on which model used which variable. The data are available in CaSPAr
(CaSPAr 2017; Mai et al. 2020).

This dataset was obtained from short-term (6-h to 18-h lead time)
mesoscale (15-km) integrations of the global environmental multi-
scale (GEM) atmospheric model coupled to the Canadian Land Data
Assimilation System (CaLDAS) and to the Canadian Precipitation
Analysis (CaPA), launched every 12 h from initial atmospheric con-
ditions provided by the ERA-Interim reanalysis (Gasset et al.,
forthcoming). A technical report is available (Gasset et al. 2020).

The RDRS-v1 dataset covers North America with an approxi-
mate 15-km by 15-km grid resolution. The hourly dataset is avail-
able for January 2010 to December 2014. The entire dataset was
used for calibration (2010 used for warm-up). No temporal valida-
tion was performed in this study due to the short period of available
forcings; instead, a spatial validation was applied (see the section
on streamflow gauging stations). The forcing dataset was prepro-
cessed during the GRIP-E project by cropping the full dataset to the
domain of the Lake Erie watershed [Fig. 1(c)]. The forcing data
were postprocessed for the individual models—for example, some
models required lumped forcings [Fig. 1(d)] or needed the data to
be aggregated to another spatial or temporal resolution. The spatial
and temporal resolutions of each model can be found in Table 1.
Further details on forcing data processing, like unit conversions,
can be found online in the “Model_setups_GRIP.xlsx” on the
GitHub associated with this publication (see Data Availability
Statement for URL).

Geophysical Datasets

Besides the meteorologic forcings, most model setups required ad-
ditional geophysical datasets such as a DEM, soil, and landcover
information. Although we tried to unify these datasets across all
participating models, it was found infeasible and would have ex-
cluded too many models. Hence, in this study, the choice of geo-
physical datasets was made by the individual modelers. The
datasets used are listed in Table 2, specifying which model used
which dataset. Please note that some models used additional data-
sets besides DEM, soil, and landcover for other purposes, for ex-
ample, to specify the subsurface. These datasets are listed under

Variable Abbreviation Long name Unit Level Used by

Precipitation rate PRO Quantity of precipitation (m) SFC All models

Air temperature TT Air temperature °C) 40 m  All models

Inc. shortwave rad. FB Downward solar flux W/ m?) SFC SWAT-EPA, SWAT-Guelph, VIC, VIC-GRU,
GEM-Hydro, MESH-SVS, MESH-CLASS

Inc. longwave rad. FI Surf. inc. infrared flux (W/m?) SFC VIC, VIC-GRU, GEM-Hydro,
MESH-SVS, MESH-CLASS

Atmospheric pressure PO Surface pressure (mbar) SFC SWAT-EPA, VIC, VIC-GRU, GEM-Hydro,
MESH-SVS, MESH-CLASS

Specific humidity HU Specific humidity (kg/kg) 40 m  SWAT-EPA, SWAT-Guelph, VIC, VIC-GRU,
GEM-Hydro, MESH-SVS, MESH-CLASS

Wind components Uy, VV U/V-comp. of wind (along grid X/Y) (knots) 40 m GEM-Hydro

Corr. wind components UuC, VvC U/V-comp. of wind (knots) 40 m No model

(along W-E/S-N direction)

Wind speed uvC Wind modulus (knots) 40 m SWAT-EPA, SWAT-Guelph, VIC, VIC-GRU,
MESH-SVS, MESH-CLASS

Wind direction WDC Meteorol. wind direction (degree) 40 m No model

Note: The forcings are either available at surface (SFC) or 40-m height. The average spatial resolution is 15 km, while the temporal resolution is 1 h. The data
are available for 2010-2014 over North America. The table also specifies which model used which variable.
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“Others” in the table. Additional information on postprocessing of NSE, 62.5% for percent bias (PBIAS), 37.5% for NSE of the log-

these datasets, like aggregation to other spatial resolutions and arithmic discharge, and 12.5% each for NSE of the square-root of
merging of soil and landcover classes, are available online in the discharge and root-mean-square error regarding discharge. Multi-
“Model_setups_GRIP.xIsx” on the GitHub associated with this ple votes were allowed during that poll. The PBIAS was used as a
publication (see Data Availability Statement for URL). secondary metric. The analysis of PBIAS, however, did not yield

any further insights and results will not be shown. The results of the
PBIAS metric and several other metrics can be found in the Sup-

Model Performance Evaluation plemental Materials (Figs. S1-S5).

The model performances are evaluated for the calibration period The median of these NSE values was chosen to determine the
from 2011 to 2014, while 2010 was discarded as the model performance of a model across multiple gauging stations or the per-
warm-up period. The NSE (Nash and Sutcliffe 1970) is defined by formance of a streamflow gauging station across several models.

Furthermore, the ensemble of streamflow simulations was analyzed
for selected streamflow gauging stations only—the stations with

thl (Qsim(t) - Qobs(l‘))2

NSE =1 - s (1)
T 2 i
i1 (Qobs (1) = Oops) the W(')I‘St and best median NSE across all models.
This leads to the following four types of analyses:
where T = number of time steps; Qg () and Qs () = simulated A. Analysis of performance per gauge and model for all stations of
and observed streamflow at time step #; and Q,,, = average ob- objectives 1 and 2 for both calibration and validation (Fig. 2; see
served streamflow over the simulation period. The NSE was used Analysis of Model Performance per Streamflow Gauge
to compare the simulated discharge Qy;,, with the observed daily and Model).
streamflow Q.. The NSE was chosen based on a survey per- B. Analysis of performance per model across all gauging stations
formed in November 2018 among the eight modeling groups par- for both objectives in calibration and spatial validation (Fig. 3;
ticipating at the time. Overall, 75% of the modelers voted for using see Analysis of Model Performance across Gauging Stations).
Objective 1 Objective 2
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grdj-raven-lp 0.63 grdj-raven-lp 0.67
grdj-raven-sd 0.64 gr4j-raven-sd 0.67
g hymod2-ds 0.74 hymod2-ds - W 073
2 swat-cpa - 0.19 2% euelph — 059
< mﬁx?{f\;agga?llgg 0.76 mhm-waterloo 0.78
= mhm-ufz 066 b ufz 0.67
S R 0.41 vic 0.43
vic-gru :.. 0.42 vic-gru | & 0.43
gem-hydro 4% 0.51 gem-hydro I | | W 0.44
mesh-svs - 0.48 mesh-svs : N 0.46
mesh-class 0.34 mesh-class 0.40
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(b)
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Fig. 2. (Color) Performance of the participating models in calibration and validation (a, b and ¢, d, respectively) for each gauging station of objectives
1 and 2. The colored tiles indicated the NSE per gauge and model, while the median NSE over all gauging stations is displayed to the right. The black
horizontal lines separate (1) Machine Learning models from (2) models that are calibrated at each individual streamflow gauge from (3) models that
are calibrated over the entire domain calibrating all streamflow gauges simultaneously. The hatched tiles (validation only) mark gauging stations that
have informed the calibration of the corresponding models.
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Fig. 3. (Color) The median model performance measured using the NSE of streamflow of the Machine Learning models (grey), models using
individual basin calibration (red), and models calibrated for the whole domain (blue) for (a) calibration stations; and (b) validation stations.
The light-colored bars show results of objective 1, while the dark-colored bars show objective 2 results. The median values are added on top
of the bars for reference. Hatched bars indicate that some validation stations might have been used in calibration previously, and hence the validation
results are biased. The models that show different values for objective 1 and objective 2 (SWAT-Guelph, mHM-UFZ, and VIC) are the models that
provided an optimal model setup for each of the objectives. All other models provided only one final model setup (independent of the objective). The

results shown are the median NSE values of the gauge-wise results shown in Fig. 2.

C. Analysis of performance per gauging station across all models for
both objectives in calibration and spatial validation (Fig. 4; see
Analysis of Performance per Gauging Station across All Models).

D. Analysis of simulated streamflow ensembles for the best
and worst station of objective 1 for both calibration and val-
idation stations (Fig. 5; see Analysis of Simulated Streamflow
Ensembles).

Results and Discussion

This section will present and discuss the results of the four types of
analyses (A-D) mentioned above.

Analysis of Model Performance per Streamflow Gauge
and Model

First, the model performance at each of the 46 streamflow gauging
stations and for each of the 17 models regarding NSE of the simu-
lated streamflow was analyzed (Fig. 2). The summary statistics of
median NSE over all gauges for the calibration and validation
stations for each objective can be found in Table S2. The gauging
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stations in Fig. 2 are sorted using a hierarchical clustering such
that stations of similar performance patterns across all models ap-
pear closer to each other than gauges that show a different pattern.
Each of the four panels in the figure is divided by horizontal lines
into three blocks separating the two Machine Learning models
in the first block from the seven locally calibrated models in the
second block and the eight globally calibrated models in the third
block.

As expected, the locally calibrated models (second block) in
general yield better results than globally calibrated models (third
block) in the calibration model [Figs. 2(a and b)]. Most locally cali-
brated models, however, perform surprisingly well in validation
[Figs. 2(c and d)]. It is also surprising that no significant difference
between objectives 1 and 2 can be seen. Most models perform
equally well in both objectives (see median NSE for each model
added as labels right of each panel). The reason for this is that
the stations for objective 1 (low human impact watersheds) are
chosen purely based on the regulation type as “natural” and “refer-
ence” provided by WSC and USGS. The classification, however, is
constant in time, and a watershed might have been of no human
impact in the past but is no longer (or vice versa). In hindsight,
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Fig. 4. (Color) Performance of the model ensemble per gauge for: (a) all models participating (black boxplots); (b) only the data-driven Machine
Learning models (grey boxplots); (c) models that are calibrated at each individual gauge (blue boxplots); and (d) models that are calibrated globally
(red boxplots). The horizontal line at the center of each box indicates the median Nash—Sutcliffe performance of the simulated streamflow, while the
height of the box is determined by the 25th and 75th percentiles, and the whiskers indicate the Sth and 95th percentiles. No whiskers are shown for the
Machine Learning models because there are only two such models. The results are shown for each gauging station (x-axis) for calibration stations of
objective 1 (low human impact watersheds) and objective 2 (most downstream gauges) and the stations used for spatial validation of both objectives.
The gauges in each of the four categories (calibration/validation and objective 1/objective 2) are sorted according to their decreasing median per-

formance for all models (horizontal lines of each box in panel A).

the stations initially selected as low human impact should have
been manually double-checked to ensure that they are indeed not
affected by catchment management.

