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We examined the neuromuscular adaptations following 3 and 6 weeks of 80 vs. 30% one

repetition maximum (1RM) resistance training to failure in the leg extensors. Twenty-six

men (age = 23.1 ± 4.7 years) were randomly assigned to a high- (80% 1RM; n = 13)

or low-load (30% 1RM; n = 13) resistance training group and completed leg extension

resistance training to failure 3 times per week for 6 weeks. Testing was completed at

baseline, 3, and 6 weeks of training. During each testing session, ultrasound muscle

thickness and echo intensity, 1RM strength, maximal voluntary isometric contraction

(MVIC) strength, and contractile properties of the quadriceps femoris were measured.

Percent voluntary activation (VA) and electromyographic (EMG) amplitude weremeasured

during MVIC, and during randomly ordered isometric step muscle actions at 10–100% of

baseline MVIC. There were similar increases in muscle thickness from Baseline to Week 3

and 6 in the 80 and 30% 1RM groups. However, both 1RM and MVIC strength increased

from Baseline to Week 3 and 6 to a greater degree in the 80% than 30% 1RM group. VA

during MVIC was also greater in the 80 vs. 30% 1RM group at Week 6, and only training

at 80% 1RM elicited a significant increase in EMG amplitude during MVIC. The peak

twitch torque to MVIC ratio was also significantly reduced in the 80%, but not 30% 1RM

group, at Week 3 and 6. Finally, VA and EMG amplitude were reduced during submaximal

torque production as a result of training at 80% 1RM, but not 30% 1RM. Despite eliciting

similar hypertrophy, 80% 1RM improved muscle strength more than 30% 1RM, and was

accompanied by increases in VA and EMG amplitude during maximal force production.

Furthermore, training at 80% 1RM resulted in a decreased neural cost to produce the

same relative submaximal torques after training, whereas training at 30% 1RM did not.

Therefore, our data suggest that high-load training results in greater neural adaptations

that may explain the disparate increases in muscle strength despite similar hypertrophy

following high- and low-load training programs.
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INTRODUCTION

The neuromuscular system displays a high degree of adaptability
and responds to resistance training in a manner that ultimately
results in enhanced force or torque production. The specific
neuromuscular adaptations responsible for the increase in
muscle strength are often broadly grouped as morphological
and neural (Folland and Williams, 2007). Several morphological
adaptations to resistance training have been identified (Staron
et al., 1994; Aagaard et al., 2001; Williamson et al., 2001; Seynnes
et al., 2007), the primary and most widely-studied of which
is skeletal muscle hypertrophy (Folland and Williams, 2007).
It is thought that resistance training also elicits small adaptive
changes at multiple sites within the nervous system that, together,
enhance muscle strength (Sale, 1988; Gabriel et al., 2006; Lee
et al., 2009). One of the primary proposed adaptations is an
increase in the ability to maximally excite the motor neuron pool
(i.e., agonist activation), which may be secondary to an increase
in descending excitatory drive, a decrease in inhibition, and/or an
increase in facilitatory mechanisms.

Currently, the recommendations of several leading exercise
science and sports medicine organizations is that loads
corresponding to 60–85% of one repetition maximum (1RM)
should be utilized in order tomaximize hypertrophy and strength
in response to a resistance training program (NSCA, 2008;
Garber et al., 2011). However, several recent experimental studies
(Burd et al., 2010; Mitchell et al., 2012; Ogasawara et al., 2013;
Jenkins et al., 2016) have called these recommendations in to
question. Specifically, low-load (i.e., 30% 1RM) and high-load
(i.e., 80–90% 1RM) resistance training have been shown to elicit
similar acute increases in muscle protein synthesis (Burd et al.,
2010) and comparable muscle hypertrophy in chronic resistance
training models (Mitchell et al., 2012; Ogasawara et al., 2013;
Jenkins et al., 2016). As a result, there has been a debate (Burd
et al., 2013; Schuenke et al., 2013) regarding the most effective
resistance exercise loads to prescribe for hypertrophy.

Although, high- and low-load training to failure may elicit
similar hypertrophy, high-load training may be superior for
enhancingmuscle strength (Mitchell et al., 2012; Ogasawara et al.,
2013). For example, Mitchell et al. (2012) demonstrated that
80% 1RM leg extension training was superior to 30% 1RM for
increasing 1RM, while Ogasawara et al. (2013) demonstrated
that 75% 1RM bench press training was superior for increasing
maximal voluntary isometric contraction (MVIC) and 1RM
strength. Therefore, these data suggest that there may be
neural adaptations that facilitate improvements in strength
during high-load training that do not occur with low-load
training.

Therefore, the purpose of this study was to examine
the neuromuscular adaptations, including muscle hypertrophy,
muscle activation (i.e., VA and EMG amplitude), and contractile
twitch properties, following 3 and 6 weeks of 80 vs. 30% 1RM
resistance training to failure in the leg extensors. Based on
previous studies (Mitchell et al., 2012; Ogasawara et al., 2013;
Jenkins et al., 2016), we hypothesized that resistance training
at 80 and 30% 1RM to failure would elicit similar muscle
hypertrophy, but that muscle strength would increase to a greater

extent following training at 80% 1RM and that this would be
accompanied by greater evidence of neural adaptation.

METHODS

Participants
Thirty men were recruited; however, 4 men did not complete
this study. Three men dropped out after enrollment but prior
to familiarization and 1 man dropped out during the third week
of training due to concerns about the total time commitment.
Therefore, only the data from 26 men (mean ± SD; age =

23.1 ± 4.7 years; height = 180.6 ± 6.0 cm; weight = 80.0 ±

14.1 kg) were analyzed and reported in this manuscript. To be
eligible, each participant must have been between the ages of
19 and 35, free from any current or ongoing musculoskeletal
injuries or neuromuscular disorders involving the hips, knees,
or ankles, and could not have completed any regular or formal
resistance training for at least 6 months prior to the start
of the study. This study was approved by and carried out
in accordance with the recommendations of the University of
Nebraska-Lincoln’s Institutional Review Board for the protection
of human participants (IRB Approval #20150715341EP). Prior to
any data collection, all participants signed an informed consent
form and completed a health history questionnaire.

Experimental Design
A randomized, repeated measures, between-group, parallel
design was used for this study. Participants were randomly
assigned to either a high- (80% of 1RM; n = 13) or low-load
(30% of 1RM; n= 13) resistance training group, and familiarized
with the testing procedures. Participants completed leg extension
resistance training to failure 3 times per week for 6 weeks.
Testing was completed at baseline, 3, and 6 weeks of training.
All participants completed a total of 21 visits, and each visit
was separated by 24–96 h and occurred at the same time of day
(±2 h). During each testing session, ultrasound, muscle strength,
EMG amplitude, VA, and contractile properties were measured.
The participants were asked to refrain from any outside resistance
exercise for the duration of the study.

