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Abstract

It is known that greedy methods perform well for maximizing monotone submodular functions. At

the same time, such methods perform poorly in the face of non-monotonicity. In this paper, we

show—arguably, surprisingly—that invoking the classical greedy algorithm O(
√
k)-times leads

to the (currently) fastest deterministic algorithm, called REPEATEDGREEDY, for maximizing a

general submodular function subject to k-independent system constraints. REPEATEDGREEDY

achieves (1 + O(1/
√
k))k approximation using O(nr

√
k) function evaluations (here, n and r de-

note the size of the ground set and the maximum size of a feasible solution, respectively). We

then show that by a careful sampling procedure, we can run the greedy algorithm only once and

obtain the (currently) fastest randomized algorithm, called SAMPLEGREEDY, for maximizing a

submodular function subject to k-extendible system constraints (a subclass of k-independent sys-

tem constrains). SAMPLEGREEDY achieves (k + 3)-approximation with only O(nr/k) function

evaluations. Finally, we derive an almost matching lower bound, and show that no polynomial time

algorithm can have an approximation ratio smaller than k + 1/2 − ε. To further support our the-

oretical results, we compare the performance of REPEATEDGREEDY and SAMPLEGREEDY with

prior art in a concrete application (movie recommendation). We consistently observe that while

SAMPLEGREEDY achieves practically the same utility as the best baseline, it performs at least two

orders of magnitude faster.

Keywords: Submodular maximization, k-systems, k-extendible systems, approximation algo-

rithms

1. Introduction

Submodular functions (Edmonds, 1971; Fujishige, 2005), originated in combinatorial optimization

and operations research, exhibit a natural diminishing returns property common in many well known

objectives: the marginal benefit of any given element decreases as more and more elements are

selected. As a result, submodular optimization has found numerous applications in machine learn-

ing, including viral marketing (Kempe et al., 2003), network monitoring (Leskovec et al., 2007;
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Gomez Rodriguez et al., 2010), sensor placement and information gathering (Guestrin et al., 2005),

news article recommendation (El-Arini et al., 2009; Mirzasoleiman et al., 2016b), nonparamet-

ric learning (Reed and Ghahramani, 2013), document and corpus summarization (Lin and Bilmes,

2011; Kirchhoff and Bilmes, 2014; Sipos et al., 2012), data summarization (Mirzasoleiman et al.,

2013, 2015b), crowd teaching (Singla et al., 2014), and MAP inference of determinental point pro-

cess (Gillenwater et al., 2012). The usefulness of submodular optimization in these settings stems

from the fact that many such problems can be reduced to the problem of maximizing a submodular

function subject to feasibility constraints, such as cardinality, knapsack, matroid or intersection of

matroids constraints.

In this paper, we consider the maximization of submodular functions subject to two important

classes of constraints known as k-system and k-extendible system constraints. The class of k-system

constraints is a very general class of constraints capturing, for example, any constraint which can

be represented as the intersection of multiple matroid and matching constraints. The study of the

maximization of monotone submodular functions subject to a k-system constraint goes back to the

work of Fisher et al. (1978), who showed that the natural greedy algorithm achieves an approxi-

mation ratio of 1/(k + 1) for this problem (k is a parameter of the k-system constraint measuring,

intuitively, its complexity). In contrast, results for the maximization of non-monotone submodular

functions subject to a k-system constraint were only obtained much more recently. Specifically,

Gupta et al. (2010) showed that, by repeatedly executing the greedy algorithm and an algorithm for

unconstrained submodular maximization, one can maximize a non-monotone submodular function

subject to a k-system constraint up to an approximation ratio of roughly 3k using a time complexity

of O(nrk)1. This was recently improved by Mirzasoleiman et al. (2016a), who showed that the

approximation ratio obtained by the above approach is in fact roughly 2k.

In this paper, we describe algorithms that improve over the above mentioned results both in

terms of the approximation ratio and in terms of the time complexity. Our first result is a determinis-

tic algorithm, called REPEATEDGREEDY, which obtains an approximation ratio of (1+O(1/
√
k))k

for the maximization of a non-monotone submodular function subject to a k-system constraint us-

ing a time complexity of only O(nr
√
k). REPEATEDGREEDY is structurally very similar to the

algorithm of Gupta et al. (2010) and Mirzasoleiman et al. (2016a). However, thanks to a tighter

analysis, it needs to execute the greedy algorithm and the algorithm for unconstrained submodular

maximization much less often, which yields its improvement in the time complexity.

Our second result is a randomized algorithm, called SAMPLEGREEDY, which manages to fur-

ther push the approximation ratio and time complexity to (k + 1)2/k ≤ k + 3 and O(n + nr/k),
respectively. However, it does so at a cost. Specifically, SAMPLEGREEDY applies only to a sub-

class of k-system constraints known as k-extendible system constraints. We note, however, that

the class of k-extendible constraints is still general enough to capture, among others, any constraint

that can be represented as the intersection of multiple matroid and matching constraints. Interest-

ingly, when the objective function is also monotone the approximation ratio of SAMPLEGREEDY

improves to k+1, which matches the best known approximation ratio for the maximization of such

functions subject to a k-extendible system constraint (Fisher et al., 1978; Jenkyns, 1976; Mestre,

2006). Previously, this ratio was obtained using the greedy algorithm whose time complexity is

O(nr). Hence, our algorithm also improves over the state of the art algorithm for maximization

1. Here, and throughout the paper, n represents the size of the ground set of the submodular function and r represents

the maximum size of any set satisfying the constraint.
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Table 1: Summary of Results for Non-monotone Submodular Objectives

Approximation Ratio Time Complexity Constraint Class

SAMPLEGREEDY (k + 1)2/k ≤ k + 3 O(n+ nr/k) k-extendible

REPEATEDGREEDY k +O(
√
k) O(nr

√
k) k-system

Mirzasoleiman et al. (2016a) ≈ 2k O(nrk) k-system

Gupta et al. (2010) ≈ 3k O(nrk) k-system

Inapproximability (1− e−k)−1 − ε ≥ k + 1/2− ε − k-extendible

of monotone submodular functions subject to a k-extendible system constraint in terms of the time

complexity.

We complement our algorithmic results with two inapproximability results showing that the ap-

proximation ratios obtained by our second algorithm are almost tight. Previously, it was known that

no polynomial time algorithm can have an approximation ratio of k − ε (for any constant ε > 0)
for the problem of maximizing a linear function subject to a k-system constraint (Badanidiyuru and

Vondrák, 2014). We show that this result extends also to k-extendible systems, i.e., that no polyno-

mial time algorithm can have an approximation ratio of k−ǫ for the problem of maximizing a linear

function subject to a k-extendible system constraint. Moreover, for monotone submodular functions

we manage to get a slightly stronger inapproximability result. Namely, we show that no polynomial

time algorithm can have an approximation ratio of 1/(1− e−k)− ε ≤ k + 1/2− ε for the problem

of maximizing a monotone submodular function subject to a k-extendible system constraint. Note

that the gap between the approximation ratio obtained by SAMPLEGREEDY (namely, (k + 3)) and

the inapproximability result (namely, (k+ 1/2−ε)) is very small. A short summary of all the results

discussed above for non-monotone submodular objectives can be found in Table 1.