Following the definition of an at least satisfactory performance
regarding streamflow of an NSE of 0.5 or higher (Moriasi et al.
2015), the only models with a (median) satisfactory performance
in all four setups (panel A-D) are the GR4J-Raven-lp, HYMOD2-
DS, mHM-Waterloo, and mHM-UFZ. Satisfactory in both calibra-
tion but not in both validation setups (panel A-B) are ML-LSTM,
GR4J-Raven-sd, and SWAT-Guelph. LBRM is satisfactory in both
calibration setups as well; the validation results are not considered
here because some information of the validation stations might
have informed calibration already (due to the operational setup
of LBRM). The likely reason for the superior performance of these
models in validation is that the validation stations were selected
after a visual inspection of hydrographs and drainage area to make
sure they were not heavily managed and not located in highly
urbanized areas. Satisfactory in both validation scenarios but not
in both calibration scenarios (panel C-D) are VIC, VIC-GRU,
GEM-Hydro, and MESH-SVS. LBRM and MESH-CLASS are not
considered for validation because they both used validation stations
for calibration.
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The machine learning model ML-XGBoost is the only model
that performed substantially better for objective 1 (calibration) than
for objective 2 (ANSE = 0.10). All other models have very similar
median NSEs (in both calibration and validation). However, the
second machine learning model, ML-LSTM, performed much bet-
ter than ML-XGBoost. It has been shown before that ML-XGBoost
does not perform well when insufficient training data are available
(Gauch et al. 2019). The data-driven ML-LSTM model serves here
as a baseline for all hydrologic models, as it can show how much
information content is provided in the data and the performance that
can be achieved without hydrologic knowledge. Notably, both data-
driven models perform equally well (or poorly) in both objectives in
calibration (NSE of 0.79 versus 0.79 for ML-LSTM, and NSE of
0.36 versus 0.26 for ML-XGBoost). Even the stations that did not
perform well for the globally calibrated models—Iast six in Fig. 2(a)
and first five in Fig. 2(b)—and were deemed likely to be managed
did not show decreased performance compared with other stations
for the ML models, even though no information on water manage-
ment policies were used. It may be possible to augment hydrologic
models with machine learning estimates to improve the simulations
in basins like 04166100 and 02GC007, where almost all globally
calibrated models fail to achieve NSEs above 0.
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Fig. 5. (Color) Streamflow ensemble generated by the three groups of models: Machine Learning models (grey); models that are calibrated for each
basin individually (local calibration; red); and models that are calibrated for entire domain (global calibration; blue). The observed streamflow is
displayed with black dots in each plot. Results are shown for: (a) best-performing; (b) worst-performing gauging station in calibration; (c) best-
performing; and (d) worst-performing station in validation for one example year (2011) out of the entire period (2011-2014). The stations were
chosen regarding their overall median NSE (see Fig. 4). All results are regarding calibrations for objective 1 (low human impact watersheds). The
median NSE(Qy) for each model group G, as well as the NSE of the ensemble mean simulated discharge NSE(Qg) of each group G, are added as a
label to each panel. The NSE values are derived for the period from 2011-2014.

mHM-Waterloo is practically as good as the ML-LSTM, show-
ing that most information contained in the forcing and geophysical
data can be extracted by the model. HYMOD2-DS and LBRM are
ranked second and third in the locally calibrated group. mHM-
Waterloo and mHM-UFZ significantly outperform other models
in both groups (local and global calibration, respectively). Reasons
for mHM’s performance might include its unique multiscale param-
eter regionalization (Samaniego et al. 2010) approach using geo-
physical data at their native resolution and relating them directly
to hydrologic variables without losing the subgrid variability. An-
other reason is the internal model structure of mHM, which main-
tains a prescribed nonlinear relationship among internal model
variables (Rakovec et al. 2019) being achieved by implementations
of the transfer functions of each mHM parameter for most of the
processes and elimination of unnecessary parameter interactions.
mHM-UFZ significantly outperforms other globally calibrated
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models in calibration. It is hard to assign further ranks as three
other globally calibrated models—HYPE, GEM-Hydro, and
MESH-SVS—perform very similarly in calibration. The results in
validation are closer together, but mHM-UFZ is still the best and
MESH-SVS is ranked second.

mHM-UFZ, like other globally calibrated models, had problems
in performed well for a few stations (i.e., 04166100, 02GA047,
02GB007, 04161820, 0416400, 04165500, 02GC007, 04174500,
and 04166500). These stations have been identified to be located
in highly urbanized areas such as metropolitan Detroit, which cor-
responds to fact that models were not a priori informed about any
human influence and regulation. Several models, like the land-
surface scheme SVS used by both GEM-Hydro and MESH-SVS,
as well as WATFLOOD, are known to have problems with flashy
responses because tile drainage is not modeled in these models.
GEM-Hydro and MESH-SVS perform almost equally in both
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objectives in calibration and validation, certainly because they both
use exactly the same underlying land-surface scheme, SVS. Further-
more, the calibrated SVS parameters of MESH-SVS were directly
used for GEM-Hydro without further calibration. MESH-CLASS,
which uses the CLASS land-surface scheme, does not perform as
well as GEM-Hydro and MESH-SVS; this might be due to a differ-
ent calibration strategy or differences in the land-surface schemes.

For the GR4J model, no major improvements can be observed
when switching from a lumped setup (GR4J-Raven-lp) to a semi-
distributed model setup (GR4J-Raven-sd), which might be due to
either the fact that the discretization of the semidistributed version
was not detailed enough or the maximum performance of GR4J is
already reached when using the lumped version, and an improve-
ment could only be achieved when using additional data such as
watershed management rules.

The traditional VIC model, based on regular grid cells with de-
fined tiles, and VIC-GRU show similar performance. The main dif-
ferences between the tiles and GRUs is that the latter take into
account soil classes in their native resolution while the tiles only
use the major soil class per grid cell. This, however, does not make
much difference in the Lake Erie watershed because the soil classes
do not exhibit high spatial heterogeneity. Hence, the VIC model
uses about 1,390 tiles (381 grid cells each with 3—4 vegetation tiles)
and VIC-GRU uses about 2,400 grouped response units. Some sta-
tions are better for one or the other model, but the overall perfor-
mance is similar. The fact that VIC/VIC-GRU reaches an upper
limit of streamflow performance at a certain discretization level
was previously described by Gharari et al. (2020). The differences
in performance between the models are likely due to different input
datasets used, different routing models, and/or different calibration
strategies.

SWAT-EPA provided only results for the calibration of objective
1 stations, but yielded significantly worse performance than any
other model, and particularly worse than SWAT-Guelph, which
was set up by an independent group. The weak performance of
SWAT-EPA is either due to calibration strategy or the datasets used.
This shows that model intercomparisons need to take into account
modelers’ expertise and perseverance in addition to the traditionally
considered influence of datasets used, calibration strategies, model
discretization, etc.

The performance for all models at the seven validation stream-
flow gauging stations is displayed in Figs. 2(c and d). In validation,
the Machine Learning models show significantly degraded perfor-
mance relative to calibration, and both hydrologic model groups
(locally and globally calibrated) were found to perform better than
ML models. This is most likely because there were not enough data
(e.g., streamflow gauge data, forcing data, and basin attributes) to
train ML models properly, as previously discussed by Gauch et al.
(2019). The best model in validation is LBRM, which cannot be
considered because it had already used all stations for calibration.
Hence, the two versions of mHM (mHM-Waterloo and mHM-
UFZ) are ranked first in the local and global model groups, respec-
tively. HYMOD2-DS and MESH-SVS are ranked second in the
two groups, respectively.

It should be noted that the locally calibrated models (second
group) use either the area-ratio method (Fry et al. 2014) (LBRM
and SWAT-Guelph) or the nearest-neighbor method to determine
streamflow at the validation stations. The donor basins used to de-
rive those estimates might differ between the models. The list of
donor basins used for each validation station can be found in the
READMEE files online (e.g., “data/objective_1/lake-erie/validation/
model/HYMOD2-DS/README.md” on the on the GitHub asso-
ciated with this publication).
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Analysis of Model Performance across Gauging
Stations

Fig. 3 shows the median NSE per model across all gauges in ob-
jective 1 and objective 2 in calibration [Fig. 3(a)] and validation
[Fig. 3(b)], mostly to ease comparison between calibration and val-
idation results (panel A versus panel B) and differences between the
two objectives for each model (light versus dark-colored bar per
model). A few models report different values for objective 1 and
objective 2 in validation (i.e., SWAT-Guelph, mHM-UFZ, and
VIC), because they provided an optimal model setup for each of
the two objectives. All other models provided only one final model
setup (independent of the objective), and hence only provide one
modeled streamflow time series for each gauge.

The Machine Learning models show a significant drop in per-
formance between calibration and validation (ANSE ~ —0.38 for
ML-LSTM) caused by the limited training data available. This
could be resolved by pretraining the ML models with a larger data-
set, for example, CAMELS (Newman et al. 2015; Addor et al.
2017) and then fine-tune with the datasets available for the study
domain of Lake Erie. This would partly resolve the imbalance be-
tween hydrologic models developed based on expert knowledge
over many years or even decades and Machine Learning models
only being trained on the current data without benefiting from
any form of expert knowledge.

As for the locally calibrated models (red bars), SWAT-Guelph
performance also significantly drops (ANSE a2 —0.29 for objective
1 and —0.36 for objective 2) due to known weak transferability of
parameters in SWAT (Heuvelmans et al. 2004). Another reason for
the drop in performance might be the usage of the area-ratio method
to obtain the estimates at the validation stations, while all other
models (except LBRM) used a nearest-neighbor method. The
lumped and semidistributed GR4J setups, GR4J-Raven-lp and
GR4J-Raven-sd, as well as HYMOD?2-DS, decrease in perfor-
mance but not as much as the ML models (ANSE a~ —0.15,
ANSE ~ —0.22, and ANSE = —0.14, respectively); mHM-UFZ
maintains almost the same performance in validation as it has in
calibration (ANSE & —0.11). Almost all globally calibrated models
maintain or, surprisingly, even improve performance in validation.
This probably a side effect of the much smaller sample size (7 sta-
tions versus 28 and 31 in calibration); but, more importantly, it is
certainly caused by the large set of urban watersheds in the calibra-
tion set for which all global models had problems to obtain good
results. Such gauges were avoided in the set of validation stations
chosen after we observed that the classification of WSC/USGS needs
manual verification. mHM-UFZ maintains the same performance
(ANSE ~ —0.05), HYPE decreases slightly (ANSE & —0.09);
VIC and VIC-GRU show slightly improved performance (ANSE ~
0.10 and 0.08) as do GEM-Hydro, MESH-SVS, and MESH-CLASS
(ANSE ~ 0.06, 0.11, and 0.14, respectively). MESH-CLASS, how-
ever, is slightly biased, as it already used two of the validation sta-
tions for calibration, and thus validation results might appear better
than they actually are. WATFLOOD is the only global model that
showed drastically decreased performance in validation (ANSE ~
—0.28), which may indicate a flawed validation setup given that
WATFLOOD was developed using catchments in the Lake Erie ba-
sin (Kouwen et al. 1993), and thus has shown much more robust
performance in this region in the past.

