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construction and the greatest common divisor algorithm are in random polynomial time for the usual 
coefftcient fields and output a straight-line program, which with controllably high probability correctly 
determines the requested answer. The running times are polynomial functions in the binary input size, 
the input degrees as unary numbers, and the logarithm of the inverse of the failure probability. The 
algorithm for straight-line programs for the numerators and denominators of rational functions implies 
that every degree-bounded rational function can be computed fast in parallel, that is, in polynomial size 
and polylogarithmic depth. 
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1. Introduction 

This study is concerned with complexity questions about performing opera- 
tions, such as greatest common divisor (GCD) computation and factorization, 
on multivariate polynomials. Several models for representing multivariate 
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polynomials have been suggested: 

-the dense representation, which requires that all coefficients be written down; 

-the sparse representation, which requires that all nonzero coefficients and the 
corresponding monomial exponent vectors be written down; 

--formulas, denoted by expressions similar to those from higher programming 
languages; 

-straight-line programs, such as the Gaussian elimination sequence on a deter- 
minant of polynomials. 

We perceive these representations from a macroscopic point of view, which is 
that polynomial time or space differences within each class are not so important 
to us as the exponential differences between the classes. We remark, however, that 
the microscopic point of view is important to consider for pragmatic reasons (see, 
e.g., Stoutemyer’s [41] comparison of different sparse representations). One easily 
realizes that the four models form a hierarchy; that is, within a polynomial extent 
of space we can represent more and more polynomials going from the dense to the 
straight-line representation. Therefore, the latter is (from a macroscopic point of 
view) the most powerful one. This is nicely illustrated by the famous example of 
symbolic determinants that have exponentially many terms when converted to 
“sparse” representation, but that can be represented by straight-line programs of 
length proportional to at most the cube of the dimension. 

The question is, of course, whether polynomials given by straight-line programs, 
a notion that we shall make precise, can be manipulated at all. Arithmetic 
operations trivially become additional assignments and the first problem of interest 
is the GCD. Since even for univariate sparse polynomials this operation is 
NP-hard [35], a restriction necessarily has to be made. One natural additional 
parameter to bound polynomially, other than representation size, is the total degree 
of the input polynomial. Valiant [45] calls such families of polynomials of poly- 
nomially bounded degree and straight-line computation length p-computable. 
Several important transformations on p-computable polynomials are already 
known, for example, Strassen’s elimination of divisions [43] or the parallelization 
technique by Valiant et al. 1461. Another such transformation by Baur and Strassen 
[3] allows the computation of all ftrst partial derivatives with growth in length by 
only a constant factor and without even the need for a degree bound. There are 
also known negative results in [45] that show, for example, that general permanents 
can appear as coefficients of single monomials and as multiple partial derivatives 
(see also Section 5). It should be noticed, however, that all these algorithms are 
interpreted as program transformations and not as polynomial manipulation 
routines. Von zur Gathen [ 1 l] obtained a probabilistic algorithm that determines 
the factor degree pattern, that is, the total degrees and multiplicities of the factors, 
of polynomials given by straight-line programs. Schwartz’s [37] evaluation tech- 
nique at random points and modulo large random pseudoprimes (see also [ 181 and 
Section 3) play an important role in that and our new results. In the context of 
representing polynomials by straight-line programs, Heintz’s result [ 151 also de- 
serves to be mentioned. 

The theory for polynomial manipulation on straight-line representation should 
deal with the computation of straight-line results whenever possible, for example, 
produce a straight-line program for the GCD of two determinants of polynomial 
matrices. In Valiant’s language, it is the question of closure properties of 
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p-computable families of polynomials. It is this theory we begin to develop here. 
In this paper we show how a straight-line program for the GCD of many polyno- 
mials can be constructed in random polynomial time from their straight-line 
representations, as well as a bound for their total degrees (Section 6). This proba- 
bilistic result is of the Monte-Carlo kind, which means that the algorithm always 
takes polynomial time, but may with controllably small probability return an 
incorrect answer. Our algorithm is polynomial time even for coefficient domains 
such as rational numbers. This is surprising because the coefficients of the input 
polynomials can be exponentially large. In general, the growth of the exponential 
size of the intermediately calculated rational numbers during most algorithms, 
such as Strassen’s elimination of divisions, causes additional complications. 

For various reasons, we chose to carefully develop the theory of straight-line 
program manipulation here (Sections 2-5) before discussing the concrete applica- 
tions. For one reason, the running time of our algorithms must be estimated. One 
can consider polynomial-time complexity bounds as our uniformity requirement 
for the straight-line program transformations. No such requirement is needed or 
enforced in the lower-bound applications of the elimination of divisions transfor- 
mation or the computation of derivatives. We use as our model of computation 
that of a probabilistic algebraic random-access machine (RAM), whose instruction 
set and binary complexity measures we define (Section 2). Since we strive to obtain 
random polynomial-time complexity, the execution of arithmetic operations will 
cost as many time units as are needed to perform these operations in binary. Under 
this “logarithmic cost criterion,” the needed straight-line program transformations 
are established to be of polynomial-time complexity by the use of what we call the 
simulation principle. This principle shows that the usual RAM programs can be 
converted into RAMS of polynomially related binary asymptotic complexity 
that generate the straight-line programs corresponding to these computations 
(Section 4). 

The GCD problem for dense multivariate polynomials was first made feasible 
by the work of Collins [8] and Brown [5]. Moses and Yun [34] showed how 
to apply the Hensel lemma to GCD computations. Zippel [47] invented an 
important technique to preserve sparsity of the multivariate GCD during Brown’s 
interpolation scheme, though it should be noted that Zippel’s. approach is not 
random polynomial time. The reason is that the content and primitive part of the 
inputs can not be separated because some sparse polynomials have dense primitive 
parts; cf. [ 131 and Section 5. We also mention the heuristic GCD algorithm in [7], 
which may be practically a faster algorithm if the inputs have few variables. 

Our algorithm for computing the GCD as a straight-line program requires several 
innovations. For one, we remove the need for the content computation by substi- 
tuting linear forms of the main variable into minor variables. These substitutions 
lead with high probability to manic polynomials in the main variable and thus 
allow a single Euclidean sequence over the field of rational functions in the minor 
variables. We compute the coefficients in the main variable by determining these 
coefficients (now rational functions in the minor variables) for each assignment in 
the straight-line program. Finally, we encode a polynomial remainder sequence 
computation on the coefficient vectors by determining the degrees of the remainders 
through probabilistic evaluation of their coefficients. The GCD problem for many 
polynomials is reduced to that of two polynomials via a theorem stating that two 
random linear combinations of the set of input polynomials yield the same GCD 
with high probability. 
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We now turn to the computation of numerator and denominator of rational 
functions. Strassen [43] raised the question whether the reduced numerators, and 
therefore the denominators of rational functions, could be computed by straight- 
line programs of length polynomial in the length of straight-line programs for 
the functions themselves and the degrees of the relatively prime’ numerator- 
denominator pairs. Here we answer this question affirmatively by showing 
that such straight-line programs can be also found in random polynomial time 
(Section 8). The construction is closely related to the straight-line GCD algorithm 
put together with computing Pade approximants via the extended Euclidean 
algorithm. Our solution requires an algorithm for finding a straight-line program 
for the Taylor series coefficients to a given order of the rational functions with 
respect to a single variable. In Section 7, we present a solution to this problem 
following the approach by Strassen [43], and it comes as no surprise that we obtain 
the result on eliminating divisions from straight-line programs for polynomials as 
a consequence (Theorem 7.1). 

The resolution of the numerator and denominator complexity of rational func- 
tions has an important consequence in the theory of polylogarithmic parallel 
computations. First, we note that Hyafil [ 171 and Valiant et al. [46] established 
that families of p-computable polynomials can be evaluated in parallel in polynom- 
ial size and polylogarithmic depth. We now can apply this result to the straight- 
line programs for the numerators and denominators of rational functions and 
therefore can conclude that every family of rational functions of polynomial 
complexity and reduced numerator-denominator degrees can also be computed in 
parallel in polylogarithmic time with polynomially many processing elements 
(Corollary 8.3). 

Notation. Let Z denote the integers, Q the rationals, and F4 the finite field with 
q elements. Let QF(D) denote the field of quotients of an integral domain D. Let 
num(a) denote the numerator and den(a) the denominator of a E QF(D). The 
coefficient of the highest power of xl in fE @[x2, . . . , x,J)[x, ] is referred to as 
the leading coefficient offin x1, ldcf,, (f). 

Let M(d) denote a function dominating the time for multiplying polynomials in 
D[x] of maximum degree d. Note that M(d) depends on the multiplication 
algorithm used, and the best known asymptotic result is d log d log log d [39]. 

The cardinality of a set R is denoted by card(R). All logarithms in this paper are 
to base 2 unless otherwise indicated. 

2. Straight-Line Programs and Algebraic RAMS 

We first present the precise definition of what we understand by (algebraic) straight- 
line programs. 

DeJinition. Let D be an integral domain. The P = (X, V, C, S) is an algebraic 
straight-line program over D if 

(SLPl) X = lx,, . . . , xn) C D, S = (s,, . . . , skJ C D, V = (~1, . . . , II,), 
V O D = 0. X denotes the set of inputs, V the set of (program) variables, 
S the set of scalars. If S = 0, then P is scalar-free. 

(SLP2) C = (vx c u; +, u;)x =,,..., I with ox E (+, -, x, t], u;, u: E S U X U 

(UI, . . . , uA-,) for all X = 1, . . . , 1. C denotes the computation sequence 
and 1 the length of P, I= len(P). If all ox # +, then P is division free. 
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(SLP3) ForallX= I, . . . , I, there exists sem(u,) E D, the semantics of ux, such 
that 

sem(a) = a if aESUX, 

sem(ux) = sem(u;) + sem(ux”) if ox=+, 

sem(ux) = sem(ul)sem(u;) if oX=X, 

sem(uc) # 0 and sem(uh)sem(u!) = sem(uC) = sem(ui) if ox = +. 

The set of elements computed by P is sem(P) = U i= I (sem(ux)). Cl 

We observe that the integrality of D guarantees the uniqueness of sem(uA). If D 
is a field, then the last case in axiom (SLP3) simplifies to sem(u: ) # 0 if ox = +, 
since then sem(uA) can be determined as sem(u: )(sem(uI ))-‘. Our definition is 
more general than Strassen’s [42], who always insists on the invertibility of 
sem(u: ) in case ox = +. That our generalization is useful can be seen from the 
straight-line programs computing determinants and subresultants over D by exact 
division. 