Ultrasound Measurements
Muscle thickness and echo intensity were assessed via ultrasound
prior to any exercise testing. Transverse ultrasound images
of the right leg extensors were obtained using a portable
brightness mode (B-mode) ultrasound-imaging device (GE Logiq
e, USA) and a multi-frequency linear-array probe (12L-RS; 5–
13 MHz; 38.4 mm field-of-view). Images were obtained while
the participants were lying in the supine position with their
legs extended, relaxed, supported on the table, and their feet
braced. Great care was taken to ensure that consistent, minimal
pressure was applied with the probe to limit compression of
the muscle. To enhance acoustic coupling and reduce near field
artifacts, a generous amount of water-soluble transmission gel
was applied to the skin. To account for the possibility of non-
uniform hypertrophy (Wakahara et al., 2013) all ultrasound
measurements were taken at 30, 50, and 70% of the distance from
the greater trochanter to the lateral condyle of the femur for the
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vastus lateralis (VL) (Narici et al., 1989; Wells et al., 2014), at
70, 80, and 90% of the distance between the ASIS and the joint
space in front of the anterior border of the medial ligament for
the vastus medialis (VM), and at 30, 50, and 70% of the distance
from the ASIS to the medial, superior border of the patella for
the rectus femoris (RF) (Narici et al., 1989; Korhonen et al.,
2009). These locations were marked in permanent ink and kept
throughout the duration of the study.

A single, experienced investigator performed all ultrasound
scans. The equipment settings for muscle thickness and echo
intensity measurements were optimized for image quality using
the musculoskeletal mode prior to all testing using a gain of 50
dB, a frequency of 10MHz, and a depth of 8 cm. These equipment
settings were held constant between visits and across participants.
All ultrasound image analyses were performed using Image-J
Software (National Institutes of Health, USA, version 1.47v).
Prior to all analyses, each image was scaled from pixels to cm
using the straight-line function in Image-J. The muscle thickness
of the leg extensors (i.e., VL, VM, and RF) was measured as the
distance (cm) from the adipose tissue-muscle interface to the
muscle-bone (for the VM) ormuscle-muscle interface (for the VL
and RF due to the vastus intermedius lying deep; Radaelli et al.,
2013). Muscle thickness was determined using the straight-line
function in the Image-J software. Muscle thickness was averaged
across the three sites (proximal, middle, and distal) for each
muscle (VL, VM, and RF) and then across muscles at Baseline,
Week 3, and Week 6 for further analyses.

VL, VM, and RFmuscle echo intensity values were assessed by
computer-aided gray-scale analysis using the standard histogram
function in Image-J and were determined from the maximal
rectangular region of interest using the rectangle function that
included as much of the muscle of interest as possible without
including any surrounding fascia (Caresio et al., 2014). Similar
to muscle thickness, echo intensity was averaged across the three
sites and three muscles at Baseline, Week 3, and Week 6 for
further analyses. The mean echo intensity value was reported as a
value between 0 (black) and 255 (white) arbitrary units (au).

Muscle Strength and Voluntary Activation
Measurements
For isometric testing, the participants were seated with straps
securing the trunk, pelvis, and contralateral thigh on a calibrated
isokinetic dynamometer (Biodex System 3; Biodex Medical
Systems, Inc. Shirley, NY, USA) with a custom-fitted load cell
(Omegadyne, model LC402, range 0–500 lbs, Stamford, CT,
USA). The axis of rotation of the dynamometer head was aligned
with the lateral epicondyle of the right femur. The seat was tilted
back so that there was 120◦ between the thigh and the trunk
to expose the femoral triangle for location of the femoral nerve
trunk and delivery of the electrical stimuli. The leg was flexed to
90◦ between the leg and the horizontal plane, which was used for
both voluntary and evoked isometric muscle actions.

The participants completed 2, 3 s warm-up leg extension
muscle actions at 50 and 75% of their perceived effort with 30 s
of rest between each muscle action. Following the warm-up and
2 min of rest, participants completed 2, 4–5 s MVICs of the leg

extensors with 2 min of rest between each muscle action. On
each attempt subjects were instructed to contract as “hard and
fast” as possible when the investigator said “go.” Loud, verbal
encouragement was given during each MVIC.

At baseline, the highest MVIC force recorded was used to
calculate the target force levels during the subsequent, randomly-
ordered, isometric step muscle actions at 10, 20, 30, 40, 50, 60,
70, 80, and 90% of MVIC. During each step muscle action,
the participants were required to trace their force production
on an external computer monitor that displayed the real-time
digitized force signal overlaid on the target force level. During
these trials, doublet stimuli were applied to the femoral nerve
in order to assess VA (i.e., interpolated twitch procedure). Three
to five s after these submaximal step muscle actions, a doublet
stimulus was administered at rest (potentiated twitch). AnMVIC
was also completed after the 2, 4–5 s MVICs, but prior to the
submaximal stepmuscle actions, during which a doublet stimulus
was also applied. Three to five s after this MVIC, a potentiated
twitch was evoked. Percent voluntary activation was calculated as
(1-[superimposed twitch/potentiated twitch])∗100 (Allen et al.,
1995; Behm et al., 1996) during all submaximal step muscle
actions as well as the MVIC. The same absolute forces associated
with each randomly ordered percentage of MVIC at baseline
were then used during the subsequent testing sessions at week
3 and week 6. If the participant’s strength increased at week 3
and/or week 6, they completed the step muscle actions from 10
to 100%MVIC of the absolute force levels established at baseline,
in addition to the newly established MVIC.

Transcutaneous electrical stimuli were delivered via a
cathode-anode arrangement using a high voltage (maximal
voltage = 400 V), constant-current stimulator (Digitimer
DS7AH, Herthfordshire, UK). The cathode was a probe placed
over the femoral nerve in the lateral most corner of the femoral
triangle and the anode was a disposable surface electrode
(40 × 50 mm; Digitimer Ltd, Herthfordshire, UK) fixed over
the greater trochanter. Optimal stimulation probe location
was determined by delivering single low-amperage exploratory
stimuli (20–40 mA) with the cathode probe. Probe location was
selected based on visual inspections of the twitch force and
the compound muscle action potential (M-wave) amplitudes
that were displayed on an external computer screen. Once
the location was determined, the skin was marked and all
further stimuli were delivered at that location. Maximal peak-to-
peak M-wave amplitude (MPP) and twitch force were achieved
by increasing amperage in 20–100 mA increments until a
plateau in twitch force and MPP were observed after three
consecutive amperage increases. To ensure a supramaximal
stimulus, 120% of the stimulus used to evoke the maximal
twitch force and MPP was used to evoke the leg extensor
muscles with 3 singlet stimuli while the participant was relaxing.
Doublet stimuli (200 ms duration square-wave impulse at 100
Hz) were then used to assess voluntary activation. Two men,
1 from the 80% 1RM group and 1 from the 30% 1RM group,
were unable to tolerate the doublet stimuli used to determine
VA. One of these men (from the 30% 1RM group) was also
unable to tolerate the singlet stimuli used to elicit the M-
wave and examine contractile properties. Therefore, for VA,
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TABLE 1 | The means ± standard errors, p-values, and Cohen’s d effect

sizes for average daily energy, protein, carbohydrate, and fat intake in the

80 and 30% 1RM groups.