In addition, the results in Fig. 3 again highlight that only minor
differences exist between the performance of the models for objec-
tive 1 and objective 2 stations originally defined as low human im-
pact and most downstream stations, respectively. This is most likely
due to the fact that the assignment of low human impact was mainly
based on the tags indicated by WSC and USGS in their gauge
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information. We see, however, that there are several stations in ob-
jective 1 (i.e., 04166100, 02GA047, 02GB007, 04161820, 0416400,
and 04165500) where all models had problems in achieving good
results, even in calibration, due to their location within highly urban-
ized areas. These stations, therefore, should not have been classified
as objective 1 (although labeled as “natural” by WSC and “refer-
ence” by USGS). These stations lowered the performance of objec-
tive 1 and led to similar results for both objectives. The validation
stations were selected later in the project with more care, making sure
they are not located in urban areas. We also visually inspected the
observed streamflow to make sure there was no obvious human
influence/management in the selected gauges. The void of human-
impacted watersheds in validation explains why performance im-
proved in so many models.

Analysis of Performance per Gauging Station across
All Models

Fig. 4 shows the variability of the streamflow simulation perfor-
mance for each gauging station over sets of models. Panel A con-
siders all models, while the other three panels separate the models
into the categories of machine learning (ML) models (panel B),
locally calibrated models (panel C), and globally calibrated models
(panel D). The gauges (x-axis) are sorted according to decreasing
median NSEs over all models (horizontal line in each box of
panel A).

The calibration results show that the gauges with the worst per-
formance have the highest variability regarding the streamflow sim-
ulation performance, with only a few exceptions (see panel A). The
high variability in performance for calibration stations is due to the
high variability of performance of globally calibrated models
(panel D), while ML and locally calibrated models (panels B
and C, respectively) result in much less variability and, in general,
better results for those stations. The stations with greater variability
are the stations mentioned above (see the subsections above:
Analysis of Model Performance per Streamflow Gauge and Model,
and Analysis of Model Performance across Gauging Stations) as
being the ones in highly urbanized areas where all the global mod-
els, except mHM-UFZ, HYPE, and VIC-GRU, have difficulties in
simulat\ing streamflow. All of the above holds for both objectives
in calibration mode.

The picture changes when it comes to the performance of the
validation stations. Most of the overall variability (panel A) is
caused by ML models (panel B) and the locally calibrated models
(panel C), which all used either the area-ratio or nearest-neighbor
method to transfer parameters of various donor basins to the sta-
tions used for validation. The variability of the ML models is a less
reliable predictor compared wih the results for the locally calibrated
models, as it is determined based on only two ML models, while
the boxplots for the locally calibrated models represent six models
(mostly five, because LBRM should not really be counted as it used
all validation stations for calibration). This again shows that the
globally calibrated models are superior in validation due to their
less subjective approach to model ungauged basins; however, they
need overall improvement when it comes to representing urban
areas.

The best-performing station across all models in calibration
mode of objective 1 is 02GC010 (median NSE = 0.69); the station
with lowest performance is 04166100 (median NSE = 0.29). The
best-performing station across all models in validation for objective
1 is 04208000 (median NSE = 0.63), while the worst-performing
one is 04167000 (median NSE = 0.38). The simulated streamflow
time series of these four stations is analyzed in the next section.
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Analysis of Simulated Streamflow Ensembles

In Fig. 5, streamflow ensembles for three groups of models (ML,
locally calibrated models, and globally calibrated models) are shown
for selected gauging stations in calibration and validation mode only
for objective 1 (objective 2 results are similar but not shown). The
best and worst objective 1 stations in calibration and validation are
used here. The performance is regarding the overall highest and low-
est median NSE across all models [Fig. 4(a)].

The ML ensemble consists of only two models (grey hydro-
graph plots). The two simulated hydrographs in calibration mode
[Figs. 5(a and b)] look very realistic—low flows are well repre-
sented and some peak flows are missed but most are captured.
For the worst station in the calibration set for objective 1
[04166100; Fig. 5(b)], one ML model seems to overestimate the
flows consistently, possibly because this is a station with human
influence. No data are provided to the ML models to train them
regarding human impacts and management, and it is hence ex-
pected that these stations are not very well represented with data-
driven models (or any other globally calibrated model).

The ensemble of streamflow time series for locally and globally
calibrated models (red and blue hydrographs, respectively) look very
similar for well-performing stations in both calibration and validation
[Figs. 5(a and c)]. This, however, changes for the worst-performing
station: The variance in the simulated hydrographs in calibration
mode [blue panel in Fig. 5(b)] is much larger for globally calibrated
models, while the ensemble of the locally calibrated models looks,
expectedly, very consistent. The low flows are well represented, but
some peak flows are missed by locally calibrated models [red panel
Fig. 5(b)]. This gets surprisingly better for the validation of the
overall worst-performing station [blue panel Fig. 5(d)], possibly
because these stations are not in urban areas, which are the stations
where almost all globally calibrated models had problems already
in calibration (namely GEM-Hydro, MESH-SVS, MESH-CLASS,
and WATFLOOD, but also VIC and VIC-GRU).

Rather than evaluating the performance of each individual
model using the median NSE [added as label NSE(Qg) for each
group G € (ML, SC, GC) to panels in Fig. 5], the model intercom-
parison now also allows to obtain the performance of the model
ensemble. Therefore, the mean ensemble streamflow timeseries
Q_g for each model group G is derived and compared to the obser-
vations [added as label NSE(Qg) to panels in Fig. 5]. For all model
groups and both stations, this leads to large improvements in per-
formance, highlighting the strength of using model ensembles
rather than individual models, as reported by others (Duan et al.
2007; Muhammad et al. 2018; Darbandsari and Coulibaly 2019).

Conclusions

Our extensive model intercomparison compares the performance of
17 models, with 14 independent modeling teams building and cal-
ibrating these models, for predicting streamflows in the Lake Erie
drainage basin. This model intercomparison is archived for future
modelers to assess their model performance against the original 17
models included in our study.

The mHM model in its local and global setups (mHM-Waterloo
and mHM-UFZ, respectively) were found to produce superior qual-
ity hydrographs regarding NSE performance when compared
with all other models. For example, when compared with machine
learning benchmarks, both mHM setups and the ML-LSTM model
produce practically the same quality results for calibration stations,
but both mHM setups produce superior quality hydrographs for val-
idation stations. Please note that this finding is highly dependent on
the design used in this study. Other studies (e.g., Kratzert et al. 2019)
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have shown that the mHM model is outperformed by LSTMs when a
large-sample dataset is used for training.

Compared with the 13 traditional hydrologic models (excluding
the two ML models and the two mHM setups) mHM, outperforms
all of them. This is noteworthy because the models to which
mHM is compared are all developed and calibrated by multiple,
typically independent teams; thus, in addition to the variation in
model type, the model-building strategies also varied. In addition,
unlike mHM, five of these traditional models (LBRM, GEM-
Hydro, MESH-SVS, MESH-CLASS, and WATFLOOD) were first
coded and developed for application in Canada (or the Great Lakes
basin in general). This finding could be due to mHM’s unique mul-
tiscale parameter regionalization (MPR) scheme to account for the
subgrid variability of basin physical properties that allows for the
seamless predictions of water fluxes and storages at different spatial
resolutions and ungauged locations.

Other models with globally calibrated setups performed reason-
ably well, except possibly HYPE and WATFLOOD, which showed
notably lower validation performance levels in comparison with
the other globally calibrated models. The VIC, VIC-GRU, GEM-
Hydro, MESH-SVS, and MESH-CLASS models all showed similar
validation performance levels that were all improved relative to cal-
ibration performance levels (note that mHM-UFZ showed a minor
decrease in validation performance relative to calibration perfor-
mance). In contrast, all five locally calibrated models that were va-
lidated had degraded validation performance relative to calibration
performance. Despite this degradation, two locally calibrated mod-
els (HYMOD2-DS and mHM-Waterloo) were still notably better in
validation than all globally calibrated models except mHM-UFZ.

Locally calibrated models turn out to be surprisingly powerful in
validation especially if parameter sets are transferred wisely—that
is, if donor basins are selected that are not necessarily only closest
in proximity but also share similar soil and landcover properties.
mHM-Waterloo (locally calibrated) turns out to be the best model
in the entire study. Both locally calibrated SWAT models perform
notably poorly relative to the other five models in the locally cali-
brated model category.

Many models had problems simulating accurate streamflows in
watersheds containing highly urbanized areas or other human im-
pacts such as tile drainage or reservoir operations. The intent was
to show this with objective 1 versus objective 2, which turned out
to be an imperfect assessment because we initially used only the
USGS and WSC flags on natural and managed operations of water-
sheds. Ultimately, however, we found that stations referred to as
“natural/reference” can be highly impacted by human actions, and
these impacts are not accounted for in the models. The USGS/
WSC flags have the disadvantage of being constant in time for each
gauge, making it impossible to account for management or urban de-
velopment that might have changed over the course of the operational
years of a gauge. One solution would be to use the Canadian Dam
Inventory, which provides the initiation dates of each regulated loca-
tion, and use it to classify gauging stations as either regulated or natu-
ral. We also recommend manual screening of gauging stations and
visual inspection of hydrographs to identify low human impact water-
sheds. This was done here for the stations used for spatial validation,
but unfortunately not for the calibration stations, which led to indis-
tinguishable results in calibration mode for objectives 1 and 2.