Our main application is for programs P = ((xl, . . . , xn), V, C, S) over D = 
J-(x,, **., x,), where S C F’, F a field, and which determine certain polynomials 
fEWI,..., x,] with f E sem(P). In such a case we say f is given by the straight- 
line program P. Note that we use the notation f E sem(P) with the implied 
understanding that we also know the ux E Vwith f E sem(ux). However, sometimes 
our more general formulation is needed. One example would be to find the shortest 
straight-line program that computes the Newton polynomials C;=r xl, i = 2, . . . , 
n, from the symmetric functions in the indeterminates. For lower bound consid- 
erations, one usually adds the condition in (SLPI) that (xl, . . . , x,,) is algebraically 
independent over the field generated by S. For polynomials given by straight-line 
programs, this restriction is satisfied, but for ease in the formulation of later 
definitions and theorems, we do not adopt it in our main definition. 

Algebraic computations over abstract domains D are usually formulated in terms 
of programs to be executed on an algebraic RAM over D. Let us describe this 
model of computation more precisely. An algebraic RAM over D has a CPU that 
is controlled by a finite sequence of labeled instructions and that has access to an 
infinite address and data memory (see Figure 1). 

The split into two memories, one that facilitates pointer manipulation for array 
processing and maintains a stack for recursive procedures, and another in which 
the algebraic arithmetic is carried out, is also reflected in other models for algebraic 
computations, such as the parallel arithmetic networks in [ 121, or by the omnipres- 
ence of the built-in type Integer for indexing in the Scratchpad II language [20]. 
Each word in address memory can hold an integral address, and each word in data 
memory can store an element in D. The CPU also has access to an input and an 
output medium. The instructions in the CPU may have one or two operands that 
typically are integers. The operands refer to words in address or data memory, 
depending on whether the instruction is an address or a data instruction. Indirect 
addressing is indicated by a negative operand. For completeness, the microcode for 
a full instruction set is given in Figure 2. 

The arithmetic time and space complexity of an algebraic RAM for a given input 
are defined as the number of instructions executed and the highest memory address 
referenced, respectively. It is not always realistic to charge one time unit for each 
arithmetic operation in D. We consider encoding data in binary and define as 
size(a), a E D, where D is a concrete domain, such as Z or F,, the number of bits 
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3 Ifi-1 1 

Input Medium 
1 

Address 
Memory 

CPU 1: READADDR 2 1 

2: READ -2 2 

3: CONSTADDR 1.2 3 

4: ADDADDR 1.2 4 

5: CONST -1, fi 5 

6: DIV 5, -2 6 

7: PRINT -1 
8: HALT 

1 

Data 
Memory ? ? 

a-1 

? 

El 
2+fi 

? 

Output Medium 

FIG. 1. Algebraic RAM over Z[ a]. 

Instruction Description 

ADD{ADDR) i, j Op, t Opi + Opj (see below) 

SUB(ADDRJ i, i OP, t OP, - Opj . 
MULT(ADDR) i, j OPi + OPJ x OPj. 
DIVADDR i,j OPi + L OPJOP, J. 
DIV 6.i Op, c OpJOp,. The division over D must be exact, otherwise 

an interrupt occurs. 
CONST(ADDR] i, c opi + c. 

MOVE(ADDRJ i, j Opi t Opj . 

JMP I Execution continues at program label f. 
JMPZ(ADDR] i, I If Op, = 0, then execution continues at program label 1. 
JMPGZADDR i, I If Op, > 0, then execution continues at program label I. 
READ(ADDR) i The input medium is advanced and the next item is read into Opt. 

PRINT{ADDR] i The output medium is advanced and Op, is written onto the medium. 
HALT An EOT marker is written onto the output tape and execution 

terminates. 

i 

AM[i] 
DM[i] I 

ifi>Oand 
address 

Opi = 
i I data 

instruction 

AM[AM[-i]] address 
DM[AM[-i]] I- 

ifi<Oand 
{ 1 data 

instruction 

AM = address memory, DM = data memory 
AM[-i] must be positive, otherwise an interrrupt occurs. 

FIG. 2. Summary of algebraic RAM instructions. 

needed to represent a. Then, the cost and space of an arithmetic instruction 
depends on the size of its operands. The binary time and space complexity of an 
algebraic RAM over D is derived by charging for each arithmetic step in D as many 
units as are needed to carry out the computation on a multitape Turing machine. 
Note that we generally assume that the domain arithmetic can be carried out in 
polynomial binary complexity with respect to the size of the operands. What that 
implies, in particular, is that elements in F,, say, always require O(log( q)) repre- 
sentation size, whether or not the elements are residues of small integral value. For 
READ, PRINT, CONST, MOVE, or JMPZ instructions, we charge as many units 
as is the size of the transferred or tested element. 
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We also apply this “logarithmic cost criterion” to the address computations and 
assume that every address is represented as a binary integer. The binary cost for 
performing address arithmetic is again the Turing machine cost. For indirect 
addressing, we add the size of the final address to the binary time and space cost 
of the corresponding instruction. We note that, in most circumstances, the binary 
cost for performing address arithmetic is largely dominated by the binary cost of 
the algebraic operations and that, for all practical purposes, the largest storage 
location is of constant size. But our more precise measure has its advantages. First, 
all binary polynomial-time algorithms on algebraic RAMS are also polynomial- 
time algorithms in the Turing machine model. Second, the true binary complexity 
is measured if we can use the address memory for more than address computations, 
for example, for hashing with sophisticated signatures. Another such example is 
that of selecting random domain elements. 

A probabilistic algebraic RAM is endowed with the additional instruction 

RANDOMlADDR] i, j, 

with the following meaning. Into OPi an element of D (or an address) is stored that 
was uniformly and randomly polled from a set R of elements (or integers) with 
card(R) equal to the address operand OPj (see Figure 2 for the definition of Op). 
The selection of R is unknown, except that all its elements a E R have size(a) = 
O(log OPj). This model of randomized algebraic computation overcomes the 
problem of how to actually generate a “random” rational number, say, and (as we 
show later) the failure probabilities can in our circumstances be fully analyzed. 

Most of our algorithms read as input, produce as intermediate results, and print 
as output straight-line programs. In this paper, we do not describe a concrete data 
structure that can be used to represent straight-line programs on an algebraic RAM. 
It is fairly easy to conceive of suitable ones (e.g., labeled directed acyclic graphs 
(DAGs) could be used). A more intricate data structure was used for the first 
implementation of our algorithms and is described in [lo]. 

At this point it is convenient to define the element size of a straight-line program 

el-size(P) = C size(u:). 
U~EXUS, 

*El’,“1 

Notice that the actual size of P is in bits 

O(len(P)log len(P) + el-size(P)), 

since it takes size(ux) = O(log (h)) bits to represent ux in address memory. 

3. Evaluation and Size Growth 

Classically, the inputs to a straight-line program are indeterminates that are 
evaluated at concrete values during execution of the program. Two problems 
arising with the evaluation process need to be discussed. The first is that evaluation 
may lead to a division by zero, which we must declare illegal. The second is that 
the binary complexity of evaluation can turn out to be exponential in the length 
of the program. In this section we address both problems. Let us formally define 
evaluation. 

Definition. Let P = (X, V, C, S) be a straight-line program of length 1 over D, 
D be another integral domain, and 4(a) = Z be a mapping from X U S into D. 
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We extend #J to P = (&, . . . , 61, Ptl B = 0, by setting 4(ux) = fix, 1 5 X 5 1, 
and define 

I= MJ(X)IX~4, g= ka)ISESL c= (h++(U:) OA 44u:))x=l,...,/. 

We call P defined at 4, if $(P) = (1, v, c, 3) is a straight-line program over D. Cl 

It is clear that only condition (SLP3) of the straight-line program definition for 
4(P) must be verified. If 4 can be extended to a ring homomorphism from D into 
B, it suffices to require @(sem(ui )) # 0 for ox = +, 1 5 X 5 1, because then exact 
division is guaranteed. But more general evaluations do occur, as in the following 
example: 

Example. Let D = Q(x), B = GF(2), 4(x) = 4($) = 1, 4(2) = 0, and P = 

((xl, h, UZJ, (II, + x + 4, u2 + 2 + uI ), (2, f 1). P is not defined at 4, since 
sem(u, ) = 0 mod 2. Note also that 4 cannot be extended to a ring homomorphism 
from Q(x) into GF(2). 

It is easy to see that, given the encoding of a straight-line program P = 
(X, V, C, S) over D, we can compute sem(ul) in O(1) steps on an algebraic RAM 
over D. If we assume that n is a field or that 4 is a ring homomorphism, we 
can also decide in O(I) steps on an algebraic RAM over D whether the encoding 
of 4(P) represents a straight-line program. All we need to do is test whether 
sem(4(u: )) # 0, ox = +, before performing the division. Controlling the binary 
complexity of evaluation is, however, a much more difficult matter because the 
straight-line programs may generate exponentially sized elements. 

Example. Let P = ((x), V, C, 0) over Q(x), where 

C=(U~tXXX,U2tXXU1, 
u3 + Ul x Ul, u4 t u2 x u3, 

us t u3 x u3, u,5 t u4 x US, 

u21-I + u2l-3 x u21-3, u2I + u21--2 x UZf-I, 

u2/+1 + u21-1 x UZI-1, u21+2 + u2/+1 f u21). 

We remark that sem(u2x-,) = x2’, sem(uzx) = x2”+‘--l, 1 I X 5 1, sem(u2[+1) = 
X 2’+‘, and sem(u21+2) = x. The test of whether P is defined at #J(X) = 2 would require 
on an arithmetic RAM over Q exponential binary running time. Notice also that 
the last element computed by P is again small in size. 

In what follows, we combat the size blowup by a modular technique, an idea 
first suggested by Schwartz [37] and Ibarra and Moran [ 181. A generalization of 
what follows to algebraic extensions of Q can be found in [ 1 I]. For completeness, 
we shall give the proof of the next lemma. 

LEMMA 3.1. Let P = ((xl, . . . , x,), V, C, (s,, . . . , s,)) be a straight-line 
program of length 1 over Q(x,, . . . , xn), a, E Q, Wv) = a,, 1 5 v = n, b, E Q, 
@(s,,) = b,, 1 I p I m. Assume that P is defined at 4, and that n + m 5 21, which 
is satisfied if all inputs and scalars actually occur in the computation sequence. Let 
B+ 2 2 be an integer bound such that 

I numb) I, I dNau) I, I num(b,Jl , I dMb,J I 5 &, 

lSv=n, 15p5m. 
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Then there exists an integer N$(pj 5 Br3 such that for all prime integers p that do 
not divide N+(pj, the following is true: 

(i) den(a,), den(b,,) + 0 modp for all 1 I u % n, 1 5 P I m. 
(ii) If we define $: (xv] U (s&J -+ Fp by $(xV) = a,modp, $(s,) = b, modp, 

1 =vsn, 1 sp=m,thenPisdefinedat#. 

PROOF. Let 4(P) = ((a,), (ax), c, lb,)). We must estimate 

ux = num(sem(a,)), tx = den(sem(&)), lShl1. 