80% 1RM 30% 1RM p-value Cohen’s d

Energy (kcal) 2242.5 ± 137.4 2248.8 ± 99.5 0.97 −0.01

Protein (g) 97.4 ± 9.8 101.8 ± 7.7 0.76 −0.14

Carbohydrate (g) 289.1 ± 31.9 249.0 ± 17.9 0.35 0.43

Fat (g) 82.9 ± 5.9 92.1 ± 6.1 0.35 −0.42

TABLE 2 | The means ± standard errors, p-values, and Cohen’s d effect

sizes for the average repetitions performed, time under tension, and

volume performed across all sets and training sessions in the 80 and 30%

1RM groups.

80% 1RM 30% 1RM p-value Cohen’s d

Total repetitions 558.2 ± 45.1 1751.7 ± 140.8 <0.01 −3.17

Total Time under

load (s)

1100.2 ± 66.0 3219.0 ± 200.9 <0.01 −3.93

Total volume (au) 38825.2 ± 3002.7 41170.1 ± 4326.7 0.66 −0.17

au, arbitrary units.

a sample size of 12 for each group was used for analyses.
For normalized EMG amplitude during voluntary contractions
and for the M-wave and contractile properties, a sample size
of 13 and 12 were used for the 80 and 30% 1RM groups,
respectively.

Following ultrasound and isometric strength testing, 1RM
testing was carried out according to the guidelines established
by the National Strength and Conditioning Association (NSCA,
2008). Specifically, the participants performed a light warm-up
set with 5–10 repetitions at 50% of estimated 1RM, followed by
2–3 heavier warm-up sets of 2–5 repetitions with loads increasing
by 10–20% at each set. Participants then began completing trials
of 1 repetition with increasing loads (10–20%) until they were
no longer able to complete a single repetition. The highest
load (kg) successfully lifted through the entire range of motion
with proper technique was denoted as the 1RM, which was
determined in ≤4 trials for all subjects. Two to four min of
rest were allowed between successive warm-up sets and 1RM
trials.

Electromyography
Pre-gelled bipolar surface electrodes (Ag/AgCl, AccuSensor,
Lynn Medical, Wixom, MI, USA) were placed on the VL,
VM, and RF muscles of the right thigh with an inter-electrode
distance of 30 mm. For the VL, the center of the bipolar
electrode pair was placed at 66% of the distance between the
anterior superior iliac spine (ASIS) and the lateral superior
border of the patella (Hermens et al., 1999). The longitudinal
axis of the bipolar electrode pair was arranged parallel to the
angle of pennation of the VL fibers (∼20◦; Fukunaga et al.,
1997; Lieber and Friden, 2000). For the VM, the center of
the bipolar electrode pair was placed at 80% of the distance
between the ASIS and the joint space in front of the anterior
border of the medial ligament. For the RF, the center of the

FIGURE 1 | (A) Muscle thickness in the 80 and 30% 1RM groups at Baseline,

Week 3, and Week 6; and (B) adjusted means for muscle thickness in the 80

and 30% 1RM groups at Week 3 and Week 6. Error bars are standard errors.

*Indicates a significant increase from Baseline.

bipolar electrode pair was placed at 50% of the distance between
the ASIS and the medial superior border of the patella. The
longitudinal axis of the electrode pair was oriented parallel
to the angle of pennation of the VM fibers (∼50◦; Hermens
et al., 1999). A single pre-gelled surface electrode (Ag/AgCl,
AccuSensor, Lynn Medical, Wixom, MI, USA) was placed
on the lateral condyle of the tibia to serve as the reference
electrode. All electrode locations were marked with a permanent
marker and were kept throughout the duration of the study.
To reduce inter-electrode impedance and increase the signal-
to-noise ratio (Beck and Housh, 2008), local areas of the skin
were shaved, abraded, and cleaned with isopropyl alcohol prior
to the placement of the electrodes. Interelectrode impedance
was measured using a digital multimeter (Fluke 179 True RMS
Multimeter, Everett, WA, USA) and kept below 2,000 � (Beck
and Housh, 2008).

Signal Processing
Electromyographic (EMG) and force signals were recorded
during all isometric testing. The EMG and force signals were
sampled simultaneously at 2 kHz with a Biopac data acquisition
system (MP150WSW, Biopac Systems, Inc., Santa Barbara, CA,
USA), recorded on a personal computer, and processed off-
line with custom written (N.D.M.J.) software (Labview v. 12.0,

Frontiers in Physiology | www.frontiersin.org 4 May 2017 | Volume 8 | Article 331

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Jenkins et al. Neuromuscular Adaptations to Resistance Training

FIGURE 2 | (A) Echo intensity in the 80 and 30% 1RM groups at Baseline,

Week 3, and Week 6; and (B) adjusted means for echo intensity in the 80 and

30% 1RM groups at Week 3 and Week 6. Error bars are standard errors.

*Indicates a significant decrease from Baseline. † Indicates a significant

decrease from Week 3.

National Instruments, Austin, TX, USA). The EMG signals were
amplified (gain 1,000) using a differential amplifier (EMG 100C,
Biopac Systems, Inc., Santa Barbara, CA, USA, bandwidth 1–
5,000 Hz) with a common mode rejection ratio of 110 dB min
and an impedance of 2M �, and zero-meaned. The voluntary
and evoked EMG signals were digitally filtered (zero-phase shift
4th-order Butterworth filter) with a band-pass of 10–499 and
10–999 Hz, respectively. The force signals were low-pass filtered
(zero-phase shift 4th-order Butterworth filter) with a 15 Hz
cutoff. The force obtained from the load cell (N) was multiplied
by the lever arm length (m) to calculate torque (Nm). All
subsequent analyses were completed on the filtered and scaled
signals.

During the evoked muscle actions, peak twitch torque (PTT)
was calculated as the highest 5 ms torque value (Nm) obtained
after the onset of the evoked twitch. The peak rate of torque
development (+dt/dt) and rate of relaxation (−dt/dt) were
calculated as the positive and negative peaks of the first derivate
torque signal (Nm s−1), respectively. In addition, MPP was
calculated as the peak-to-peak amplitude (µV). M-wave duration
(MDUR) was calculated as the time (ms) from the onset to
cessation of the M-wave.

