
Greatest Common Divisors of Polynomials

Given by Straight-Line Programs

ERICH KALTOFEN

Rensselaer Polytechnic Institute, Troy, New York,
and
Mathematical Sciences Research Institute, Berkeley, California

Abstract. Algorithms on multivariate polynomials represented by straight-line programs are developed.
First, it is shown that most algebraic algorithms can be probabilistically applied to data that are given
by a straight-line computation. Testing such rational numeric data for zero, for instance, is facilitated
by random evaluations modulo random prime numbers. Then, auxiliary algorithms that determine the
coefficients of a multivariate polynomial in a single variable are constructed. The first main result is an
algorithm that produces the greatest common divisor of the input polynomials, all in straight-line
representation. The second result shows how to find a straight-line program for the reduced numerator
and denominator from one for the corresponding rational function. Both the algorithm for that
construction and the greatest common divisor algorithm are in random polynomial time for the usual
coefftcient fields and output a straight-line program, which with controllably high probability correctly
determines the requested answer. The running times are polynomial functions in the binary input size,
the input degrees as unary numbers, and the logarithm of the inverse of the failure probability. The
algorithm for straight-line programs for the numerators and denominators of rational functions implies
that every degree-bounded rational function can be computed fast in parallel, that is, in polynomial size
and polylogarithmic depth.

Categories and Subject Descriptors: F. 1.1 [Computation by Abstract Devices]: Models of Computation-
unbounded action devices; I. 1.1 [Algebraic Manipulation]: Expressions and Their Representation-
representations (general and polynomial); I. 1.2 [Algebraic Manipulation]: Algorithms-algebraic
algorithms

General Terms: Algorithms, Design, Theory, Verification

Additional Key Words and Phrases: Greatest common divisor, intermediate expression swell, multivar-
iate polynomial, parallelization of rational functions, program transformation, randomized algorithm,
separation of numerator and denominator in rational functions, straight-line program

1. Introduction

This study is concerned with complexity questions about performing opera-
tions, such as greatest common divisor (GCD) computation and factorization,
on multivariate polynomials. Several models for representing multivariate

This material is based upon work supported by the National Science Foundation under grant DCR 85-
0439 1 and by an IBM faculty development award. This is a completely revised version of a paper that
appared in the Proceedings of the 17th Annual ACM Symposium on Theory of Computing. ACM,
New York, 1985, pp. 13 l-142. The main results in Section 8 first appeared in the Proceedings of the
18th Annual ACMSymposium on Theory of Computing. ACM, New York, 1986, pp. 330-337. Part of
the work on Section 8 was done while the author was visiting Tektronix Computer Research Laboratory
in Beaverton, Oregon.

Author’s address: Deparment of Computer Science, Rensselaer Polytechnic Institute, Troy, N.Y. 12 l80-
3590; kaltofen@cs.rpi.edu (arpanet)

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1988 ACM 0004-541 l/88/0100-0231 $01.50

Journal of the Association for Computing Machinery, Vol. 35, No. 1, January 1988, pp. 231-264

232 ERICH KALTOFEN

polynomials have been suggested:

-the dense representation, which requires that all coefficients be written down;

-the sparse representation, which requires that all nonzero coefficients and the
corresponding monomial exponent vectors be written down;

--formulas, denoted by expressions similar to those from higher programming
languages;

-straight-line programs, such as the Gaussian elimination sequence on a deter-
minant of polynomials.

We perceive these representations from a macroscopic point of view, which is
that polynomial time or space differences within each class are not so important
to us as the exponential differences between the classes. We remark, however, that
the microscopic point of view is important to consider for pragmatic reasons (see,
e.g., Stoutemyer’s [41] comparison of different sparse representations). One easily
realizes that the four models form a hierarchy; that is, within a polynomial extent
of space we can represent more and more polynomials going from the dense to the
straight-line representation. Therefore, the latter is (from a macroscopic point of
view) the most powerful one. This is nicely illustrated by the famous example of
symbolic determinants that have exponentially many terms when converted to
“sparse” representation, but that can be represented by straight-line programs of
length proportional to at most the cube of the dimension.

The question is, of course, whether polynomials given by straight-line programs,
a notion that we shall make precise, can be manipulated at all. Arithmetic
operations trivially become additional assignments and the first problem of interest
is the GCD. Since even for univariate sparse polynomials this operation is
NP-hard [35], a restriction necessarily has to be made. One natural additional
parameter to bound polynomially, other than representation size, is the total degree
of the input polynomial. Valiant [45] calls such families of polynomials of poly-
nomially bounded degree and straight-line computation length p-computable.
Several important transformations on p-computable polynomials are already
known, for example, Strassen’s elimination of divisions [43] or the parallelization
technique by Valiant et al. 1461. Another such transformation by Baur and Strassen
[3] allows the computation of all ftrst partial derivatives with growth in length by
only a constant factor and without even the need for a degree bound. There are
also known negative results in [45] that show, for example, that general permanents
can appear as coefficients of single monomials and as multiple partial derivatives
(see also Section 5). It should be noticed, however, that all these algorithms are
interpreted as program transformations and not as polynomial manipulation
routines. Von zur Gathen [1 l] obtained a probabilistic algorithm that determines
the factor degree pattern, that is, the total degrees and multiplicities of the factors,
of polynomials given by straight-line programs. Schwartz’s [37] evaluation tech-
nique at random points and modulo large random pseudoprimes (see also [181 and
Section 3) play an important role in that and our new results. In the context of
representing polynomials by straight-line programs, Heintz’s result [151 also de-
serves to be mentioned.

The theory for polynomial manipulation on straight-line representation should
deal with the computation of straight-line results whenever possible, for example,
produce a straight-line program for the GCD of two determinants of polynomial
matrices. In Valiant’s language, it is the question of closure properties of

GCD of Polynomials by Straight-Line Programs 233

p-computable families of polynomials. It is this theory we begin to develop here.
In this paper we show how a straight-line program for the GCD of many polyno-
mials can be constructed in random polynomial time from their straight-line
representations, as well as a bound for their total degrees (Section 6). This proba-
bilistic result is of the Monte-Carlo kind, which means that the algorithm always
takes polynomial time, but may with controllably small probability return an
incorrect answer. Our algorithm is polynomial time even for coefficient domains
such as rational numbers. This is surprising because the coefficients of the input
polynomials can be exponentially large. In general, the growth of the exponential
size of the intermediately calculated rational numbers during most algorithms,
such as Strassen’s elimination of divisions, causes additional complications.

For various reasons, we chose to carefully develop the theory of straight-line
program manipulation here (Sections 2-5) before discussing the concrete applica-
tions. For one reason, the running time of our algorithms must be estimated. One
can consider polynomial-time complexity bounds as our uniformity requirement
for the straight-line program transformations. No such requirement is needed or
enforced in the lower-bound applications of the elimination of divisions transfor-
mation or the computation of derivatives. We use as our model of computation
that of a probabilistic algebraic random-access machine (RAM), whose instruction
set and binary complexity measures we define (Section 2). Since we strive to obtain
random polynomial-time complexity, the execution of arithmetic operations will
cost as many time units as are needed to perform these operations in binary. Under
this “logarithmic cost criterion,” the needed straight-line program transformations
are established to be of polynomial-time complexity by the use of what we call the
simulation principle. This principle shows that the usual RAM programs can be
converted into RAMS of polynomially related binary asymptotic complexity
that generate the straight-line programs corresponding to these computations
(Section 4).

The GCD problem for dense multivariate polynomials was first made feasible
by the work of Collins [8] and Brown [5]. Moses and Yun [34] showed how
to apply the Hensel lemma to GCD computations. Zippel [47] invented an
important technique to preserve sparsity of the multivariate GCD during Brown’s
interpolation scheme, though it should be noted that Zippel’s. approach is not
random polynomial time. The reason is that the content and primitive part of the
inputs can not be separated because some sparse polynomials have dense primitive
parts; cf. [131 and Section 5. We also mention the heuristic GCD algorithm in [7],
which may be practically a faster algorithm if the inputs have few variables.

Our algorithm for computing the GCD as a straight-line program requires several
innovations. For one, we remove the need for the content computation by substi-
tuting linear forms of the main variable into minor variables. These substitutions
lead with high probability to manic polynomials in the main variable and thus
allow a single Euclidean sequence over the field of rational functions in the minor
variables. We compute the coefficients in the main variable by determining these
coefficients (now rational functions in the minor variables) for each assignment in
the straight-line program. Finally, we encode a polynomial remainder sequence
computation on the coefficient vectors by determining the degrees of the remainders
through probabilistic evaluation of their coefficients. The GCD problem for many
polynomials is reduced to that of two polynomials via a theorem stating that two
random linear combinations of the set of input polynomials yield the same GCD
with high probability.

234 ERICH KALTOFEN

We now turn to the computation of numerator and denominator of rational
functions. Strassen [43] raised the question whether the reduced numerators, and
therefore the denominators of rational functions, could be computed by straight-
line programs of length polynomial in the length of straight-line programs for
the functions themselves and the degrees of the relatively prime’ numerator-
denominator pairs. Here we answer this question affirmatively by showing
that such straight-line programs can be also found in random polynomial time
(Section 8). The construction is closely related to the straight-line GCD algorithm
put together with computing Pade approximants via the extended Euclidean
algorithm. Our solution requires an algorithm for finding a straight-line program
for the Taylor series coefficients to a given order of the rational functions with
respect to a single variable. In Section 7, we present a solution to this problem
following the approach by Strassen [43], and it comes as no surprise that we obtain
the result on eliminating divisions from straight-line programs for polynomials as
a consequence (Theorem 7.1).

The resolution of the numerator and denominator complexity of rational func-
tions has an important consequence in the theory of polylogarithmic parallel
computations. First, we note that Hyafil [171 and Valiant et al. [46] established
that families of p-computable polynomials can be evaluated in parallel in polynom-
ial size and polylogarithmic depth. We now can apply this result to the straight-
line programs for the numerators and denominators of rational functions and
therefore can conclude that every family of rational functions of polynomial
complexity and reduced numerator-denominator degrees can also be computed in
parallel in polylogarithmic time with polynomially many processing elements
(Corollary 8.3).

Notation. Let Z denote the integers, Q the rationals, and F4 the finite field with
q elements. Let QF(D) denote the field of quotients of an integral domain D. Let
num(a) denote the numerator and den(a) the denominator of a E QF(D). The
coefficient of the highest power of xl in fE @[x2, . . . , x,J)[x,] is referred to as
the leading coefficient offin x1, ldcf,, (f).

Let M(d) denote a function dominating the time for multiplying polynomials in
D[x] of maximum degree d. Note that M(d) depends on the multiplication
algorithm used, and the best known asymptotic result is d log d log log d [39].

The cardinality of a set R is denoted by card(R). All logarithms in this paper are
to base 2 unless otherwise indicated.

2. Straight-Line Programs and Algebraic RAMS

We first present the precise definition of what we understand by (algebraic) straight-
line programs.

DeJinition. Let D be an integral domain. The P = (X, V, C, S) is an algebraic
straight-line program over D if

(SLPl) X = lx,, . . . , xn) C D, S = (s,, . . . , skJ C D, V = (~1, . . . , II,),
V O D = 0. X denotes the set of inputs, V the set of (program) variables,
S the set of scalars. If S = 0, then P is scalar-free.

(SLP2) C = (vx c u; +, u;)x =,,..., I with ox E (+, -, x, t], u;, u: E S U X U

(UI, . . . , uA-,) for all X = 1, . . . , 1. C denotes the computation sequence
and 1 the length of P, I= len(P). If all ox # +, then P is division free.

GCD of Polynomials by Straight-Line Programs 235

(SLP3) ForallX= I, . . . , I, there exists sem(u,) E D, the semantics of ux, such
that

sem(a) = a if aESUX,

sem(ux) = sem(u;) + sem(ux”) if ox=+,

sem(ux) = sem(ul)sem(u;) if oX=X,

sem(uc) # 0 and sem(uh)sem(u!) = sem(uC) = sem(ui) if ox = +.