By induction, we can prove that 

(1) 

Consider fix c 4(u:) oh 4(ui(). By induction hypothesis, 

u: = num(4($)), t: = den(ti(u:)), * = ‘, “. 

In case ox = +, we thus get 

I ux I = I u;t,: + u:tx’ 1 5 124: 11 t: 1 + 124: 1 1 tx’ 1 < 2 . 

The treatment of tA, and the cases ox = -, X, and + are similar. Thus, (1) is 
established. 

Now we observe that 

We set 

N - Ad@ h 1 tA 1 < B;‘B;‘+’ < .:,‘a HP) - A=1 

Clearly, if a prime p does not divide N 9(p), (i) and (ii) are satisfied. 0 

Although our bound for Nbcpj in the above lemma is of exponential size, we can 
pick a suitable prime probabilistically quite efficiently. Let 

k = 2’+510g(B,) 2 4 log(N,(p,) 

and consider the first k primes pI , . . .,p,.SinceforeachsubsetKof(l,...,k)of 
cardinality 2 k/4, 

we conclude that fewer than k/4 of the primes pl, . . . , pk can be divisors of N$(pJ. 
Now 

pk < k(lo&k + log,logk) < k log k, kr6 

(cf. Rosser-Schoenfeld [36, sect. 3.131). Therefore, if we randomly pick a prime p, 

p<klogk<C +(p) = (1 + 5 + loglog(B+))2’+510g(B,& (2) 
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with probability greater than : this prime will certify that P is defined at 4. We 
have the following algorithm: 

Algorithm Zero-Division Test 

Input: A straight-line program P = (lx,, . . . , x,), V, C, (sl, . . . , s,,,)) of length I 
overQ(xl, . . . . x,), a,, b, E Q, 1 5 v 5 n, 1 5 p 5 m, and a failure probability 
c<< 1. 

Output : An integer p such that P is defined at J/(x”) = a, modp, $(s,,) = b, modp, 
or “failure”. In case P is defined at 4, failure occurs with probability <e. 

Step L (Loop on trials). Repeat steps P and E Ilog l/e1 times. Then return 
“ failure”. 

Step P (Pick a prime). Let & be as defined in Lemma 3.1 and set C+(p) according 
to (2). 

foritl,...,j= r2i/ioi0g c,Cp,i do 
Select a random postive integer p < C,,,. Perform a probabilistic primality test 
on p, for example, Solovay and Strassen’s [40], such that p is either certified 
composite or is probably prime with chance 11 - l/(8 j). In the latter case goto 
step E. 

At this point no prime was found, so go back to step L. 

Step E (Evaluation). Evaluate I&(P) on an algebraic RAM over Fp. If a division 
by zero or a zero divisor occurs, go back to step L. Otherwise return p. Cl 

We note that the bound C&) is only of theoretical interest. In practice word- 
sized primes are already likely to certify that P is defined at 9. Clearly, the 
Zero-Division Test Algorithm runs in binary polynomial-time and requires poly- 
nomially many random-bit choices. We do not state explicit polynomial upper 
bounds for this or any of the subsequent algorithms, although the original version 
of this paper [2 I] contains several of them. Instead, we now refer to [lo] for the 
actual performance of our algorithms, which would not be captured by those crude 
upper bounds. However, the theoretical failure probability of the Zero-Division 
Test Algorithm shall be analyzed in the following theorem. 

THEOREM 3.1. Algorithm Zero-Division Test requires (Ilog(B,)log( l/~))~(‘) 
binary steps on a probabilistic algebraic R4M over Z. Zn case P is defined 
at (b, it returns “failure” with probability -6. 

PROOF. There are three circumstances under with steps P and E do not find 
the prime p even if P is defined at 4. First, a prime may never be picked in Step P. 
There are 

7 G.(P) 
*(GP,) ’ - 

10 bdG,P,) ’ 

C@(P) = 17, 

primes < C4(p,; cf. [36, sect. 3.51. Thus, the probability that we select a composite 
p in all iterations of step P is no more than 

l- 
1 3~(7/WWC~(P) 

1 o/7 log C@(P) 

<L<l 

e3 8’ 
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Second, the chance that all composite p’s selected in step P are recognized as 
such is certainly not less than (1 - 1/(8j))’ > i, because (1 - :)‘I’ c 1 - 1/(8j). 
Thus, we pass a composite p on to step E with chance 5$. Third, by the previous 
discussion we have selected a prime with p ] N+(pj with chance 5:. Therefore, the 
total probability of things going wrong is less than i + $ + $ = j. Now, steps P and 
E are repeated at least log l/c times. Therefore, the probability of failing at all these 
trials is <(f)‘ogl’s = E. Cl 

We can use the Zero-Division Test Algorithm to determine whether an element 
in sem(d(P)) is zero. Let us briefly write down the algorithm. 

Algorithm Zero Test 

Input : As in Algorithm Zero-Division Test. Furthermore, an index X, 1 5 X 5 1. 

Output: Let ex = sem(4(uh)). We return either “ex is definitely not equal to zero” 
or “ex is probably 0”. The latter happens if P is defined at 6 and ex # 0 with 
probability ct. 

Step 2 (Zero Test): Run Algorithm Zero-Division Test on P’ = ((xl, . . . , x, ), 
V U (u,+, 1, C concatenated with (u,+, c 1 + ux), S) and 4. If no failure occurs 
return “ex is definitely # 0”; otherwise, return “ex is probably 0”. Cl 

Another application of Algorithm Zero-Division Test is, in fact, to compute 
ex = sem(@(ux)), 1 5 X 5 1. Since ex can be of exponential size in 1, polynomial- 
time complexity can only be expected if we know an a priori bound Bx 2 
] num(ex) 1, ] den(eA) 1. We again explicitly present the algorithm. 

Algorithm Evaluation 

Input: As in Algorithm Zero-Division Test. Furthermore, an index X, 1 5 X 5 1, 
and a bound BA . 

Output: Either “failure” (that with probability less than c in case P is defined 
at 4) or ex = sem(&u,)), provided that 

I num@Ql, I den( I &. 

Step T (Zero-Division Test). Call Algorithm Zero-Division Test. If it fails, return 
“ failure”. 

Step M (Modular Image Evaluation). Let p be the integer returned by the call 
to the Zero-Division Test algorithm. Compute A = sem(@(u,))modp“ where 
pk 2 2B2,, 0 I & < pk. This is possible because p must be relatively prime to all 
denominators computed. 

Step C (Continued Fraction Recovery). Find the continued fraction approxima- 
tion to &/pk, 

UI Ui Ui+l 

xp *‘*) x9 p+, ’ 
ti < BAY ti+l L B,. 

Return ex = (Ati - pkUi)/ti. 0 

For B = max(Bx, B,), the algorithm takes (, log(B)log( 1 /E))~“’ binary steps. The 
correctness of Step C follows from the theory of continued fractions [ 14, chap. lo]. 
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The idea of working modulo pk is sometimes referred to as Hensel-code arithmetic 
[29]. If individual bounds for 1 num(ex) 1 and ] den(ex) ] are known, as they often 
are, then the approach is subject to improvement; cf. [26, theorem 4.11. 

4. Probabilistic Simulation 

We now turn to our uniformity considerations, that is, the complexity of performing 
the needed straight-line program manipulations on algebraic RAMS. We first 
demonstrate the issue on an example. Let 

f(x) = y,x” + - * - + yo, 
g(x) = xm + z,-,xm-’ + - * * + zo, n > m, 

and let D = E[ y,, . . . , yo, z,-~, . . . , zo], where E is an abstract integral domain 
of characteristic 22. We want to design an algebraic RAM over D that, upon input 
n, m, ~0, . . . , yn, ~0, . . . , z,-, outputs (the encoding of) a straight-line program 

P=((yyIv=O, . . . . n) U (z,Ip=O, . . . . m- 11, V, C, (21), 

such that c, E sem(P), 0 5 K 5 n - m, for the polynomial quotient off(x) and 

g(x), 

q(x) = C,-,X”-m + * * * + co E D[x], deg(fW - dxk(xN < w 

and len(P) = O(n log m log(log m)). The existence of such a program follows from 
several sophisticated results on polynomial multiplication [39] and power series 
inversion [30]. Our question is: What is the binary complexity of the algorithm 
that generates such a straight-line program? 

Fortunately, the answer is not dificult. An algebraic RAM over D that actually 
computes the c, by the asymptotically fast polynomial division algorithm performs 
only arithmetic on elements in D and tests only addresses. The problem is that 
such an algebraic RAM has high binary complexity owing to the fact that the 
calculated elements in D are dense multivariate polynomials. However, if we 
represent all calculated elements implicitly as the semantics of the variables of a 
certain straight-line program, this exponential growth does not occur. The algebraic 
RAM over D that generates the straight-line answer now “simulates” the arithmetic 
operations in D in the following way. Assume the elements 

a = sem(u,) and b = sem(uA) E D 

need to be multiplied in the course of the polynomial division algorithm. At this 
point we already have a straight-line program 

Q~=(i~~lv=O, . . . . n)U(z,l~=O ,..., m-1),vl,G,W 

such that u,, ux E VI. We now merely need to append the assignment u~+r t 
u, X ux to C, and, obtain a program QI+, with ab E sem(Q,+, ). The binary cost of 
such a simulated multiplication is O(log(l) + size(u.) + size(u,)). It is this cheapness 
for arithmetic that makes the straight-line representation for multivariate polyno- 
mials so efficient. For later reference we formulate our observations as a theorem. 

THEOREM 4.1 (SIMULATION PRINCIPLE). Assume an algebraic RAM M over D 
on input n I 1, x1, . . . , x,, E D computes y,, . . . , ym E D in T(n) steps without 
testing an element in D for zero. Then we can construct an algebraic RAM M’ over 
D that on the same input computes the encoding of a straight-line program P 
over D with 

len(P) 5 T(n) and Ivl, . . . , yml c sem(P), 
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such that M’ has binary complexity 
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‘O(T(n)log T(n) + i size(xy)). 
v=l 

PROOF. By simulating arithmetic instructions as above. The additional factor 
of log T(n) in the binary complexity arises from the binary cost of each individual 
simulation step. The cost x :=, size(x,) enters because we must initialize certain 
program variables to x,. Other program variables will be initialized to constants 
from the program, but since the number of such constants is fixed, the binary cost 
of those initializations takes constant time. 0 

The polynomial division algorithm was special because no elements in D needed 
to be tested for zero. This is also true for polynomial or matrix multiplication, but 
for other important algebraic algorithms, such as computing the rank of a matrix 
polynomial, such tests cannot be entirely avoided. However, Algorithm Zero Test, 
together with choosing the evaluation points randomly, allows us to extend the 
simulation principle to certain algebraic RAM programs on data represented by 
straight-line programs, even when those RAMS also test domain elements for zero. 
We first justify the failure probabilities by the following two lemmas: 

LEMMA 4.1 [37, lemma I]. Let 0 #fE E[x,, . . . , x,J, E an integral domain, 
R C E. Then for randomly selected al, . . . , a, E R, the probability 

de&f 1 Pr(f(al, . . . , a,) = 0) 5 - 
card(R) * 

(We also refer to [ 161 for an interesting characterization of a suitable set of n-tuples 
that distinguishes all nonzero polynomials given by short straight-line programs 
from the zero polynomial.) 