During the MVICs, the torque and EMG amplitude values
were calculated from the 500 ms epoch corresponding to

FIGURE 3 | (A) One repetition maximum strength in the 80 and 30% 1RM

groups at Baseline, Week 3, and Week 6; and (B) adjusted means for one

repetition maximum strength in the 80 and 30% 1RM groups at Week 3 and

Week 6. Error bars are standard errors. *Indicates a significant increase from

Baseline. † Indicates a significant increase from Week 3. ‡ Indicates a significant

difference between the 80 and 30% 1RM groups. 80% 1RM > 30% 1RM.

the highest average torque value that occurred during the
MVIC plateau. During the submaximal isometric step muscle
actions, EMG amplitude values were calculated from a 500
ms steady torque epoch that occurred before the delivery of
the doublet stimulus (Herda et al., 2008). The EMG amplitude
was expressed as the root mean square value in µV during
the isometric muscle actions. In order to reduce error due
to electrode relocation, subcutaneous fat, and the influence of
peripheral factors on the EMG signal (Folland and Williams,
2007; Arabadzhiev et al., 2014), the absolute EMG amplitude
values during MVIC and at 10–100% of MVIC at Baseline,
Week 3, and Week 6 were normalized to the MPP values at
Baseline, Week 3, and Week 6, respectively (Behrens et al.,
2015) and was thus considered an indicator of central efferent
drive to the quadriceps femoris muscles (Lepers et al., 2001;
Trezise et al., 2016). Furthermore, EMG amplitude was average
across the VL, VM, and RF to calculate quadriceps femoris
muscle activation (EMGQAMP) (Trezise et al., 2016). The PTT
to MVIC ratio (PTT:MVIC) was also determined by dividing
PTT by MVIC at Baseline, Week 3, and Week 6. Because PTT
reflects the peripheral properties of skeletal muscle and is, in
theory, independent of the influence of descending drive from
the CNS, whereas MVIC is a function both of the peripheral
properties of skeletal muscle and descending drive, this ratio
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FIGURE 4 | (A) Maximum voluntary isometric strength in the 80 and 30% 1RM

groups at Baseline, Week 3, and Week 6; and (B) adjusted means for maximal

voluntary isometric strength in the 80 and 30% 1RM groups at Week 3 and

Week 6. Error bars are standard errors. *Indicates a significant increase from

Baseline. † Indicates a significant increase from Week 3. ‡ Indicates a significant

difference between the 80 and 30% 1RM groups. 80% 1RM > 30% 1RM.

may provide indirect information regarding peripheral vs. neural
adaptations.

Resistance Training
During all 18 training visits, participants completed 3 sets of
resistance training to failure with loads corresponding (to the
nearest 0.57 kg) to either 80 or 30% of 1RM. Participants were
instructed to perform all repetitions through a complete range
of motion. A metronome (Pro Metronome, EUMLab, Berlin,
Germany) was set to 1 Hz, and participants were instructed to
perform the concentric and eccentric phases corresponding with
each tick of the metronome so that the concentric and eccentric
phases were ∼1 s. Verbal instruction and encouragement were
provided during each set. Failure was defined as the inability
to complete another concentric muscle action through the full
range of motion. Two min of rest were provided between sets for
both conditions (80 and 30% 1RM). The weight utilized during
training was adjusted based on the new 1RM established at the
week 3 testing session. The total repetitions performed by each
subject were calculated as the sum of the repetitions completed
for each set across all sets and exercise sessions. Total time under
load was calculated for each subject as the sum of the times to

completion for each set across all sets and exercise sessions. Total
exercise volume was calculated for each subject as the sum of
the product of the number of sets performed, the repetitions
completed, and the weight lifted and expressed in total weight
(kg) lifted across all exercise sessions.

Dietary Analyses
Participants completed a 3-day dietary log prior to the training
period. Participants were instructed to write down all food
and drink (except water) consumed on the first 3 days of the
training period. These data were entered into an online dietary
analysis software (http://www.myfitnesspal.com, MyFitnessPal
LLC, San Francisco, CA) that provided calculations of absolute
daily energy intake (kcal), as well as protein (g), carbohydrate
(g), and fat (g) intakes. The average intakes for energy, protein,
carbohydrate, and fat across each 3-day period were recorded.

Statistical Analyses
Six separate independent samples t-tests were used to analyze
total repetitions, total exercise volume, total time under tension,
and average daily energy, carbohydrate, fat, and protein intake
between the 80 and 30% 1RM groups. Twelve separate analyses
of covariance (ANCOVAs) were used to compare groups (80%
1RM vs. 30% 1RM) for muscle thickness, echo intensity, 1RM
strength, MVIC strength, VA during MVIC, EMGQAMP during
MVIC, PTT, PTT:MVIC ratio, +dt/dt, −dt/dt, MPP, and MDUR

using the respective Baseline scores as the covariate and theWeek
3 and/or Week 6 scores as the dependent variable. Multiple a
priori planned comparisons were used to analyze the differences
within conditions (80% 1RM and 30% 1RM) from Baseline to
Week 3 toWeek 6 using one-way analyses of variance (ANOVAs)
and follow-up Sidak-Bonferroni dependent samples t-tests.

Initially, an ANOVA model was used to assess VA and
EMGQAMP during the submaximal isometric stepmuscle actions.
For VA and EMGQAMP, three-way mixed factorial ANOVAs
(time [Baseline vs. Week 3 vs. Week 6] × torque [10% vs. 20%
vs. 30% vs. 40% vs. 50% vs. 60% vs. 70% vs. 80% vs. 90% vs.
100% MVIC] × group [80 vs. 30% 1RM]) were used to analyze
VA and EMGQAMP during the 10 common isometric torques at
each visit. Because these initial analyses revealed time × group
interactions, we collapsed the data across torque (for EMGQAMP

and VA) and applied an ANCOVA model utilizing the respective
Baseline scores as the covariate and the Week 3 or Week 6 scores
as the dependent variable. Differences within conditions (80%
1RM and 30% 1RM) from Baseline to Week 3 to Week 6 were
then analyzed using one-way analyses of variance (ANOVAs) and
follow-up Sidak-Bonferroni corrected dependent samples t-tests.

Sphericity was tested for each one way and mixed factorial
ANOVA using Mauchly’s Test of Sphericity. In cases where
the assumption of sphericity was not met, Greenhouse-Geisser
corrections (Greenhouse and Geisser, 1959) were applied.
Equality of variances were tested using Levene’s Test for Equality
of Variances for each independent samples t-test performed. In
cases where the homogeneity of variances assumption was not
met, the error term and degrees of freedom were adjusted using
the Welch–Satterthwaite method. Partial eta effect sizes (η2p)
were calculated for each ANOVA. Significant main effects were
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TABLE 3 | The adjusted means ± standard errors for the peak rate of torque development (+dt/dt) and peak rate of relaxation (−dt/dt) of isometric

twitches and the peak-to-peak M-wave amplitude (MPP) and duration (MDUR) at Weeks 3 and 6 in the 80 and 30% 1RM groups.