The set of elements computed by P is sem(P) = U i= I (sem(ux)). Cl

We observe that the integrality of D guarantees the uniqueness of sem(uA). If D
is a field, then the last case in axiom (SLP3) simplifies to sem(u:) # 0 if ox = +,
since then sem(uA) can be determined as sem(u:)(sem(uI))-‘. Our definition is
more general than Strassen’s [42], who always insists on the invertibility of
sem(u:) in case ox = +. That our generalization is useful can be seen from the
straight-line programs computing determinants and subresultants over D by exact
division.

Our main application is for programs P = ((xl, . . . , xn), V, C, S) over D =
J-(x,, **., x,), where S C F’, F a field, and which determine certain polynomials
fEWI,..., x,] with f E sem(P). In such a case we say f is given by the straight-
line program P. Note that we use the notation f E sem(P) with the implied
understanding that we also know the ux E Vwith f E sem(ux). However, sometimes
our more general formulation is needed. One example would be to find the shortest
straight-line program that computes the Newton polynomials C;=r xl, i = 2, . . . ,
n, from the symmetric functions in the indeterminates. For lower bound consid-
erations, one usually adds the condition in (SLPI) that (xl, . . . , x,,) is algebraically
independent over the field generated by S. For polynomials given by straight-line
programs, this restriction is satisfied, but for ease in the formulation of later
definitions and theorems, we do not adopt it in our main definition.

Algebraic computations over abstract domains D are usually formulated in terms
of programs to be executed on an algebraic RAM over D. Let us describe this
model of computation more precisely. An algebraic RAM over D has a CPU that
is controlled by a finite sequence of labeled instructions and that has access to an
infinite address and data memory (see Figure 1).

The split into two memories, one that facilitates pointer manipulation for array
processing and maintains a stack for recursive procedures, and another in which
the algebraic arithmetic is carried out, is also reflected in other models for algebraic
computations, such as the parallel arithmetic networks in [121, or by the omnipres-
ence of the built-in type Integer for indexing in the Scratchpad II language [20].
Each word in address memory can hold an integral address, and each word in data
memory can store an element in D. The CPU also has access to an input and an
output medium. The instructions in the CPU may have one or two operands that
typically are integers. The operands refer to words in address or data memory,
depending on whether the instruction is an address or a data instruction. Indirect
addressing is indicated by a negative operand. For completeness, the microcode for
a full instruction set is given in Figure 2.

The arithmetic time and space complexity of an algebraic RAM for a given input
are defined as the number of instructions executed and the highest memory address
referenced, respectively. It is not always realistic to charge one time unit for each
arithmetic operation in D. We consider encoding data in binary and define as
size(a), a E D, where D is a concrete domain, such as Z or F,, the number of bits

236 ERICH KALTOFEN

3 Ifi-1 1

Input Medium
1

Address
Memory

CPU 1: READADDR 2 1

2: READ -2 2

3: CONSTADDR 1.2 3

4: ADDADDR 1.2 4

5: CONST -1, fi 5

6: DIV 5, -2 6

7: PRINT -1
8: HALT

1

Data
Memory ? ?

a-1

?

El
2+fi

?

Output Medium

FIG. 1. Algebraic RAM over Z[a].

Instruction Description

ADD{ADDR) i, j Op, t Opi + Opj (see below)

SUB(ADDRJ i, i OP, t OP, - Opj .
MULT(ADDR) i, j OPi + OPJ x OPj.
DIVADDR i,j OPi + L OPJOP, J.
DIV 6.i Op, c OpJOp,. The division over D must be exact, otherwise

an interrupt occurs.
CONST(ADDR] i, c opi + c.

MOVE(ADDRJ i, j Opi t Opj .

JMP I Execution continues at program label f.
JMPZ(ADDR] i, I If Op, = 0, then execution continues at program label 1.
JMPGZADDR i, I If Op, > 0, then execution continues at program label I.
READ(ADDR) i The input medium is advanced and the next item is read into Opt.

PRINT{ADDR] i The output medium is advanced and Op, is written onto the medium.
HALT An EOT marker is written onto the output tape and execution

terminates.

i

AM[i]
DM[i] I

ifi>Oand
address

Opi =
i I data

instruction

AM[AM[-i]] address
DM[AM[-i]] I-

ifi<Oand
{ 1 data

instruction

AM = address memory, DM = data memory
AM[-i] must be positive, otherwise an interrrupt occurs.

FIG. 2. Summary of algebraic RAM instructions.

needed to represent a. Then, the cost and space of an arithmetic instruction
depends on the size of its operands. The binary time and space complexity of an
algebraic RAM over D is derived by charging for each arithmetic step in D as many
units as are needed to carry out the computation on a multitape Turing machine.
Note that we generally assume that the domain arithmetic can be carried out in
polynomial binary complexity with respect to the size of the operands. What that
implies, in particular, is that elements in F,, say, always require O(log(q)) repre-
sentation size, whether or not the elements are residues of small integral value. For
READ, PRINT, CONST, MOVE, or JMPZ instructions, we charge as many units
as is the size of the transferred or tested element.

GCD of Polynomials by Straight-Line Programs 237

We also apply this “logarithmic cost criterion” to the address computations and
assume that every address is represented as a binary integer. The binary cost for
performing address arithmetic is again the Turing machine cost. For indirect
addressing, we add the size of the final address to the binary time and space cost
of the corresponding instruction. We note that, in most circumstances, the binary
cost for performing address arithmetic is largely dominated by the binary cost of
the algebraic operations and that, for all practical purposes, the largest storage
location is of constant size. But our more precise measure has its advantages. First,
all binary polynomial-time algorithms on algebraic RAMS are also polynomial-
time algorithms in the Turing machine model. Second, the true binary complexity
is measured if we can use the address memory for more than address computations,
for example, for hashing with sophisticated signatures. Another such example is
that of selecting random domain elements.

A probabilistic algebraic RAM is endowed with the additional instruction

RANDOMlADDR] i, j,

with the following meaning. Into OPi an element of D (or an address) is stored that
was uniformly and randomly polled from a set R of elements (or integers) with
card(R) equal to the address operand OPj (see Figure 2 for the definition of Op).
The selection of R is unknown, except that all its elements a E R have size(a) =
O(log OPj). This model of randomized algebraic computation overcomes the
problem of how to actually generate a “random” rational number, say, and (as we
show later) the failure probabilities can in our circumstances be fully analyzed.

Most of our algorithms read as input, produce as intermediate results, and print
as output straight-line programs. In this paper, we do not describe a concrete data
structure that can be used to represent straight-line programs on an algebraic RAM.
It is fairly easy to conceive of suitable ones (e.g., labeled directed acyclic graphs
(DAGs) could be used). A more intricate data structure was used for the first
implementation of our algorithms and is described in [lo].

At this point it is convenient to define the element size of a straight-line program

el-size(P) = C size(u:).
U~EXUS,

*El’,“1

Notice that the actual size of P is in bits

O(len(P)log len(P) + el-size(P)),

since it takes size(ux) = O(log (h)) bits to represent ux in address memory.

3. Evaluation and Size Growth

Classically, the inputs to a straight-line program are indeterminates that are
evaluated at concrete values during execution of the program. Two problems
arising with the evaluation process need to be discussed. The first is that evaluation
may lead to a division by zero, which we must declare illegal. The second is that
the binary complexity of evaluation can turn out to be exponential in the length
of the program. In this section we address both problems. Let us formally define
evaluation.

Definition. Let P = (X, V, C, S) be a straight-line program of length 1 over D,
D be another integral domain, and 4(a) = Z be a mapping from X U S into D.

238 ERICH KALTOFEN

We extend #J to P = (&, . . . , 61, Ptl B = 0, by setting 4(ux) = fix, 1 5 X 5 1,
and define

I= MJ(X)IX~4, g= ka)ISESL c= (h++(U:) OA 44u:))x=l,...,/.

We call P defined at 4, if $(P) = (1, v, c, 3) is a straight-line program over D. Cl

It is clear that only condition (SLP3) of the straight-line program definition for
4(P) must be verified. If 4 can be extended to a ring homomorphism from D into
B, it suffices to require @(sem(ui)) # 0 for ox = +, 1 5 X 5 1, because then exact
division is guaranteed. But more general evaluations do occur, as in the following
example:

Example. Let D = Q(x), B = GF(2), 4(x) = 4($) = 1, 4(2) = 0, and P =

((xl, h, UZJ, (II, + x + 4, u2 + 2 + uI), (2, f 1). P is not defined at 4, since
sem(u,) = 0 mod 2. Note also that 4 cannot be extended to a ring homomorphism
from Q(x) into GF(2).

It is easy to see that, given the encoding of a straight-line program P =
(X, V, C, S) over D, we can compute sem(ul) in O(1) steps on an algebraic RAM
over D. If we assume that n is a field or that 4 is a ring homomorphism, we
can also decide in O(I) steps on an algebraic RAM over D whether the encoding
of 4(P) represents a straight-line program. All we need to do is test whether
sem(4(u:)) # 0, ox = +, before performing the division. Controlling the binary
complexity of evaluation is, however, a much more difficult matter because the
straight-line programs may generate exponentially sized elements.

Example. Let P = ((x), V, C, 0) over Q(x), where

C=(U~tXXX,U2tXXU1,
u3 + Ul x Ul, u4 t u2 x u3,

us t u3 x u3, u,5 t u4 x US,

u21-I + u2l-3 x u21-3, u2I + u21--2 x UZf-I,

u2/+1 + u21-1 x UZI-1, u21+2 + u2/+1 f u21).

We remark that sem(u2x-,) = x2’, sem(uzx) = x2”+‘--l, 1 I X 5 1, sem(u2[+1) =
X 2’+‘, and sem(u21+2) = x. The test of whether P is defined at #J(X) = 2 would require
on an arithmetic RAM over Q exponential binary running time. Notice also that
the last element computed by P is again small in size.

In what follows, we combat the size blowup by a modular technique, an idea
first suggested by Schwartz [37] and Ibarra and Moran [181. A generalization of
what follows to algebraic extensions of Q can be found in [1 I]. For completeness,
we shall give the proof of the next lemma.

LEMMA 3.1. Let P = ((xl, . . . , x,), V, C, (s,, . . . , s,)) be a straight-line
program of length 1 over Q(x,, . . . , xn), a, E Q, Wv) = a,, 1 5 v = n, b, E Q,
@(s,,) = b,, 1 I p I m. Assume that P is defined at 4, and that n + m 5 21, which
is satisfied if all inputs and scalars actually occur in the computation sequence. Let
B+ 2 2 be an integer bound such that

I numb) I, I dNau) I, I num(b,Jl , I dMb,J I 5 &,

lSv=n, 15p5m.

GCD of Polynomials by Straight-Line Programs 239

Then there exists an integer N$(pj 5 Br3 such that for all prime integers p that do
not divide N+(pj, the following is true:

(i) den(a,), den(b,,) + 0 modp for all 1 I u % n, 1 5 P I m.
(ii) If we define $: (xv] U (s&J -+ Fp by $(xV) = a,modp, $(s,) = b, modp,

1 =vsn, 1 sp=m,thenPisdefinedat#.

PROOF. Let 4(P) = ((a,), (ax), c, lb,)). We must estimate

ux = num(sem(a,)), tx = den(sem(&)), lShl1.

By induction, we can prove that

(1)

Consider fix c 4(u:) oh 4(ui(). By induction hypothesis,

u: = num(4($)), t: = den(ti(u:)), * = ‘, “.

In case ox = +, we thus get

I ux I = I u;t,: + u:tx’ 1 5 124: 11 t: 1 + 124: 1 1 tx’ 1 < 2 .

The treatment of tA, and the cases ox = -, X, and + are similar. Thus, (1) is
established.