Limitations and Future Work

The work presented here lays the groundwork for a unified model
intercomparison for multinational teams. There are, however, sev-
eral limitations associated with this study:
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1. A short period of available forcings (2010-2014) prevented an
analysis of model performance of different climatic conditions
(e.g., wet versus dry periods) and a temporal model validation.
The study presented here performed a spatial model valida-
tion only.

2. The comparison of simulated streamflow only does not provide
a detailed insight into the performance of (especially) distrib-
uted models. It is not clear if models with good streamflow
performance sacrifice the quality of other simulated variables.

3. The geophysical datasets utilized were not all consistent; that is,
each modeling team was allowed to use the DEM, soil, and
landcover information of their choice. This can lead to differ-
ences in model performance that cannot be attributed to an ac-
tual difference in the models but solely to the quality of the
information used in setting up the model.

The main limitation is the short study period of only 5 years for
which high-resolution forcing data suitable for driving land-
surface hydrologic models are available. One of those years
was reserved as warm-up period for each model, leading to only
4 years to train the models and leaving no data for temporal val-
idation. It would be beneficial to use a longer forcing dataset that
provides all meteorologic inputs for this region at the same spa-
tiotemporal scale and is available for a longer time period, such
that the calibration period could be longer and some data would
be still available for temporal validation. A suitable dataset like
this was not available during the course of this project. We believe
that the conclusions reached in this work are significant regarding
(1) weak model performances in urban areas, (2) the major benefit
of using model ensembles, and (3) the impact of the modeler’s skill
on model performance, and that these findings will likely not
change even if studied for a longer period. Model performances
themselves however are likely to be impacted by a longer and more
climatically diverse study period.

It would further be interesting to see if differences in model per-
formance persist if the same geophysical datasets and routing are
used across all models, making sure that differences are not due to
different input data and their resampling to match the requirements
of the respective model. Consistent model setups have been already
used for the model family of GEM-Hydro, MESH-SVS, MESH-
CLASS, and WATFLOOD, leading to reliable insights that can
be exclusively pointed toward model parameterization and concep-
tualization rather than differences in used geophysical and forcing
data. Our study provides motivation for more detailed model diag-
nosis to investigate why and where some models are outperforming
others.

The above-listed limitations have been taken into account for
the future GRIP project over the entire Great Lakes (GRIP-GL),
which has just ramped up as our GRIP-E work has wrapped up. In
GRIP-GL, all these issues are addressed and resolved. GRIP-GL
will cover the entire Great Lakes watershed including the
Ottawa River. In addition, GRIP-GL will utilize a much longer
high-resolution meteorologic input dataset, soon to be released,
provided by Environment and Climate Change Canada. The future
project will refine the comparison to require models to use con-
sistent geophysical datasets and evaluate model predictive quality
against multiple measured response variables beyond streamflow.
GRIP-GL will be designed to determine exactly why the mHM
model has done so well relative to other models in GRIP-E,
and will yield more robust findings with regard to model perfor-
mance rankings. The larger-scale GRIP-GL study simply could
not have been designed or conceived as it has been, nor motivate
the modeling teams to participate, without this GRIP-E study
preceding it.
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Data Availability Statement

The subwatershed shapes are available at https://doi.org/10.5281
/zenodo.3888690 (Shen et al. 2020). The forcing data (RDRS-
v1) are available on CaSPAr (www.caspar-data.ca). Gridded model
outputs for GEM-Hydro are available at https://doi.org/10.5281
/zenodo.3890487 (Gaborit et al. 2020), while gridded model out-
puts for mHM-UFZ are available at https://doi.org/10.5281/zenodo
3886551 (Rakovec et al. 2020). Further information and documen-
tation are available in the Wiki of the project GitHub https://github
.com/julemai/GRIP-E/wiki. This GitHub also contains the simu-
lated streamflow of all models for all gauges in calibration and val-
idation model, and all scripts used to prepare the figures presented
here are available.
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S.1 Detailed Description of Model Setups
S.1.1 Machine Learning Models

The following gives a brief and somewhat simplified introduction to our machine learning
models; we refer to Gauch et al. [2019] for more details on our training procedures. We use
two types of models: the gradient-boosted regression tree (GBRT) framework XGBoost [Chen
and Guestrin, 2016] and a Long Short-Term Memory (LSTM) architecture [Hochreiter and
Schmidhuber, 1997]. Both models take as input the average temperature and total precipitation
of the previous thirty days, concatenated with static basin attributes (area, mean river slope and
length, mean basin slope, mean river bank width and depth, mean elevation, Manning’s river
flood plain coefficient, mean streamflow, Manning’s river channel coefficient, and a binary
variable indicating whether the basin is regulated). All inputs are lumped for each basin, and
we train one model on all basins combined.

GBRT are based on regression trees. Regression trees construct a directed, tree-like graph
during calibration. Each root-to-leaf path maps a distinct conjunction of input properties (e.g.,
(temp > 0) A (precip > 0)) to a predicted streamflow value. To generate a prediction for
a given day, we search the path that evaluates to True for that day’s input and predict the
corresponding streamflow value. GBRT iteratively train multiple regression trees to predict
the previous iteration’s error and additionally apply regularization techniques.

The LSTM is a type of neural network that processes lumped time series. As we ingest
the time series, the network updates internal memory states that it considers when generating
predictions. Unlike process-based hydrologic models, these states do not have any semantic
interpretation but are learned by the model. To tune the network parameters (weights), we
generate predictions with the current weights, calculate their error, and update the parameters
to improve the predictions.

S.1.2 LBRM

The Large Basin Runoff Model (LBRM, described in Croley II [1983], with recent mod-
ifications described in Gronewold et al. [2017]) is a lumped conceptual model that propagates
daily precipitation and temperature into subbasin runoff. LBRM was developed by NOAA
Great Lakes Environmental Research Laboratory (GLERL) specifically for use in simulating
total runoff contribution to the Great Lakes. It is one of a suite of models run by the U.S. Army
Corps of Engineers — Detroit District for simulating historical runoff into the Great Lakes as
well as informing seasonal net-basin supply forecasts as part of the U.S. contribution to the
internationally coordinated 6-month forecast of Great Lakes water levels. LBRM is the only
rainfall-runoff model that is used operationally to produce forecasts of runoff for use in water
level forecasts on a seasonal to interannual basis. As it is configured at USACE-Detroit, the
model operates on 121 subbasins throughout the Great Lakes, 21 of which are located in the
Lake Erie basin. The Lake Erie subbasins range in size from 119 km? to 16 806 km?.

For this study, LBRM’s nine parameters are calibrated for each Lake Erie subbasin using
a Dynamically Dimensioned Search algorithm (DDS) [Tolson and Shoemaker, 2007] encoded
within the Ostrich optimization software package [Matott, 2017]. The DDS algorithm is run
for 300 iterations for each of the 21 USACE subbasins simulating runoff for the period from
January 1, 2010 to December 31, 2014 while discarding the first year as warm-up. The RDRS
dataset was lumped to the subbasins and used as forcings. The objective during calibration
is to maximize the Nash-Sutcliffe Efficiency score between simulated subbasin runoff and
area-ratio-derived estimates of subbasin runoff provided by GLERL [Hunter et al., 2015].
This calibration is performed for each of the 21 USACE sub-basins. The Area-Ratio method
[Fry et al., 2014] is subsequently used to retrieve the hydrographs for the 46 objective 1 and
objective 2 streamflow gauges based on the 21 optimal USACE setups.



S.1.3 Lumped and semi-distributed GR4]J

The GR4J rainfall-runoff model is a parsimonious lumped model with four parameters
and is usually operated at a daily scale [Perrin et al., 2003]. This model has been widely
used in hydrologic modelling studies for both operational and investigative purposes, and it
has shown good performance in streamflow simulation [Seiller et al., 2017; Arsenault et al.,
2018; Wright et al., 2018]. The original GR4J model is comprised of a runoftf production
store, a routing store and two unit hydrographs. Since the simulation of the snow processes
is necessary in this study, the original 4-parameter GR4J model was coupled with the Cema-
Neige snow module [Valéry et al., 2014]. This snow module simulates the snow cover and
snowmelt processes with two parameters. Further, the 6-parameter GR4J model is emulated
by the Raven model [Craig et al., 2020]. The GR4J model requires daily precipitation, air
temperature and potential evapotranspiration series as inputs. The potential evapotranspiration
is estimated using the Hargreaves equation. This empirical approach is based on the air
temperature and incoming solar radiation, where the incoming solar radiation is calculated
using the equation based on Dingman [2015]. In this study, there are two versions of the GR4J
model used in this study both emulated in Raven: (1) Lumped GR4J (GR4J-Ip) model, which is
established at the lumped watershed scale, thus simulating hydrological processes for the entire
watershed. The GR4J-1p model ignores river channel routing process. (2) Semi-distributed
GR4J (GR4J-sd) model, which requires a discretization of watershed. It simulates the runoff
production processes within each sub-watershed independently, and then routes water from
sub-watersheds to the outlet. Since a watershed is discretized into several sub-watersheds based
on the topographical characteristics, river channel routing processes can be better simulated in
this model version for large watersheds. Meteorological forcing, i.e., daily precipitation and
air temperature, are aggregated from the grid-cell to sub-watershed scale based on the RDRS
data set (Table 2). The runoff production and potential evapotranspiration calculation in both
GR4J model versions are the same. The GR4J-lp model uses six parameters (four for the
original GR4J model and two for the snow module) for calibration. The Manning’s coefficient
of the river channel is additionally used in the GR4J-sd model for river routing calibration. In
this study, both the GR4J-1p and GR4J-sd are calibrated in the 46 catchments and validated in
seven catchments (Section S.2). A single-gauge calibration strategy is applied for the model
parameter calibration that the parameters are independently tuned in each catchment, and thus
yielding 46 different parameter sets after optimization. The Dynamically Dimensioned Search
(DDS) algorithm is employed to auto-calibrate model parameters [Tolson and Shoemaker,
2007]. The DDS is used here by employing the optimization software toolkit Ostrich [Matott,
2017]. The Nash-Sutcliffe efficiency (NSE) is utilized as the calibration objective function.
The auto-calibration at each catchment terminates when the maximum budget of 1000 model
evaluations is reached. The calibration at each catchment is repeated for ten independent trails
to eliminate the influence of randomness. The best result out of these ten trails is reported.