Finally, we compare the performance of REPEATEDGREEDY and SAMPLEGREEDY against

FATNOM, the current state of the art algorithm introduced by Mirzasoleiman et al. (2016a). We test

these algorithms on a movie recommendation problem using the MovieLens dataset, which consists

of over 20 million ratings of 27,000 movies by 138,000 users. We find that our algorithms provide

solution sets of similar quality as FANTOM while running orders of magnitude faster. In fact, we

observe that taking the best solution found by several independent executions of SAMPLEGREEDY

clearly yields the best trade-off between solution quality and computational cost. Moreover, our

experimental results indicate that our faster algorithms could be applied to large scale problems

previously intractable for other methods.

Organization: Section 2 contains a brief summary of additional related work. A formal presenta-

tion of our main results and some necessary preliminaries are given in Section 3. Then, in Section 4

we present and analyze our deterministic and randomized approximation algorithms, respectively.

The above mentioned experimental results comparing our algorithms with previously known algo-

rithms can be found in Section 6. Finally, our hardness results appear in Appendix A.
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2. Related Works

Submodular maximization has been studied with respect to a few special cases of k-extendible sys-

tem constraints. Lee et al. (2010) described a local search algorithm achieving an approximation

ratio of k + ǫ for maximizing a monotone submodular function subject to the intersection of any

k matroid constraints, and explained how to use multiple executions of this algorithm to get an

approximation ratio of k + 1 + 1
k+1 + ε for this problem even when the objective function is non-

monotone. Later, Feldman et al. (2011b) showed, via a different analysis, that the same local search

algorithm can also be used to get essentially the same results for the maximization of a submodu-

lar function subject to a subclass of k-extendible system constraints known as k-exchange system

constraints (this class of constraints captures the intersection of multiple matching and strongly or-

derable matroid constraints). For k ≥ 4, the approximation ratio of (Feldman et al., 2011b) for the

case of a monotone submodular objective was later improved by Ward (2012) to (k + 3)/2 + ε.

An even more special case of k-extendible systems are the simple matroid constraints. In their

classical work, Nemhauser et al. (1978) showed that the natural greedy algorithm gives an approx-

imation ratio of 1 − 1/e for maximizing a monotone submodular function subject to a uniform

matroid constraint (also known as cardinality constraint), and Călinescu et al. (2011) later obtained

the same approximation ratio for general matroid constraints using the Continuous Greedy algo-

rithm. Moreover, both results are known to be optimal (Nemhauser and Wolsey, 1978). However,

optimization guarantees for non-montone submodular maximization are much less well understood.

After a long series of works (Vondrák, 2013; Gharan and Vondrák, 2011; Feldman et al., 2011a; Ene

and Nguyen, 2016), the current best approximation ratio for maximizing a non-monotone submod-

ular function subject to a matroid constraint is 0.385 (Buchbinder and Feldman, 2016a). In contrast,

the state of the art inapproximability result for this problem is 0.478 (Gharan and Vondrák, 2011).

Recently, there has also been a lot of interest in developing fast algorithms for maximizing

submodular functions. Badanidiyuru and Vondrák (2014) described algorithms that achieve an ap-

proximation ratio of 1−1/e−ε for maximizing a monotone submodular function subject to uniform

and general matroid constraints using time complexities of Oε(n log k) and Oε(nr log
2 n), respec-

tively (Oε suppresses a polynomial dependence on ε).2 For uniform matroid constraints, Mirza-

soleiman et al. (2015a) showed that one can completely get rid of the dependence on r, and get

an algorithm with the same approximation ratio whose time complexity is only Oε(n). Indepen-

dently, Buchbinder et al. (2015) showed that a technique similar to Mirzasoleiman et al. (2015a)

can be used to get also (e−1− ε)-approximation for maximizing a non-monotone submodular func-

tion subject to a cardinality constraint using a time complexity of Oε(n). Buchbinder et al. (2015)

also described a different (1− 1/e− ε)-approximation algorithm for maximizing a monotone sub-

modular function subject to a general matroid constraint. The time complexity of this algorithm is

Oε(r
2 +n

√
r log2 n) for general matroids, and it can be improved to Oε(r

√
n log n+n log2 n) for

generalized partition matroids.

3. Preliminaries and Main Results

In this section we formally describe our main results. However, before we can do that, we first need

to present some basic definitions and other preliminaries.

2. Badanidiyuru and Vondrák (2014) also describe a fast algorithm for maximizing a monotone submodular function

subject to a knapsack constraint. However, the time complexity of this algorithm is exponential in 1/ε, and thus, its

contribution is mostly theoretical.
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3.1. Preliminaries

For a set A and element e, we often write the union A ∪ {e} as A+ e for simplicity. Additionally,

we say that f is a real-valued set function with ground set N if f assigns a real number to each

subset of N . We are now ready to introduce the class of submodular functions.

Definition 1 Let N be a finite set. A real-valued set function f : 2N → R is submodular if, for all

X,Y ⊆ N ,

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) . (1)

Equivalently, for all A ⊆ B ⊆ N and e ∈ N \B,

f(A+ e)− f(A) ≥ f(B + e)− f(B) . (2)

While definitions (1) and (2) are equivalent, the latter one, which is known as the diminishing

returns property, tends to be more helpful and intuitive in most situations. Indeed, the fact that

submodular functions capture the notion of diminishing returns is one of the key reasons for the

usefulness of submodular maximization in combinatorial optimization and machine learning. Due

to the importance and usefulness of the diminishing returns property, it is convenient to define, for

every e ∈ N and S ⊆ N , ∆f(e|S) := f(S + e) − f(S). In this paper we only consider the

maximization of submodular functions which are non-negative (i.e., f(A) ≥ 0 for all A ⊆ N ).3

As explained above, we consider submodular maximization subject to two kinds of constraints:

k-system and k-extendible system constraints. Both kinds can be cast as special cases of a more

general class of constraints known as independence system constraints. Formally, an independence

system is a pair (N , I), where N is a finite set and I is a non-empty subset of 2N having the

property that A ⊆ B ⊆ N and B ∈ I imply together A ∈ I.

Let us now define some standard terminology related to independence systems. The sets of I
are called the independent sets of the independence system. Additionally, an independent set B
contained in a subset X of the ground set N is a base of X if no other independent set A ⊆ X
strictly contains B. Using this terminology we can now give the formal definition of k-systems.