Now we observe that

We set

N - Ad@ h 1 tA 1 < B;‘B;‘+’ < .:,‘a HP) - A=1

Clearly, if a prime p does not divide N 9(p), (i) and (ii) are satisfied. 0

Although our bound for Nbcpj in the above lemma is of exponential size, we can
pick a suitable prime probabilistically quite efficiently. Let

k = 2’+510g(B,) 2 4 log(N,(p,)

and consider the first k primes pI , . . .,p,.SinceforeachsubsetKof(l,...,k)of
cardinality 2 k/4,

we conclude that fewer than k/4 of the primes pl, . . . , pk can be divisors of N$(pJ.
Now

pk < k(lo&k + log,logk) < k log k, kr6

(cf. Rosser-Schoenfeld [36, sect. 3.131). Therefore, if we randomly pick a prime p,

p<klogk<C +(p) = (1 + 5 + loglog(B+))2’+510g(B,& (2)

240 ERICH KALTOFEN

with probability greater than : this prime will certify that P is defined at 4. We
have the following algorithm:

Algorithm Zero-Division Test

Input: A straight-line program P = (lx,, . . . , x,), V, C, (sl, . . . , s,,,)) of length I
overQ(xl, x,), a,, b, E Q, 1 5 v 5 n, 1 5 p 5 m, and a failure probability
c<< 1.

Output : An integer p such that P is defined at J/(x”) = a, modp, $(s,,) = b, modp,
or “failure”. In case P is defined at 4, failure occurs with probability <e.

Step L (Loop on trials). Repeat steps P and E Ilog l/e1 times. Then return
“ failure”.

Step P (Pick a prime). Let & be as defined in Lemma 3.1 and set C+(p) according
to (2).

foritl,...,j= r2i/ioi0g c,Cp,i do
Select a random postive integer p < C,,,. Perform a probabilistic primality test
on p, for example, Solovay and Strassen’s [40], such that p is either certified
composite or is probably prime with chance 11 - l/(8 j). In the latter case goto
step E.

At this point no prime was found, so go back to step L.

Step E (Evaluation). Evaluate I&(P) on an algebraic RAM over Fp. If a division
by zero or a zero divisor occurs, go back to step L. Otherwise return p. Cl

We note that the bound C&) is only of theoretical interest. In practice word-
sized primes are already likely to certify that P is defined at 9. Clearly, the
Zero-Division Test Algorithm runs in binary polynomial-time and requires poly-
nomially many random-bit choices. We do not state explicit polynomial upper
bounds for this or any of the subsequent algorithms, although the original version
of this paper [2 I] contains several of them. Instead, we now refer to [lo] for the
actual performance of our algorithms, which would not be captured by those crude
upper bounds. However, the theoretical failure probability of the Zero-Division
Test Algorithm shall be analyzed in the following theorem.

THEOREM 3.1. Algorithm Zero-Division Test requires (Ilog(B,)log(l/~))~(‘)
binary steps on a probabilistic algebraic R4M over Z. Zn case P is defined
at (b, it returns “failure” with probability -6.

PROOF. There are three circumstances under with steps P and E do not find
the prime p even if P is defined at 4. First, a prime may never be picked in Step P.
There are

7 G.(P)
*(GP,) ’ -

10 bdG,P,) ’

C@(P) = 17,

primes < C4(p,; cf. [36, sect. 3.51. Thus, the probability that we select a composite
p in all iterations of step P is no more than

l-
1 3~(7/WWC~(P)

1 o/7 log C@(P)

<L<l

e3 8’

GCD of Polynomials by Straight-Line Programs 241

Second, the chance that all composite p’s selected in step P are recognized as
such is certainly not less than (1 - 1/(8j))’ > i, because (1 - :)‘I’ c 1 - 1/(8j).
Thus, we pass a composite p on to step E with chance 5$. Third, by the previous
discussion we have selected a prime with p] N+(pj with chance 5:. Therefore, the
total probability of things going wrong is less than i + $ + $ = j. Now, steps P and
E are repeated at least log l/c times. Therefore, the probability of failing at all these
trials is <(f)‘ogl’s = E. Cl

We can use the Zero-Division Test Algorithm to determine whether an element
in sem(d(P)) is zero. Let us briefly write down the algorithm.

Algorithm Zero Test

Input : As in Algorithm Zero-Division Test. Furthermore, an index X, 1 5 X 5 1.

Output: Let ex = sem(4(uh)). We return either “ex is definitely not equal to zero”
or “ex is probably 0”. The latter happens if P is defined at 6 and ex # 0 with
probability ct.

Step 2 (Zero Test): Run Algorithm Zero-Division Test on P’ = ((xl, . . . , x,),
V U (u,+, 1, C concatenated with (u,+, c 1 + ux), S) and 4. If no failure occurs
return “ex is definitely # 0”; otherwise, return “ex is probably 0”. Cl

Another application of Algorithm Zero-Division Test is, in fact, to compute
ex = sem(@(ux)), 1 5 X 5 1. Since ex can be of exponential size in 1, polynomial-
time complexity can only be expected if we know an a priori bound Bx 2
] num(ex) 1,] den(eA) 1. We again explicitly present the algorithm.

Algorithm Evaluation

Input: As in Algorithm Zero-Division Test. Furthermore, an index X, 1 5 X 5 1,
and a bound BA .

Output: Either “failure” (that with probability less than c in case P is defined
at 4) or ex = sem(&u,)), provided that

I num@Ql, I den(I &.

Step T (Zero-Division Test). Call Algorithm Zero-Division Test. If it fails, return
“ failure”.

Step M (Modular Image Evaluation). Let p be the integer returned by the call
to the Zero-Division Test algorithm. Compute A = sem(@(u,))modp“ where
pk 2 2B2,, 0 I & < pk. This is possible because p must be relatively prime to all
denominators computed.

Step C (Continued Fraction Recovery). Find the continued fraction approxima-
tion to &/pk,

UI Ui Ui+l

xp *‘*) x9 p+, ’
ti < BAY ti+l L B,.

Return ex = (Ati - pkUi)/ti. 0

For B = max(Bx, B,), the algorithm takes (, log(B)log(1 /E))~“’ binary steps. The
correctness of Step C follows from the theory of continued fractions [14, chap. lo].

242 ERICH KALTOFEN

The idea of working modulo pk is sometimes referred to as Hensel-code arithmetic
[29]. If individual bounds for 1 num(ex) 1 and] den(ex)] are known, as they often
are, then the approach is subject to improvement; cf. [26, theorem 4.11.

4. Probabilistic Simulation

We now turn to our uniformity considerations, that is, the complexity of performing
the needed straight-line program manipulations on algebraic RAMS. We first
demonstrate the issue on an example. Let

f(x) = y,x” + - * - + yo,
g(x) = xm + z,-,xm-’ + - * * + zo, n > m,

and let D = E[y,, . . . , yo, z,-~, . . . , zo], where E is an abstract integral domain
of characteristic 22. We want to design an algebraic RAM over D that, upon input
n, m, ~0, . . . , yn, ~0, . . . , z,-, outputs (the encoding of) a straight-line program

P=((yyIv=O, n) U (z,Ip=O, m- 11, V, C, (21),

such that c, E sem(P), 0 5 K 5 n - m, for the polynomial quotient off(x) and

g(x),

q(x) = C,-,X”-m + * * * + co E D[x], deg(fW - dxk(xN < w

and len(P) = O(n log m log(log m)). The existence of such a program follows from
several sophisticated results on polynomial multiplication [39] and power series
inversion [30]. Our question is: What is the binary complexity of the algorithm
that generates such a straight-line program?

Fortunately, the answer is not dificult. An algebraic RAM over D that actually
computes the c, by the asymptotically fast polynomial division algorithm performs
only arithmetic on elements in D and tests only addresses. The problem is that
such an algebraic RAM has high binary complexity owing to the fact that the
calculated elements in D are dense multivariate polynomials. However, if we
represent all calculated elements implicitly as the semantics of the variables of a
certain straight-line program, this exponential growth does not occur. The algebraic
RAM over D that generates the straight-line answer now “simulates” the arithmetic
operations in D in the following way. Assume the elements

a = sem(u,) and b = sem(uA) E D

need to be multiplied in the course of the polynomial division algorithm. At this
point we already have a straight-line program

Q~=(i~~lv=O, n)U(z,l~=O ,..., m-1),vl,G,W

such that u,, ux E VI. We now merely need to append the assignment u~+r t
u, X ux to C, and, obtain a program QI+, with ab E sem(Q,+,). The binary cost of
such a simulated multiplication is O(log(l) + size(u.) + size(u,)). It is this cheapness
for arithmetic that makes the straight-line representation for multivariate polyno-
mials so efficient. For later reference we formulate our observations as a theorem.

THEOREM 4.1 (SIMULATION PRINCIPLE). Assume an algebraic RAM M over D
on input n I 1, x1, . . . , x,, E D computes y,, . . . , ym E D in T(n) steps without
testing an element in D for zero. Then we can construct an algebraic RAM M’ over
D that on the same input computes the encoding of a straight-line program P
over D with

len(P) 5 T(n) and Ivl, . . . , yml c sem(P),

GCD of Polynomials by Straight-Line Programs

such that M’ has binary complexity

243

‘O(T(n)log T(n) + i size(xy)).
v=l

PROOF. By simulating arithmetic instructions as above. The additional factor
of log T(n) in the binary complexity arises from the binary cost of each individual
simulation step. The cost x :=, size(x,) enters because we must initialize certain
program variables to x,. Other program variables will be initialized to constants
from the program, but since the number of such constants is fixed, the binary cost
of those initializations takes constant time. 0

The polynomial division algorithm was special because no elements in D needed
to be tested for zero. This is also true for polynomial or matrix multiplication, but
for other important algebraic algorithms, such as computing the rank of a matrix
polynomial, such tests cannot be entirely avoided. However, Algorithm Zero Test,
together with choosing the evaluation points randomly, allows us to extend the
simulation principle to certain algebraic RAM programs on data represented by
straight-line programs, even when those RAMS also test domain elements for zero.
We first justify the failure probabilities by the following two lemmas:

LEMMA 4.1 [37, lemma I]. Let 0 #fE E[x,, . . . , x,J, E an integral domain,
R C E. Then for randomly selected al, . . . , a, E R, the probability

de&f 1 Pr(f(al, . . . , a,) = 0) 5 -
card(R) *

(We also refer to [161 for an interesting characterization of a suitable set of n-tuples
that distinguishes all nonzero polynomials given by short straight-line programs
from the zero polynomial.)

LEMMA 4.2. Let P = ((x, , . . . , xn}, V, C, S) be a straight-line program
of length 1 over F(x,, . . . , xn), F a field, S C F. Furthermore, assume that
al, a,, E R c F were randomly selected. Then, the probability that P is
defined at 4(x”) = a,, 1 5 v I n, is not less than 1 - 2’+‘/card(R).

PROOF. It follows by induction on X that

deg(num(sem vx)), deg(den(sem ux)) 5 2’, 15x51.

Thus

deg
(

fi den(sem(ux))
)

5 i 2’ < 2/+‘,
X=1 X=1

and the lemma follows from the previous one. Cl

We now can demonstrate our probabilistic simulation principle on the example
of computing a determinant with sparse polynomial entries in F[x, , . . . , x,J. If we
perform Gaussian elimination or the asymptotically faster algorithm by Bunch and
Hopcroft [6], certain elements in F[x,, . . . , x,] need to be tested for nonzero
before one can divide by them. At that point, these elements are computed by a
straight-line program and we can probabilistically test them by picking a random
evaluation and applying the Zero-Test Algorithm. The latter only needs to be called
if size growth over F = Q is to be controlled. If we choose our evaluation points
from a sufficiently large set, then, by Lemma 4.2 and the Zero-Test Algorithm, the
chance that we miss a nonzero element can be made arbitrarily small. We point

244 ERICH KALTOFEN

1: CONST 1, 7 Comment: Store 7 into data register 1
2: JMPZ 1, 4 Comment: If data register 1 contains 0, goto label 4
3: HALT - -

4: JMP 4 Comment: Infinite loop

FIG. 3. RAM with unbounded computation tree.

out that it is here where we can make full use of our RANDOM instruction
introduced in Section 2. If F = F,, we may have to evaluate over an algebraic
extension F,k in order to poll from a large enough set. The produced straight-line
program is always correct, provided we know in advance that the determinant is
nonzero. Otherwise, we might with controllably small probability output a program
computing 0, even if the determinant is not, instead of returning “failure”.