LEMMA 4.2. Let P = ((x, , . . . , xn}, V, C, S) be a straight-line program 
of length 1 over F(x,, . . . , xn), F a field, S C F. Furthermore, assume that 
al, . . . . a,, E R c F were randomly selected. Then, the probability that P is 
defined at 4(x”) = a,, 1 5 v I n, is not less than 1 - 2’+‘/card(R). 

PROOF. It follows by induction on X that 

deg(num(sem vx)), deg(den(sem ux)) 5 2’, 15x51. 

Thus 

deg 
( 

fi den(sem(ux)) 
) 

5 i 2’ < 2/+‘, 
X=1 X=1 

and the lemma follows from the previous one. Cl 

We now can demonstrate our probabilistic simulation principle on the example 
of computing a determinant with sparse polynomial entries in F[x, , . . . , x,J. If we 
perform Gaussian elimination or the asymptotically faster algorithm by Bunch and 
Hopcroft [6], certain elements in F[x,, . . . , x,] need to be tested for nonzero 
before one can divide by them. At that point, these elements are computed by a 
straight-line program and we can probabilistically test them by picking a random 
evaluation and applying the Zero-Test Algorithm. The latter only needs to be called 
if size growth over F = Q is to be controlled. If we choose our evaluation points 
from a sufficiently large set, then, by Lemma 4.2 and the Zero-Test Algorithm, the 
chance that we miss a nonzero element can be made arbitrarily small. We point 
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1: CONST 1, 7 Comment: Store 7 into data register 1 
2: JMPZ 1, 4 Comment: If data register 1 contains 0, goto label 4 
3: HALT - - 

4: JMP 4 Comment: Infinite loop 

FIG. 3. RAM with unbounded computation tree. 

out that it is here where we can make full use of our RANDOM instruction 
introduced in Section 2. If F = F,, we may have to evaluate over an algebraic 
extension F,k in order to poll from a large enough set. The produced straight-line 
program is always correct, provided we know in advance that the determinant is 
nonzero. Otherwise, we might with controllably small probability output a program 
computing 0, even if the determinant is not, instead of returning “failure”. 

The probabilistic computation of a straight-line program of an m x m determi- 
nant over F[xl, . . . , xn] takes binary polynomial-time in m, n, the coefficient size 
of the sparse polynomial entries, and log I/E, where the resulting program is 
guaranteed to be correct with probability greater than 1 - t. This is true even if we 
miss a nonzero “pivot” element. The reason is that the Gaussian elimination or 
the Bunch and Hopcroft algorithms always terminate in 0(m3) steps, whether or 
not the zero tests are decided correctly. General algebraic RAMS can be pro- 
grammed in such a way that an impossible branch of the computation leads to an 
infinite loop. A section of a program with that property is shown in Figure 3. 

In order to formulate the next theorem, we need, therefore, to introduce the 
computation tree complexity of an algebraic RAM, which is the maximum depth 
of any path in the computation, ignoring whether the decisions along the path can 
actually be taken. We then have the following theorem: 

THEOREM 4.2 (PROBABILISTIC SIMULATION PRINCIPLE). Assume that an alge- 
braicRAMMover D = F(x,, . . . . x,,) on input n 2 1, x,, ..‘., x,, computes 

YI,. * * > y,,, E D in T(n) computation tree steps. Then we can construct a probabilistic 
algebraic RAM M’ over D that computes the encoding of a straight-line program 
P over D with len(P) s T(n) on the same input, such that with probability not less 
than 1 -c, (yl, . . . . y,,,] c sem(P). Furthermore, M’ requests random elements 
from a set R C F with 

curd(R) = 
[T(n): T@)+2], 

and has arithmetic complexity T(n) ‘(I). For F = Q and F = Fq, M’ has binary 
complexity (T(n)log( l/,))O(‘). 

PROOF. All instructions of M except JMPZ instructions are treated as in 
Theorem 4.1. In order to decide which branch to select on simulation of a zero 
test, we randomly select elements in R and perform the Zero-Test Algorithm on 
the current straight-line program defining the element to be tested. The length of 
that intermediate program is no more than T(n), and, by Lemma 4.2, an incorrect 
answer is returned with probability less than 2’(“)‘*/card(R), because the program 
in step Z of the Zero-Test Algorithm is one instruction longer. Clearly, at most 
T(n) such tests arise, and we do not decide any of them wrongly-even using one 
and the same evaluation for sake of efficiency-with probability less than 



GCD of Polynomials by Straight-Line Programs 245 

For special problems, such as the symbolic determinant computation, the ran- 
domizations introduced in the above theorem are not essential. If we remove the 
divisions from the generic determinant computation by Strassen’s method (see 
Theorem 7. I), we can deterministically produce in polynomial time a straight-line 
program for a symbolic determinant. However, the length of this program is 
O(M(m)m3), where m is the dimension of the input matrix. It is an open question 
whether an improvement to O(m3) is possible. We remark also that Ibarra et al. 
[ 191 observed a similar trade-off for removing decisions in the matrix rank problem. 

5. Polynomial Coeficients 

We now describe an important utility algorithm for our theory. Assume that f E 
WI,..., xn], F a field, is given by a straight-line program P over F(x,, . . . , x,) 
and that we know a bound d such that 

We want to produce a straight-line program Q over F(x2, . . . , x,) such that 
co, *-*, cd E sem(Q). The solution we present in this section is based on the 
idea of computing the ca by interpolating at different points. In Section 7, we give 
our original solution to this problem [21], which is based on the then needed 
Taylor Series algorithm, and which is not only more complicated but which also 
leads to an asymptotically longer result. Here now is the algorithm. 

Algorithm Polynomial Coejficients 1 

Input: fE F[x,, . . . . x,] given by a straight-line program P = (lx,, . . . , x,), 
V, C, S) over F(x,, . . . , x,J of length 1, a failure probability c << 1, and a bound 
d= deg,,(f). 

Output : Either “failure”, this with probability less than E, or a straight-line program 
Q = ({x2, . . . , x,, j, Vo, Co, So) over F(x2, . . . , x,J such that 

{co, . . . , cd] C sem(Q) and len(Q) = O(Zd + M(d)log d), 

where q is defined in (3). 

Step E (Good Evaluation Points). From a set R C F with 

card(R) , 8 n-W@’ + U2, 2’+’ ) 
3 

E 

randomly select elements al, . . . , a,. If F = F, and q is too small, we can work 
over an algebraic extension F,j with j sufficiently large. 

Test whether P is defined at 4(x”) = a,, 1 I v I n. For F = Q we call Algorithm 
Zero-Division Test of Section 3, such that the probability of “failure” even if P 
were defined at 4 is less than t/4. If P turns out to be (probably) undefined at 4, 
we return “failure”. Otherwise, P is (definitely) defined at 4. 

Step P (Interpolation Points). B t (al 1. 

repeat the following at most (d + 1)2 times until card(B) = d + 1. 
From set R, select a random point b. If b was chosen in previous iterations or is 
equal to al, we continue with the next repetition. Otherwise, test whether P is 
defined at +(x1 ) = b, $(Xi) = ai, 2 5 i I n. If P is defined at $, adjoin the 
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element b to B. For F = Q, we make the probability that we do not recognize 
this fact properly by calling the Zero-Division Test Algorithm of Section 3 less 
than t/(4d + 4). 

If at this point card(B) < d + 1, we return “ failure”. 

Step I (Interpolation Construction). At this point we have B = (b, , . . . , bd+, ), 
such that P is defined at all x i(Xl ) = bi. We first build programs Qi over 
Fbz,..., x,J such that 

f(bi, X2, - - - 9 ~4 E sem(Qi), l<i=d+l. 

This is done by simply replacing each occurrence of xl on the right side of 
an assignment in the computation sequence of P by bi. Then, we build a pro- 
gram QO that from the symbolic values Wi of a d-degree polynomial evaluated at 
bi finds the coefficients of that polynomial. This is the interpolation problem, 
which can be solved classically in len(Qo) = O(d’), or asymptotically faster in 
len(Qo) = O(M(d)log(d)) [I]. Notice that the algebraic RAM performing interpo- 
lation does not require zero tests of field elements. Finally, we link the programs 

QI, . . . . Qd+l, QO properly together making sure that there is no naming conflict 
and that the Wi are the corresponding variables in Qi. Cl 

The following theorem summarizes the complexity of our algorithm. 

THEOREM 5.1. Algorithm Polynomial Coeficients 1 does not fail with proba- 
bility greater than 1 - L It requires polynomially many arithmetic steps in d and 1 
on a probabilistic algebraic RAM over F. For F = Q and F = F,, its binary 
complexity is also polynomial in el-size(P) and log( I/E). 

PROOF. The algorithm can fail under four different circumstances. First, in 
Step E, P may be undefined at 4, that by Lemma 4.2 with probability less than 
2’+‘/card(R) < t/4. Second, for F = Q, we might fail to recognize that P is defined 
at 4, but we make this possibility happen with probability less than c/4. Third, the 
loop in step P may not generate d + 1 distinct b such that P is defined at the 
corresponding #. Since we try (d + 1)’ points, we can estimate this particular failure 
possibility as follows. A newly selected b was not chosen earlier with probability 
greater than or equal to 1 - (d + 1)2/card(R) > 1 - c/8. Then, again by 
Lemma 4.2, P is not defined at # for that individual point with probability less 
than 2’+‘/card(B) < c/8. Therefore, a suitable evaluation point can be found in a 
block of d + 1 points with probability greater than 

1 - (c*)“+’ > 1 - &, E* = 1. 
4’ 

because (1 /c *)d > 2d L d + 1 for e * < $. Now the probability that a good point 
occurs in all of the d + 1 blocks of points is greater than 

and hence failure happens for the third case with probability less than c/4. Fourth 
and last, for F = Q, we again may not recognize that P is defined at $, even if there 
were sufficiently many points. A good point is not missed with probability greater 
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than 1 - ~/(4d + 4) and hence the first d + 1 such points are recognized with 
probability 

(l-4(d; J’> 1-i. 

This concludes the argument for failure probability. The statements on the 
arithmetic and binary running times are a direct consequence of Theorems 3.1 
and4.1. Cl 

The Polynomial Coefficients 1 Algorithm requires the knowledge of a bound 
d 2 deg,,(f). If no such bound is given, we can probabilistically guess the degree 
by running our algorithm for 

d=l,2,4 ,..., 2k ,.... 