Week 3 Week 6

80% 1RM 30% 1RM 80% 1RM 30% 1RM

+dt/dt (Nm s−1) 777.08 ± 41.01 671.79 ± 42.82 751.84 ± 46.07 676.26 ± 48.10

−dt/dt (Nm s−1) −638.47 ± 30.92* −536.40 ± 32.21 −623.21 ± 48.89 −615.90 ± 50.93

MPP (µV) 7087.42 ± 509.32 7317.79 ± 489.17 7451.50 ± 586.84 6667.14 ± 563.62

MDUR (ms) 30.84 ± 0.91* 35.52 ± 0.95 32.96 ± 1.20 35.41 ± 1.25

*Indicates a significant difference between the 80 and 30% 1RM groups at that time point.

analyzed with Sidak-Bonferroni corrected dependent samples
t-tests on the marginal means. Cohen’s d effect sizes (d)
were calculated for independent samples t-tests as described
previously (Cohen, 1988). The d effect sizes for dependent
samples t-tests were corrected for dependence among means
based on the correlation between means as described by Morris
and DeShon (2002). All statistical analyses were completed
using IBM SPSS Statistics (v. 22; Armonk, NY) and Microsoft
Excel (v. 14.3.2, Redmond, WA) and a type-I error rate was
set at 10%.

RESULTS

Dietary Analyses
Table 1 contains the average daily dietary intake data for the 80
vs. 30% 1RM groups. There were no significant differences in
average daily energy intake, or protein, carbohydrate, or fat intake
between the 80 and 30% 1RM groups.

Total Repetitions, Time under Load, and
Exercise Volume
Table 2 contains the total repetitions completed, total time under
load, and total exercise volume in the 80 vs. 30% 1RMgroups. The
80% 1RM group had a lower total time under load and completed
fewer repetitions than the 30% 1RM group. However, there was
no difference in exercise volume between the 80 and 30% 1RM
groups across the 6-week training period.

Muscle Thickness and Echo Intensity
Muscle Thickness
There was no difference in the adjusted means for the 80 vs.
30% 1RM groups at Week 3 or Week 6 for muscle thickness
(Figure 1B). In the 80% 1RM and 30% 1RM groups, muscle
thickness increased from Baseline toWeek 3 (p < 0.001; d= 2.50
and 2.51, respectively), from Week 3 to Week 6 (p < 0.001; d =

2.94 and 2.92, respectively), and from Baseline to Week 6 (p <

0.001; d = 3.01 and 4.93, respectively).

Echo Intensity
There was no difference in the adjusted means for the 80 vs. 30%
1RM groups at Week 3 or Week 6 for echo intensity (Figure 2B).
In the 80% 1RM group, echo intensity decreased from Baseline
to Week 3 (p = 0.07; d = −0.71), from Week 3 to Week 6 (p =

0.09; d = −0.69), and from Baseline to Week 6 (p = 0.004; d =

FIGURE 5 | (A) Voluntary activation in the 80 and 30% 1RM groups at

Baseline, Week 3, and Week 6; and (B) adjusted means for voluntary

activation in the 80 and 30% 1RM groups at Week 3 and Week 6. Error bars

are standard errors. *Indicates a significant increase from Baseline. ‡ Indicates

a significant difference between the 80 and 30% 1RM groups. 80% 1RM >

30% 1RM.

−1.17). In the 30% 1RM group, echo intensity did not change
from Baseline to Week 3 (p = 0.26; d = −0.51), but decreased
fromWeek 3 toWeek 6 (p= 0.07; d=−1.22), and from Baseline
to Week 6 (p= 0.07; d =−0.74).

Muscle Strength
One Repetition Maximum
The adjusted means for 1RM strength were significantly greater
in the 80% than 30% 1RM group at Week 3 and Week 6
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FIGURE 6 | Actual MVIC torque (Solid Black Bars) and extrapolated MVIC torque (Solid + White Bars) in the 80% 1RM (A,C) and 30% 1RM (B,D) groups

at Baseline, Week 3, and Week 6. Extrapolated torque represents the theoretical maximal torque generating capacity of the leg extensors. Note that in (A,B), the

y-axis is torque in Nm. In (C,D), torque has been normalized such that the extrapolated torque is equivalent to 100% (thus the units are %MVIC). As can clearly be

shown in (C,D), qualitatively, the relative contribution of actual MVIC torque to maximal torque generating capacity increased to a greater degree in the 80% than 30%

1RM groups.

(Figure 3B). In the 80% 1RM group, 1RM strength increased
from Baseline to Week 3 (p < 0.01; d = 2.10), from Week 3
to Week 6 (p < 0.01; d = 2.10), and from Baseline to Week 6
(p < 0.01; d = 2.53) in the 80% 1RM group. In the 30% 1RM
group, 1RM strength did not change from Baseline to Week 3 (p
= 0.51; d = −0.39), but increased from Week 3 to Week 6 (p
< 0.01; d = 1.74) and from Baseline to Week 6 (p = 0.03; d =

0.94).

Maximum Voluntary Isometric Strength
The adjusted means for MVIC strength were significantly greater
in the 80% than 30% 1RM group at Week 3 and Week 6
(Figure 4B). In the 80% 1RM group, MVIC strength increased
from Baseline to Week 3 (p = 0.02; d = 1.08), from Week 3 to
Week 6 (p < 0.01; d = 1.18), and from Baseline to Week 6 (p <

0.01; d= 2.12). Whereas, in the 30% 1RM group, MVIC strength
did not change from Baseline to Week 3 (p = 0.51; d = −0.38),
but increased from Week 3 to Week 6 (p < 0.01; d = 1.51) and
from Baseline to Week 6 (p= 0.01; d = 1.10).

Contractile Twitch Properties
Peak Twitch Torque
The adjusted mean for PTT was significantly greater in the
80% than 30% 1RM group at Week 3, but not at Week 6
(Figure 8B). However, PTT did not change significantly from
Baseline to Week 3 or 6 in the 80% 1RM (p = 0.22; η2p

= 0.12) or the 30% 1RM (p = 0.59; η2p = 0.05) groups
(Figure 8A).

Peak Twitch Torque to Maximal Voluntary Strength

Ratio
There was no difference in the adjusted means for PTT:MVIC
in the 80 vs. 30% 1RM groups at Week 3 or Week 6
(Figure 9B). In the 80% 1RMgroup, PTT:MVICwas significantly
lower at Week 3 (p = 0.02; d = −0.93) and Week 6
(p = 0.02; d = −0.66) than at Baseline; whereas there
was no significant change in PTT:MVIC from Baseline to
Week 3 or 6 in the 30% 1RM group (p = 0.18; η2p =

0.15).
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FIGURE 7 | (A) Normalized electromyographic amplitude in the 80 and 30%

1RM groups at Baseline, Week 3, and Week 6; and (B) adjusted means for

electromyographic amplitude in the 80 and 30% 1RM groups at Week 3 and

Week 6. Error bars are standard errors. *Indicates a significant increase from

Baseline.