Definition 2 An independence system (N , I) is called a k-system if for every set X ⊆ N the sizes

of the bases of X differ by at most a factor of k. More formally, |B1|/|B2| ≤ k for every two bases

B1, B2 of X .

An important special case of k-systems are the k-extendible systems, which were first intro-

duced by Mestre (2006). We say that an independent set B is an extension of an independent set A
if B strictly contains A.

Definition 3 An independence system (N , I) is k-extendible if for every independent set A ∈ I,

an extension B of this set and an element e /∈ A obeying A ∪ {e} ∈ I there must exist a subset

Y ⊆ B \A with |Y | ≤ k such that B \ Y ∪ {e} ∈ I.

Intuitively, an independence system is k-extendible if adding an element e to an independent set

B requires the removal of at most k other elements in order to keep the resulting set independent.

As is shown by Mestre (2006), the intersection of k matroids defined on a common ground set is

always a k-extendible system. The converse is not generally true (except in the case of k = 1, since

every 1-system is a matroid).

3. See (Feige et al., 2011) for an explanation why submodular functions that can take negative values cannot be maxi-

mized even approximately.
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3.2. Main Contributions

Our main contributions in this paper are two efficient algorithms for submodular maximization: one

deterministic and one randomized. The following theorem formally describes the properties of our

randomized algorithm. Recall that n is the size of the ground set and r is the size of the maximal

feasible set.

Theorem 4 Let f : 2N → R≥0 be a non-negative submodular function, and let (N , I) be a k-

extendible system. Then, there exists a randomized O(n + nr/k) time algorithm for maximizing

f over (N , I) whose approximation ratio is at most
(k+1)2

k . Moreover, if the function f is also

monotone, then the approximation ratio of the algorithm improves to k + 1.

Our deterministic algorithm uses an algorithm for unconstrained submodular maximization as

a subroutine, and its properties depend on the exact properties of this subroutine. Let us denote by

α the approximation ratio of this subroutine and by T (n) its time complexity given a ground set of

size n. Then, as long as the subroutine is deterministic, our algorithm has the following properties.

Theorem 5 Let f : 2N → R≥0 be a non-negative submodular function, and let (N , I) be a k-

system. Then, there exists a deterministic O((nr+T (r))
√
k) time algorithm for maximizing f over

(N , I) whose approximation ratio is at most k +
(

1 + α
2

)
√
k + 2 + α

2 +O(1/
√
k).

Buchdiner et al. (2015) provide a deterministic linear-time algorithm for unconstrained sub-

modular maximization having an approximation ratio of 3. Using this deterministic algorithm

as the subroutine, the approximation ratio of the algorithm guaranteed by Theorem 5 becomes

k + 5
2

√
k + 7

2 + O(1/
√
k) and its time complexity becomes O(nr

√
k). We note that Buchbinder

and Feldman (2016b) recently came up with a deterministic algorithm for unconstrained submod-

ular maximization having an optimal approximation ratio of 2. Using this algorithm instead of the

deterministic algorithm of Buchdiner et al. (2015) could marginally improve the approximation ra-

tio guaranteed by Theorem 5. However, the algorithm of Buchbinder and Feldman (2016a) has

a quadratic time complexity, and thus, it is less practical. It is also worth noting that Buchdiner

et al. (2015) also describe a randomized linear-time algorithm for unconstrained submodular max-

imization which again achieves the optimal approximation ratio of 2. It turns out that one can get

a randomized algorithm whose approximation ratio is k + 2
√
k + 3 + O(1/

√
k) by plugging the

randomized algorithm of (Buchdiner et al., 2015) as a subroutine into the algorithm guaranteed

by Theorem 5. However, the obtained randomized algorithm is only useful for the rare case of a

k-system constraint which is not also a k-extendible system constraint since Theorem 4 already

provides a randomized algorithm with a better guarantee for constraints of the later kind.

We end this section with our inapproximability results for maximizing linear and submodular

functions over k-extendible systems. Recall that these inapproximability results nearly match the

approximation ratio of the algorithm given by Theorem 4.

Theorem 6 There is no polynomial time algorithm for maximizing a linear function over a k-

extendible system that achieves an approximation ratio of k − ε for any constant ε > 0.

Theorem 7 There is no polynomial time algorithm for maximizing a non-negative monotone sub-

modular function over a k-extendible system that achieves an approximation ratio of (1−e−1/k)−1−
ε for any constant ε > 0.
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We note that the inapproximability results given by the last two theorems apply also to a frac-

tional relaxation of the corresponding problems known as the multilinear relaxation. This observa-

tion has two implications. The first of these implications is that even if we were willing to settle for

a fractional solution, still we could not get a better than (1/(1− e−k))-approximation for maximiz-

ing a monotone submodular function subject to a k-extendible system constraint. Interestingly, this

approximation ratio can in fact be reached in the fractional case even for k-system constraints using

the well known (computationally heavy) Continuous Greedy algorithm of Călinescu et al. (2011).

Thus, we get the second implication of the above observation, which is that further improving our

inapproximability results requires the use of new techniques since the current technique cannot lead

to different results for the fractional and non-fractional problems.

4. Repeated Greedy: An Efficient Deterministic Algorithm

In this section, we present and analyze the deterministic algorithm for maximizing a submodular

function f subject to a k-system constraint whose existence is guaranteed by Theorem 5. Our algo-

rithm works in iterations, and in each iteration it makes three operations: executing the greedy algo-

rithm to produce a feasible set, executing a deterministic unconstrained submodular maximization

algorithm on the output set of the greedy algorithm to produce a second feasible set, and removing

the elements of the set produced by the greedy algorithm from the ground set. After the algorithm

makes ℓ iterations of this kind, where ℓ is a parameter to be determined later, the algorithm termi-

nates and outputs the best set among all the feasible sets encountered during its iterations. A more

formal statement of this algorithm is given as Algorithm 1.

Algorithm 1: Repeated Greedy(N , f, I, ℓ)
Let N1 ← N .

for i = 1 to ℓ do
Let Si be the output of the greedy algorithm given Ni as the ground set, f as the objective and

I as the constraint.

Let S′
i be the output of a deterministic algorithm for unconstrained submodular maximization

given Si as the ground set and f as the objective.

Let Ni+1 ← Ni \ Si.

end

return the set T maximizing f among the sets {Si, S
′
i}ℓi=1.

Observation 8 The set T returned by Algorithm 1 is independent.

Proof For every 1 ≤ i ≤ ℓ, the set Si is independent because the greedy algorithm returns an

independent set. Moreover, the set S′
i is also independent since (N , I) is an independence system

and the algorithm for unconstrained maximization must return a subset of its independent ground

set Si. The observation now follows since T is chosen as one of these sets.