Letfd-Q, *a-, xn) be the interpolation polynomial that is produced for the kth 
run. We then choose al, . . . , a, E R randomly and probabilistically test whether 

f(al, . . . , a,) -j&h, . . ., a,) = 0. 

If the Zero-Test Algorithm called with a failure chance c/2 returns “probably 0”, 
then by Lemma 4.1 with probability greater than 1 - E, fk = f and 2k I de&,(f). 
Of course, by further testing ca(xz, . . . , x,J for zero, 6 : 2k, 2k - 1, . . . , we can get 
a probabilistic estimate for the actual degree, deg,, (f ). This procedure has expected 
polynomial running time in deg,, (f) and can be made quite efficient by computing 
the ji(xI, a2, . . . . a,) incrementally without even constructing a straight-line 
program for any fk [lo]. The total degree off can be similarly estimated using 
the translations that we introduce in Section 6, or by computing the degree 
off(y,z, - * *, y,z) in z. A more general degree test is discussed in Section 8 
(cf. Corollary 8.1). 

One may question whether it is possible to find a program of length polynomial 
in 1 only for a selected c&(x2, . . . , x,), 1 5 6 I 2’. This is most likely not the case, 
as Valiant’s example [45] exhibits. Consider 

Then the coefficient of the monomial yl . . . y,, in g is the permanent of the 
matrix [Zi,j lIdi,j5n- Performing a Kronecker substitution of x(“+l)‘-’ for yi this 
permanent appears as the coefficient of cs(zl, 1, . . . , zn,,J of x6 for 

6 = 1 + (n + 1) + (n + 1)2 + - .- + (n + l)n-‘, 

in 

g(x, xn+', . . . ) X("+')"-', Zl.1, . . . , Zn,,). 

Therefore, the degree-unrestricted coefficients problem is #P-hard [44]. 
The example above also shows that certain operations on straight-line programs 

most likely cannot be iterated without increasing the length of the output program 
exponentially. Take, for example, computing partial derivatives. Clearly, by our 
Polynomial Coefficients 1 Algorithm, we can find a program Q with 

akf 
2 E sem(Q) and len(Q) = 0(/d’). 

1 



248 ERICH KALTOFEN 

In order to obtain multiple partial derivatives in different variables, we could 
iterate this process on the distinct variables. However, every iteration increases the 
length of the previous program by at least a constant factor, and the final program 
turns out to be of exponential length in the number of different variables. This 
blow-up also appears to be inherent, because from (4) we get 

It came as a surprise to us that certain iterations causing a similar exponential 
growth, such as the variable-by-variable Hensel lifting [22], do not constitute 
inherent complexity and can be avoided [23]. 

6. Polynomial Greatest Common Divisors 

We now come to the first application of our theory, that of computing polynomial 
GCDs. Our goal is to produce for r polynomials f, E F[xl , . . . , x,J, 1 5 p 5 r, 
given by a straight-line program P, a straight-line program Q with GCDll,,,(f,) E 
sem(Q). For simplicity, we are assuming that all f, are computed by a single 
program P. Clearly, this can be enforced by merging any possibly different input 
programs. We also assume that we know an a priori bound d L deg(f,), 1 I p 5 r. 
Our algorithm is a probabilistic one, and the returned Q may not determine the 
correct GCD, that with probability less than E. The difficulty is, of course, to 
accomplish the construction in binary polynomial time in 

len(P), el-size(P), d, log 
0 
i . 

Note that the parameters n and r are dominated by len(P). We do not know how 
the approach of repeated GCD computations, 

GCD(fi, h), GWGCD(f;, fi), h), . - ., 

or of extracting contX,(fp), 1 5 p I r (cf. Brown [5]) can lead to a polynomial-time 
solution. 

We first restrict ourselves to r = 2, that is, the GCD problem for two polynomials. 
We later show that the GCD problem for many polynomials can be probabilistically 
reduced to that for two. In order to avoid the content computation, we work with 
the translated polynomials 

3p ="m, Y2 + b2X1, . - -, yn + bn-%) E ml, Y2, . . . , Ynl, P = 1, 2, 

where b, E Fare randomly selected elements, 2 I v I ~1. Since the mappingf-t f 
is a ring isomorphism from F[x,, . . . , x,,] into F[x,, y2, . . . , y,J, we must have 

$2 = GW?I, h>, w h ere g = GCD(f,, f2). The reason for performing this trans- 
lation is that with high probability ldcfX,(fO) E F, p = 1 or 2. The following easy 
lemma can be formulated. 

LEMMA 6.1. Let f E F[x,, . . . , x,,], b2, . . . , b, E F. Then there exists a non- 
zero polynomial r(p2, . . . , ,&) E F[a2, . . . , ,&I, deg(7) 5 deg(f), such that 
db2, . . . , b,) # 0 implies 

ldcfx,(f(xl, ~2 + &XI, . . . . yn + b,x,)) E F over Fb, ~2, . . . . ~~1. 
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0 Z 7 = kkL,(fh ~2 + /32x1, . . . . yn + ,&XI)) E F[P2, . . . . &,I, 

overF[xl,y2 ,..., yn,p2 ,..., /3,JandapplyLemma4.1toT. •i 

The trick is now to perform the Euclidean algorithm (i.e., compute a poly- 
nomial remainder sequence) on the translated polynomials over the coefficient 
IieldF(y,, . . . , y,J in the variable x1. Let 

2 = GCD(J, h> over F(y2, . . . , yn)[xll, ldcL,(g) = 1. 

The point is that, if Lemma 6.1 applies to f, or f2, that is, 

ldcL,(J) or ldcL,($) E F, (5) 

then j will actually be the GCD of fr and f; over F[ ~2, . . . , y,,, x1 1. This is a 
consequence of Gauss’s lemma [28, sect. 4.6.1, lemma G], which states that 
products of primitive polynomials must be primitive. The claim about 2 can be 
shown from this, as follows: Assume that (5) is true for jr, and let g* = f,/g. 
Furthermore, let c and c* E F[ y2, . . . , y,J be the least common denominators of 
jj and j*, respectively. Now 

(cg)(c*g*) = (cc*)J, 

where cg and c*g* are primitive in F[xl, y2, . . . , y,J with respect to xl. Therefore, 
cc* E F and-hence S: E F[x,, y2, . . . , y,]. Since 2 is manic with respect to x1, &j 
also divides f2 over F[xl , ~2, . . . , y,J, irrespective of whether ldcf,, ( f2) E F. Since 
2 is computed in a larger domain, our claim is immediate. 

Our algorithm constructs the polynomial remainder sequence for $ and &. We 
shall work on the coefficient vectors with respect to xl, which we can obtain 
initially in straight-line representation by the polynomial coefficients algorithm. 
During this process we must, however, compute the degrees of the remainders in 
x1. We do this probabilistically by evaluating yy randomly at a,, as was done also 
for the probabilistic simulation principle. The algorithm now follows in detail. 

Algorithm Polynomial GCD 

Input:&,& E F[x,, . . . . x,] of degree =d given by the straight-line program 
P=((x1,..., x,), V, C, S) of length 1, and a failure allowance t << 1. 

Output: Either “failure”, with probability less than t, or a straight-line program 
Qo=(h,..., xnl, K, Co, SO) over WI, . . . , x,J of length O(ld + d*) such that 
with probability greater than or equal to 1 - c 

Step R (Random Points Selection). From a subset R C F with 

card(R) > 
max(2’+4, 8d 3, 

7 t 

select randomly al, . . . , a,, b2, . . . , b,. In case F = F, where q is too small, we 
can work in F,j instead. Since the GCD can be computed by coefficient arithmetic 
alone, it remains invariant under field extensions. 

Step T (Translation). Set c = (u2 c xl x b2, z2 c y2 + u2, . . . , u,, t xl X b,, 
Zn t yn + u,) concatenated with the modified computation sequence of P in which 
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all occurrences of x, are replaced by &. Thus 
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P= 

( 

h,y2, . . . . y,), vu u (I&,.%), csu ib2, . . ..&I 3 

2sv5n ) 

is a straight-line program over F(xl , ~2, . . . , YJ that computes 

Step C (Coefficient Determination). Test whether P is defined at 4 (xl) = al, 
4( yy ) = a,, 2 I v 5 IZ. If not, return “failure”. For F = Q, we call Algorithm Zero- 
Division Test with failure probability 43. 

Call Algorithm Polynomial Coefkients 1 with input program p, degree bound 
d, failure probability 43, and the indices X, such that fp = sem(uAc) for p = 0 
and 1. We obtain 

QI = ((~2, . . . , YnL Wl, Cl, Tl), 

such that all c,,~ E sem(Q,). Notice that, in the Polynomial Coefficients 1 algorithm, 
we only need to evaluate on one set of points, even though Q, encodes the 
calculation of two interpolation polynomials. This shortens len(Q,) considerably. 
Wealsosharea,, . . . . a, with that algorithm instead of selecting new points in 
step E there. This guarantees that Ql is defined at 4 restricted to y2, . . . , yn. We 
could have tested for this condition after constructing Q,, but the error analysis 
would be a little more involved. 

Step 0, (Degree Determination). In this step we probabilistically find 4 = 

deg,,(.h) and dl = deg,,(fi). 

for6td,d- l,...,Odo 
Call Algorithm Zero Test with Q,, $(vy) = a,, h such that co,a = sem(wl,x), 
wl,,, E IV,, and failure probability t/(4d). If “definitely # 0” is returned, exit the 
loop with & = 6. Notice then that 

Pr(do = deg,,(Jb)) h 1 - 2. 

Here we dropped through the loop, that is, with high probability fo = 0. By 
convention, we set do = -1. 

Similarly, compute d, . Without loss of generality we now assume that do 2 dl . 

Step E (Euclidean Loop). for k t 1, 2, . . . , do Step R. 

Step R (Polynomial Remaindering). At this point we have a straight-line program 

Qk = (IY2, * * *, Yn), wk, ck, Tl), 

such that for the ith polynomial remainder in the Euclidean remainder sequence 
of& and A over F(Yz, . . . , yn)[xl I 

.A = 6?. Ci,6Xt, ct.6 E F[n, . . . , yn], 1 5 i CC k, 

with high probability 

Cj.6 E wm(Qi) forall Or&rd,, lsjli. 
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Now we update Qk to the straight-line program Qk+, , which also simulates the 
polynomial division of fk-, and fJ over F( y2, . . . , yn) [x, 1. Provided Qk was correct, 
the program exactly determines the next remainder &+ I, whose degree dk+ I < dk 
we determine as shown in step D. 

if dk+, = -1 (i.e., fk+, = 0), then proceed to step G. 