Twitch Peak Rate of Torque Development and Peak

Rate of Relaxation
There was no difference in the adjusted means for +dt/dt in
the 80 vs. 30% 1RM groups at Week 3 or Week 6 (Table 3). In
addition, +dt/dt did not change significantly from Baseline to
Week 3 or 6 in the 80% 1RM (p = 0.22; η2p = 0.12) or the 30%

1RM (p= 0.37; η2p = 0.09) groups.
The adjusted mean for –dt/dt was significantly lower in the

80% than 30% 1RM group at Week 3, but not at Week 6.
However, −dt/dt did not change significantly from Baseline to
Week 3 or 6 in the 80% 1RM (p = 0.99; η2p = < 0.01) or the 30%

1RM (p= 0.48; η2p = 0.06) groups.

M-Wave Properties
There were no differences in the adjusted means for MPPin the 80
vs. 30% 1RM groups atWeek 3 orWeek 6 (Table 3). MPP also did
not change significantly from Baseline to Week 3 or 6 in the 80%
1RM (p= 0.74; η2p = 0.03) or the 30% 1RM (p= 0.50; η2p = 0.06)
groups.

The adjusted mean for MDUR was significantly greater in the
30% than 80% 1RM group atWeek 3, but not atWeek 6 (Table 3).
MDUR decreased significantly from Baseline to Week 3 (p= 0.02;
d=−1.01), but did not change fromWeek 3 toWeek 6 (p= 0.58;

FIGURE 8 | (A) Peak twitch torque in the 80 and 30% 1RM groups at

Baseline, Week 3, and Week 6; and (B) adjusted means for peak twitch torque

in the 80 and 30% 1RM groups at Week 3 and Week 6. Error bars are

standard errors. ‡ Indicates a significant difference between the 80 and 30%

1RM groups. 80% 1RM > 30% 1RM.

d= 0.34) or Baseline to Week 6 (p= 0.70; d=−0.29) in the 80%
1RM group. There was also a significant main effect for time in
the 30% 1RM group (p= 0.03; η2p = 0.27), but follow-up analyses
revealed no differences in MDUR at Baseline, Week 3, or Week 6.

Neuromuscular Parameters during
Maximal Voluntary Isometric Muscle
Actions
Voluntary Activation
There was no difference in the adjustedmeans for VA in the 80 vs.
30% 1RM groups at Week 3, but VA was greater in the 80% than
30% 1RM group at Week 6 (Figure 5B). In the 80% 1RM group,
VA did not change from Baseline to Week 3 (p = 0.29; d = 0.49)
or Week 3 to Week 6 (p = 0.35; d = 0.45), but increased from
Baseline to Week 6 (p = 0.02; d = 1.04). In the 30% 1RM group,
VA increased from Baseline to Week 3 (p = 0.04; d = 0.87), but
did not change from Week 3 to Week 6 (p = 0.99; d = 0.07) and
was not different from Baseline at Week 6 (p= 0.53; d = 0.39).

Electromyographic Amplitude
There was no difference in the adjusted means for EMGQAMP in
the 80 vs. 30% 1RM groups at Week 3 or Week 6 (Figure 7B). In
the 80% 1RM group, EMGQAMP increased from Baseline toWeek
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FIGURE 9 | (A) The peak twitch torque to maximal voluntary contraction ratio

(PTT:MVIC) in the 80 and 30% 1RM groups at Baseline, Week 3, and Week 6;

and (B) adjusted means for PTT:MVIC in the 80 and 30% 1RM groups at

Week 3 and Week 6. Error bars are standard errors. *Indicates a significant

decrease from Baseline.

3 (p= 0.05; d = 0.76), did not change fromWeek 3 to Week 6 (p
= 0.15; d = 0.82), and increased from Baseline to Week 6 (p =

0.02; d = 1.03). In the 30% 1RM group, there was a significant
main effect for time (p = 0.04; η2p = 0.26); however, follow-up
analyses revealed no differences in EMGQAMP at Baseline, Week
3, or Week 6.

Neuromuscular Parameters during
Isometric Step Muscle Actions
Voluntary Activation
There was no time × torque × group interaction (p = 0.69;
η2p = 0.04) for voluntary activation, but there was a time× group

interaction (p = 0.03; η2p = 0.16) and a main effect for torque

(p < 0.01; η2p = 0.97). Therefore, we collapsed across torque and
utilized an ANCOVAmodel to analyze between group differences
at Week 3 and Week 6 and one-way ANOVAs to investigate the
change in VA across time within groups (Figures 10C,D). The
adjusted means for VA during the submaximal isometric step
muscle actions were lower in the 80% than 30% 1RM group at
Week 3 (52.61 ± 1.70 vs. 59.88 ± 1.70%) and Week 6 (49.43
± 1.73 vs. 54.71 ± 1.73%). In the 80% 1RM group, voluntary
activation did not change from Baseline to Week 3 (p = 0.21;

d = −0.71) or Week 3 to Week 6 (p = 0.12; d = −0.67), but
decreased from Baseline to Week 6 (p = 0.02; d = −1.17). In
the 30% 1RM group, voluntary activation did not change from
Baseline to Week 3 (p = 0.14; d = 0.72), decreased from Week
3 to Week 6 (p = 0.02; d = −1.02), but did not change from
Baseline to Week 6 (p= 0.44; d =−0.57).

Voluntary activation (collapsed across time and group)
increased in a quadratic fashion from 10 to 100% MVIC.

Electromyographic Amplitude
There was no significant time× torque× group interaction (p=
0.19; η2p = 0.06), for EMGQAMP, but there were time× group (p=

0.09; η2p = 0.10), time× torque (p< 0.001; η2p = 0.30), and torque

× group (p < 0.01; η2p = 0.11) interactions (Figures 11A,B).
Because we were primarily concerned with the between group

changes across time, we further evaluated the time × group
interaction by collapsing across torque and utilizing an ANCOVA
model to analyze between group differences at Week 3 andWeek
6 and one-way ANOVAs to investigate the change in EMGQAMP

across time within groups (Figures 11C,D). The adjusted mean
for EMGQAMP during the submaximal isometric step muscle
actions was lower in the 80% than 30% 1RM group at Week 3
(3.33 ± 0.24 vs. 4.30 ± 0.25 %Mpp), and Week 6 (3.26 ± 0.26 vs.
3.91 ± 0.27 %Mpp). In the 80% 1RM group, EMGQAMP did not
change from Baseline toWeek 3 (p> 0.10; d=−0.65) orWeek 3
to Week 6 (p = 0.98; d = −0.11), but decreased from Baseline to
Week 6 (p = 0.06; d = −0.72). However, there was no change in
EMGQAMP from Baseline to Week 3 or 6 in the 30% 1RM group
(p= 0.29; η2p = 0.11).