We now begin the analysis of the approximation ratio of Algorithm 1. Let OPT be an inde-

pendent set of (N , I) maximizing f , and let α be the approximation ratio of the unconstrained

submodular maximization algorithm used by Algorithm 1. The analysis is based on three lemmata.
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The first of these lemmata states properties of the sets Si and S′
i which follow immediately from the

definition of α and known results about the greedy algorithm. Due to space constraints, the proofs

of all three lemmata have been deferred to Appendix B.

Lemma 9 For every 1 ≤ i ≤ ℓ, f(Si) ≥ 1
k+1f(Si ∪ (OPT ∩Ni)) and f(S′

i) ≥ f(Si ∩ OPT)/α.

The next lemma shows that the average value of the union between a set from {Si}ℓi=1 and OPT

must be quite large. Intuitively this follows from the fact that these sets are disjoint, and thus, every

“bad” element which decreases the value of OPT can appear only in one of them.

Lemma 10
ℓ
∑

i=1
f(Si ∪ OPT) ≥ (ℓ− 1)f(OPT).

The final lemma we need is the following basic fact about submodular functions.

Lemma 11 Suppose f is a non-negative submodular function over ground setN . For every three

sets A,B,C ⊆ N , f(A ∪ (B ∩ C)) + f(B \ C) ≥ f(A ∪B).

Having the above three lemmata, we are now ready to prove Theorem 5.

Proof [Proof of Theorem 5] Observe that, for every 1 ≤ i ≤ ℓ, we have

OPT \ Ni = OPT ∩ (N \ Ni) = OPT ∩
(

∪i−1
j=1Si

)

= ∪i−1
j=1 (OPT ∩ Sj) (3)

where the first equality holds because OPT ⊆ N and the second equality follows from the removal

of Si from the ground set in each iteration of Algorithm 1. Using the previous lemmata and this

observation, we get

(ℓ− 1)f(OPT) ≤
ℓ
∑

i=1

f(Si ∪ OPT) (Lemma 10)

≤
ℓ
∑

i=1

f(Si ∪ (OPT ∩Ni)) +
ℓ
∑

i=1

f(OPT \ Ni) (Lemma 11)

=

ℓ
∑

i=1

f(Si ∪ (OPT ∩Ni)) +

ℓ
∑

i=1

f
(

∪i−1
j=1(OPT ∩ Sj)

)

(Equality (3))

≤
ℓ
∑

i=1

f(Si ∪ (OPT ∩Ni)) +

ℓ
∑

i=1

i−1
∑

j=1

f(OPT ∩ Sj) (submodularity)

≤ (k + 1)

ℓ
∑

i=1

f(Si) + α

ℓ
∑

i=1

i−1
∑

j=1

f(S′
j) (Lemma 9)

≤ (k + 1)

ℓ
∑

i=1

f(T ) + α

ℓ
∑

i=1

i−1
∑

j=1

f(T ) (T ’s definition)

= [(k + 1)ℓ+ αℓ(ℓ− 1)/2] f(T ) .
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Dividing the last inequality by (k + 1)ℓ+ αℓ(ℓ− 1)/2, we get

f(T ) ≥ ℓ− 1

(k + 1)ℓ+ α
2 ℓ(ℓ− 1)

f(OPT) =
1− 1

ℓ

k + α
2 ℓ+ 1− α

2

f(OPT) . (4)

The last inequality shows that the approximation ratio of Algorithm 1 is at most
k+α

2
ℓ+1−α

2

1− 1

ℓ

.

To prove the theorem it remains to show that, for an appropriate choice of ℓ, this ratio is at most

k+
(

1 + α
2

)
√
k+2+ α

2+O(1/
√
k). It turns out that the right value of ℓ for us is ⌈

√
k⌉. The theorem

follows by plugging this value into Inequality (4). See Appendix B for the exact calculations.

5. Sample Greedy: An Efficient Randomized Algorithm

In this section, we present and analyze a randomized algorithm for maximizing a submodular func-

tion f subject to a k-extendible system constraint. Our algorithm is very simple: it first samples

elements fromN , and then runs the greedy algorithm on the sampled set. This algorithm is outlined

as Algorithm 2.

Algorithm 2: Sample Greedy(N , f, I, k)

Let N ′ ← ∅ and S ← ∅.

for u ∈ N do

with probability (k + 1)−1 do

Add u to N ′.
end

while there exists u ∈ N ′ such that

S + u ∈ I and ∆f(u|S) > 0 do

Let u ∈ N ′ be the element of this kind

maximizing ∆f(u|S).
Add u to S.

end

return S.

Algorithm 3: Equivalent Algorithm(N , f, I, k)

Let N ′ ← N , S ← ∅ and O ← OPT .

while there exists an element u ∈ N ′ such that

S + u ∈ I and ∆f(u|S) > 0 do

Let u ∈ N ′ be the element of this kind

maximizing ∆f(u|S), and let Su ← S.

with probability (k + 1)−1 do
Add u to S and O.

Let Ou ⊆ O \ S be the smallest set such

that O \Ou ∈ I.

otherwise

if u ∈ O then Let Ou ← {u}.
else Let Ou ← ∅.

Remove the elements of Ou from O.

Remove u from N ′.
end

return S.

To better analyze Algorithm 2, we introduce an auxiliary algorithm given as Algorithm 3. It is

not difficult to see that both algorithms have identical output distributions. The sampling of elements

in Algorithm 2 is independent of the greedy maximization, so interchanging these two steps does

not affect the output distribution. Moreover, the variables Su, O and Ou in Algorithm 3 do not

affect the output S (and in fact, appear only for analysis purposes). Thus, the two algorithms are

equivalent, and any approximation guarantee we can prove for Algorithm 3 immediately carries

over to Algorithm 2.

Next, we are going to analyze Algorithm 3. However, before doing it, let us intuitively explain

the roles of the sets S, Su, O and Ou in this algorithm. We say that Algorithm 3 considers an

element u in some iteration if u is the element chosen as maximizing ∆f(u|S) at the beginning

of this iteration. Note that an element is considered at most once, and perhaps not at all. As in

9
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Algorithm 2, S is the current solution. Likewise, Su is the current solution S at the beginning of the

iteration in which Algorithm 3 considers u. The set O maintained in Algorithm 3 is an independent

set which starts as OPT and changes over time, while preserving three properties:

P1 O is an independent set.

P2 Every element of S is an element of O.

P3 Every element of O \ S is an element not yet considered by Algorithm 3.

Because these properties need to be maintained throughout the excecution, some elements may be

removed from O in every given iteration. The set Ou is simply the set of elements removed from

O in the iteration in which u is considered. Note that Ou and Su are random sets, and Algorithm 3

defines values for them if it considers u at some point. In the analysis below we assume that both

Su and Ou are empty if u is not considered by Algorithm 3 (which means that Algorithm 3 does not

explicitly set values for them).