The probabilistic computation of a straight-line program of an m x m determi-
nant over F[xl, . . . , xn] takes binary polynomial-time in m, n, the coefficient size
of the sparse polynomial entries, and log I/E, where the resulting program is
guaranteed to be correct with probability greater than 1 - t. This is true even if we
miss a nonzero “pivot” element. The reason is that the Gaussian elimination or
the Bunch and Hopcroft algorithms always terminate in 0(m3) steps, whether or
not the zero tests are decided correctly. General algebraic RAMS can be pro-
grammed in such a way that an impossible branch of the computation leads to an
infinite loop. A section of a program with that property is shown in Figure 3.

In order to formulate the next theorem, we need, therefore, to introduce the
computation tree complexity of an algebraic RAM, which is the maximum depth
of any path in the computation, ignoring whether the decisions along the path can
actually be taken. We then have the following theorem:

THEOREM 4.2 (PROBABILISTIC SIMULATION PRINCIPLE). Assume that an alge-
braicRAMMover D = F(x,, x,,) on input n 2 1, x,, ..‘., x,, computes

YI,. * * > y,,, E D in T(n) computation tree steps. Then we can construct a probabilistic
algebraic RAM M’ over D that computes the encoding of a straight-line program
P over D with len(P) s T(n) on the same input, such that with probability not less
than 1 -c, (yl, y,,,] c sem(P). Furthermore, M’ requests random elements
from a set R C F with

curd(R) =
[T(n): T@)+2],

and has arithmetic complexity T(n) ‘(I). For F = Q and F = Fq, M’ has binary
complexity (T(n)log(l/,))O(‘).

PROOF. All instructions of M except JMPZ instructions are treated as in
Theorem 4.1. In order to decide which branch to select on simulation of a zero
test, we randomly select elements in R and perform the Zero-Test Algorithm on
the current straight-line program defining the element to be tested. The length of
that intermediate program is no more than T(n), and, by Lemma 4.2, an incorrect
answer is returned with probability less than 2’(“)‘*/card(R), because the program
in step Z of the Zero-Test Algorithm is one instruction longer. Clearly, at most
T(n) such tests arise, and we do not decide any of them wrongly-even using one
and the same evaluation for sake of efficiency-with probability less than

GCD of Polynomials by Straight-Line Programs 245

For special problems, such as the symbolic determinant computation, the ran-
domizations introduced in the above theorem are not essential. If we remove the
divisions from the generic determinant computation by Strassen’s method (see
Theorem 7. I), we can deterministically produce in polynomial time a straight-line
program for a symbolic determinant. However, the length of this program is
O(M(m)m3), where m is the dimension of the input matrix. It is an open question
whether an improvement to O(m3) is possible. We remark also that Ibarra et al.
[191 observed a similar trade-off for removing decisions in the matrix rank problem.

5. Polynomial Coeficients

We now describe an important utility algorithm for our theory. Assume that f E
WI,..., xn], F a field, is given by a straight-line program P over F(x,, . . . , x,)
and that we know a bound d such that

We want to produce a straight-line program Q over F(x2, . . . , x,) such that
co, *-*, cd E sem(Q). The solution we present in this section is based on the
idea of computing the ca by interpolating at different points. In Section 7, we give
our original solution to this problem [21], which is based on the then needed
Taylor Series algorithm, and which is not only more complicated but which also
leads to an asymptotically longer result. Here now is the algorithm.

Algorithm Polynomial Coejficients 1

Input: fE F[x,, x,] given by a straight-line program P = (lx,, . . . , x,),
V, C, S) over F(x,, . . . , x,J of length 1, a failure probability c << 1, and a bound
d= deg,,(f).

Output : Either “failure”, this with probability less than E, or a straight-line program
Q = ({x2, . . . , x,, j, Vo, Co, So) over F(x2, . . . , x,J such that

{co, . . . , cd] C sem(Q) and len(Q) = O(Zd + M(d)log d),

where q is defined in (3).

Step E (Good Evaluation Points). From a set R C F with

card(R) , 8 n-W@’ + U2, 2’+’)
3

E

randomly select elements al, . . . , a,. If F = F, and q is too small, we can work
over an algebraic extension F,j with j sufficiently large.

Test whether P is defined at 4(x”) = a,, 1 I v I n. For F = Q we call Algorithm
Zero-Division Test of Section 3, such that the probability of “failure” even if P
were defined at 4 is less than t/4. If P turns out to be (probably) undefined at 4,
we return “failure”. Otherwise, P is (definitely) defined at 4.

Step P (Interpolation Points). B t (al 1.

repeat the following at most (d + 1)2 times until card(B) = d + 1.
From set R, select a random point b. If b was chosen in previous iterations or is
equal to al, we continue with the next repetition. Otherwise, test whether P is
defined at +(x1) = b, $(Xi) = ai, 2 5 i I n. If P is defined at $, adjoin the

246 ERICH KALTOFEN

element b to B. For F = Q, we make the probability that we do not recognize
this fact properly by calling the Zero-Division Test Algorithm of Section 3 less
than t/(4d + 4).

If at this point card(B) < d + 1, we return “ failure”.

Step I (Interpolation Construction). At this point we have B = (b, , . . . , bd+,),
such that P is defined at all x i(Xl) = bi. We first build programs Qi over
Fbz,..., x,J such that

f(bi, X2, - - - 9 ~4 E sem(Qi), l<i=d+l.

This is done by simply replacing each occurrence of xl on the right side of
an assignment in the computation sequence of P by bi. Then, we build a pro-
gram QO that from the symbolic values Wi of a d-degree polynomial evaluated at
bi finds the coefficients of that polynomial. This is the interpolation problem,
which can be solved classically in len(Qo) = O(d’), or asymptotically faster in
len(Qo) = O(M(d)log(d)) [I]. Notice that the algebraic RAM performing interpo-
lation does not require zero tests of field elements. Finally, we link the programs

QI, Qd+l, QO properly together making sure that there is no naming conflict
and that the Wi are the corresponding variables in Qi. Cl

The following theorem summarizes the complexity of our algorithm.

THEOREM 5.1. Algorithm Polynomial Coeficients 1 does not fail with proba-
bility greater than 1 - L It requires polynomially many arithmetic steps in d and 1
on a probabilistic algebraic RAM over F. For F = Q and F = F,, its binary
complexity is also polynomial in el-size(P) and log(I/E).

PROOF. The algorithm can fail under four different circumstances. First, in
Step E, P may be undefined at 4, that by Lemma 4.2 with probability less than
2’+‘/card(R) < t/4. Second, for F = Q, we might fail to recognize that P is defined
at 4, but we make this possibility happen with probability less than c/4. Third, the
loop in step P may not generate d + 1 distinct b such that P is defined at the
corresponding #. Since we try (d + 1)’ points, we can estimate this particular failure
possibility as follows. A newly selected b was not chosen earlier with probability
greater than or equal to 1 - (d + 1)2/card(R) > 1 - c/8. Then, again by
Lemma 4.2, P is not defined at # for that individual point with probability less
than 2’+‘/card(B) < c/8. Therefore, a suitable evaluation point can be found in a
block of d + 1 points with probability greater than

1 - (c*)“+’ > 1 - &, E* = 1.
4’

because (1 /c *)d > 2d L d + 1 for e * < $. Now the probability that a good point
occurs in all of the d + 1 blocks of points is greater than

and hence failure happens for the third case with probability less than c/4. Fourth
and last, for F = Q, we again may not recognize that P is defined at $, even if there
were sufficiently many points. A good point is not missed with probability greater

GCD of Polynomials by Straight-Line Programs 247

than 1 - ~/(4d + 4) and hence the first d + 1 such points are recognized with
probability

(l-4(d; J’> 1-i.

This concludes the argument for failure probability. The statements on the
arithmetic and binary running times are a direct consequence of Theorems 3.1
and4.1. Cl

The Polynomial Coefficients 1 Algorithm requires the knowledge of a bound
d 2 deg,,(f). If no such bound is given, we can probabilistically guess the degree
by running our algorithm for

d=l,2,4 ,..., 2k ,....

Letfd-Q, *a-, xn) be the interpolation polynomial that is produced for the kth
run. We then choose al, . . . , a, E R randomly and probabilistically test whether

f(al, . . . , a,) -j&h, . . ., a,) = 0.

If the Zero-Test Algorithm called with a failure chance c/2 returns “probably 0”,
then by Lemma 4.1 with probability greater than 1 - E, fk = f and 2k I de&,(f).
Of course, by further testing ca(xz, . . . , x,J for zero, 6 : 2k, 2k - 1, . . . , we can get
a probabilistic estimate for the actual degree, deg,, (f). This procedure has expected
polynomial running time in deg,, (f) and can be made quite efficient by computing
the ji(xI, a2, a,) incrementally without even constructing a straight-line
program for any fk [lo]. The total degree off can be similarly estimated using
the translations that we introduce in Section 6, or by computing the degree
off(y,z, - * *, y,z) in z. A more general degree test is discussed in Section 8
(cf. Corollary 8.1).

One may question whether it is possible to find a program of length polynomial
in 1 only for a selected c&(x2, . . . , x,), 1 5 6 I 2’. This is most likely not the case,
as Valiant’s example [45] exhibits. Consider

Then the coefficient of the monomial yl . . . y,, in g is the permanent of the
matrix [Zi,j lIdi,j5n- Performing a Kronecker substitution of x(“+l)‘-’ for yi this
permanent appears as the coefficient of cs(zl, 1, . . . , zn,,J of x6 for

6 = 1 + (n + 1) + (n + 1)2 + - .- + (n + l)n-‘,

in

g(x, xn+', . . .) X("+')"-', Zl.1, . . . , Zn,,).

Therefore, the degree-unrestricted coefficients problem is #P-hard [44].
The example above also shows that certain operations on straight-line programs

most likely cannot be iterated without increasing the length of the output program
exponentially. Take, for example, computing partial derivatives. Clearly, by our
Polynomial Coefficients 1 Algorithm, we can find a program Q with

akf
2 E sem(Q) and len(Q) = 0(/d’).

1

248 ERICH KALTOFEN

In order to obtain multiple partial derivatives in different variables, we could
iterate this process on the distinct variables. However, every iteration increases the
length of the previous program by at least a constant factor, and the final program
turns out to be of exponential length in the number of different variables. This
blow-up also appears to be inherent, because from (4) we get

It came as a surprise to us that certain iterations causing a similar exponential
growth, such as the variable-by-variable Hensel lifting [22], do not constitute
inherent complexity and can be avoided [23].

6. Polynomial Greatest Common Divisors

We now come to the first application of our theory, that of computing polynomial
GCDs. Our goal is to produce for r polynomials f, E F[xl , . . . , x,J, 1 5 p 5 r,
given by a straight-line program P, a straight-line program Q with GCDll,,,(f,) E
sem(Q). For simplicity, we are assuming that all f, are computed by a single
program P. Clearly, this can be enforced by merging any possibly different input
programs. We also assume that we know an a priori bound d L deg(f,), 1 I p 5 r.
Our algorithm is a probabilistic one, and the returned Q may not determine the
correct GCD, that with probability less than E. The difficulty is, of course, to
accomplish the construction in binary polynomial time in

len(P), el-size(P), d, log
0
i .

Note that the parameters n and r are dominated by len(P). We do not know how
the approach of repeated GCD computations,

GCD(fi, h), GWGCD(f;, fi), h), . - .,

or of extracting contX,(fp), 1 5 p I r (cf. Brown [5]) can lead to a polynomial-time
solution.

We first restrict ourselves to r = 2, that is, the GCD problem for two polynomials.
We later show that the GCD problem for many polynomials can be probabilistically
reduced to that for two. In order to avoid the content computation, we work with
the translated polynomials

3p ="m, Y2 + b2X1, . - -, yn + bn-%) E ml, Y2, . . . , Ynl, P = 1, 2,

where b, E Fare randomly selected elements, 2 I v I ~1. Since the mappingf-t f
is a ring isomorphism from F[x,, . . . , x,,] into F[x,, y2, . . . , y,J, we must have

$2 = GW?I, h>, w h ere g = GCD(f,, f2). The reason for performing this trans-
lation is that with high probability ldcfX,(fO) E F, p = 1 or 2. The following easy
lemma can be formulated.