DISCUSSION

This was the first study to examine neuromuscular adaptations
during maximal and submaximal contractions following 3 and 6
weeks of 80% 1RM vs. 30% 1RM resistance training to failure.
The primary results indicated that, despite similar increases in
muscle thickness from Baseline toWeek 6 for the 80% (6.7%) and
30% 1RM (6.0%) groups (Figure 1), muscle strength increased to
a greater degree for the 80% than the 30% 1RM group (Figures 3,
4). Specifically, 1RM andMVIC strength increased from Baseline
to Week 6 by 27.7 and 28.0%, respectively, in the 80% 1RM
group, whereas 1RM and MVIC strength increased by 9.5 and
13.4% in the 30% 1RM group. These differences in strength were
accompanied by evidence of greater neural adaptations during
maximal and submaximal torque production in the 80% than
30% 1RM group (Figures 5–7). For example, although training
at 30% 1RM elicited an increase in voluntary activation from
Baseline to Week 3, the increase in VA from Baseline to Week
6 was only significant in the 80% 1RM group and VA was greater
in the 80% than 30% 1RM group at Week 6. Moreover, only
training at 80% 1RM elicited a significant increase in EMGQAMP

from Baseline to Week 3 and Week 6. Furthermore, we observed
decreases in VA and EMGQAMP at submaximal torques in the
80% but not 30% 1RM group (Figures 10, 11). Consequently,
these data suggest that neural adaptations help explain the greater
increases in muscle strength following training with 80% 1RM,
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FIGURE 10 | Voluntary activation from 0 to 100% of the Baseline MVIC at Baseline, Week 3, and Week 6 in the (A) 80% 1RM and (B) 30% 1RM groups; (C)

voluntary activation (collapsed across torque) in the 80 and 30% 1RM groups; and (D) the adjusted means for voluntary activation in the 80 and 30% 1RM groups at

Week 3 and Week 6. Error bars are standard errors. *Indicates a significant decrease from Baseline to Week 6. **Indicates a significant decrease from Week 3 to Week

6. ‡ Indicates a significant difference between the 80 and 30% 1RM groups. 80% 1RM < 30% 1RM.

despite the similar increases in muscle size following training
with 80 and 30% 1RM.

Morphological Adaptations
In the present study, muscle thickness increased by 6.7 and 6.0%
in the 80 and 30% 1RM groups, respectively, with no difference
between groups (Figure 1). These data add to the growing body
of literature that has demonstrated comparable hypertrophic
adaptations in response to high- vs. low-load resistance training
(Mitchell et al., 2012; Ogasawara et al., 2013; Schoenfeld et al.,
2015; Jenkins et al., 2016). Hypertrophy has historically been
thought to be minimal during the initial stages of resistance
training (Moritani and deVries, 1979; Sale, 1988; Gabriel et al.,
2006). Yet, several recent studies (Seynnes et al., 2007; DeFreitas
et al., 2011; Jenkins et al., 2016) have shown 4–9% increases
in muscle size following 3–4 weeks of resistance training in
previously untrained men and women. The present findings
supported previous studies (Seynnes et al., 2007; DeFreitas et al.,
2011; Mitchell et al., 2012; Ogasawara et al., 2013; Schoenfeld
et al., 2015; Jenkins et al., 2016) suggesting that (a) hypertrophy is
similar in response to training with high- and low-loads to failure
and (b) muscle hypertrophy occurs within the first few weeks of
a resistance training program.

Damas et al. (2015) recently proposed that the observed
hypertrophy following 3–4 weeks of training may be due, in part,
to muscle edema and/or damage from unaccustomed exercise.
The authors (Damas et al., 2015) recommended future studies
to simultaneously measure muscle damage (i.e., ultrasound echo
intensity) to rule out the potential influence of muscular edema
on muscle size measurements. Echo intensity would be expected
to increase in the presence of muscle damage (Radaelli et al.,
2013; Damas et al., 2015). However, in the present study, echo
intensity decreased or did not change from Baseline to Week
3 in the 80 and 30% 1RM groups, respectively, and decreased
from Baseline to Week 6 in both groups (Figure 2). Therefore,
although these factors cannot be completely ruled out, the echo
intensity measurements in the present study, as suggested by
Damas et al. (2015), indicated that the influence of edema and
muscle damage was minimal.

Ultrasound echo intensity has also been used as a surrogate
of muscle quality (Pillen et al., 2009; Arts et al., 2012; Fukumoto
et al., 2012; Radaelli et al., 2013) and as an indicator of
skeletal muscle glycogen content and tissue hydration (Sarvazyan
et al., 2005; Hill and Millan, 2014; Nieman et al., 2015). For
example, Pillen et al. (2009) demonstrated that increases in
interstitial fibrous and fat tissues were associated (r = 0.87) with
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FIGURE 11 | Normalized electromyographic amplitude (EMGQAMP) from 0 to 100% of the Baseline MVIC at Baseline, Week 3, and Week 6 in the (A)

80% 1RM and (B) 30% 1RM groups; (C) EMGQAMP (collapsed across torque) in the 80 and 30% 1RM groups; and (D) the adjusted means for EMGQAMP in the 80%

and 30% 1RM groups at Week 3 and Week 6. Error bars are standard errors. *Indicates a significant decrease from Baseline to Week 6. ‡ Indicates a significant

difference between the 80 and 30% 1RM groups. 80% 1RM < 30% 1RM.

increases in echo intensity. Hill and Millan (2014) and Nieman
et al. (2015) showed that changes in rectus femoris and vastus
lateralis echo intensity are strongly related (r = 0.88–0.92) to
changes in skeletal muscle glycogen content following cycling
exercise. Although, several previous studies have demonstrated
decreases in echo intensity following chronic resistance training
(Pinto et al., 2014; Radaelli et al., 2014), Radaelli et al. (2014)
suggested that the mechanism for changes in echo intensity is
unclear. Resistance training is known to enhance intramuscular
glycogen concentrations (MacDougall et al., 1977; Tesch, 1988;
NSCA, 2016) and improve cellular hydration in young adults
(Ribeiro et al., 2017). When muscle glycogen and water content
increase, ultrasound images become hypoechoic, resulting in
lower echo intensity values. Thus, it is possible that the observed
decreases in ultrasound echo intensity in the present study
were due to increased intramuscular glycogen and/or cellular
hydration (Sarvazyan et al., 2005; Jenkins, 2016). Incidentally,
increased intramuscular water content may increase muscle cross
sectional area as measured by MRI (Kristiansen et al., 2014),
which is considered the gold standard for assessing skeletal
muscle size (Ahtiainen et al., 2010). Although, it is also possible
that glycogen and water concentrations influence ultrasound
measures of muscle thickness, there are insufficient data in the

present study to test this hypothesis. Future studies are needed
to examine the impacts of muscle glycogen and intramuscular
water on MRI (Kristiansen et al., 2014), peripheral quantitative
computed tomography (DeFreitas et al., 2011), and ultrasound-
based measurements of muscle size.