We now explain how the algorithm manages to maintain the above mentioned properties of O.

Let us begin with properties P1 and P2. Clearly the removal of elements from O that do not belong

to S cannot violate these properties, thus, we only need to consider the case that the algorithm adds

an element u to S in some iteration. To maintain P2, u is also added to O. On the one hand, O + u
might not be independent, and thus, the addition of u to O might violate P1. However, since O
is an extension of S by P2, S + u is independent by the choice of u and (N , I) is a k-extendible

system, the algorithm is able to choose a set Ou ⊆ O \ S of size at most k whose removal restores

the independence of O + u, and thus, also P1. It remains to see why the algorithm preserves also

P3. Since the algorithm never removes from O an element of S, a violation of P3 can only occur

when the algorithm considers some element of O \S. However, following this consideration one of

two things must happen. Either u is also added to S, or u is placed in Ou and removed from O. In

either case P3 is restored.

From this point on, every expression involving S or O is assumed to refer to the final values

of these sets. The following lemma provides a lower bound on f(S) that holds deterministically.

Intuitively, this lemma follows from the observation that, when an element u is considered by Algo-

rithm 3, its marginal contribution is at least as large as the marginal contribution of any element of

OPT \ S. Due to space constraints, many proofs in this section have been deferred to Appendix C.

Lemma 12 f(S) ≥ f(S ∪ OPT)− ∑

u∈N
|Ou \ S|∆f(u|Su).

While the previous lemma was true deterministically, the next two lemmas are statements about

expected values. At this point, it is convenient to define a new random variable. For every element

u ∈ N , let Xu be an indicator for the event that u is considered by Algorithm 3 in one of its

iterations. The next lemma gives an expression for the expected value of S. It follows quite easily

from the linearity of expectation.

Lemma 13 E[f(S)] ≥ 1
k+1

∑

u∈N
E[Xu∆f(u|Su)].

The next lemma relates terms appearing in the last two lemmata. Intuitively, this lemma shows

that Ou is on average a small set. For elements of OPT this is true since their Ou set never contains

more than one element, and for other elements this is true since their Ou set is empty whenever they

are not added to S.

10



Lemma 14 For every element u ∈ N , E[|Ou \ S|∆f(u|Su)] ≤ k
k+1E[Xu∆f(u|Su)] .

We are now ready to prove Theorem 4.

Proof [Proof of Theorem 4] Our objective is to prove approximation ratios for Algorithm 2. As

discussed earlier, Algorithms 2 and 3 have identical output distributions, and so it suffices to show

that Algorithm 3 achieves the desired approximation approximation ratios. Note that

E[f(S)] ≥ E[f(S ∪ OPT)]−
∑

u∈N
E[|Ou \ S|∆f(u|Su)] (Lemma 12)

≥ E[f(S ∪ OPT)]− k

k + 1

∑

u∈N
E[Xu∆f(u|Su)] (Lemma 14)

≥ E[f(S ∪ OPT)]− kE[f(S)] . (Lemma 13)

If f is monotone, then the theorem follows by rearranging the above inequality and observing

that f(S ∪ OPT ) ≥ f(OPT ). Otherwise, the fact that S contains every element with probability

at most (k + 1)−1 can be used to show via known results (see Appendix C for details) that

E[f(S ∪ OPT)] ≥ k

k + 1
f(OPT) .

The theorem now follows by combining the two above inequalities, and rearranging.

6. Experimental Results

In this section, we present results of an experiment on real dataset comparing the performance

of REPEATEDGREEDY and SAMPLEGREEDY with other competitive algorithms. In particular,

we compare our algorithms to the greedy algorithm and FANTOM, an O(krn)-time algorithm

for nonmonotone submodular optimization introduced in (Mirzasoleiman et al., 2016a). We also

boost SAMPLEGREEDY by taking the best of four runs, denoted Max Sample Greedy. We test

these algorithms on a personalized movie recommendation system, and find that while REPEAT-

EDGREEDY and SAMPLEGREEDY return comparable solutions to FANTOM, they run orders of

magnitude faster. These initial results indicate that SAMPLEGREEDY may be applied (without any

loss in performance) to massive problem instances that were previously intractable.

In the movie recommendation system application, we observe movie ratings from users, and

our objective is to recommend movies to users based on their reported favorite genres. In particular,

given a user-specified input of favorite genres, we would like to recommend a short list of movies

that are diverse, and yet representative, of those genres. The similarity score between movies that

we use is derived from user ratings, as in (Lindgren et al., 2015).

Let us now describe the problem setting in more detail. Let N be a set of movies, and G be

the set of all movie genres. For a movie i ∈ N , we denote the set of genres of i by G(i) (each

movie may have multiple genres). Similarly, for a genre g ∈ G, denote the set of all movies in that

genre byN (g). Let si,j be a non-negative similarity score between movies i, j ∈ N , and suppose a

user u seeks a representative set of movies from genres Gu ⊆ G. Note that the set of movies from
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these genres is Nu = ∪g∈GuN (g). Thus, a reasonable utility function for choosing a diverse yet

representative set of movies S for u is

fu(S) =
∑

i∈S

∑

j∈Nu

si,j − λ
∑

i∈S

∑

j∈S
si,j (5)

for some parameter 0 ≤ λ ≤ 1. Observe that the first term is a sum-coverage function that captures

the representativeness of S, and the second term is a dispersion function penalizing similarity within

S. Moreover, for λ = 1 this utility function reduces to the simple cut function.

The user may specify an upper limit m on the number of movies in his recommended set. In

addition, he is also allowed to specify an upper limit mg on the number of movies from genre g in

the set for each g ∈ Gu (we call the parameter mg a genre limit). The first constraint corresponds

to an m-uniform matroid over Nu, while the second constraint corresponds to the intersection of

|Gu| partition matroids (each imposing the genre limit of one genre). Thus, our constraints in this

movie recommendation corresponds to the intersection of 1+ |Gu|matroids, which is a (1+ |Gu|)-
extendible system (in fact, a more careful analysis shows that it corresponds to a |Gu|-extendible

system).

For our experiments, we use the MovieLens 20M dataset, which features 20 million ratings of

27,000 movies by 138,000 users. To obtain a similarity score between movies, we take an approach

developed in (Lindgren et al., 2015). First, we fill missing entries of an incomplete movie-user

matrix M ∈ R
n×m via low-rank matrix completion (Candés and Recht, 2008; Hastie et al., 2015),

then we randomly sample to obtain a matrix M̃ ∈ R
n×ℓ where ℓ ≪ m and the inner products

between rows are preserved. The similarity score between movies i and j is then defined as the

inner product of their corresponding rows in M̃ . In our experiment, we set the total recommended

movies limit to m = 10. The genre limits mg are always equal for all genres, and we vary them

from 1 to 9. Finally, we set our favorite genres Gu as Adventure, Animation and Fantasy. As noted

above, this means that our constraint set forms a 3-extendible system. For each algorithm and test

instance, we record the function value of the returned solution S and the number of calls to f , which

is a machine-independent measure of run-time.