LEMMA 6.1. Let f E F[x,, . . . , x,,], b2, . . . , b, E F. Then there exists a non-
zero polynomial r(p2, . . . , ,&) E F[a2, . . . , ,&I, deg(7) 5 deg(f), such that
db2, . . . , b,) # 0 implies

ldcfx,(f(xl, ~2 + &XI, yn + b,x,)) E F over Fb, ~2, ~~1.

GCD of Polynomials by Straight-Line Programs

PROOF. tit

249

0 Z 7 = kkL,(fh ~2 + /32x1, yn + ,&XI)) E F[P2, &,I,

overF[xl,y2 ,..., yn,p2 ,..., /3,JandapplyLemma4.1toT. •i

The trick is now to perform the Euclidean algorithm (i.e., compute a poly-
nomial remainder sequence) on the translated polynomials over the coefficient
IieldF(y,, . . . , y,J in the variable x1. Let

2 = GCD(J, h> over F(y2, . . . , yn)[xll, ldcL,(g) = 1.

The point is that, if Lemma 6.1 applies to f, or f2, that is,

ldcL,(J) or ldcL,($) E F, (5)

then j will actually be the GCD of fr and f; over F[~2, . . . , y,,, x1 1. This is a
consequence of Gauss’s lemma [28, sect. 4.6.1, lemma G], which states that
products of primitive polynomials must be primitive. The claim about 2 can be
shown from this, as follows: Assume that (5) is true for jr, and let g* = f,/g.
Furthermore, let c and c* E F[y2, . . . , y,J be the least common denominators of
jj and j*, respectively. Now

(cg)(c*g*) = (cc*)J,

where cg and c*g* are primitive in F[xl, y2, . . . , y,J with respect to xl. Therefore,
cc* E F and-hence S: E F[x,, y2, . . . , y,]. Since 2 is manic with respect to x1, &j
also divides f2 over F[xl , ~2, . . . , y,J, irrespective of whether ldcf,, (f2) E F. Since
2 is computed in a larger domain, our claim is immediate.

Our algorithm constructs the polynomial remainder sequence for $ and &. We
shall work on the coefficient vectors with respect to xl, which we can obtain
initially in straight-line representation by the polynomial coefficients algorithm.
During this process we must, however, compute the degrees of the remainders in
x1. We do this probabilistically by evaluating yy randomly at a,, as was done also
for the probabilistic simulation principle. The algorithm now follows in detail.

Algorithm Polynomial GCD

Input:&,& E F[x,, x,] of degree =d given by the straight-line program
P=((x1,..., x,), V, C, S) of length 1, and a failure allowance t << 1.

Output: Either “failure”, with probability less than t, or a straight-line program
Qo=(h,..., xnl, K, Co, SO) over WI, . . . , x,J of length O(ld + d*) such that
with probability greater than or equal to 1 - c

Step R (Random Points Selection). From a subset R C F with

card(R) >
max(2’+4, 8d 3,

7 t

select randomly al, . . . , a,, b2, . . . , b,. In case F = F, where q is too small, we
can work in F,j instead. Since the GCD can be computed by coefficient arithmetic
alone, it remains invariant under field extensions.

Step T (Translation). Set c = (u2 c xl x b2, z2 c y2 + u2, . . . , u,, t xl X b,,
Zn t yn + u,) concatenated with the modified computation sequence of P in which

250

all occurrences of x, are replaced by &. Thus

ERICH KALTOFEN

P=

(

h,y2, y,), vu u (I&,.%), csu ib2,&I 3

2sv5n)

is a straight-line program over F(xl , ~2, . . . , YJ that computes

Step C (Coefficient Determination). Test whether P is defined at 4 (xl) = al,
4(yy) = a,, 2 I v 5 IZ. If not, return “failure”. For F = Q, we call Algorithm Zero-
Division Test with failure probability 43.

Call Algorithm Polynomial Coefkients 1 with input program p, degree bound
d, failure probability 43, and the indices X, such that fp = sem(uAc) for p = 0
and 1. We obtain

QI = ((~2, . . . , YnL Wl, Cl, Tl),

such that all c,,~ E sem(Q,). Notice that, in the Polynomial Coefficients 1 algorithm,
we only need to evaluate on one set of points, even though Q, encodes the
calculation of two interpolation polynomials. This shortens len(Q,) considerably.
Wealsosharea,, a, with that algorithm instead of selecting new points in
step E there. This guarantees that Ql is defined at 4 restricted to y2, . . . , yn. We
could have tested for this condition after constructing Q,, but the error analysis
would be a little more involved.

Step 0, (Degree Determination). In this step we probabilistically find 4 =

deg,,(.h) and dl = deg,,(fi).

for6td,d- l,...,Odo
Call Algorithm Zero Test with Q,, $(vy) = a,, h such that co,a = sem(wl,x),
wl,,, E IV,, and failure probability t/(4d). If “definitely # 0” is returned, exit the
loop with & = 6. Notice then that

Pr(do = deg,,(Jb)) h 1 - 2.

Here we dropped through the loop, that is, with high probability fo = 0. By
convention, we set do = -1.

Similarly, compute d, . Without loss of generality we now assume that do 2 dl .

Step E (Euclidean Loop). for k t 1, 2, . . . , do Step R.

Step R (Polynomial Remaindering). At this point we have a straight-line program

Qk = (IY2, * * *, Yn), wk, ck, Tl),

such that for the ith polynomial remainder in the Euclidean remainder sequence
of& and A over F(Yz, . . . , yn)[xl I

.A = 6?. Ci,6Xt, ct.6 E F[n, . . . , yn], 1 5 i CC k,

with high probability

Cj.6 E wm(Qi) forall Or&rd,, lsjli.

GCD of Polynomials by Straight-Line Programs 251

Now we update Qk to the straight-line program Qk+, , which also simulates the
polynomial division of fk-, and fJ over F(y2, . . . , yn) [x, 1. Provided Qk was correct,
the program exactly determines the next remainder &+ I, whose degree dk+ I < dk
we determine as shown in step D.

if dk+, = -1 (i.e., fk+, = 0), then proceed to step G.

Step G (GCD Generation). Qk now determines, with high probability, the coef-
ficients of a remainder fk = C & ck,*xi, which corresponds to the GCD of & and
3, over F(y2, . . . , y,J[x,]. Append assignments to Ck that compute

L dk ck 6
-= 2 Lx:.

ldCf,, (fk) 6=0 ck,d,

This makes the computed GCD manic in xl and by the discussion previous
to the algorithm we have, with high probability, the GCD of 30 and 3, over

F;[Y2, * * *, y,,, xl]. Finally, put assignments computing the back-translation
~2 + x2 - XI b2, . . . , Y” + xn - x1 b, in front of Ck and output Qo = ((x1, . . . , x,,),
IV;, CL, T,), where IV; and CL are the updated wk and Ck. 0

The following theorem summarizes the complexity of the Polynomial GCD
Algorithm.

THEOREM 6.1. Algorithm Polynomial GCD does not fail with probability greater
than 1 - E. In that case, its output correctly determines the GCD of its inputs with
probability greater than 1 - E. It requires polynomially many arithmetic steps in d
and I on a probabilistic algebraic RAM over F. For F = Q and F = F4, its binary
complexity is also polynomial in e&size(P) and log(l/c).

PROOF. Polynomial running time follows from Theorems 3.1, 4.1, and 5.1.
“Failure” can only be returned in step C. There are three possibilities that can
cause such an event. First, the program P may not be defined at 4. By Lemma 4.2,
this happens with probability less than 2’+‘/card(R) < 1/(3e). Second, for F = Q,
we might fail to recognize that P is defined at 4, but we make this possibility
happen with probability less than t/3. Third, the Polynomial Coefficients 1 Algo-
rithm may fail, that with probabiltiy less than c/3.

We now establish the estimates for the probability that Qk determines the GCD.
Let r, by the polynomial from Lemma 6.1 corresponding to fi . The degree
deg(T,) I d and by Lemma 4.1

Pr(ldcf,,(f,) E F) 2 1 - & > 1 - d.

If this is the case, step G is justified. Now we consider under which circumstances
we obtain the correct degrees dk. In order to obtain a sharp estimate, we appeal to
the theory of subresultants (cf. [28, sect. 4.6.1 and the references there]). A reader
unfamiliar with that theory can refer back to the probabilistic simulation principle,
but then card(R) would be much larger than what we can prove. By Ei E
F[Y~, . . . , yn] we denote the leading coefficient of the di-degree subresultant
of 3, and f, with respect to x1, 0 5 i 5 k. Then deg(Ei) 5 2d2, and for each c&d,
there exist integers ei,j such that

j=O

252 ERICH KALTOFEN

Furthermore, let d = n Lo ?i E F[~2, . . . , y,]. Since deg(a) 5 2d 3,

Pr(a(u,, . . . , a,) # 0] a2, . . . , a, E R) L 1 - -.
4 (8)

Assume now that this is the case, which means by (7) that no leading coefficient
of J evaluates to zero. We test overall at most 2d coefficients of fa, $, . . . , f, for
zero. For F = Q, none of these tests misses a nonzero evaluation with probability
greater than or equal to

2d

>l-;. (9)

Notice that all programs Qi remain defined at 4 (yy) = a,, 2 5 v 5 n. Therefore, all
events (6), (8), and (9) occur with probability greater than 1 - (c/4 + t/4 + c/2) >
1 - t. In that case Ck is a straight-line program for the GCD. Cl

We used the theory of subresultants only in our proof, but we could as well have
used the more involved subresultant pseudodivisions in step R of our algorithm.
Then the evaluations over Q would stay better bounded in size and we would be
even less likely to miss a nonzero leading coefficient of a remainder. Instead of the
classical Euclidean algorithm, we could also have used the asymptotically faster
Knuth-Schonhage algorithm [33]. This would shorten the length of Q0 asymptot-
ically to O(Zd + M(d) log(d)) with a different bound for the cardinality of R; see
Algorithm Rational Numerator and Denominator in Section 8 for more details.

We now consider the case of more than two input polynomials. For this case we
use a probabilistic trick that reduces the problem of computing g = GCDl=i=l(&),
A’EW,,..., xn], to that of computing the GCD of two polynomials. All one has
to do is take two random linear combinations z :=I aJ, x !=I bi$, ai, bi E R C F,
and with high probability their GCD coincides with g. The relevant theorem
follows:

THEOREM 6.2. Let fi’ E F[x, , . . . , xn], F afield, deg(J) I d for I 5 i I r,
R C F. Then for randomly chosen ai, bi E R, 1 5 i 5 r,

GCDlsi&) = GCD i a&, i b&
i=l i=l))

2 1 - &.

PROOF. We first show this theorem for n = 1. Let

fl = j, 49 h = j, Bib E E[xl, E = flw, . . . , a,, 81, . . . , &I,

g = G$Di,ill(fi’)+ Clearly, g]A, g I$. The first claim is that g = 2 where B =
Gcp(f, , f2). We observe that 2 E <[xl, since the sets of the other indeterminates
in f, and f2 are disjoint. Now write fi = &, where fi E E[x]. If we evaluate this
equation at ai = 1 and aj = 0, i # i, then we get g]A, 1 5 i 5 r. Therefore,
2] g, which p_roves the claim. Now let u E E be the leading coefficient of the sub-
resultant off, and f2 with respect to x that corresponds to 8. If ~(a,, . . . , a,,
b I,..., b,) # 0, then

GCD(~I(~I, . . . , a,, h, . . . , br, x), -?&I, .,. . , a,, h, . . . , b,, xl)
= GW.&,.fi)(a~, . . . , a,, h, . . . , b,, xl,

which implies the asserted event. Since deg(a) 5 2d, Lemma 4.1 establishes the
stated probability.