Neural Adaptations
Maximal isometric (e.g., MVIC) and dynamic (e.g., 1RM)
strength increased from Baseline to Week 3 in the 80% 1RM
group only and increased from Baseline to Week 6 in both
the 80 and 30% 1RM groups (Figures 3A, 4A). However, the
increases in strength were greater in the 80% 1RM group
(Figures 3B, 4B). These different strength adaptations were
simultaneously accompanied by group differences in VA and
EMGQAMP adaptations (Figures 5–7, 10, 11, respectively) and
only the 80% 1RM group showed significant decreases in the
PTT:MVIC ratio (Figure 9). Thus, evidence in the present study
suggests that 6 weeks of training at 80% 1RM elicited greater
neural adaptations than training at 30% 1RM, which may
ultimately explain the greater improvements in muscle strength
observed following high-load training.

Voluntary activation during MVIC increased 2.2% from
Baseline to Week 3 and 4.3% from Baseline to Week 6 in the 80%
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1RM group, and was greater for the 80% than 30% 1RM group at
Week 6 (Figure 5). Furthermore, the 1.8% increase in VA from
Baseline toWeek 3 in the 30% 1RM group was not different from
the change observed in the 80% 1RM group at Week 3. It has
been described that large increases in synaptic input (e.g., motor
neuron excitation) are needed to observe small increments in
VA at high torques (Herbert and Gandevia, 1999; Kooistra et al.,
2007). Herbert and Gandevia (1999) concluded that changes
in VA at forces greater than 90% MVIC must indicate large
increases in motoneuronal excitation. To illustrate the functional
significance of the observed differences in VA, we applied a
formula in Figure 6 that was described by Fowles et al. (2000) and
Duchateau (1995). This formula extrapolates the maximal torque
generating capacity of a muscle frommeasures of MVIC and VA.
Although, criticized (Kooistra et al., 2007), this equation provides
a qualitative method to describe changes in VA. Therefore, both
the quantitative and qualitative changes in VA described in the
present study suggest that 6 weeks of resistance training at 80%
1RM resulted in greater excitation of agonist motor units than
training at 30% 1RM. This difference is may be due to a greater
augmentation of neural drive (Aagaard et al., 2002; Gabriel et al.,
2006; Lee et al., 2009; Behrens et al., 2015) in the 80% 1RM
group.

There were no differences in EMGQAMP during MVIC at
Week 3 or Week 6 between the 80 and 30% 1RM groups
(Figure 7B). However, only training at 80% 1RM elicited a
significant increase in EMGQAMP from Baseline to Week 3
and Week 6. Traditionally, training-induced increases in EMG
amplitude have been interpreted as increases in neural drive
to the muscle (Komi et al., 1978; Moritani and deVries,
1979; Hakkinen and Komi, 1983; Thepaut-Mathieu et al.,
1988). While caution is warranted when interpreting changes
in surface EMG amplitude in this way, normalizing to the
M-wave helps to control for peripheral adaptations and/or
changes in electrode placement that may influence the EMG
signal (Folland and Williams, 2007; Arabadzhiev et al., 2014),
allowing EMGQAMP to be considered an indirect indicator
of efferent drive (Lepers et al., 2001; Trezise et al., 2016).
In combination with the increase in VA, the increase in
EMGQAMP observed in the present study seem to reflect
greater motor unit excitation following training at 80%
1RM.

We also examined VA and EMGQAMP during submaximal
torque production at the same absolute levels of torque. There
was a 12.3% decrease in VA across the submaximal torques from
Baseline to Week 6 for the 80% 1RM group (Figure 10C). These
decreases were most apparent at high contraction intensities
(i.e., 60–100% MVIC; Figure 10A). In the 30% 1RM group,
VA displayed a non-significant 5.4% increase from Baseline to
Week 3, followed by a significant 8.8% decrease from Week 3
to Week 6 (Figures 10B,C). Furthermore, VA was lower across
all submaximal torques at Weeks 3 and 6 in the 80 vs. 30%
1RM group. A decrease in VA at submaximal torque levels
suggests a reduced neural cost (i.e., lower activation required
to produce the same absolute torque) following training at 80%
1RM. However, in the 30% 1RM group, the level of excitatory

input needed to produce the same torques may have slightly

increased at Week 3, but decreased back to Baseline levels by
Week 6.

The changes in EMGQAMP across submaximal isometric
torque observed in the present study were similar to those
observed for VA. There was a significant decrease in EMGQAMP

across the isometric step muscle actions from Baseline to Week
6 for the 80% 1RM group (Figure 11C). Visual inspection of
the EMGQAMP vs. torque relationships (Figure 11A) suggests
decreases in EMGQAMP at high contraction intensities (i.e., 70–
100% MVIC). Conversely, EMGQAMP did not change in the
30% 1RM group. EMGQAMP was significantly lower in the 80%
than 30% 1RM group at Weeks 3 and 6 across submaximal
torque levels. Subsequently, much like VA, the EMGQAMP

data suggested a reduced neural cost to produce the same
absolute torques following training at 80% 1RM, but not 30%
1RM, especially at high torque levels (i.e., 70–100% MVIC;
Figure 11A). Our VA and EMGQAMP data during submaximal
torque production may also support the findings of Falvo
et al. (2010) regarding enhanced “neural economy” following
resistance training.

Conclusions and Implications
Six weeks of high- (80% 1RM) and low-load (30% 1RM)
resistance training to failure elicited equivalent hypertrophy
as measured by ultrasound. However, training at 80% 1RM
induced greater strength gains, which has been demonstrated
repeatedly (Campos et al., 2002; Mitchell et al., 2012; Ogasawara
et al., 2013; Schoenfeld et al., 2015; Jenkins et al., 2016). The
unique contributions of this study were the robust measurements
(VA and EMGQAMP during maximal and submaximal torque
levels) used to elucidate any potential underlying neural
factors. Indeed, greater neural adaptations were observed after
resistance training at 80% 1RM compared to the 30% 1RM
group. Specifically, our data during maximal torque levels
suggests that, after 6 weeks of training, 80% 1RM loads
elicit greater increases in neural drive than 30% 1RM loads,
while our data during submaximal torque levels suggests
that resistance training at 80% 1RM increases the efficiency
of muscle activation to a greater extent than 30% 1RM
training.
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