S.1.4 HYMOD2-DS

HYMOD [Boyle et al., 2000] is a conceptual hydrological model for catchment-scale
simulation of rainfall-runoff processes. The model uses precipitation and potential evapo-
transpiration (PET) as inputs to generate streamflow and actual evapotranspiration (AET) as
outputs. The model is based on the probability-distributed storage capacity concept of Moore
[1985], which represents the vertical soil moisture accounting process. The original HYMOD
is lumped in nature, where the horizontal routing is carried out by a Nash Cascade (leaky linear
reservoirs connected in series to represent surface and subsurface flows across the watershed)
and a leaky linear reservoir (to represent baseflow).

In this study, we used a modified version of the original HYMOD model. The soil
moisture accounting process is based on the new HYMOD?2 [Roy et al., 2017], which has an
improved parameterization for the evaporation process. HYMOD? is coupled with a river
routing model to be suitable for modeling a distributed watershed system as described in Wi
etal. [2015]. Additionally, we also coupled the Degree Day Snow model [Martinec, 1975] with



HYMOD? since snow is an important factor for several of the catchments under consideration.
PET is derived based on the Hamon method [Hamon, 1961], in which, daily PET is computed
as a function of daily mean temperature and hours of daylight. We call this modified model,
the HYMOD?2-DS, where "DS" is used to denote the distributed version of HYMOD?2. In this
version of the model, we calibrated a total of 12 parameters, one from the PET module, one
from the snow module, six from HYMOD2, and four from the routing module.

The model was calibrated using the Shuffled Complex Evolution (SCE) algorithm [Duan
et al., 1992] with two complexes. In total 25 loops equaling about 2000 model evaluations
are used as the calibration budget to minimize the mean squared error of each of the 46
sub-watersheds.

S.1.5 SWAT-EPA

The Soil and Water Assessment Tool (SWAT) model is a semi-distributed process based
hydrologic model considering the physical characteristics of the watershed including surface
elevation, soil type, land use, and factors affecting water routing within the watershed [Arnold
et al., 1993; Neitsch et al., 2011]. Moreover, it contains modules that simulate agricultural
activities such as irrigation and fertilization. Given that 74% of Lake Erie basin are covered
by agricultural cropland [of Canada, 2015; Survey, 2014] providing large quantity of nutrient
load into Lake Erie [Dolan and Chapra, 2012], we constructed a SWAT model to investigate
agriculture activity affects on stream water quality in Lake Erie basin. Streamflow as a part of
the output of the model was provided to GRIP-E project comparing with other hydrological
model. The model was setup by the co-authors at the U.S. Environmental Protection Agency
(EPA) and will be called SWAT-EPA hereafter.

In this project, ArcSWAT 2012.10.21 with SWAT Rev. 670 (https://swat.tamu.
edu/software/arcswat/) wasused to construct a SWAT model with inputs shown in Table 3.
The Lake Erie basin was delineated based on a DEM with area of 9057 ha. The study area was
divided into 176 sub-watersheds and contained 3398 Hydrological Response Units (HRUs)
based on soil type, land use, and slope length with thresholds of 5%, 5%, and 10%, respectively.
The model simulated daily stream flow from 2010 to 2014 with two years warming period.
Calibration process was achieved by using the SWAT-CUP SUFI2 algorithm [Abbaspour et al.,
2004]. The calibration process was performed on three gauge stations (04159492, 02GG006,
and 04213000) to maximize Nash-Sutcliffe Efficiency (NSE) [Nash and Sutcliffe, 1970] and
the fitted values were further applied to the rest of stations in objective 1. SWAT-EPA did not
contribute to objective 2.

S.1.6 SWAT-Guelph

Soil and Water Assessment Tool (SWAT) [Arnold et al., 1998] is a physically based,
semi-distributed continuous long-term simulation model developed by United States Depart-
ment of Agriculture (USDA). The model was setup by the co-authors at the University of
Guelph and will be called SWAT-Guelph hereafter. The model divides a watershed into
sub-basins which are further divided into hydrological response units (HRUs) — the compu-
tational units of the model. The conditioned HydroSHEDS digital elevation model (DEM)
with spatial resolution of 90m (https://hydrosheds.cr.usgs.gov/index.php) was used
to derive stream network and 699 sub-basins making sure that considered streamflow gaug-
ing location corresponds to a sub-basin. The Soil Landscapes of Canada (SLC) version
3.2 (http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/base.html) at 1:1million scale
was merged with the digital general soil map of the US (STATSGO), available at Arc-
SWAT database (https://swat.tamu.edu/software/arcswat/) at 250 m spatial reso-
lution to create a combined soil map. The soil map was overlaid with the Terra and Aqua
combined MODIS Land Cover Type (MCD12Q1) version 6 (https://lpdaac.usgs.gov/
dataset_discovery/modis/modis_products_table/mcd12ql_v006) with spatial reso-
lution of 500 m, and the DEM derived slope map to create 7777 HRUs. In the next step, the
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Regional Deterministic Reforecast System (RDRS) based daily precipitation, maximum and
minimum temperature, solar radiation, relative humidity and wind speed data were used to
create a functional SWAT model. The Curve number (CN) method [USDA-SCS, 1986] was
used to calculate surface runoff and infiltration. Similarly, Penman-Monteith equation was
used to calculate evapotranspiration and variable storage routing [Williams, 1969] was used
to channel routing. The SWAT-CUP and its SUFI2 algorithm [Abbaspour et al., 2004] was
used to conduct multi-site calibration of 17 model parameters known to influence streamflow
in similar watershed [Zhang et al., 2018] in a daily time step, considering Nash-Sutcliffe Ef-
ficiency (NSE) [Nash and Sutcliffe, 1970] as the objective function. In the process, a single
iteration of 2000 model runs was conducted.

It need to be noted that some model parameters in SWAT are global (e.g., SMTMP.bsn)
while others are local (e.g., SURLAG.hru). This is leading to the fact that validation results
for the same station depend on the objective meaning that two validation time series for the
same station can be derived. This can be seen, for example, in Fig. 2C and 2D of the main
manuscript where the performance of the stations is different for the two objectives.

S.1.7 mesoscale Hydrologic Model (mHM)

The mesoscale Hydrologic Model (mHM) [Samaniego et al., 2010; Kumar et al., 2013]
is a distributed hydrologic model that use grid cell as a primary hydrologic unit and accounts
for variety of hydrologic processes including canopy interception, root-zone soil moisture, in-
filtration, evapotranspiration, runoff generation as well as river flows along the stream network
[Thober et al., 2019]. mHM reached the technology readiness level 9 with the Copernicus Cli-
mate Change Service proof-of-concept (pre-operation) project EDgE [Samaniego et al., 2020].
This model is also used operationally in the German Drought Monitor [Zink et al., 2016]. The
model is forced with the daily gridded fields of at least precipitation, and minimum/ maximum
temperature. mHM provides several evapotranspiration (PET) parameterization that depend
on the data availability (e.g., Hargreaves-Samani, Penman-Monteith, Priesley-Taylor). It uses
a novel multiscale parameter regionalization (MPR) scheme to account for the sub-grid vari-
ability of basin physical properties that allows for the seamless predictions of water fluxes
and storages at different spatial resolutions and ungauged locations [Rakovec et al., 2016;
Samaniego et al., 2017]. The model has been extensively evaluated in several studies, the code
is open source, available on online repository git.ufz.de/mhm.

mHM was run in two versions with efforts combining two different organizations —
hereafter named as “mHM-Waterloo” and “mHM-UFZ”. While the both model versions uses
the same source code (www.ufz.de/mhm; release version 5.10), they differ in their usages of
underlying basins physiographical data-sets (see Table 3 for more details) and in general model
set-ups. The main difference between the two models is the parameters estimation approach.
In mHM-Waterloo the transfer parameters are estimated for each basin independently whereas
in the mHM-UFZ, they are found as a compromise solution for all basins. Another reason
of different model performances is the selection of the datasets used to setup the models (see
Table 2 in the main manuscript). The “mHM-Waterloo” version was established for each
basin separately with parameters being specifically calibrated to each study basin; whereas
the “mHM-UFZ” was established as a regional model with a single set of model parameters
being applicable to each individual group of study basins (i.e., objective 1 and objective 2). In
this way, we designated the “mHM-Waterloo” version more to the lumped category (i.e., basin
specific) and “mHM-UFZ” to the distributed one. Both model versions were calibrated using
Nash-Sutcliffe Efficiency (NSE) as the objective functions and the Dynamically Dimensioned
Search (DDS) [Tolson and Shoemaker, 2007] as the optimization algorithm with 1000 model
iterations. The model in general has up to 50 free calibration parameters; however a controlled
calibration experiment carried out by [Rakovec et al., 2019] showed similar performance of
mHM over 492 US basins using the full range calibration parameters and subset of randomly
selected 14 parameters.


git.ufz.de/mhm

S.1.8 HYPE

The Hydrological Predictions for the Environment (HYPE) model is an operational
hydrologic model developed at the Swedish Meteorological and Hydrological Institute. HYPE
includes hydrological processes above ground, land routines and deep processes such as
snow/ice accumulation and melt, evapotranspiration, soil moisture of up to three soil layers
and flow paths, frozen soil infiltration, groundwater movement and aquifer recharge, surface-
water routing through rivers and lakes, and human perturbations through diversion, reservoirs,
regulation, irrigation and water abstractions [Lindstrom et al., 2010]. Though HYPE is more
conceptual in nature, it operates at a sub-basin scale and integrates physiographic characteristics
related to elevation, land cover/land use, and soil types which control the spatial variation of
the processes represented. HYPE is used for operational hydrological forecasts in Europe
[Pechlivanidis et al., 2014] and was also adapted for large-scale applications across climate
regions [Arheimer et al., 2020; Bajracharya et al., 2020; Pechlivanidis and Arheimer, 2015;
Stromqvist et al., 2009]. The initial set of parameters used for the development of the HYPE
model for the Lake Erie Basin is taken from the Arctic-HYPE configuration described in
Stadnyk et al. [2020]. We used HYPE version 5.7.0 available athttps://sourceforge.net/
projects/hype/files/. An objective function is optimized for multiple stations using daily
streamflow and a composite criterion combining the average of the Nash-Sutcliffe efficiencies
of selected sub-basins and the average of their relative bias. Thus, a stepwise automatic
calibration approach based on the Differential Evolution Markov Chain method [Braak, 2006]
is employed to derive a set of optimal values for the model parameters. These parameters
are general or linked to land use/land cover and soil types. The HYPE model code is open
source and supported by wiki documentation (http://www.smhi.net/hype/wiki/doku.
php?id=start) and users’ discussion forum.