GCD of Polynomials by Straight-Line Programs 253

We now reduce the multivariate to the univariate case by using the translation
of Lemma 6.1 generically. Consider forfE F[xl, . . . , xn]

7 =f(x1, y2 + ZZXI, . . .) yn + z,x*) E F(z2, . . . , zJ[x,, y2, . . . , ynl.

Now g = GCDl,il,(xi>, where the latter can be computed over F(z2, . . . , z,,,

Y2,-**, ~42 [XI 1 since

ldcf,,(7) E F(z2, . . . , z,).

From the univariate case, it follows then that

However, the mapping + defined by @(XI) = XI, a(yi) = Xi - ZiXr is a ring-
isomorphism from F(zz, . . . , zn)[xr, y2, . . . , yn] into F(zr, . . . , zn)[xl, . . . , x,J.
Applying this mapping to the above event, we therefore obtain the theorem. (See
Note Added in Proof.) 0

7. Taylor Series Coeficients

We now present a different approach to finding the coellicients of a polynomial.
The idea is similar to Strassen’s elimination of divisions [43] and has also been
mentioned by Valiant [45, end of sect. 41. Its essence is to compute the Taylor
series coefficients over F(x2, . . . , x,J[[x,]] to a given order for the functions
computed in all program variables. For a particular variable, these coefficients are
computed from the coefficients of previous variables by Taylor series arithmetic.
As we note later, Strassen’s results can be reduced to our algorithm by an
appropriate substitution. We first formulate the general procedure under the
assumption that the rational functions computed in the variables can be expanded
into Taylor series at the point x1 = 0. Then we apply this procedure to the
coefficients problem, as well as to eliminating divisions.

Algorithm Taylor Series Coeficients

Input:fEF(~~,..., x,) given by a straight-line program P = (lx,, . . . , x,,), V, C,
S) of length I that is defined at 4(x1) = 0. From this it follows that f can be
expanded as a Taylor series

- “ml, &I) = c 6(X2, . * * , &M, c&2, . * *, &I) E f-(X2, . . . , &I).
6=0

Furthermore, the desired order d is given.

Output: A straight-line program Q = ((x2, . . . , xn), I’,, Co, S) over F(x2, . . . , xn)
such that

(co, * * * , cd) C sem(Q) and len(Q) = O(1 M(d)).

Step I, (Loop through instruction sequence). Co t 0.

forXtl,...,ldoStepT.

Finally, set Vo = (w~,~) U (U] u is any of the intermediate variables). Return
Q = ({x2,. . . , &I], VQ, CQ, s).

254 ERICH KALTOFEN

Step T (Taylor series arithmetic). Let ux t u; ox u: be the Xth assignment in C.
Instead of computing sem(ux), we compute the first d + 1 coefficients of xl in its
power series expansion over F(x*, . . . , x,)[[xl]], which we store in w~,~, . . . , w~,~.

Case oh = -I-. For 6 c 0, . . . , d, append wATa c w;,, + w& to Co. If UT = up,
then w& = w~,~ for * = ‘, “. If uf E XU S, we use

* if 6=0
WA.6 = if 6>0

and if u: E (X c S)\ lx* 1,

if 6=1 = *
if 6#0

andif u, =x1.

Case ox = X. Construct a straight-line program which, on input wlo, . . . ,
, ,, ” WA,d, wX,O, * * * 9 WA,d, computes in the variable w~,~, 0 zz 6 5 d, the convolution

If wi,iwT,j9
i+j=6

Osijsd

making sure that all temporary variables are new. Now append this straight-line
program to Co. Notice that the increase in length depends on which multiplication
algorithm is used.

Case ox = +. We first append to Co assignments for Us,&, 0 5 6 5 d, such that

1

sem(u[) = zabaO sem(w$)xl

= a5o sem(ux,6)xf, sem(uA,6) E F(x2, . . . , x,).

The fastest method uses Newton iteration. We shall briefly present the algorithm
for an algebraic RAM over F(x2, . . . , x,).

a0 c l/sem(wlo).
foritl,..., I1 +logdldo

At this point ai- is the (2’-’ - 1)st order approximation of l/sem(ux”).
Lyi + 2ai-* - af-, (zLo sem(w;,)x:)modx:‘.

Two points should be made. First, sem(w;,) # 0 since P is defined at 4. Second,
the total number of steps is 0(2 r<log(4d) MC?‘)), or again O(M(d)).

Once the ux,a are introduced we proceed as in the previous case to obtain the
convolutions C i+j=& W{,iU&j. Cl

The binary complexity of this algorithm follows from Theorem 4.1, and is on
an algebraic RAM over F of order O(/M(d)log(ZM(d)) + el-size(P)). We wish to
point out that in case many divisions occur in the computation sequence of P we
can reduce the number of power series divisions to just a single one by the following
idea. Instead of computing the power series approximations to order d of all
sem(uA), we compute the approximations of num(sem(uA)) and den(sem(ux))
separately by polynomial multiplication. Thus, the only power series division
necessary is that for num(sem(u,))/den(sem(u,)).

We now apply the Taylor Series Coefficients Algorithm to the coefficients
problem. The trick is to translate x1 = yI + al for a randomly chosen al such that
P is defined at 4(y,) = 0, which is the same as @(xl) = al. To unravel this
translation, however, will require a bit of work.

GCD of Polynomials by Straight-Line Programs 255

Algorithm Polynomial Coefjzcients 2

Input : The same as in the Polynomial Coefficients 1 algorithm.

Output: Again the same as in Algorithm Polynomial Coefficients 1, except that
len(Q) = O(!M(d)).

Step FT (Forward Translation). From a set R C Fwith card(R) > 2’+‘/~ randomly
select elements al, . . . , a,. If F = F, and q is too small, we can work over an
algebraic extension F,j with j sufficiently large.

Test whether P is defined at 4(x”) = a,, 1 I v 5 n. For F = Q; we call Algorithm
Zero-Division Test of Section 3 such that the probability of “failure” even if P
were defined at 4 is less than c/2. If P turns out to be (probably) undefined at 4,
we return “failure”. Otherwise, P is (definitely) defined at 4.

Set C = (2, t y, + al) concatenated with C in which all occurrences of xl are
replacedby&.Nowp=(z, ~,~,$with~={y,,~~,...,x,,J, v= VU(h),

and s = S U (aI) is a straight-line program that computes f (y, + al, x2, . . . , x~)
overF(y,,xz,..., x,,), and which is defined at 4(yl) = 0.

Step C. Call Algorithm Taylor Series Coefficients with program P and order d. A
program Q is returned that computes t E F[xz, . . %, x,], 0 I 6 5 d, such that

j. GY! =f(n + al, x2,&I

or

fh, ***, xn) = i &(x, - a1)6.
6=0

Step BT (Back-Transformation). We compute ca E F[x2, . . . , x,], 0 5 6 5 d,
from al and the i% such that

d f(XI, X") = z wi,
b=O

by a fast “radix conversion” method [28, sect. 4.4, exercise 141, which we briefly
present as an algebraic RAM algorithm.

Split f =fo + (xl - al)rd’2’J with
rd/zl-1 Id/21

fo = 6go &(x1 - a1)6, fi = z &+ld/Zl(xI - a1)6s
6=0

Convert& andf; by recursive application of the algorithm.
Computef2 = (xl - al) rd’2’ by repeated squaring.
Compute Fiji + fo by polynomial multiplication and addition.

The complexity T(d) of this algorithm satisfies T(d) 5 2T(d/2) + TM(d), y a
constant, and hence is T(d) = O(log(d)M(d)). We note that for coefficient fields
F of characteristic 0 this conversion can be accomplished in even O(M(d))
arithmetic steps [2]. The program Q to be returned is built from Q by appending
instructions for the conversion. Therefore, len(Q) = 0(/M(d) + log(d)M(d)), but
since log(d) = O(I), the first term already dominates the asymptotic output
length. Cl

It should be clear that Theorem 5.1 applies to Algorithm Polynomial Coeffi-
cients 2 as well. It is somewhat surprising that we are not able to remove the

256 ERICH KALTOFEN

restriction in the Taylor Series Coefftcients Algorithm that P be defined at 4 (xl) =
0 by a translation similar to the above. In fact, we know of no strategy of polynomial
length in 1 that would compute Idcf,,(f), f E F[xl, . . . , x,J, but that does not
depend polynomially on de&,(f). Note that ldcf,,(f) is the constant Taylor series
coefficient of

xw+&, x2, . . . , xn).
Although Algorithm Polynomial Coefficients 2 produces a program of asymp-

totically longer length than Algorithm Polynomial Coefficients 1, there exist
circumstances under which the second algorithm is better in practice. One such
situation arises when there are many input and scalar operands in the straight-line
assignments. In our implementation of the coefficients algorithm [lo], we therefore
first estimate the length of the output program for either method and then perform
the one that led to the smaller estimate. Length estimates for both algorithms can
be computed quickly and fairly accurately, that is, within 1 percent of the actual
lengths.

We finally remark how Algorithm Polynomial Coefficients 2 can be used to
remove divisions from a program P, of length I for a polynomialfE F[xl , . . . , xn]
of degree d. First, we need al, . . . , a, E F such that PI is defined at 4(xi) = ai, 1
I i I n, as they are found in Step PI of the above algorithm. Then, we apply the
Taylor Series Coefficient Algorithm to a straight-line program Pz for the polynomial

dZ,Yl,-**, Yn) =f(y,z + aI, * * *, ynz + an),

with respect to the variable z and to the order d. The point is now that the only
divisions necessary are those to compute LUO c l/sem(wco) in the Newton reciprocal
procedure. It is easy to see that the constant terms in the Taylor expansions at
z = 0 for the rational functions computed by the program variables in P2 are, in
fact, elements in F; that is, a0 can be encoded as a new scalar. Our division-free
resulting program Q, now computes cb E F[yI, . . . , y,J such that

Putting the proper translations for yi = xi - ai, 1 I i I IZ, in front of Q, we obtain
the division-free program Q2 forfas

d

.ml, ---, xn)= c 6(X,-aal ,...) x,-a,).
a=0

The length of Q2 is @[M(d)). It should be noted that this particular transformation
cannot be carried out in binary random polynomial time, since the new scalars a0
might be of exponential size, but other formulations without that drawback are, of
course, possible. We also note that the coefficient of z6 in f(x, z, . . . , xnz) is the
homogeneous part of degree 6 inf(x, , . . . , x,J. Strassen [43] describes this method
with the homogeneous parts taking the place of coefficients, but then the compu-
tation of the reciprocal by Newton iteration needs some extra thought. For the
record, let us state the following theorem.

THEOREM 7.1. Let f E F[x, , . . . , x,,] be given by a straight-line program P of
length 1 over F(xl, . . . , x,,), F a$eld with card(F) r: 2’+‘. There exists a universal

GCD of Polynomials by Straight-Line Programs 251

constant y and a division-free straight-line program Q = ((xl, . . . , x,), V,, Ca, S,)
such that

f E sem(Q), SQ c F, and [en(Q) 5 -dWdeg(f)I.

8. Numerators and Denominators of Rational Functions

In this section we describe an algorithm that transforms a straight-line computation
for a rational function of known degree to one for its (reduced) numerator and
denominator. A major application of this algorithm will be to parallelize compu-
tations for rational functions (cf. Corollary 8.3). But first we review some needed
properties of Pade approximants. However, we do not prove any of these properties
and instead refer to [4] for an in-depth discussion and the references to the literature.
Let

f(x) = co + clx + c2x2 + - - . E F[[x]], co # 0, d, e 2 0,

be given. Going back to Frobenius (188 I), a rational function p(x)/q(x) is called a
(d, e)-Pade approximant to f if

de&-Q 5 4 deg(q) 5 e,

f(x)q(x) - p(x) = 0 mod x~+~+‘.
(10)

It turns out that, for any pair (d, e), there always exists a solution to (lo), and,
furthermore, that the ratio p/q is unique. This ratio forms the entry in row d and
column e of an infinite matrix referred to as Pade table. Kronecker (1881) had
already realized that the entries in the d + e antidiagonal of the Pade table are
closely related to the Euclidean remainder sequence of

f-,(x) = x d+e+I , fO(x) = CO + CIx + * ’ ’ + Cd+eXd+e.