Step G (GCD Generation). Qk now determines, with high probability, the coef- 
ficients of a remainder fk = C & ck,*xi, which corresponds to the GCD of & and 
3, over F( y2, . . . , y,J[x,]. Append assignments to Ck that compute 

L dk ck 6 
-= 2 Lx:. 

ldCf,, ( fk) 6=0 ck,d, 

This makes the computed GCD manic in xl and by the discussion previous 
to the algorithm we have, with high probability, the GCD of 30 and 3, over 

F;[Y2, * * *, y,,, xl]. Finally, put assignments computing the back-translation 
~2 + x2 - XI b2, . . . , Y” + xn - x1 b, in front of Ck and output Qo = ((x1, . . . , x,, ), 
IV;, CL, T, ), where IV; and CL are the updated wk and Ck. 0 

The following theorem summarizes the complexity of the Polynomial GCD 
Algorithm. 

THEOREM 6.1. Algorithm Polynomial GCD does not fail with probability greater 
than 1 - E. In that case, its output correctly determines the GCD of its inputs with 
probability greater than 1 - E. It requires polynomially many arithmetic steps in d 
and I on a probabilistic algebraic RAM over F. For F = Q and F = F4, its binary 
complexity is also polynomial in e&size(P) and log( l/c). 

PROOF. Polynomial running time follows from Theorems 3.1, 4.1, and 5.1. 
“Failure” can only be returned in step C. There are three possibilities that can 
cause such an event. First, the program P may not be defined at 4. By Lemma 4.2, 
this happens with probability less than 2’+‘/card(R) < 1/(3e). Second, for F = Q, 
we might fail to recognize that P is defined at 4, but we make this possibility 
happen with probability less than t/3. Third, the Polynomial Coefficients 1 Algo- 
rithm may fail, that with probabiltiy less than c/3. 

We now establish the estimates for the probability that Qk determines the GCD. 
Let r, by the polynomial from Lemma 6.1 corresponding to fi . The degree 
deg(T,) I d and by Lemma 4.1 

Pr(ldcf,,( f,) E F) 2 1 - & > 1 - d. 

If this is the case, step G is justified. Now we consider under which circumstances 
we obtain the correct degrees dk. In order to obtain a sharp estimate, we appeal to 
the theory of subresultants (cf. [28, sect. 4.6.1 and the references there]). A reader 
unfamiliar with that theory can refer back to the probabilistic simulation principle, 
but then card(R) would be much larger than what we can prove. By Ei E 
F[Y~, . . . , yn] we denote the leading coefficient of the di-degree subresultant 
of 3, and f, with respect to x1, 0 5 i 5 k. Then deg(Ei) 5 2d2, and for each c&d, 
there exist integers ei,j such that 

j=O 
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Furthermore, let d = n Lo ?i E F[ ~2, . . . , y,]. Since deg(a) 5 2d 3, 

Pr(a(u,, . . . , a,) # 0 ] a2, . . . , a, E R) L 1 - -. 
4 (8) 

Assume now that this is the case, which means by (7) that no leading coefficient 
of J evaluates to zero. We test overall at most 2d coefficients of fa, $, . . . , f, for 
zero. For F = Q, none of these tests misses a nonzero evaluation with probability 
greater than or equal to 

2d 

>l-;. (9) 

Notice that all programs Qi remain defined at 4 ( yy ) = a,, 2 5 v 5 n. Therefore, all 
events (6), (8), and (9) occur with probability greater than 1 - (c/4 + t/4 + c/2) > 
1 - t. In that case Ck is a straight-line program for the GCD. Cl 

We used the theory of subresultants only in our proof, but we could as well have 
used the more involved subresultant pseudodivisions in step R of our algorithm. 
Then the evaluations over Q would stay better bounded in size and we would be 
even less likely to miss a nonzero leading coefficient of a remainder. Instead of the 
classical Euclidean algorithm, we could also have used the asymptotically faster 
Knuth-Schonhage algorithm [33]. This would shorten the length of Q0 asymptot- 
ically to O(Zd + M(d) log(d)) with a different bound for the cardinality of R; see 
Algorithm Rational Numerator and Denominator in Section 8 for more details. 

We now consider the case of more than two input polynomials. For this case we 
use a probabilistic trick that reduces the problem of computing g = GCDl=i=l(&), 
A’EW,,..., xn], to that of computing the GCD of two polynomials. All one has 
to do is take two random linear combinations z :=I aJ, x !=I bi$, ai, bi E R C F, 
and with high probability their GCD coincides with g. The relevant theorem 
follows: 

THEOREM 6.2. Let fi’ E F[x, , . . . , xn], F afield, deg(J) I d for I 5 i I r, 
R C F. Then for randomly chosen ai, bi E R, 1 5 i 5 r, 

GCDlsi&) = GCD i a&, i b& 
i=l i=l )) 

2 1 - &. 

PROOF. We first show this theorem for n = 1. Let 

fl = j, 49 h = j, Bib E E[xl, E = flw, . . . , a,, 81, . . . , &I, 

g = G$Di,ill(fi’)+ Clearly, g ]A, g I$. The first claim is that g = 2 where B = 
Gcp(f, , f2). We observe that 2 E <[xl, since the sets of the other indeterminates 
in f, and f2 are disjoint. Now write fi = &, where fi E E[x]. If we evaluate this 
equation at ai = 1 and aj = 0, i # i, then we get g ]A, 1 5 i 5 r. Therefore, 
2 ] g, which p_roves the claim. Now let u E E be the leading coefficient of the sub- 
resultant off, and f2 with respect to x that corresponds to 8. If ~(a,, . . . , a,, 
b I,..., b,) # 0, then 

GCD(~I(~I, . . . , a,, h, . . . , br, x), -?&I, .,. . , a,, h, . . . , b,, xl) 
= GW.&,.fi)(a~, . . . , a,, h, . . . , b,, xl, 

which implies the asserted event. Since deg(a) 5 2d, Lemma 4.1 establishes the 
stated probability. 
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We now reduce the multivariate to the univariate case by using the translation 
of Lemma 6.1 generically. Consider forfE F[xl, . . . , xn] 

7 =f(x1, y2 + ZZXI, . . . ) yn + z,x*) E F(z2, . . . , zJ[x,, y2, . . . , ynl. 

Now g = GCDl,il,( xi>, where the latter can be computed over F(z2, . . . , z,,, 

Y2,-**, ~42 [XI 1 since 

ldcf,,( 7) E F(z2, . . . , z,). 

From the univariate case, it follows then that 

However, the mapping + defined by @(XI) = XI, a( yi) = Xi - ZiXr is a ring- 
isomorphism from F(zz, . . . , zn)[xr, y2, . . . , yn] into F(zr, . . . , zn)[xl, . . . , x,J. 
Applying this mapping to the above event, we therefore obtain the theorem. (See 
Note Added in Proof.) 0 

7. Taylor Series Coeficients 

We now present a different approach to finding the coellicients of a polynomial. 
The idea is similar to Strassen’s elimination of divisions [43] and has also been 
mentioned by Valiant [45, end of sect. 41. Its essence is to compute the Taylor 
series coefficients over F(x2, . . . , x,J[[x,]] to a given order for the functions 
computed in all program variables. For a particular variable, these coefficients are 
computed from the coefficients of previous variables by Taylor series arithmetic. 
As we note later, Strassen’s results can be reduced to our algorithm by an 
appropriate substitution. We first formulate the general procedure under the 
assumption that the rational functions computed in the variables can be expanded 
into Taylor series at the point x1 = 0. Then we apply this procedure to the 
coefficients problem, as well as to eliminating divisions. 

Algorithm Taylor Series Coeficients 

Input:fEF(~~,..., x,) given by a straight-line program P = (lx,, . . . , x,, ), V, C, 
S) of length I that is defined at 4(x1) = 0. From this it follows that f can be 
expanded as a Taylor series 

- “ml, . . . . &I) = c 6(X2, . * * , &M, c&2, . * *, &I) E f-(X2, . . . , &I). 
6=0 

Furthermore, the desired order d is given. 

Output: A straight-line program Q = ((x2, . . . , xn), I’,, Co, S) over F(x2, . . . , xn) 
such that 

(co, * * * , cd ) C sem(Q) and len(Q) = O(1 M(d)). 

Step I, (Loop through instruction sequence). Co t 0. 

forXtl,...,ldoStepT. 

Finally, set Vo = ( w~,~ ) U (U ] u is any of the intermediate variables). Return 
Q = ({x2,. . . , &I], VQ, CQ, s). 
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Step T (Taylor series arithmetic). Let ux t u; ox u: be the Xth assignment in C. 
Instead of computing sem(ux), we compute the first d + 1 coefficients of xl in its 
power series expansion over F(x*, . . . , x,)[ [xl]], which we store in w~,~, . . . , w~,~. 

Case oh = -I-. For 6 c 0, . . . , d, append wATa c w;,, + w& to Co. If UT = up, 
then w& = w~,~ for * = ‘, “. If uf E XU S, we use 

* if 6=0 
WA.6 = if 6>0 

and if u: E (X c S)\ lx* 1, 

if 6=1 = * 
if 6#0 

andif u, =x1. 

Case ox = X. Construct a straight-line program which, on input wlo, . . . , 
, ,, ” WA,d, wX,O, * * * 9 WA,d, computes in the variable w~,~, 0 zz 6 5 d, the convolution 

If wi,iwT,j9 
i+j=6 

Osijsd 

making sure that all temporary variables are new. Now append this straight-line 
program to Co. Notice that the increase in length depends on which multiplication 
algorithm is used. 

Case ox = +. We first append to Co assignments for Us,&, 0 5 6 5 d, such that 

1 

sem(u[) = zabaO sem(w$)xl 

= a5o sem(ux,6)xf, sem(uA,6) E F(x2, . . . , x,). 

The fastest method uses Newton iteration. We shall briefly present the algorithm 
for an algebraic RAM over F(x2, . . . , x,). 

a0 c l/sem( wlo). 
foritl,..., I1 +logdldo 

At this point ai- is the (2’-’ - 1)st order approximation of l/sem(ux” ). 
Lyi + 2ai-* - af-, (zLo sem(w;,)x:)modx:‘. 

Two points should be made. First, sem(w;,) # 0 since P is defined at 4. Second, 
the total number of steps is 0( 2 r<log(4d) MC?‘)), or again O(M(d)). 

Once the ux,a are introduced we proceed as in the previous case to obtain the 
convolutions C i+j=& W{,iU&j. Cl 

The binary complexity of this algorithm follows from Theorem 4.1, and is on 
an algebraic RAM over F of order O(/M(d)log(ZM(d)) + el-size(P)). We wish to 
point out that in case many divisions occur in the computation sequence of P we 
can reduce the number of power series divisions to just a single one by the following 
idea. Instead of computing the power series approximations to order d of all 
sem(uA), we compute the approximations of num(sem(uA)) and den(sem(ux)) 
separately by polynomial multiplication. Thus, the only power series division 
necessary is that for num(sem(u,))/den(sem(u,)). 

