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GREATEST REGULAR IMAGES OF TENSOR PRODUCTS

OF COMMUTATIVE SEMIGROUPS

BY TOM HEAD AND NOBUAKI KUROKI

Abstract

Let A be a commutative semigroup which has either a greatest regular
image or a greatest group image. Then for any commutative semigroup B, A®B
has a greatest image of the same type and it is describable by standard con-
structions based on A and B. If a commutative semigroup A has a greatest
group-with-zero image then A(g)B has such an image if and only if B is archi-
medean, in which case this image is again describable by standard constructions
based on A and B, A handy elementary tool is the fact that the Grothendieck
group of a commutative semigroup A may be regarded as the direct limit of the
directed system of groups provided by Z(g)A where Z is the additive group of
integers.

By a type 2* of commutative semigroups we will mean a class of commu-
tative semigroups that is closed under isomorphisms. We will deal with three
types: the type of regular semigroups and two of its subtypes: groups and
groups-with-zero. We say that a semigroup 5 has a greatest image of type £Γ
if there is a homomorphism a of S onto a semigroup T in £Γ which is greatest
in the sense that for every homomorphism β of S onto a semigroup U in H" we
have β—ya for some homomorphism γ of T onto U. The purpose of the present
article is to show that the possession of a greatest image by a commutative
semigroup A may lead to the possession of a greatest image of the same type
by tensor products of the form A® B. The study of tensor products of semi-
groups was initiated independently by three authors in [3], [4] and [6]. Our
work here may be regarded as a synthesis of [6] with the recent investigation
of greatest regular images in [9].

All semigroups considered will be commutative. Upper case letters will
always denote commutative semigroups and Z will denote the additive group of
integers. By a map we mean a semigroup homomorphism.

1. The main results. For an arbitrary commutative semigroup A, Hewitt
and Zuckerman [10] (or see [1, § 4.3]) described the construction of a regular
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semigroup, which we shall call Reg (A), and a map a:A-+Reg(A) of A into
Reg(A) which has the property that each map of A into each regular semigroup
factors uniquely through a.

THEOREM 1. // A has a greatest regular image then so does A®B and
Reg(A)®Reg(B) is such an image.

The proofs of our theorems will be given in §4.
The Grothendieck group of a commutative semigroup A will be denoted

Gro(A). There is a canonical map β : A-^Gro(A) of A into Gro(A) which has
the property that each map of A into each group factors uniquely through β.

THEOREM 2. // A has a greatest group image then so does A®B and
Gro(A)(g)Gro(B) is such image.

By a group-with-zero we mean a semigroup which consists of a subgroup
and one additional element which acts as an annihilator (zero). For each group
G, G° will denote the semigroup consisting of G and the additional annihilator, 0.

THEOREM 3. // A has a greatest group-with-zero image then A®B has such
an image if and only if B is Archimedean. If A has G° as a greatest group-
with-zero image and if B is Archimedean, then (G<g)Gro(B))° is a greatest group-
with-zero image of A®B.

The next two paragraphs prepare the way for the proofs of these theorems.

2. On Grothendieck groups. Since groups are regular, β : A^Gro(A) always
factors uniquely through a : A-^Reg(A). Thus β=λa for a unique map λ : Reg(A)
-*Gro(A). In [6] we noted that λ is surjective and that the congruence induced
in Reg(A) is the finest one which identifies the idempotents of A. This de-
scription of λ would be adequate for our purposes here, but we would like to
emphasize that there is an alternate way of describing this construction of
Gro(A) from Reg(A) that fits it into a broader algebraic context: Since Reg(A)
is a semilattice of groups, its structure is presentable by means of groups and
group homomorphisms [1, p. 128]. This presentation constitutes a directed sys-
tem of groups and maps and consequently a direct limit is associated. It is
easy to see that this limit is essentially Gro(A). Thus λ may be regarded as
the formation of a direct limit and we may write Gro(A)=LΊm Reg(A).