S.1.9 VIC

The Variable Infiltration Capacity (VIC) model is a macro-scale distributed hydrological
model that balances both the water and surface energy budgets [Liang et al., 1994; Liang, 2003].
This model has been extensively applied in hydrology such as streamflow simulation [Reed
et al., 2004; Gao et al., 2010; Livneh et al., 2013]. VIC simulates land surface-atmospheric
fluxes of moisture and energy such as evapotranspiration, surface runoff, baseflow, radiative
fluxes, turbulent fluxes of transport, and sensible heat within the grid-cell. The gridded
runoff components, comprising surface runoff and baseflow, are then routed to the basin
outlet. In this study, the image version 5.1.0 of VIC model is used, which can be retrieved
athttps://vic.readthedocs.io/en/master/Development/ModelDevelopment. The
VIC model is built for the RDRS forcing grid-cells with a resolution of 15 km X 15 km in
the Lake Erie basin. The DEM, soil, and land cover data specified in Table 3 are utilized
for VIC parameterization. These data are all aggregated to the 15 km grid-cell scale. In
addition, VIC requires sub-daily meteorological drivers from the RDRS forcing data set, i.e.
precipitation, air temperature, atmospheric pressure, incoming shortwave radiation, incoming
longwave radiation, vapor pressure, and wind speed. Since the VIC version 5.1.0 does not
internally contain a routing module, the Raven model is employed as an independent routing
module for the VIC. The VIC-generated runoff and baseflow fluxes at the grid-cell scale are
first aggregated to the sub-watershed scale, and then routed to the catchment outlet in terms
of hillslope routing and river channel routing processes. There are multiple user-calibrated
parameters in VIC model furnished by Gao et al. [2010]. In this study, seven parameters are
selected for model calibration based on Xie et al. [2007] and Wen et al. [2011]. The seven
parameters selected are the exponent of the variable infiltration capacity curve b, the maximum
velocity of baseflow D s, fraction of Ds,,,, where non-linear baseflow begins D', fraction
of maximum soil moisture where non-linear baseflow occurs W', thickness of the top thin layer
di, the middle layer d;, and the bottom layer d3. More details of the parameter definitions
and value ranges can be found in Gao et al. [2010]. In this study, the VIC model is calibrated
in 46 catchments and validated in seven catchments (Section S.2). A global gauge calibration
strategy is applied for the model parameter calibration that the parameters are concurrently
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tuned in each catchment, thus yielding only one parameter set after optimization. The VIC
model is auto-calibrated using Ostrich [Matott, 2017] using the Dynamically Dimensioned
Search algorithm (DDS) [Tolson and Shoemaker, 2007]. The median Nash-Sutcliffe efficiency
(NSE) of streamflow at the 46 calibration stations is utilized as the calibration objective
function. The global auto-calibration terminates when the maximum allowable limit of 1000
model evaluations is reached. To eliminate influence of randomness in calibration and take
into account the computational burden, five trials are applied in the global calibration. The
best result out of the five trials is reported.

S.1.10 VIC-GRU

VIC-GRU is a vector-based implementation of the VIC model using the concept of
Grouped Response Units (GRUs). Traditionally, the VIC model is set up at grid scale while
sub-grid variability and spatial extents are smeared. VIC-GRU instead is set up for the exact
spatial extent of units that are identified to have similar soil type or vegetation cover.

For the Lake Erie basin and given the soil and land cover classes, eight GRUs are
identified that can be classified with four soil types on two general land cover of forested
and non-forested areas. When the GRUs are forced at the resolution of the RDRS data set it
results in 2380 computational units. The model then simulates the states and fluxes for each
computational unit. A full description of VIC-GRU implementation is provided by Gharari
et al. [2020]. VIC-GRU includes representation of subsurface preferential flow to further
enhance the model capabilities to reproduce flashier hydrographs [Gharari et al., 2019]. For
the routing model, the mizuRoute stand-alone routing model is used [Mizukami et al., 2016].
The computational units output have been passed to the sub-basins and are then routed.

The model is calibrated to maximize the sum of NSE values for all the available gauges
for calibration (Sec. S.2). The ten parameters representing the variable infiltration capacity,
saturated hydraulic conductivity, slope of water retention curve, depth of the soil layer (first
and second layers), fraction of subsurface macropore water movement, baseflow coefficient,
LAI and stomatal resistance scaling factor, depth scaling factor for the vegetated areas which
are none-forested in comparison to the forested area are calibrated. For the routing model,
velocity and diffusivity are also calibrated as they are often sensitive parameters in large scale
modeling [Haghnegahdar and Razavi, 2017]. The calibration is perform with total budget of
1000 simulations using the genetic algorithm by Yoon and Shoemaker [2001] provided in the
Ostrich framework [Matott, 2017].

S.1.11 GEM-Hydro, MESH-SVS, and MESH-CLASS

GEM-Hydro is a physically-based, distributed hydrologic model developed at Environ-
ment and Climate Change Canada (ECCC). It relies on GEM-Surf [Bernier et al., 2011] to
represent five different surface tiles (glaciers, water, ice over water, urban, land). The land tile
is represented with the SVS (Soil, Vegetation and Snow) Hydrologic Land Surface Scheme
(HLSS). See Alavi et al. [2016] and Husain et al. [2016] for more information on SVS. GEM-
Hydro also relies on Watroute [Kouwen, 2010], a 1-D Hydraulic model, to perform 2-D channel
and reservoir routing. See Gaborit et al. [2017] for more information on GEM-Hydro.

MESH (Modélisation Environnementale communautaire - Surface and Hydrology) is a
complimentary community hydrologic modelling platform maintained by ECCC [Pietroniro
et al., 2007]. The MESH framework includes SVS among its HLSSs, as well as the Canadian
LAnd Surface Scheme (CLASS) [Verseghy, 2000]. CLASS is another model developed at
ECCC and used in the Canadian Global Climate Model (GCM). Within MESH and GEM-
Hydro, the HLSS is responsible for coupled energy and water balance in the vertical dimension,
while Watroute is used for routing the runoff, lateral flow and drainage generated by the HLSS
from one grid cell to the next through a 2-D horizontal grid. MESH can operate in distributed
and semi-distributed modes.



One significant difference between CLASS and SVS is that CLASS discretizes the soil
in vertical layers for both soil moisture and temperature whereas the version of SVS used here
relies on a Force-Restore method for predicting soil and snow temperature, relying on a vertical
discretization of the soil only for representing the soil moisture profile and fluxes. Because of
this, the soil layer discretization used for the energy balance is the same as used for the water
balance in CLASS, while it is simplified to two layers, representing a thin near-surface soil
and thick deep soil, for the energy balance in SVS. The version of SVS used in this study does
not represent soil freezing and thawing processes, while CLASS does. The implementation
of CLASS in MESH includes sloped hydrology, which is not included in the CLASS version
of the Canadian GCM. Both CLASS and SVS use the same multi-layer soil discretization and
algorithms for sloped interflow calculations but additionally sloped CLASS includes overland
runoff routing to an assumed river within each grid cell [Soulis et al., 2011]. When computing
the energy balance, both CLASS and SVS partition a grid cell into four subareas, based on the
presence or absence of snow and of tall vegetation. However, CLASS includes more detailed
physics for the energy and water budget in the presence of vegetation, as it computes a separate
energy budget for the canopy and accounts for interception of rain and snow by the vegetation.
While SVS has more vegetation classes to choose from with parameters stored in look-up
tables, CLASS has only four vegetation sub-types (in addition to urban and barren land) and
different parameters have to be assigned if sub-classes of these are to be distinguished (e.g.
SVS has different classes for crops such as rice, cotton, etc. while CLASS has one cropland
canopy type and to differentiate by crop type, one needs to create separate GRUs with different
parameters for each).

In this work, two MESH configurations are used, one emulating GEM-Hydro with SVS
as the HLSS (called “MESH-SVS"), and one using CLASS as the HLSS (called “MESH-
CLASS"). MESH is distinguished from GEM-Hydro as it can be run outside of ECCC’s
computational infrastructure (i.e. in stand-alone mode), which however means that MESH
cannot be run in a fully-coupled mode with the GEM 3-D atmospheric model. Therefore,
MESH-SVS requires less computation time than GEM-Hydro to run hydrologic experiments
over small to medium-sized basins, because GEM-Hydro is a component of a much larger
modelling infrastructure and system. Moreover, when using SVS, MESH can only represent one
(the land) out of the five surface tiles represented in GEM-Surf. Because of these differences,
GEM-Hydro and MESH-SVS are treated here as two different hydrological models.

MESH-SVS was used to calibrate SVS and Watroute parameters, some of which were
then transferred into GEM-Hydro (see further). Despite the above differences between MESH-
SVS and GEM-Hydro, simulation differences in terms of total Lake Erie daily inflow (see
further down) were judged to be within an acceptable margin between the two platforms, thus
justifying the methodology employed here.