Consider the extended Euclidean scheme [28, sect. 4.6.1, exercise 31

Si(X)f-1(x) + &(x)fo(x) = J(x),

fi‘(x) = ~-2(x)mod~-l(x), ir 1.

Then for the smallest index i with deg(fi) % d we have deg(ti) 5 e, andJ/ti is the
(d, e)-Pade approximant toJ: Furthermore, GCD(J, ti) = x“ for some k L 0. Thus,
any algorithm for computing the extended Euclidean scheme results in one for the
(d, e)-Pade approximant. Note that the assumption co # 0 is unessential by changing
the lower bound for d.

The classical Euclidean algorithm gives a O((d + e)2) method for computing the
(d, e)-Pade approximant. The ingenious algorithm by Knuth [27], which was
improved by Schonhage [38] and applied to polynomial GCDs by Moenck [33],
allows us to compute the triple (fi’, Si, ti) with deg(A) 5 d, deg(fi’-,) > d, in
O(M(d + e)log(d + e)) operations in F.

We are now prepared to describe the algorithm. The key idea is that by
substituting x, + b,xl for x,, 2 5 v 5 n, we can make the problem a univariate
problem in x1 over the field F(x2, . . . , x,,), as was already done in the Polynomial
GCD Algorithm. We then recover the fraction from its Taylor series approximation
by computing the Pade approximant in F(xz , . . . , x,)[[xl]]. Since that approximant
is unique, it must be the reduced numerator and denominator.

258 ERICH KALTOFEN

Algorithm Rational Numerator and Denominator

Input : A straight-line program P over F(x, , . . . , x,J of length 1 that computesflg,

f;gEFh, x,J relatively prime, and d L deg(f), e 2: deg(g), and a failure
allowance. E << I. We make the assumption that d, e I 2’, since the latter is always
a bound.

Output: Either “failure” (with probability c c), or a straight-line program Q over
Fh,..., x,) of length 0(1M(d + e)) such that Q computesfand g correctly with
probability greater than 1 - 6.

Step FT (Forward Translation). From a set R C F with

card(R) >
2(2~,+2)IMkf+d

, c

select random elements al, . . . , a,, b2, . . . , b,. In this case constant y3 depends
on the polynomial multiplication algorithm used and can be computed once an
algorithm is selected. If F is a finite field with too small a cardinality, we can work
in an algebraic extension of F instead. Since the results can be computed by rational
operations in F, they remain invariant with respect to field extensions.

Test whether P is defined at 6(x”) = a., 1 I v I n. For F = Q, we call Algorithm
Zero-Division Test in Section 3, such that the probability of “failure” occurring
even if P is defined at 9 is less than t. If in this test P turns out to be (probably)
undefined at 4, we return “failure”.

NowwetranslatetheinputsofPasxlty,+al,x,cy.+b,yl,2Iv=n.Let
P be the straight-line program computing T/g where

RYl, - - -, y,J = MYI + al, ~2 + ba, . . . , yn + by,)

for hEF[xl,...,x,].

Now P is defined at 9 (y1) = 0. Also with high probability

deg,, (f > = d%(f), implying that ldcf,, (f) E F. (11)

Step S (Power Series Approximations). Compute a straight-line program Q,
over F(y2, . . . , yn) such that for the coefficients of the power series

f= co(y2
s ‘***’

Yn) + C*(Yz, - * - , Yn)Yl + *-a
(12)

+ Cd+e(y2, . . . , yn) VP’ + * * *,

the ci are computed by Q, for ah 0 5 i I d + e. This can be done by directly
applying the Taylor Series Coefficients Algorithm in Section 7. Notice that len(Q,)
5 ~~Zikf(d + e), where y, is a constant solely depending on the multiplication
algorithm used.

Step P (Pad6 Approximation). Construct a straight-line program Q2 over
0~2,. . . , yn) that with high probability computes the (d, e)-Pad6 approximation
p/q to W, P, 4 E F(Yz, . . . , yn)[y, 1. From the preceding remarks, we know that
this can be accomplished by an extended Euclidean algorithm. Essentially, we
perform such an algorithm on the coefficient vectors (ci)Osild+e and that of
,!+‘+I. In order to test elements in F(y2, . . . , yn) for zero we evaluate the program
computing these elements at $(yy) = a,, 2 5 v 5 n, as we do in Theorem 4.2 or
step D in the Polynomial GCD algorithm. If we use the asymptotically faster

GCD of Polynomials by Straight-Line Programs 259

Knuth-Schiinhage procedure (see also [9] for a full description of the algorithm),
then

len(Q*) 5 rlIit4(d + e) + +y2M(d + e)log(d + e) I -y3ZM(d + e), (13)

where yz and y3 are again constants solely depending on the polynomial multipli-
cation procedure used. Notice that the produced straight-line program may be
incorrect (that with small probability), since we may have incorrectly certified an
element to be zero.

Once we have a straight-line program for polynomials J and ti E

F(Y2, -**, y,)[yl] in the extended Euclidean scheme, we must find k 1 0 such
that GCD(J, ti) = y’; over F(y2, . . . , y,J[y, 1. This we can again accomplish
probabilistically by evaluating the coefficients in yl of5 and tie

If we make ldcf,,(p) = 1, then with high probability p is an associate of 7 in

NY,, . . . , y,]. This is because of (11) and because Pade approximants are unique.

Step BT (Back-translate). The program Q is obtained by putting assignments for
the back-translations

YI + XI - al, y, + xv - b,(xl - a,), 25vIn,

in front of Q2. •i

We now analyze the overall failure probability of the Rational Numerator and
Denominator Algorithm. “Failure” is only returned if P is not defined or is not
recognized to be defined at 4. However, several events must take place in order
that the correct answer is returned. First, ldcf,,(7) E F that justifies the normali-
zation of p in step P. By Lemma 6.1, this happens with probability greater than or
equal to

1
d

-card(R)
>l-6.

Second, all zero-tests performed by evaluating at #(yy) = a,, 2 5 Y 5 n, must give
the correct answer. This is true if the Knuth-Schonhage algorithm performed over
F(Yz,..., y,) takes the same course as the algorithm performed over F on the
elements obtained by evaluating at +. In other words, no nonzero element that is
tested or by which is divided must evaluate to 0. Since the algorithm takes no more
than

r2A4(d + e)log(d + e)

steps, the degree of any unreduced numerator and denominator of these elements
is, by (13), no more than

2rslMW+e)

A (pessimistic) estimate for the number of elements to be tested and to be divided
by, including determination of k, is

r31M(d + e) + (d + e) < (y3 + l)IM(d + e).

Therefore, the probability that all tests lead to the same result at $ and that all
divisions are possible at # is no less than

l _ (y3 + l)IM(d + e)2r3’M(d+e) , 1 _ ;.

card(R)

Hence, a correct program Q is output with probability greater than 1 - $E.

260 ERICH KALTOFEN

In case F = Q one additional possibility of returning an incorrect result must be
accounted for, namely, that the Zero Test Algorithm in Section 3 might not
recognize a nonzero evaluation at + properly. However, the probability of such an
event can be controlled-say we allow it to happen only with probability no greater
than

c

4(7j + l)M(d + e)log(d + e) *

Then all tests succeed with probability greater than 1 - e/4, and a correct program
is output with probability greater than 1 - C. In summary, we have the following
theorem:

THEOREM 8.1. Algorithm Rational Numerator and Denominator does not fail
and outputs a program Q that computes f and g with probability greater than
1 - 2~. It requires polynomially many arithmetic steps as a function of len(P), d,
and e. For F = Q this is also true for its binary complexity, which also depends
on el-size(P). The algorithm needs polynomially many randomly selected field
elements (bits for F = Q).

We now formulate three corollaries to the theorem. The first corollary deals with
distinguishing straight-line programs that compute polynomials from those that do
not. It is clear that, if we have the bounds d and e, we only need to probabilistically
inspect the degree of g after we have a straight-line program for it. But what if we
do not have a priori degree bounds? We then run our algorithm for

d = e = 2k, k = 1, 2, 3,

I& fk and gk be the numerator and denominator whose computation is produced.
For randomly chosen al, . . . , a,, E F, we then probabilistically test whether

If the test is positive, with high probability f =fk and g = gk. We have the following
corollary.

COROLLARY 8.1. Let f/g be given by a straight-line program P over
WI, x,,). Then we can in random polynomial time in len(P) and deg(fg)
determine deg(f) and deg(g) such that with probability greater than 1 - t no
failure occurs and the answer is correct. In particular, we can decide whether
f/g E F[x,, . . . , x,1.

For simplicity we state the next corollaries over infinite fields, although this can
be avoided, as mentioned in step D. The next one resolves Strassen’s question
on computing the numerator and denominator of a rational function without
divisions. By

L&, . . . , rm I sl, . . . , sA ri, Sj E D,

we denote the nonscalar or total complexity of computing ri from Sj over D; see,
for example, [43].

COROLLARY 8.2. Let F be an infinitefield. Then

L Fix ,,..., xnl(f; g I x1, . . . , xd = Mdeg(fg))2LFcX ,,..., X,) 3

GCD of Polynomials by Straight-Line Programs 261

where M(d) is the corresponding complexity of multiplying d-degree polynomials.
In the nonscalar case M(d) = O(d).

The third corollary concerns the parallelization of a straight-line computation
for a rational function. From [46], we get

COROLLARY 8.3. Let P be a straight-line program of length 1 over F(x,, . . . ,
x,,), F infinite, that computes f/g where deg(f), deg(g) 5 d. Then there exists a
straight-line program Q of parallel depth O(log(d)log(dl)) and size(ld)‘(” that
also computes f/g.

There is an open problem related to this corollary. The question is whether there
is a parallel algorithm that takes P as input and evaluates it at given points. For
division-free input programs such an algorithm has been constructed [31]. For
formulas as inputs, divisions do not cause additional difficulty [32]. However, the
proof of the above corollary is tied to knowing the evaluation of the input program
at a random point, and we do not know how the methods in [31] and [32] can be
used to solve the problem.

Finally, we remark that, if instead of degree bounds the exact degree d = deg(f),
e = deg(g) are input, the Numerator and Denominator Algorithm can be made
“Las Vegas”; that is, if it does not fail the returned program Q will be guaranteed
to be correct. An obvious condition to check would be whether deg,, (p) = d and
deg,, (q) = e, where p/q is the reduced Pade approximation to (12). However, this
check is not sufficient, since, during the extended Euclidean algorithm, a leading
coefficient of a remainder might have been dropped owing to incorrect zero testing,
with the resulting incorrect quotient still satisfying the degree requirements. Instead,
we compute p and q by setting up a linear system with undetermined coefficients
for (lo), that is,

(co + - * * + cd+eY:“W + 41YI + -*- + 4eYf) - (PO + *- - + PdY;l)

= 0 mod y;l+e+l.

If the a, are selected such that co # 0 in (12), which can be verified by random
evaluation, then the above system has a solution with

Pd(Y2, * - -, Yn), dY2, * * *, Yn) f 0

if and only if (11) is satisfied. In that case the linear system that arises is nonsingular,
which can be verified, and a straight-line program for its solution can be determin-
istically constructed. It then remains to verify the just-mentioned nonzero condi-
tions for pd and qe by random evaluation to make sure that (11) has been satisfied.

9. Conclusion

We have formulated our arithmetic complexities for arbitrary fields and our binary
complexities for finite fields and the rational numbers. It is not difficult to extend
the polynomial-time results to algebraic number fields. The main obstacle to binary
polynomial-time complexity is the need for zero and zero-division testing. It should
be clear that the corresponding algorithms generalize by working modulo a ran-
domly chosen prime ideal. A more straightforward approach to evaluating straight-
line programs over algebraic number fields can also be found in [111.