We now apply the Taylor Series Coefficients Algorithm to the coefficients 
problem. The trick is to translate x1 = yI + al for a randomly chosen al such that 
P is defined at 4(y,) = 0, which is the same as @(xl) = al. To unravel this 
translation, however, will require a bit of work. 
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Algorithm Polynomial Coefjzcients 2 

Input : The same as in the Polynomial Coefficients 1 algorithm. 

Output: Again the same as in Algorithm Polynomial Coefficients 1, except that 
len(Q) = O(!M(d)). 

Step FT (Forward Translation). From a set R C Fwith card(R) > 2’+‘/~ randomly 
select elements al, . . . , a,. If F = F, and q is too small, we can work over an 
algebraic extension F,j with j sufficiently large. 

Test whether P is defined at 4(x”) = a,, 1 I v 5 n. For F = Q; we call Algorithm 
Zero-Division Test of Section 3 such that the probability of “failure” even if P 
were defined at 4 is less than c/2. If P turns out to be (probably) undefined at 4, 
we return “failure”. Otherwise, P is (definitely) defined at 4. 

Set C = (2, t y, + al) concatenated with C in which all occurrences of xl are 
replacedby&.Nowp=(z, ~,~,$with~={y,,~~,...,x,,J, v= VU(h), 

and s = S U (aI ) is a straight-line program that computes f ( y, + al, x2, . . . , x~) 
overF(y,,xz,..., x,,), and which is defined at 4( yl ) = 0. 

Step C. Call Algorithm Taylor Series Coefficients with program P and order d. A 
program Q is returned that computes t E F[xz, . . %, x,], 0 I 6 5 d, such that 

j. GY! =f(n + al, x2, . . ..&I 

or 

fh, ***, xn) = i &(x, - a1)6. 
6=0 

Step BT (Back-Transformation). We compute ca E F[x2, . . . , x,], 0 5 6 5 d, 
from al and the i% such that 

d f(XI, . . . . X") = z wi, 
b=O 

by a fast “radix conversion” method [28, sect. 4.4, exercise 141, which we briefly 
present as an algebraic RAM algorithm. 

Split f =fo + (xl - al)rd’2’J with 
rd/zl-1 Id/21 

fo = 6go &(x1 - a1)6, fi = z &+ld/Zl(xI - a1)6s 
6=0 

Convert& andf; by recursive application of the algorithm. 
Computef2 = (xl - al) rd’2’ by repeated squaring. 
Compute Fiji + fo by polynomial multiplication and addition. 

The complexity T(d) of this algorithm satisfies T(d) 5 2T(d/2) + TM(d), y a 
constant, and hence is T(d) = O(log(d)M(d)). We note that for coefficient fields 
F of characteristic 0 this conversion can be accomplished in even O(M(d)) 
arithmetic steps [2]. The program Q to be returned is built from Q by appending 
instructions for the conversion. Therefore, len(Q) = 0(/M(d) + log(d)M(d)), but 
since log(d) = O(I), the first term already dominates the asymptotic output 
length. Cl 

It should be clear that Theorem 5.1 applies to Algorithm Polynomial Coeffi- 
cients 2 as well. It is somewhat surprising that we are not able to remove the 
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restriction in the Taylor Series Coefftcients Algorithm that P be defined at 4 (xl) = 
0 by a translation similar to the above. In fact, we know of no strategy of polynomial 
length in 1 that would compute Idcf,,(f), f E F[xl, . . . , x,J, but that does not 
depend polynomially on de&,(f). Note that ldcf,,(f) is the constant Taylor series 
coefficient of 

xw+&, x2, . . . , xn). 
Although Algorithm Polynomial Coefficients 2 produces a program of asymp- 

totically longer length than Algorithm Polynomial Coefficients 1, there exist 
circumstances under which the second algorithm is better in practice. One such 
situation arises when there are many input and scalar operands in the straight-line 
assignments. In our implementation of the coefficients algorithm [ lo], we therefore 
first estimate the length of the output program for either method and then perform 
the one that led to the smaller estimate. Length estimates for both algorithms can 
be computed quickly and fairly accurately, that is, within 1 percent of the actual 
lengths. 

We finally remark how Algorithm Polynomial Coefficients 2 can be used to 
remove divisions from a program P, of length I for a polynomialfE F[xl , . . . , xn] 
of degree d. First, we need al, . . . , a, E F such that PI is defined at 4(xi) = ai, 1 
I i I n, as they are found in Step PI of the above algorithm. Then, we apply the 
Taylor Series Coefficient Algorithm to a straight-line program Pz for the polynomial 

dZ,Yl,-**, Yn) =f(y,z + aI, * * *, ynz + an), 

with respect to the variable z and to the order d. The point is now that the only 
divisions necessary are those to compute LUO c l/sem( wco) in the Newton reciprocal 
procedure. It is easy to see that the constant terms in the Taylor expansions at 
z = 0 for the rational functions computed by the program variables in P2 are, in 
fact, elements in F; that is, a0 can be encoded as a new scalar. Our division-free 
resulting program Q, now computes cb E F[ yI, . . . , y,J such that 

Putting the proper translations for yi = xi - ai, 1 I i I IZ, in front of Q, we obtain 
the division-free program Q2 forfas 

d 

.ml, ---, xn)= c 6(X,-aal ,...) x,-a,). 
a=0 

The length of Q2 is @[M(d)). It should be noted that this particular transformation 
cannot be carried out in binary random polynomial time, since the new scalars a0 
might be of exponential size, but other formulations without that drawback are, of 
course, possible. We also note that the coefficient of z6 in f(x, z, . . . , xnz) is the 
homogeneous part of degree 6 inf(x, , . . . , x,J. Strassen [43] describes this method 
with the homogeneous parts taking the place of coefficients, but then the compu- 
tation of the reciprocal by Newton iteration needs some extra thought. For the 
record, let us state the following theorem. 

THEOREM 7.1. Let f E F[x, , . . . , x,,] be given by a straight-line program P of 
length 1 over F(xl, . . . , x,,), F a$eld with card(F) r: 2’+‘. There exists a universal 
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constant y and a division-free straight-line program Q = ((xl, . . . , x,), V,, Ca, S,) 
such that 

f E sem(Q), SQ c F, and [en(Q) 5 -dWdeg(f )I. 

8. Numerators and Denominators of Rational Functions 

In this section we describe an algorithm that transforms a straight-line computation 
for a rational function of known degree to one for its (reduced) numerator and 
denominator. A major application of this algorithm will be to parallelize compu- 
tations for rational functions (cf. Corollary 8.3). But first we review some needed 
properties of Pade approximants. However, we do not prove any of these properties 
and instead refer to [4] for an in-depth discussion and the references to the literature. 
Let 

f(x) = co + clx + c2x2 + - - . E F[[x]], co # 0, d, e 2 0, 

be given. Going back to Frobenius (188 I), a rational function p(x)/q(x) is called a 
(d, e)-Pade approximant to f if 

de&-Q 5 4 deg(q) 5 e, 

f(x)q(x) - p(x) = 0 mod x~+~+‘. 
(10) 

It turns out that, for any pair (d, e), there always exists a solution to (lo), and, 
furthermore, that the ratio p/q is unique. This ratio forms the entry in row d and 
column e of an infinite matrix referred to as Pade table. Kronecker (1881) had 
already realized that the entries in the d + e antidiagonal of the Pade table are 
closely related to the Euclidean remainder sequence of 

f-,(x) = x d+e+I , fO(x) = CO + CIx + * ’ ’ + Cd+eXd+e. 

Consider the extended Euclidean scheme [28, sect. 4.6.1, exercise 31 

Si(X)f-1(x) + &(x)fo(x) = J(x), 

fi‘(x) = ~-2(x)mod~-l(x), ir 1. 

Then for the smallest index i with deg(fi) % d we have deg(ti) 5 e, andJ/ti is the 
(d, e)-Pade approximant toJ: Furthermore, GCD(J, ti) = x“ for some k L 0. Thus, 
any algorithm for computing the extended Euclidean scheme results in one for the 
(d, e)-Pade approximant. Note that the assumption co # 0 is unessential by changing 
the lower bound for d. 

The classical Euclidean algorithm gives a O((d + e)2) method for computing the 
(d, e)-Pade approximant. The ingenious algorithm by Knuth [27], which was 
improved by Schonhage [38] and applied to polynomial GCDs by Moenck [33], 
allows us to compute the triple (fi’, Si, ti) with deg(A) 5 d, deg(fi’-,) > d, in 
O(M(d + e)log(d + e)) operations in F. 

We are now prepared to describe the algorithm. The key idea is that by 
substituting x, + b,xl for x,, 2 5 v 5 n, we can make the problem a univariate 
problem in x1 over the field F(x2, . . . , x,,), as was already done in the Polynomial 
GCD Algorithm. We then recover the fraction from its Taylor series approximation 
by computing the Pade approximant in F(xz , . . . , x,)[ [xl]]. Since that approximant 
is unique, it must be the reduced numerator and denominator. 
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Algorithm Rational Numerator and Denominator 

Input : A straight-line program P over F(x, , . . . , x,J of length 1 that computesflg, 

f;gEFh, . . . . x,J relatively prime, and d L deg(f), e 2: deg(g), and a failure 
allowance. E << I. We make the assumption that d, e I 2’, since the latter is always 
a bound. 

Output: Either “failure” (with probability c c ), or a straight-line program Q over 
Fh,..., x,) of length 0(1M(d + e)) such that Q computesfand g correctly with 
probability greater than 1 - 6. 

Step FT (Forward Translation). From a set R C F with 

card(R) > 
2(2~,+2)IMkf+d 

, c 

select random elements al, . . . , a,, b2, . . . , b,. In this case constant y3 depends 
on the polynomial multiplication algorithm used and can be computed once an 
algorithm is selected. If F is a finite field with too small a cardinality, we can work 
in an algebraic extension of F instead. Since the results can be computed by rational 
operations in F, they remain invariant with respect to field extensions. 

Test whether P is defined at 6(x”) = a., 1 I v I n. For F = Q, we call Algorithm 
Zero-Division Test in Section 3, such that the probability of “failure” occurring 
even if P is defined at 9 is less than t. If in this test P turns out to be (probably) 
undefined at 4, we return “failure”. 

NowwetranslatetheinputsofPasxlty,+al,x,cy.+b,yl,2Iv=n.Let 
P be the straight-line program computing T/g where 

RYl, - - -, y,J = MYI + al, ~2 + ba, . . . , yn + by,) 

for hEF[xl,...,x,]. 

Now P is defined at 9 ( y1 ) = 0. Also with high probability 

deg,, ( f > = d%(f), implying that ldcf,, ( f ) E F. (11) 

Step S (Power Series Approximations). Compute a straight-line program Q, 
over F( y2, . . . , yn) such that for the coefficients of the power series 

f= co(y2 
s ‘***’ 

Yn) + C*(Yz, - * - , Yn)Yl + *-a 
(12) 

+ Cd+e( y2, . . . , yn) VP’ + * * *, 

the ci are computed by Q, for ah 0 5 i I d + e. This can be done by directly 
applying the Taylor Series Coefficients Algorithm in Section 7. Notice that len(Q,) 
5 ~~Zikf(d + e), where y, is a constant solely depending on the multiplication 
algorithm used. 