The geophysical databases used for the HLSS in GEM-Hydro and MESH-SVS consist
of the Gridded Soil Dataset for Earth System modelling (GSDE, 1 km resolution, eight layers
reaching a total depth of 2.3m, see [Shangguan et al., 2014] for soil texture, the ESA CCI LC
2015 Global Map (European Space Agency Climate Change Initiative Land Cover) for land
cover (300 m resolution), and the USGS 1 km GTOPO30 Digital Elevation Model to derive
surface and soil slopes. The 30 arcsec (1 km) HydroSHEDS dataset [Lehner et al., 2008] was
used to derive 1 km flow directions, drainage areas, and channel properties for Watroute in
both models. The same databases were used for MESH-CLASS except that the eight GSDE
soil layers were aggregated to four to avoid too thin layers (< 10 cm thick) that can cause
numerical instabilities and then another fifth layer was added to reach a depth of 5.5 m by
repeating the properties of the last GSDE layer. Additionally, the depth to bedrock (or depth
of permeable layer - SDEP) was derived for MESH-CLASS from the spatially distributed
dataset by Shangguan et al. [2017]. For most grid cells, the SDE P was below the modelled
soil column. The three models employed here (MESH-SVS, MESH-CLASS, and GEM-Hydro)
use a 5 arcmin resolution (= 10 km) for the surface part, and a 30 arcsec resolution (~ 1 km)
for the routing. For MESH-SVS, the routing was run using two different resolutions: a 10 km



resolution was used during calibration, while a 1 km resolution was used to perform the final
run, in order to obtain more realistic hydrology at streamflow gauge locations. Running the
routing at a 10 km resolution resulted in some significant inaccuracies in terms of river network
delineation but allowed to save a significant amount of computation time and led to similar
streamflow simulations in terms of total daily inflows to Lake Erie. In total, 14 SVS parameters
were calibrated using MESH-SVS following the methodology employed in Gaborit et al. [2017]
using a maximum of 300 simulations. Four Watroute parameters were also calibrated: two
baseflow parameters, and two types of Manning coefficients. This methodology consists of a
global calibration strategy (see Gaborit et al. [2015]), since the same calibrated parameter set
is then used for all subbasins of the Lake Erie watershed. These calibrated parameters were
then transferred to GEM-Hydro, except the Manning coefficients. Indeed, MESH can only
use fixed values for Manning coefficients and a given river class, while GEM-Hydro can use
temporally and spatially-varying Manning coefficients which vary for each grid cell according
to slope, vegetation, and month of the year to account for vegetation growth and potential ice
effects. Since these default variable Manning coefficients led to better performances than the
fixed, calibrated values, the former were preserved in the final GEM-Hydro setup. The total
daily Lake Erie inflows were used as the objective function to calibrate MESH-SVS, which
consists of the Nash-Sutcliffe efficiency criterion. The time-series of observed daily inflows to
Lake Erie were estimated based on the total observed streamflow entering the lake, which were
then extrapolated using the Area-Ratio-Method (ARM, see Fry et al. [2014]) to account for
ungauged areas of the Lake Erie watershed. Inflows from Saint-Claire River were disregarded
to ignore the influence of the other upstream Great Lakes.

For MESH-CLASS, the routing was run at the 1 km resolution. Some manual editing
of drainage directions was necessary to bring the drainage areas of most sub-basins inline
with reported areas (by WSC and USGS). The model was calibrated to the time-series of
observed daily streamflow at 35 stations designated to be the most downstream ones. The
basin was masked for the watersheds corresponding to those gauges to reduce the calibration
run time. Calibrations of HLSS and routing parameters were done independently in two
stages. First, selected HLSS parameters for dominant GRUs (broadleaf forest, short grass,
long grass, crops and urban) were calibrated (70 in total) to minimize the sum of absolute
percent bias (3 |PBIAS| — Min) across all stations to ensure the water balance is closed to
within acceptable limits. The calibration started with 49 stations (all most downstream) but the
number of stations was later reduced because the aggregation led to sub-optimal performance
for most stations as the optimizer kept trying to improve the least performing ones similar
to what is reported above for VIC-GRU. The calibration budget was initially assigned 5000
iterations but was later increased to 12000 because some of the parameter combinations
crashed and convergence was slow due to the large number of parameters. For this second
calibration attempt with 35 stations, the best performing parameter sets from the 49 one were
used to speed up the process further.

Then, routing parameters were calibrated using the Nash-Sutcliffe and Kling-Gupta
efficiency (KGE) criteria (as alternatives) with a budget of 5000 model evaluation for each.
The KGE calibration resulted in slightly better NSE values for most gauges. A total of 25
routing parameters were calibrated. These are roughness coeflicients for overland flow for the
five dominant GRUs in additional to roughness and baseflow parameters for five river classes.
River classes were introduced in the MESH-CLASS setup to improve the representation of
spatial variability of channel roughness as small rivers are generally different from large ones,
especially with the lack of temporal variability. The classes were assigned based on visual
analysis of the histogram of the “bankfull” capacity of river channels (log-transformed to
reduce the range) which is direct function of the cumulative drainage area (DA) at each grid
cell. The larger the value of DA, the larger the value of bankfull and thus the larger the river.
Arbitrary thresholds were applied to the histogram to differentiate the river classes but this can
be done more objectively using quantiles as done for the Yukon river basin by Elshamy et al.
[2020]. Routing parameters could interact with HLSS parameters but the impact was assessed



by comparing the PBIAS values before and after calibrating the routing and differences are
negligible.

To perform the calibrations of both MESH configurations, the Ostrich toolkit was used
[Matott, 2017], using the Dynamically Dimensioned Search algorithm (DDS) [Tolson and
Shoemaker, 2007]. More information on application of MESH-CLASS for the entire Great
Lakes can be found in Haghnegahdar et al. [2014] and Xu et al. [2015].

S.1.12 WATFLOOD

The WATFLOOD model was first created in 1973 and is a partially physically-based,
distributed hydrological model which has been used for not only long flood forecasting, but also
for long-term hydrological simulation of watersheds for such applications as climate change
[Kouwen, 1988]. The model was designed to run using the easily available input variables of
temperature and precipitation. These input variables can be derived from station data, weather
radar, numerical weather models, or climate change scenarios.

The hydrological processes modelled in WATFLOOD include, but are not limited to,
interception, infiltration, evaporation, snow accumulation and ablation, interflow, recharge,
baseflow, and overland and channel routing. The most important concept of WATFLOOD is
the grouped response unit (GRU) approach which is a conceptual grouping of land surface
areas with similar land use that are expected to have similar hydrological response. The runoff
response from each unit with an individual GRU is calculated and routed downstream [Cranmer
etal., 2001]. River channels are classified allowing for different flow characteristics depending
on the nature of the river channel. WATFLOOD computes infiltration using the Philip formula,
which represents physical aspects of the infiltration process.

WATFLOOQOD has been employed by over the Great Lakes basin [Pietroniro et al., 2007]
and other basins across Canada [Bomhof et al., 2019; Unduche et al., 2018]. The format of
the land surface characteristics database for WATFLOOD was designed to be the same as
for the GEM-Hydro model described in the previous section. Thus for this study the same
geophysical databases were used for soil texture, land cover, slope, flow direction, drainage
area, and channel properties.

The version of the WATFLOOD model used for this study was 9.8 and it was calibrated
at a 10 km resolution using all the stations in the calibration list (Section S.2) at the same
time. This resolution was chosen to reduce the computation needed for the calibration.
The parameters that were calibrated were coefficients related to flow between the different
storages (i.e., surface to upper zone to lower zone), snowmelt, evaporation, and river channel
roughness. The Nash-Sutcliffe efficiency criterion was used as the objective function for
the calibration. The Ostrich toolkit was used for all calibrations [Matott, 2017], using the
Dynamically Dimensioned Search algorithm (DDS) [Tolson and Shoemaker, 2007] with a
maximum of 500 iterations. Final streamflow was then calculated using the 1 km version of
the geophysical database.

S.2 Information on Gauge Stations for Calibration and Validation

Table S1 lists all gauge stations in the Lake Erie watershed used for this study. The
spatial distribution can be found in Fig. 1A and 1B in the main manuscript.



Table S1. Gauges used for calibration and spatial validation in this study. The location, drainage
area, country, regulation, gauge name, and ID are given as well as if the station is used for objec-
tive 1 (low-human impact) and/or objective 2 (most-downstream gauges). In total 46 stations are
used for calibration (28 for objective 1 and 31 for objective 2; 13 gauges in both objectives) and 7
stations are used for validation (all stations used for both objectives).

Gauge ID  Gauge Name Ctry Lat Lon Area  Regu- Obj. Cal. Val.
[deg] [deg] [km?] lation 1 2

02GA010  NITH RIVER NEAR CANNING CA 43.1897  -80.4550 1030.0  Natural

02GA018  NITH RIVER AT NEW HAM- CA 43.3772  -80.7108 544.0  Natural X
BURG

02GA038  NITH RIVER ABOVE NITH- CA 43.4839  -80.8350 326.0  Natural X X
BURG

02GA047  SPEED RIVER AT CAMBRIDGE  CA 434219  -80.3327 762.0  Natural X

02GC010  BIG OTTER CREEK AT TILL- CA 42.8573  -80.7236 354.0  Natural X
SONBURG

02GD004  MIDDLE THAMES RIVER AT CA 43.0591  -80.9949 306.0  Natural X X
THAMESFORD

02GG002  SYDENHAM RIVER NEAR CA 42.8308  -81.8517 701.0  Natural X X
ALVINSTON

02GG006 ~ BEAR CREEK NEAR PETROLIA  CA 429058  -82.1191 249.0  Natural X X

04159492  BLACK RIVER NEAR JEDDO Us 43.1525  -82.6241 1197.8  Natural X X
MI

04161820  CLINTON RIVER AT STERLING  US 42.6145  -83.0266 802.8  Natural X X
HEIGHTS MI

04164000  CLINTON RIVER NEAR Us 42,5773  -82.9513 1143.0  Natural X X
FRASER MI

04166100  RIVER ROUGE AT SOUTH- Us 424478  -83.2977 2243  Natural X X
FIELD MI

04196800 TYMOCHTEE CREEK AT usS 40.9228  -83.3488 608.1  Natural X X
CRAWFORD OH

04197100 HONEY CREEK AT MELMORE Us 41.0223  -83.1096 388.2  Natural X X
OH

04207200  TINKERS CREEK AT BEDFORD  US 41.3845  -81.5273 222.1  Natural X X
OH

02GB007  FAIRCHILD CREEK NEAR CA 43.1474  -80.1546 389.0 Natural X X X
BRANTFORD

02GC002  KETTLE CREEK AT ST. CA 427777 -81.2140 331.0  Natural X X X
THOMAS

02GCO018  CATFISH CREEK NEAR CA 42.7461  -81.0569 295.0  Natural X X X
SPARTA

02GE007 MCGREGOR CREEK NEAR CA 42.3835  -82.0951 204.0  Natural X X X
CHATHAM

02GG003  SYDENHAM RIVER AT FLO- CA 42.6506  -82.0084 1150.0  Natural X X X
RENCE

02GG009 BEAR CREEK BELOW BRIG- CA 42.8120  -82.2984 536.0  Natural X X X
DEN

02GG013  BLACK CREEK NEAR BRAD- CA 427624 -82.2592 213.0  Natural X X X
SHAW

04159900 MILL CREEK NEAR AVOCAMI  US 43.0545  -82.7346 438.7  Natural X X X

04160600 BELLE RIVER AT MEMPHIS MI ~ US 429009  -82.7691 390.9  Natural X X X

04165500  CLINTON RIVER AT MORA- UsS 42.5959  -82.9088 1892.6  Natural X X X

VIAN DRIVE AT MT. CLEMENS
MI
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Table S1 — Continued from previous page

Gauge ID  Gauge Name Ctry Lat Lon Area  Regu- Obj. Cal. Val
[deg] [deg] [km?] lation 1 2