Figure 1(a) shows the value of the solution sets for the various algorithms. As we see from

Figure 1(a), FANTOM consistently returns a solution set with the highest function value; however,

REPEATEDGREEDY and SAMPLEGREEDY return solution sets with similarly high function values.

We see that Max Sample Greedy, even for four runs, significantly increases the performance for

more constrained problems. Note that for such more constrained problems, Greedy returns solution

sets with much lower function values. Figure 1(b) shows the number of function calls made by each

algorithm as the genre limit mg is varied. For each algorithm, the number of function calls remains

roughly constant as mg is varied—this is due to the lazy greedy implementation that takes advantage

of submodularity to reduce the number of function calls. We see that for our problem instances,

REPEATEDGREEDY runs about an order of magnitude faster than FANTOM and SAMPLEGREEDY

runs roughly three orders of magnitude faster than FANTOM. Moreover, boosting SAMPLEGREEDY

by executing it a few times does not incur a significant increase in cost.

To better analyze the tradeoff between the utility of the solution value and the cost of run time,

we compare the ratio of these measurements for the various algorithms using FANTOM as a base-

line. See Figure 1(c) and 1(d) for these ratio comparisons for genre limits mg = 1 and mg = 4,

respectively. For the case of mg = 1, we see that boosted SAMPLEGREEDY provides nearly the

same utility as FANTOM, while only incurring 1.09% of the computational cost. Likewise, for the
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(a) Solution Quality (b) Run Time

(c) Ratio Comparison mg = 1 (d) Ratio Comparison mg = 4

Figure 1: Performance Comparison. 1(a) shows the function value of the returned solutions for

tested algorithms with varying genre limit mg. 1(b) shows the number of function eval-

uations on a logarithmic scale with varying genre limit mg. 1(c) and 1(d) show the ratio

of solution quality and cost with FANTOM as a baseline.

case of mg = 4, REPEATEDGREEDY achieves the same utility as FANTOM, while incurring only a

quarter of the cost. Thus, we may conclude that our algorithms provide solutions whose quality is

on par with current state of the art, and yet they run in a small fraction of the time.

Figure 2: Solution Sets. The movies in the solution sets for mg = 1 returned by FANTOM, Sample

Greedy, Repeated Greedy and Greedy are listed here, along with genre information. The

favorite genres (Gu) are in red.

While Greedy may get stuck in poor locally optimal solutions, REPEATEDGREEDY and SAM-

PLEGREEDY avoid this by greedily combing through the solution space many times and selecting

random sets, respectively. Fortunately, the movie recommendation system has a very interpretable
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solution so we can observe this phenomenon. See Figure 2 for the movies recommended by the

different algorithms. Because mg = 1, we are constrained here to have at most one movie from

Adventure, Animation and Fantasy. As seen in Figure 2, FANTOM and SAMPLEGREEDY return

maximum size solution sets that are both diverse and representative of these genres. On the other

hand, Greedy gets stuck choosing a single movie that belongs to all three genres, thus, precluding

any other choice of movie from the solution set.

Finally, we would like to make a short remark on the relation between our theoretical analy-

sis and experimental results. In our analysis, we showed that SAMPLEGREEDY achieves a better

expected approximation ratio than the worst-case approximation ratio of REPEATEDGREEDY and

FANTOM. However, there are many problem instances which are “not hard”, and do not make the

algorithms exhibit their worst-case behavior. For such instances, REPEATEDGREEDY and FAN-

TOM may out-perform SAMPLEGREEDY. Our experiments demonstrate that even in usual “not

hard” problem instances, SAMPLEGREEDY performs competitively at a fraction of the computa-

tional cost, indicating its potential for real-world large scale applications.
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Appendix A. Hardness of Maximization over k-Extendible Systems

In this appendix, we prove Theorems 6 and 7. The proof consists of two steps. In the first step,

we will define two k-extendible systems which are indistinguishable in polynomial time. The inap-

proximability result for linear objectives will follow from the indistinguishability of these systems

and the fact that the size of their maximal sets are very different. In the second step we will define

monotone submodular objective functions for the two k-extendible systems. Using the symmetry

gap technique of (Vondrák, 2013), we will show that these objective functions are also indistinguish-

able, despite being different. Then, we will use the differences between the objective functions to

prove the slightly stronger inapproximability result for monotone submodular objectives.

Given three positive integers k, h and m such that h is an integer multiple of 2k, let us construct

a k-extendible system M(k, h,m) = (Nk.h,m, Ik,h,m) as follows. The ground set of the system

is Nk,h,m = ∪hi=1Hi(k,m), where Hi(k,m) = {ui,j | 1 ≤ j ≤ km}. A set S ⊆ Nk,h,m is

independent (i.e., belongs to Ik,h,m) if and only if it obeys the following inequality:

gm,k(|S ∩H1(k,m)|) + |S \H1(k,m)| ≤ m ,

where the function gm,k is defined by

gm,k(x) = min

{

x,
2km

h

}

+max

{

x− 2km/h

k
, 0

}

.

Intuitively, a set is independent if its elements do not take too many “resources”, where most ele-

ments requires a unit of resources, but elements of H1(k,m) take only 1/k unit of resources each

once there are enough of them. Consequently, the only way to get a large independent set is to pack

many H1(k,m) elements.

Lemma 15 For every choice of h and m,M(k, h,m) is a k-extendible system.

Proof First, observe that g(x) is a monotone function, and therefore, a subset of an independent set

ofM(k, h,m) is also independent. Also, g(0) = 0, and therefore, ∅ ∈ Ik,h,m. This proves that

M(k, h,m) is an independence system. In the rest of the proof we show that it is also k-extendible.

Consider an arbitrary independent set C ∈ Ik,h,m, an independent extension D of C and an

element u 6∈ D for which C + u ∈ Ik,h,m. We need to find a subset Y ⊆ D \ C of size at most k
such that D \ Y + u ∈ Ik,h,m. If |D \ C| ≤ k, then we can simply pick Y = D \ C. Thus, we can

assume from now on that |D \ C| > k.

Let Σ(S) = g(|S∩H1(k,m)|)+|S\H1(k,m)|. By definition, Σ(D) ≤ m because D ∈ Ik,h,m.