In [6] an isomorphism Reg(A)^Z®A was given for which the composite
map A-+Reg(A) = Z<gιA carries each α e i into 10a. By means of this isomor-
phism we will replace Reg (A) by Z®A and write a : A-*Z§§A where α(α)=l(g)α.
This allows also : Gro(A)=Lim Z%A. That this view of Grothendieck groups is
sometimes convenient can be seen from the following codified proof of a result
of R. Fulp [3, Prop. 17]: Gro(A(g)B)=Um
(Lim Z(g)i4)<g)(Lim
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3. A fundamental diagram. The Proofs of Theorems 1 and 2 will be read
from the commutative diagram, Figure 1. For the moment, ignore map 10 of
the diagram. In view of § 2, the reader's first guess as to what map is intended
at each of the remaining numbers in the diagram is almost certain to be correct
and we will describe explicitly only four of them: Map 1

11

Z®(A®B)

11
^ Gro(A)®Gro(B)

6 8 I 9

Gro(A)®B

Figure 1.

carries a®b into (l®ά)®b. Map 3 carries a®b into 10(α(g)/?). Map 7 is
λ: Reg{A®B)=Z®(A®B)—Gro{A®B). Map 11 is the tensor product of two
Λ-type maps. Notice that all the maps, except possibly 1 and 3, are surjective
and that all the even numbered maps are isomorphisms. Now the composite
map 4-11 has a group as its range and we define map 10 to be the resulting
induced map. Map 10 is an isomorphism as can be verified by constructing an
inverse: Map 4-7 provides a biadditive function (Z(g)A)x(Z®A)-*Gro(A®B)
which can be verified to induce a function Gro(A)xGro(B)-*Gro(A®B) which
is also biadditive. The latter function then induces the desired inverse for
map 10.

We have seen that the diagram encompasses (at 10) the result of Fulp re-
ferred to in § 2. In § 4 this result will be seen to be closely related to Theorem 2.
Also included in the diagram is the following result which is closely related to
Theorem 1 and subsumes Proposition 6 of [3] : // A is regular then so is A®B.
This can be read from the diagram as follows: If A is regular then A^Z(g)A
is an isomorphism and consequently so is map 1. By commutativity, map 3 is
an isomorphism and A®B is regular.

4. The proofs. Proof of Theorem 1: From § 2 and [9, Lemma 2] we know
that X has a greatest regular image if and only if X-*Z®X is surjective and
when this map is surjective Z®X is a greatest regular image of X. Suppose
that A has a greatest regular image. Then A—>Z®A is surjective and so is
map 1 of Figure 1. By commutativity map 3 is surjective and Z®(A®B) ^
(Z®A)®(Z®B) = Reg(A)®Reg(B) is a greatest regular image of A®B.

Proof of Theorem 2: From § 2 and [9, Lemma 1] (or [12]) we know that
X has a greatest group image if and only if the composite map X~^Z®X—>Gro(X)
is surjective and when this map is surjective Gro(X) is a greatest group image
of X. Suppose that A has a greatest group image. Then A^Z®A-*Gro(A) is
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surjective and so is the composite map 1-5 of Figure 1. Thus map 1-5-6-8-9
is surjective. By commutativity, map 3-7-10 is surjective. Then map 3-7 is
surjective and Gro(A§§B)^Gro(A)®Gro(B) is a greatest group image of A®B.

Proof of Theorem 3 : From [9, Theorem 3] we know that X has a greatest
group-with-zero image if and only if X has precisely two Archimedean compo-
nents and the upper component contains an idempotent. From the proof of this
same theorem we know that when X possesses such a greatest image, G° is such
an image where G is the maximal subgroup (=minimal ideal) of the upper com-
ponent of X. Suppose that A has a greatest group-with-zero image, that U is
the upper component of A, and that G is the maximal subgroup of U. If B is
Archimedean then A®B must again have two components ([3, Proposition 4] or
[4, Proposition 1.1] or [6, Theorem 1]) and the mapping U®B-^AξZ)B induced by
the inclusion U^A is an isomorphism of U®B onto the upper component of A®B
([5, Theorem 2.3] or [8, Proposition 1]). From [7, § 1 (ii)] we know that the
maximal subgroup of U®B is isomorphic with G®Gro(B). Thus A®B has a
greatest group-with-zero image and it is isomorphic with (G®Gro(B)f. If B is
not Archimedean then by [2] (or [11] or a direct calculation) A(&B must
have more than two Archimedean components and consequently cannot have a
greatest group-with-zero image.

5. Problems. It may be possible to strengthen Theorem 3 into : A®B has
a greatest group-with-zero image if and only if either, (1) one of the factors is
Archimedean with an idempotent and the other has precisely two Archimedean
components or, (2) one of the factors is Archimedean and the other has precisely
two Archimedean components with an idempotent in the upper component.
Indeed if conjecture 7 of [7] is correct then this statement follows. If both
conjecture 7 and conjecture 2 of [7] are correct then the following strength-
ening of Theorem 1 will follow via [9, Theorem 2] : A®B has a greatest regular
image if and only if either A or B does.
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