04177000 OTTAWA RIVER AT UNIVER- us 41.6597  -83.6125 343.8  Natural X X X
SITY OF TOLEDO TOLEDO
OH

04208504 CUYAHOGA RIVER NEAR UsS 41.4626  -81.6810 2043.6  Natural X X X
NEWBURGH HEIGHTS OH

04213000 CONNEAUT CREEK AT CON- us 41.9270  -80.6040 455.3  Natural X X X
NEAUT OH

02GB001 GRAND RIVER AT BRANT- CA 43.1327  -80.2673 5200.0  Regulated X X
FORD

02GC007  BIG CREEK NEAR WALSING- CA 42.6856  -80.5385 567.0  Regulated X X
HAM

02GC026  BIG OTTER CREEK NEAR CA 42,7107  -80.8408 665.0 Regulated X X
CALTON

04166500 RIVER ROUGE AT DETROITMI ~ US 42.3723  -83.2555 476.0  Regulated X X

04174500 HURON RIVER AT ANN AR- US 42.2861 -83.7333 1928.2  Regulated X X
BOR MI

04176500  RIVER RAISIN NEAR MONROE  US 41.9606  -83.5310 2686.0  Regulated X X
MI

04193500 MAUMEE RIVER AT WATER- UsS 41.5001 -83.7127 16409.4  Regulated X X
VILLE OH

04195820 PORTAGE RIVER NEAR EL- UsS 414912  -83.2246 1266.2  Regulated X X
MORE OH

04198000 SANDUSKY RIVER NEAR us 41.3078  -83.1588 3243.8  Regulated X X
FREMONT OH

04199000 HURON RIVER AT MILAN OH UsS 41.3017  -82.6068 947.4  Regulated X X

04199500 VERMILION R NR VERMILION UsS 41.3820  -82.3168 672.4  Regulated X X
OH

04200500 BLACK RIVER AT ELYRIA OH us 41.3803  -82.1046 1026.9  Regulated X X

04209000 CHAGRIN RIVER AT us 41.6309  -81.4034 637.4  Regulated X X
WILLOUGHBY OH

04212100  GRAND RIVER NEAR US 41.7189  -81.2279 1784.9  Regulated X X
PAINESVILLE OH

04213500 CATTARAUGUS CR AT us 424640  -78.9350 1128.8  Regulated X X
GOWANDA NY

04214500 BUFFALO CREEK AT GAR- US 42.8548  -78.7550 368.4  Regulated X X
DENVILLE NY

04215000 CAYUGA CREEK NR LAN- UsS 42.8901  -78.6450 248.0  Regulated X X
CASTER NY

04215500 CAZENOVIA CREEK AT us 42.8298  -78.7750 350.7 Regulated X X
EBENEZER NY

02GE003 THAMES RIVER AT CA 42.5449  -81.9673 4370.0 Regulated x X X
THAMESVILLE

04167000 MIDDLE RIVER ROUGE NEAR US 42.3481  -83.3116 229.5 Regulated x x X
GARDEN CITY MI

04168000 LOWER RIVER ROUGE AT us 42.3006  -83.3002 219.2  Regulated x x X
INKSTER MI

04185000  Tiffin River at Stryker OH UsS 41.5045  -84.4297 1061.9  Natural X X X

04195500 PORTAGE R AT WOODVILLE US 41.4495 -83.3613 1108.5 Regulated x x X
OH

04201500 ROCKY R NR BEREA OH UsS 41.4075  -81.8826 691.5 Regulated x x X

04208000 CUYAHOGA R AT INDEPEN- us 41.3953  -81.6298 1831.1 Regulated x x X
DENCE OH
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S.3 Model Performance per Model and Objective

Table S2 summarizes the model performances as median Nash-Sutcliffe Efficiency over
all gauges for each model. The results are shown for both objectives and for a default model
setup and the final model setup after calibration. The calibration results are shown as a barchart
in Fig. 3A in the main manuscript. The results per gauge station are shown in Fig.s 2A and
2B of the main manuscript. The validation results are shown as a barchart in Fig. 3B in the
main manuscript. The results per gauge station are shown in Fig.s 2C and 2D of the main
manuscript.

S.4 Model Performance regarding other metrics

All models are primarily analysed regarding

the Nash-Sutcliffe efficiency. However,

other metrics were tested but are not presented in the main manuscript as they did not yield any
further insight. The auxiliary metrics tested are percent bias (PBIAS; Figure S1), Kling-Gupta
Efficiency (KGE; Figure S2), and the three components of the Kling-Gupta Efficiency, i.e.
relative variability (KGE_a; Figure S3), bias (KGE_b; Figure S4), and Pearson Correlation
Coeflicient (KGE_r; Figure S5).
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Fig. S1. The performance of the participating models in calibration and validation (A,B and C,D
respectively) for each gauging station of objective 1 and 2. The colored tiles indicated the percent
bias (PBIAS) per gauge and model while the median PBIAS over all gauging stations is displayed
to the right. The black horizontal lines separate i) Machine Learning models from ii) models that
are calibrated at each individual streamflow gauge from iii) models that are calibrated over the
entire domain calibrating all streamflow gauges simultaneously. The hatched tiles (validation only)
mark gauging stations that have informed the calibration of the corresponding models.
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Table S2. Model performance as median Nash-Sutcliffe efficiency (NSE) over all gauges for each
model in either pre-calibration (Def.) mode or after calibration (Cal.) or spatial validation (Val.)
for both objectives considered in this study. Major improvements of all models were achieved

by the automatic calibration. All models calibrated at individual gauges (local calibration; e.g.,
GR4J, LBRM, mHM-Waterloo) outperform the models that are calibrated at all N gauging stations
together (global calibration; e.g., mHM-UFZ, GEM-Hydro). The latter leads to one final model
setup (one parameter set) while the individual calibrations lead to N model setups (N parameter
sets) and are hence more difficult to be transferred to other domains. Best performing models in
each of the three groups are highlighted with bold font. LBRM and MESH-CLASS used some of
the validation stations already in calibration. These results can therefore not be considered proper

validation results and are indicated with an asterisk (*).

Objective Objective 1: Objective 2:
low-human impact most downstream
Model Modeller Phase Def. Cal. Val. Def. Cal. Val.
ML-LSTM Gauch & Lin Global calib. n/a 0.73 0.41 n/a 0.54 0.41
ML-XGBoost Gauch & Lin Global calib. n/a 0.37 0.17 n/a 0.22 0.17
LBRM Fry & Bradley Local calib. 0.41 0.66 0.70* 0.57 0.72 0.70*
GR4J-Raven-Ip Shen & Tolson Local calib. 0.08 0.63 0.50 0.07 0.67 0.50
GR4J-Raven-sd Shen & Tolson Local calib. 0.07 0.64 0.44 0.06 0.67 0.44
HYMOD2-DS Roy & Wi Local calib. -1.52 0.74 0.59 -0.19 0.73 0.59
SWAT-EPA Ni & Yuan Local calib. -0.17 0.19 n/a -0.22 n/a n/a
SWAT-Guelph Shrestha & Daggu-  Local calib. -0.19 0.55 0.26 -0.39 0.59 0.23
pati
mHM-Waterloo McLeod, Kumar & Local calib. 0.35 0.76 0.68 0.37 0.78 0.68
Basu
mHM-UFZ Rakovec, Global calib. 0.24 0.66 0.64 0.27 0.67 0.60
Samaniego &
Attinger
HYPE Awoye & Stadnyk Global calib. 0.08 0.52 0.41 0.08 0.48 0.41
VIC Shen & Tolson Global calib. 0.22 0.41 0.53 0.37 0.43 0.51
VIC-GRU Gharari Global calib. -0.11 0.42 0.51 0.10 0.43 0.51
GEM-Hydro Gaborit Global calib. 0.38 0.51 0.54 0.36 0.44 0.54
MESH-SVS Gaborit & Princz Global calib. 0.33 0.44 0.58 0.33 0.45 0.58
MESH-CLASS Haghn., Elshamy &  Global calib. -0.05 0.34 0.51% 0.16 0.40 0.51%
Princz
WATFLOOD Seglenieks & Global calib. -1.09 0.33 0.05 -0.50 0.32 0.05
Temgoua
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Fig. S2. The performance of the participating models in calibration and validation (A,B and C,D
respectively) for each gauging station of objective 1 and 2. The colored tiles indicated the Kling-
Gupta Efficiency (KGE) per gauge and model while the median KGE over all gauging stations
is displayed to the right. The black horizontal lines separate i) Machine Learning models from

ii) models that are calibrated at each individual streamflow gauge from iii) models that are cali-
brated over the entire domain calibrating all streamflow gauges simultaneously. The hatched tiles
(validation only) mark gauging stations that have informed the calibration of the corresponding

models.
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Fig. S3. The performance of the participating models in calibration and validation (A,B and C,D
respectively) for each gauging station of objective 1 and 2. The colored tiles indicated the relative
variability (KGE_a) per gauge and model while the median KGE_a over all gauging stations is
displayed to the right. The black horizontal lines separate i) Machine Learning models from ii)
models that are calibrated at each individual streamflow gauge from iii) models that are calibrated
over the entire domain calibrating all streamflow gauges simultaneously. The hatched tiles (valida-

tion only) mark gauging stations that have informed
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Fig. S4. The performance of the participating models in calibration and validation (A,B and C,D
respectively) for each gauging station of objective 1 and 2. The colored tiles indicated the bias
(KGE_b) per gauge and model while the median KGE_b over all gauging stations is displayed to
the right. The black horizontal lines separate i) Machine Learning models from ii) models that are
calibrated at each individual streamflow gauge from iii) models that are calibrated over the entire
domain calibrating all streamflow gauges simultaneously. The hatched tiles (validation only) mark
gauging stations that have informed the calibration of the corresponding models.
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Fig. S5. The performance of the participating models in calibration and validation (A,B and C,D
respectively) for each gauging station of objective 1 and 2. The colored tiles indicated the Pearson
Correlation Coefficient (KGE_r) per gauge and model while the median KGE_r over all gauging
stations is displayed to the right. The black horizontal lines separate i) Machine Learning models
from ii) models that are calibrated at each individual streamflow gauge from iii) models that are
calibrated over the entire domain calibrating all streamflow gauges simultaneously. The hatched
tiles (validation only) mark gauging stations that have informed the calibration of the correspond-
ing models.
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