Observe that g(x) has the property that for every x ≥ 0, k−1 ≤ g(x+ 1)− g(x) ≤ 1. Thus, Σ(S)
increases by at most 1 every time that we add an element to S, but decreases by at least 1/k every
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time that we remove an element from S. Hence, if we let Y be an arbitrary subset of D \ C of size

k, then

Σ(D \ Y + u) ≤ Σ(D)− |Y |
k

+ 1 = Σ(D) ≤ m ,

which implies that D \ Y + u ∈ Ik,h,m.

Before presenting the second k-extendible system, let us show thatM(k, h,m) contains a large

independent set.

Observation 16 M(k, h,m) contains an independent set whose size is k(m−2km/h)+2km/h ≥
mk(1− 2k/h). Moreover, there is such set in which all elements belong to H1(k,m).

Proof Let s = k(m − 2km/h) + 2km/h, and consider the set S = {u1,j | 1 ≤ j ≤ s}. This is a

subset of H1(k,m) ⊆ Nk,h,m since s ≤ km. Also,

g(|S|) = g(s) = min

{

s,
2km

h

}

+max

{

s− 2km/h

k
, 0

}

≤ 2km

h
+max

{

[k(m− 2km/h) + 2km/h]− 2km/h

k
, 0

}

=
2km

h
+max

{

m− 2km

h
, 0

}

= m .

Since S contains only elements of H1(k,m), its independence follows from the above inequality.

Let us now define our second k-extendible systemM′(k, h,m) = (Nk,h,n, I ′k,n). The ground

set of this system is the same as the ground set ofM(k, h,m), but a set S ⊆ Nk,h,m is considered

independent in this independence system if and only if its size is at most m. Clearly, this is a k-

extendible system (in fact, it is a uniform matroid). Moreover, note that the ratio between the sizes

of the maximal sets inM(k, h,m) andM′(k, h,m) is at least

mk(1− 2k/h)

m
= k(1− 2k/h) .

Our plan is to show that it takes exponential time to distinguish between the systemsM(k, h,m)
andM′(k, h,m), and thus, no polynomial time algorithm can provide an approximation ratio better

than this ratio for the problem of maximizing the cardinality function (i.e., the function f(S) = |S|)
subject to a k-extendible system constraint.

Consider a polynomial time deterministic algorithm that gets eitherMk,h,m orM′
k,h,m after a

random permutation was applied to the ground set. We will prove that with high probability the

algorithm fails to distinguish between the two possible inputs. Notice that by Yao’s lemma, this

implies that for every random algorithm there exists a permutation for which the algorithms fails

with high probability to distinguish between the inputs.

Assuming our deterministic algorithm getsM′
k,h,m, it checks the independence of a polynomial

collection of sets. Observe that the sets in this collection do not depend on the permutation because

the independence of a set inM′
k,h,m depends only on its size, and thus, the algorithm will take the

same execution path given every permutation. If the same algorithm now getsMk,h,m instead, it
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will start checking the independence of the same sets until it will either get a different answer for

one of the checks (different than what is expected forM′
k,h,m) or it will finish all the checks. Note

that in the later case the algorithm must return the same answer that it would have returned had it

been givenM′
k,h,m. Thus, it is enough to upper bound the probability that any given check made

by the algorithm will result in a different answer given the inputsMk,h,m andM′
k,h,m.

Lemma 17 Following the application of the random ground set permutation, the probability that

a set S is independent inMk,h,m but not inM′
k,h,m, or vice versa, is at most e−

2km
h2 .

Proof Observe that as long as we consider a single set, applying the permutation to the ground

set is equivalent to replacing S with a random set of the same size. So, we are interested in the

independence inMk,h,m andM′
k,h,m of a random set of size |S|. If |S| > km, then the set is never

independent in either Mk,h,m or M′
k,h,m, and if |S| ≤ m, then the set is always independent in

bothMk,h,m andM′
k,h,m. Thus, the interesting case is when m < |S| ≤ km.

Let X = |S ∩H1(k,m)|. Notice that X has a hypergeometric distribution, and E[X] = |S|/h.

Thus, using bounds given in (Skala, 2013) (these bounds are based on results of (Chvátal, 1979;

Hoeffding, 1963)), we get

Pr

[

X ≥ 2km

h

]

= Pr

[

X ≥ E[|X|] + km

h

]

≤ e
−2

(

km/h
|S|

)

2

·|S|
= e

− 2k2m2

h2·|S| ≤ e−
2km
h2 .

The lemma now follows by observing that X ≤ 2km/h implies that S is a dependent set under

bothMk,h,m andM′
k,h,m.

We now think of m as going to infinity and of h and k as constants. Notice that given this point

of view the size of the ground set Nk,h,m is nkh = O(m). Thus, the last lemma implies, via the

union bound, that with high probability an algorithm making a polynomial number (in the size of

the ground set) of independence checks will not be able to distinguishes between the cases in which

it gets as inputMk,h,m orM′
k,h,m.

We are now ready to prove Theorem 6.

Proof [Proof of Theorem 6] Consider an algorithm that needs to maximize the cardinality function

over the k-extendible system Mk,h,m after the random permutation was applied, and let T be its

output set. Notice that T must be independent inMk,h,m, and thus, its size is always upper bounded

by mk. Moreover, since the algorithm fails, with high probability, to distinguish betweenMk,h,m

andM′
k,h,m, T is with high probability also independent inM′

k,h,m, and thus, has a size of at most

m. Therefore, the expected size of T cannot be larger than m+ o(1).
On the other hand, Lemma 16 shows thatMk,h,m contains an independent set of size at least

mk(1− 2k/h). Thus, the approximation ratio of the algorithm is no better than

mk(1− 2k/h)

m+ o(1)
≥ mk(1− 2k/h)

m
− k

m
o(1) = k − 2k2/h− o(1) .

Choosing a large enough h (compared to k), we can make this approximation ratio larger than k− ε
for any constant ε > 0.
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To prove a stronger inapproximability result for monotone submodular objectives, we need to

associate a monotone submodular function with each one of our k-extendible systems. Towards

this goal, consider the monotone submodular function fh : 2Nh → R
+ defined over the ground set

Nh = [h] by

fh(S) = min{|S|, 1} .

Let Fh : [0, 1]
Nh → R≥0 be the mutlilinear extension of fh, i.e., Fh(x) = E[fh(R(x))] for every

vector x ∈ [0, 1]Nh (where R(x) is a random set containing every element u ∈ Nu with probability

xu, independently). Additionally, given a vector x ∈ [0, 1]Nh , let us define x̄ = (‖x‖1/h) · 1Nh
.

Notice that fh is invariant under any permutation of the elements of Nh. Thus, by Lemma 3.2 in

(Vondrák, 2013), for every ε′ > 0 there exists δh > 0 and two functions F̂h, Ĝh : [0, 1]Nh → R≥0

with the following properties.

• For all x ∈ [0, 1]Nh : Ĝh(x) = F̂h(x̄).

• For all x ∈ [0, 1]Nh , |F̂h(x)− Fh(x)| ≤ ε′.