Straight-line results can be useful for further manipulation, but as the final result
they are quite incomprehensible. Fortunately, there is always the possibility of
probabilistically converting them to sparse representation. Zippel’s algorithm [47]

262 ERICH KALTOFEN

can be shown to accomplish this conversion in expected polynomial time in the
input size, degree, and the number of nonzero monomials of the sparse answer
[21, sect. 61. In another formulation, given a bound t, one can probabilistically
determine in polynomial time in t either the sparse representation of a polynomial
with no more than t monomials given by a straight-line program, or, with control-
ably high probability, that a polynomial has more than t nonzero monomials [23].
Since sparse inputs can always be represented as straight-line programs of polynom-
ially related size, by the conversion algorithm all our results apply to sparse
polynomials as well. For example, we have a random polynomial-time algorithm
for computing the sparse greatest common divisor of sparse polynomials.

This work began as the pilot for a series that consists of four papers. Our second
paper [23] shows how to compute in random polynomial-time the full factorization
of a polynomial, with input and outputs in straight-line representation. As men-
tioned before, that paper also contains a discussion on the sparse conversion
question. We also refer to [24] for a detailed outline of the main results of the
factoring paper. Our third and most recent article [25] discusses an approach to
replacing the input degree bound din the Polynomial GCD Algorithm, for instance,
by a degree bound for the output polynomial. Also in that paper a completely
different proof for Corollary 8.2, based on the factorization results, is given.
Although it appears that our results are already of theoretical significance, we
believe that the straight-line representation of multivariate polynomials is an
important tool in computer algebra systems. Therefore, we have implemented our
algorithms in LISP with an interface to MACSYMA. The details of this first
implementation and our experience with test cases are reported in the fourth paper
of this series [IO].

Note Added in Proof: Theorem 6.2 remains valid if we replace CT=, bi5 by fi,
which is a slight improvement in the length of the generated straight-line program.
In step P of Algorithm Rational Numerator and Denominator the computation of
GCD(fi, ti) = J$ can be skipped, since it can be shown that under the given
circumstances one always has k = 0. Finally, with B. Trager we have found a
different solution to the numerator and denominator problem, such that the length
of the produced program is U(ld + M(d)log(d)).

ACKNOWLEDGMENTS. I thank my student collaborators Timothy Freeman, Brent
Gregory, and Gregory Imirzian for their contributions to the entire project. This
work was stimulated by the DMV seminar “The Complexity of Algebraic and
Numerical Problems,” given by Joachim von zur Gathen and Volker Strassen in
September 1984. I thank both for inviting me to that workshop. A conversation
with Allan Borodin led to the construction of the Rational Numerator and
Denominator Algorithm. Wayne Eberly pointed out the Las Vegas result discussed
in the last paragraph of Section 8. I also thank both of them for their observations.

REFERENCES

1. AHO, A., HOPCROFT, J., AND ULLMAN, J. The Design and Analysis of Algorithms. Addison-
Wesley, Reading, Mass., 1974.

2. AHO, A. V., STEIGLIIZ, K., AND ULLMAN, J. D. Evaluating polynomials at fixed sets of points.
SZAMJ. Comput. 4 (1975), 533-539.

3. BAUR, W., AND STRASSEN, V. The complexity of partial derivatives. Theoret. Comput. Sci. 22
(1983), 317-330.

4. BRENT, R. P., GUSTAV~ON, F. G., AND YUN, D. Y. Y. Fast solution of Toeplitz systems of
equations and computation of Padi approximants. J. Algorithms I (1980), 259-295.

GCD of Polynomials by Straight-Line Programs 263

5. BROWN, W. S. On Euclid’s algorithm and the computation of polynomial greatest common
divisors. J. ACM 18,4 (Oct. 1971) 478-504.

6. BUNCH, J. R., AND HOPCROFT, J. E. Triangular factorization and inversion by fast matrix
multiplication. Math. Comput. 28 (1974), 23 l-236.

7. CHAR, B. W., GEDDES, K. 0, AND GONNET, G. H. GCDHEU: Heuristic polynomial GCD
algorithm based on integer GCD computation. In Proceedings of EUROSAM ‘84. Vol. 174, Lecture
Notes in Computer Science. Springer-Verlag, New York, 1984, pp. 285-296. To appear in Z.
Symbolic Comp.

8. COLLINS, G. E. Subresultants and reduced polynomial remainder sequences. J. ACM 14 (1967),
128-142.

9. CZAWR, S. R., AND GEDDES, K. 0. A comparison of algorithms for the symbolic computation of
Pad& approximants. In Proceedings of EUROSAM ‘84. Vol. 174, Lecture Notes in Computer
Science. Springer-Verlag, New York, 1984, pp. 248-259.

. 10. FREEMAN, T. S., IMIRZIAN, G., AND KALTOFEN, E. A system for manipulating polynomials given
by straight-line programs. In Proceedings of the 1986 ACM Symposium on Symbolic Algebraic
Computing. ACM, New York, 1986, pp. 169-175.

11. GATHEN, J. VON ZUR. Irreducibility of multivariate polynomials. J. Comput. Syst. Sci. 31 (1985),
225-264.

12. GATHEN, J. VON ZUR. Parallel arithmetic computation: A survey. In Proceedings of MFCS ‘86.
Vol. 233, Lecture Notes in Computer Science, Springer-Verlag, New York, 1986, pp. 93-l 12.

13. GATHEN, J. VON ZUR, AND KALTOFEN, E. Factoring sparse multivariate polynomials. J. Comput.
Syst. Sci. 31 (1985), 265-287.

14. HARDY, G. H., AND WRIGHT, E. M. An Introduction to the Theory ofNumbers. Oxford University
Press, Oxford, England, 1979.

15. HEINTZ, J. A note on polynomials with symmetric Galois group which are easy to compute.
Theoret. Comput. Sci. 47 (1986), 99-105.

16. HEIN-IZ, J., AND SCHNORR, C. P. Testing polynomials which are easy to compute. In Monographie
de L’Enseignement Mathgmatique, vol. 30. Imprimerie Kundig, Genbve, Switzerland, 1982,
pp. 237-254.

17. HYAFIL, L. On the parallel evaluation of multivariate polynomials. SIAM J. Comput. 8 (1979),
120-123.

18. IBARRA, 0. H., AND MORAN, S. Probabilistic algorithms for deciding equivalence of straight-line
programs. .Z ACM30, 1 (Jan. 1983), 217-228.

19. IBARRA, 0. H., MORAN, S., AND ROSIER, L. E. Probabilistic algorithms and straight-line programs
for some rank decision problems. Znj Process. Lett. I2 (198 1), 227-232.

20. JENKS, R. D. A primer: 11 keys to new SCRATCHPAD. In Proceedings of EUROSAM ‘84.
Vol. 174, Lecture Notes in Computer Science, Springer-Verlag, New York, 1984, pp. 123-147.

2 1. KALTOFEN, E. Computing with polynomials given by straight-line programs. I. Greatest wmmon
divisors. In Proceedings of the 17th ACM Symposium on Theory of Computing (Providence, R.I.,
May 6-8). ACM, New York, 1985, pp. 131-142.

22. KALTOFEN, E. Computing with polynomials given by straight-line programs. II. Sparse factoriza-
tion. In Proceedings of the 26th IEEE Symposium on Foundations of Computer Science. IEEE,
New York, 1985, pp. 451-458.

23. KALTOFEN, E. Factorization of polynomials given by straight-line programs. In Randomness in
Computation: Advances in Computing Research, S. Micah, Ed. JAI Press, Greenwich, Conn., Jan.
1987.

24. KALTOFEN, E. Uniform closure properties of p-compatible functions. In Proceedings of the 18th
ACM Symposium on Theory of Computing (Berkeley, Calif., May 28-30). ACM, New York, 1986,
pp. 330-337.

25. KALTOFEN, E. Single-factor Hensel lilting and its application to the straight-line complexity of
certain polynomials. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(New York, N.Y., May 25-27). ACM, New York, pp. 443-452.

26. KALTOFEN, E., AND ROLLETSCHEK, H. Arithmetic in quadratic fields with unique factorization.
In Proceedings of EUROCAL ‘85, Vol. 2. Vol. 204, Lecture Notes in Computer Science, Springer-
Verlag, New York, 1985, pp. 279-288.

27. KNUTH, D. E. The analysis of algorithms. Actes du congrks international des Matht?maticiens 3
(1970), 269-274.

28. KNIJTH, D. E. The Art of Programming. Vol. 2, Semi-Numerical Algorithms, 2nd ed. Addison-
Wesley, Reading, Mass., 198 1.

29. KRISHNAMURTHY, E. V., RAO, T. M., AND SUBRAMANIAN, K. Finite segment padic number
systems with applications to exact computation. Proc. Indian Acad. Sci. 81, sec. A, 2 (1975),
58-79.

264 ERICH KALTOFEN

30. KUNG, H. T. On computing reciprocals of power series. Numer. Math. 22 (1974), 34 l-348.
3 1. MILLER, G. L., RAMACHANDRAN, V., AND KALTOFEN, E. Efficient parallel evaluation of straight-

line code and arithmetic circuits. In Proceedings of the Aegian Workshop on Computing ‘86.
Vol. 227, Lecture Notes on Computer Science. Springer-Verlag, New York, 1986, pp. 236-245.

32. MILLER, G. F., AND REIF, J. H. ParalIel tree contraction and its application. In Proceedings of
the 26th IEEE Symposium on Foundations of Computer Science. IEEE, New York, 1985,
pp. 478-489.

33. MOENCK, R. T. Fast computation of GCDs. In Proceedings of the 5th ACM Symposium on Theory
of Computing (Austin, Tex., Apr. 30-May 2). ACM, New York, 1973, pp. 142- 15 1.

34. Moss, J. AND YUN, D. Y. Y. The EZ-GCD algorithm. In Proceedings of the 1973 ACM National
Conference. ACM, New York, 1973, pp. 159-166.

35. PLAISTED, D. A. Sparse complex polynomials and polynomial reducibility. J. Comput. Syst. Sci.
14 (1977), pp. 210-221.

36. ROSSER, J. B., AND SCHOENFELD, L. Approximate formulas of some functions of prime numbers.
III. J. Math. 6 (1962), 64-94.

37. SCHWARTZ, J. T. Fast probabilistic algorithms for verification of polynomial identities. J. ACM
/ 27,4 (Oct. 1980), 701-717.
38. SCH~NHAGE, A. Schnelle Kettenbruchentwicklungen. Acta Inf I (1971), 139-144 (in German).
39. S~H~NHAGE, A. Schnelle Multiplikation von Polynomen tiber Korpem der Charakteristik 2. Acta

Znf: 7 (1977), 395-398 (in German).
40. SXXOVAY, R. M., AND STRASSEN, V. A fast Monte-Carlo test for primality. SIAM J. Comput. 6

(1977), 84-85. Correction: 7 (1978), 118.
41. STOUTEMEYER, D. R. Which polynomial representation is best? In Proceedings of the 3rd

MACSYMA Users’ Conference, General Electric, Schenectady, N.Y., 1984, pp. 221-243.
42. STRASSEN, V. Berechnung und Programm I. Acta Inf: I (1972), 320-335 (in German).
43. STRASSEN, V. Vermeidung von Divisionen. J. Reine u. Angew. Math. 264 (1973) 182-202 (in

German).
44. VALIANT, L. The complexity of computing the permanent. Theoret. Comput. Sci. 8 (1979),

189-201.
45. VALIANT, L. Reducibility by algebraic projections. L’Enseignement Math. 28 (1982), 253-268.
46. VALIANT, L., SKYUM, S., BERKOWITZ, S., AND RACKOFF, C. Fast parallel computation of polyno-

mials using few processors. SIAM J. Comput. I2 (1983), 641-644.
47. ZIPPEL, R. E. Probabilistic algorithms for sparse polynomials. In Proceedings of the EUROSAM

‘79. Vol. 72, Lecture Notes on Computer Science, Springer-Verlag, New York, 1979, pp. 216-226.

RECEIVED JANUARY 1986; REVISED OCTOBER 1986, FEBRUARY 1987; ACCEPTED MAY 1987

Journal of the Association for Computing Machinery, Vol. 35, No. I, January 1988