Step P (Pad6 Approximation). Construct a straight-line program Q2 over 
0~2,. . . , yn) that with high probability computes the (d, e)-Pad6 approximation 
p/q to W, P, 4 E F(Yz, . . . , yn)[ y, 1. From the preceding remarks, we know that 
this can be accomplished by an extended Euclidean algorithm. Essentially, we 
perform such an algorithm on the coefficient vectors (ci)Osild+e and that of 
,!+‘+I. In order to test elements in F( y2, . . . , yn) for zero we evaluate the program 
computing these elements at $( yy ) = a,, 2 5 v 5 n, as we do in Theorem 4.2 or 
step D in the Polynomial GCD algorithm. If we use the asymptotically faster 
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Knuth-Schiinhage procedure (see also [9] for a full description of the algorithm), 
then 

len(Q*) 5 rlIit4(d + e) + +y2M(d + e)log(d + e) I -y3ZM(d + e), (13) 

where yz and y3 are again constants solely depending on the polynomial multipli- 
cation procedure used. Notice that the produced straight-line program may be 
incorrect (that with small probability), since we may have incorrectly certified an 
element to be zero. 

Once we have a straight-line program for polynomials J and ti E 

F(Y2, -**, y,)[ yl] in the extended Euclidean scheme, we must find k 1 0 such 
that GCD(J, ti) = y’; over F(y2, . . . , y,J[ y, 1. This we can again accomplish 
probabilistically by evaluating the coefficients in yl of5 and tie 

If we make ldcf,,( p) = 1, then with high probability p is an associate of 7 in 

NY,, . . . , y,]. This is because of (11) and because Pade approximants are unique. 

Step BT (Back-translate). The program Q is obtained by putting assignments for 
the back-translations 

YI + XI - al, y, + xv - b,(xl - a,), 25vIn, 

in front of Q2. •i 

We now analyze the overall failure probability of the Rational Numerator and 
Denominator Algorithm. “Failure” is only returned if P is not defined or is not 
recognized to be defined at 4. However, several events must take place in order 
that the correct answer is returned. First, ldcf,,( 7) E F that justifies the normali- 
zation of p in step P. By Lemma 6.1, this happens with probability greater than or 
equal to 

1 
d 

-card(R) 
>l-6. 

Second, all zero-tests performed by evaluating at #( yy) = a,, 2 5 Y 5 n, must give 
the correct answer. This is true if the Knuth-Schonhage algorithm performed over 
F(Yz,..., y,) takes the same course as the algorithm performed over F on the 
elements obtained by evaluating at +. In other words, no nonzero element that is 
tested or by which is divided must evaluate to 0. Since the algorithm takes no more 
than 

r2A4(d + e)log(d + e) 

steps, the degree of any unreduced numerator and denominator of these elements 
is, by (13), no more than 

2rslMW+e) 

A (pessimistic) estimate for the number of elements to be tested and to be divided 
by, including determination of k, is 

r31M(d + e) + (d + e) < (y3 + l)IM(d + e). 

Therefore, the probability that all tests lead to the same result at $ and that all 
divisions are possible at # is no less than 

l _ (y3 + l)IM(d + e)2r3’M(d+e) , 1 _ ;. 

card(R) 

Hence, a correct program Q is output with probability greater than 1 - $E. 
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In case F = Q one additional possibility of returning an incorrect result must be 
accounted for, namely, that the Zero Test Algorithm in Section 3 might not 
recognize a nonzero evaluation at + properly. However, the probability of such an 
event can be controlled-say we allow it to happen only with probability no greater 
than 

c 

4(7j + l)M(d + e)log(d + e) * 

Then all tests succeed with probability greater than 1 - e/4, and a correct program 
is output with probability greater than 1 - C. In summary, we have the following 
theorem: 

THEOREM 8.1. Algorithm Rational Numerator and Denominator does not fail 
and outputs a program Q that computes f and g with probability greater than 
1 - 2~. It requires polynomially many arithmetic steps as a function of len(P), d, 
and e. For F = Q this is also true for its binary complexity, which also depends 
on el-size(P). The algorithm needs polynomially many randomly selected field 
elements (bits for F = Q). 

We now formulate three corollaries to the theorem. The first corollary deals with 
distinguishing straight-line programs that compute polynomials from those that do 
not. It is clear that, if we have the bounds d and e, we only need to probabilistically 
inspect the degree of g after we have a straight-line program for it. But what if we 
do not have a priori degree bounds? We then run our algorithm for 

d = e = 2k, k = 1, 2, 3, . . . . 

I& fk and gk be the numerator and denominator whose computation is produced. 
For randomly chosen al, . . . , a,, E F, we then probabilistically test whether 

If the test is positive, with high probability f =fk and g = gk. We have the following 
corollary. 

COROLLARY 8.1. Let f/g be given by a straight-line program P over 
WI, . . . . x,,). Then we can in random polynomial time in len(P) and deg(fg) 
determine deg(f) and deg( g) such that with probability greater than 1 - t no 
failure occurs and the answer is correct. In particular, we can decide whether 
f/g E F[x,, . . . , x,1. 

For simplicity we state the next corollaries over infinite fields, although this can 
be avoided, as mentioned in step D. The next one resolves Strassen’s question 
on computing the numerator and denominator of a rational function without 
divisions. By 

L&, . . . , rm I sl, . . . , sA ri, Sj E D, 

we denote the nonscalar or total complexity of computing ri from Sj over D; see, 
for example, [43]. 

COROLLARY 8.2. Let F be an infinitefield. Then 

L Fix ,,..., xnl(f; g I x1, . . . , xd = Mdeg(fg))2LFcX ,,..., X,) 3 
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where M(d) is the corresponding complexity of multiplying d-degree polynomials. 
In the nonscalar case M(d) = O(d). 

The third corollary concerns the parallelization of a straight-line computation 
for a rational function. From [46], we get 

COROLLARY 8.3. Let P be a straight-line program of length 1 over F(x,, . . . , 
x,,), F infinite, that computes f/g where deg(f), deg(g) 5 d. Then there exists a 
straight-line program Q of parallel depth O(log(d)log(dl)) and size(ld)‘(” that 
also computes f/g. 

There is an open problem related to this corollary. The question is whether there 
is a parallel algorithm that takes P as input and evaluates it at given points. For 
division-free input programs such an algorithm has been constructed [31]. For 
formulas as inputs, divisions do not cause additional difficulty [32]. However, the 
proof of the above corollary is tied to knowing the evaluation of the input program 
at a random point, and we do not know how the methods in [31] and [32] can be 
used to solve the problem. 

Finally, we remark that, if instead of degree bounds the exact degree d = deg( f ), 
e = deg(g) are input, the Numerator and Denominator Algorithm can be made 
“Las Vegas”; that is, if it does not fail the returned program Q will be guaranteed 
to be correct. An obvious condition to check would be whether deg,, (p) = d and 
deg,, (q) = e, where p/q is the reduced Pade approximation to (12). However, this 
check is not sufficient, since, during the extended Euclidean algorithm, a leading 
coefficient of a remainder might have been dropped owing to incorrect zero testing, 
with the resulting incorrect quotient still satisfying the degree requirements. Instead, 
we compute p and q by setting up a linear system with undetermined coefficients 
for (lo), that is, 

(co + - * * + cd+eY:“W + 41YI + -*- + 4eYf) - (PO + *- - + PdY;l) 

= 0 mod y;l+e+l. 

If the a, are selected such that co # 0 in (12), which can be verified by random 
evaluation, then the above system has a solution with 

Pd(Y2, * - -, Yn), dY2, * * *, Yn) f 0 

if and only if (11) is satisfied. In that case the linear system that arises is nonsingular, 
which can be verified, and a straight-line program for its solution can be determin- 
istically constructed. It then remains to verify the just-mentioned nonzero condi- 
tions for pd and qe by random evaluation to make sure that (11) has been satisfied. 

9. Conclusion 

We have formulated our arithmetic complexities for arbitrary fields and our binary 
complexities for finite fields and the rational numbers. It is not difficult to extend 
the polynomial-time results to algebraic number fields. The main obstacle to binary 
polynomial-time complexity is the need for zero and zero-division testing. It should 
be clear that the corresponding algorithms generalize by working modulo a ran- 
domly chosen prime ideal. A more straightforward approach to evaluating straight- 
line programs over algebraic number fields can also be found in [ 111. 

Straight-line results can be useful for further manipulation, but as the final result 
they are quite incomprehensible. Fortunately, there is always the possibility of 
probabilistically converting them to sparse representation. Zippel’s algorithm [47] 



262 ERICH KALTOFEN 

can be shown to accomplish this conversion in expected polynomial time in the 
input size, degree, and the number of nonzero monomials of the sparse answer 
[21, sect. 61. In another formulation, given a bound t, one can probabilistically 
determine in polynomial time in t either the sparse representation of a polynomial 
with no more than t monomials given by a straight-line program, or, with control- 
ably high probability, that a polynomial has more than t nonzero monomials [23]. 
Since sparse inputs can always be represented as straight-line programs of polynom- 
ially related size, by the conversion algorithm all our results apply to sparse 
polynomials as well. For example, we have a random polynomial-time algorithm 
for computing the sparse greatest common divisor of sparse polynomials. 

This work began as the pilot for a series that consists of four papers. Our second 
paper [23] shows how to compute in random polynomial-time the full factorization 
of a polynomial, with input and outputs in straight-line representation. As men- 
tioned before, that paper also contains a discussion on the sparse conversion 
question. We also refer to [24] for a detailed outline of the main results of the 
factoring paper. Our third and most recent article [25] discusses an approach to 
replacing the input degree bound din the Polynomial GCD Algorithm, for instance, 
by a degree bound for the output polynomial. Also in that paper a completely 
different proof for Corollary 8.2, based on the factorization results, is given. 
Although it appears that our results are already of theoretical significance, we 
believe that the straight-line representation of multivariate polynomials is an 
important tool in computer algebra systems. Therefore, we have implemented our 
algorithms in LISP with an interface to MACSYMA. The details of this first 
implementation and our experience with test cases are reported in the fourth paper 
of this series [ IO]. 

Note Added in Proof: Theorem 6.2 remains valid if we replace CT=, bi5 by fi, 
which is a slight improvement in the length of the generated straight-line program. 
In step P of Algorithm Rational Numerator and Denominator the computation of 
GCD(fi, ti) = J$ can be skipped, since it can be shown that under the given 
circumstances one always has k = 0. Finally, with B. Trager we have found a 
different solution to the numerator and denominator problem, such that the length 
of the produced program is U(ld + M(d)log(d)). 
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