• Whenever |x− x̄|22 ≤ δh, F̂h(x) = Ĝh(x).

• The first partial derivatives of F̂h and Ĝh are absolutely continuous.

• ∂F̂h
∂xu

, ∂Ĝh
∂xu
≥ 0 everywhere for every u ∈ Nh.

• ∂2F̂h
∂xu∂xv

, ∂2Ĝh
∂xu∂xv

≤ 0 almost everywhere for every pair u, v ∈ Nh.

The objective function we associate with M(k, h,m) is F̂h(y(S)), where y(S) is a vector in

[0, 1]Nh whose ith coordinate is |S∩Hi(k,m)|/(km). Similarly, the objective function we associate

withM′(k, h,m) is Ĝh(y(S)). Notice that both objective functions are monotone and submodular

by Lemma 3.1 of (Vondrák, 2013). We now bound the maximum value of a set inM(k, h,m) and

M′(k, h,m) with respect to their corresponding objective functions.

Lemma 18 The maximum value of a set inM(k, h,m) with respect to the objective F̂h(y(S)) is

at least 1− 2k/h− ε′.

Proof Observation 16 guarantees the existence of an independent set S ⊆ H1(k,m) inM(k, h,m)
of size s ≥ k(m− 2km/h). The objective value associated with this set is

F̂h(y(S)) ≥ Fh(y(S))− ε′ =
s

km
− ε′ ≥ k(m− 2km/h)

km
− ε′ = 1− 2k/h− ε′ .

Lemma 19 The maximum value of a set inM′(k, h,m) with respect to the objective Ĝh(y(S)) is

at most 1− e−1/k + h−1 + ε′.
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Proof The objective Ĝh(y(S)) is monotone. Thus, the maximum value set inM′(k, h,m) must be

of size m. Notice that for every set S of this size, we get

Ĝh(y(S)) = F̂h(y(S)) = F̂h((kh)
−1 · 1Nh

) ≤ Fh((kh)
−1 · 1Nh

) + ε′

= 1−
(

1− 1

kh

)h

+ ε′ ≤ 1− e−1/k

(

1− 1

k2h

)

+ ε′ ≤ 1− e−1/k + h−1 + ε′ .

As before, our plan is to show that after a random permutation is applied to the ground set it

is difficult to distinguish between M(k, h,m) and M′(k, h,m) even when each one of them is

accompanied with its associated objective. This will give us an inapproximability result which is

roughly equal to the ratio between the bounds given by the last two lemmata.

Observe that Lemma 17 holds regardless of the objective function. Thus, M(k, h,m) and

M′(k, h,m) are still polynomially indistinguishable. Additionally, the next lemma shows that their

associated objective functions are also polynomially indistinguishable.

Lemma 20 Following the application of the random ground set permutation, the probability that

any given set S gets two different values under the two possible objective functions is at most

2h · e−2mkδh/h
2

.

Proof Recall that, as long as we consider a single set S, applying the permutation to the ground

set is equivalent to replacing S with a random set of the same size. Hence, we are interested in the

value under the two objective functions of a random set of size |S|. Define Xi = |S ∩Hi(k,m)|.
Since Xi has the a hypergeometric distribution, the bound of (Skala, 2013) gives us

Pr

[

Xi ≥
|S|
h

+mk ·
√

δh
h

]

= Pr

[

Xi ≥ E[Xi] +mk ·
√

δh
h

]

≤ e
−2·

(

mk·
√

δh/h

|S|

)

2

·|S|
= e

− 2δh
h

·m2k2

|S| ≤ e−2mkδh/h
2

.

Similarly, we also get

Pr

[

Xi ≤
|S|
h
−mk ·

√

δh
h

]

≤ e−2mkδh/h
2

.

Combining both inequalities using the union bound now yields

Pr

[

∣

∣

∣

∣

Xi −
|S|
h

∣

∣

∣

∣

≥ mk ·
√

δh
h

]

≤ 2e−2mkδh/h
2

.

Using the union bound again, the probability that

∣

∣

∣
Xi − |S|

h

∣

∣

∣
≥ mk ·

√

δh
h for any 1 ≤ i ≤ h is

at most 2h · e−2mkδh/h
2

. Thus, to prove the lemma it only remains to show that the value of the two

objective functions for S are equal when

∣

∣

∣
Xi − |S|

h

∣

∣

∣
< mk ·

√

δh
h for every 1 ≤ i ≤ h.
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Notice that y(S) is a vector in which all the coordinates are equal to |S|/(mkh). Thus, the

inequality

∣

∣

∣
Xi − |S|

h

∣

∣

∣
< mk ·

√

δh
h is equivalent to [yi(S)− yi(S)] <

√

δh
h . Hence,

|y(S)− y(S)|22 =
h
∑

i=1

(yi(S)− yi(S))
2 <

h
∑

i=1

(

√

δh
h

)2

=

h
∑

i=1

δh
h

= δh ,

which implies the lemma by the properties of F̂h and Ĝh.

Consider a polynomial time deterministic algorithm that gets eitherMk,h,m with its correspond-

ing objective orM′
k,h,m with its corresponding objective after a random permutation was applied

to the ground set. Consider first the case that the algorithm gets M′
k,h,m (and its corresponding

objective). In this case, the algorithm checks the independence and value of a polynomial col-

lection of sets (we may assume, without loss of generality, that the algorithm checks both things

for every set that it checks). As before, one can observe that the sets in this collection do not de-

pend on the permutation because the independence of a set inM′
k,h,m and its value with respect to

Ĝh(y(S)) = F̂h(y(S)) depend only on the set’s size, which guarantees that the algorithm takes the

same execution path given every permutation. If the same algorithm now getsMk,h,m instead, it

will start checking the independence and values of the same sets until it will either get a different

answer for one of the checks (different than what is expected for M′
k,h,m) or it will finish all the

checks. Note that in the later case the algorithm must return the same answer that it would have

returned had it been givenM′
k,h,m.

By the union bound, Lemmata 17 and 20 imply that the probability that any of the sets whose

value or independence is checked by the algorithm will result in a different answer for the two inputs

decreases exponentially in m, and thus, with high probability the algorithm fails to distinguish

between the inputs, and returns the same output for both. Moreover, note that by Yao’s principal

this observation extends also to polynomial time randomized algorithms.

We are now ready to prove Theorem 7.

Proof [Proof of Theorem 7] Consider an algorithm that needs to maximize F̂ (y(S)) over the k-

extendible system Mk,h,m after the random permutation was applied, and let T be its output set.

Notice that F̂ (y(T )) ≤ F̂ (1Nh
) ≤ F (1Nh

) + ε′ = 1 + ε′. Moreover, the algorithm fails, with

high probability, to distinguish between Mk,h,m and M′
k,h,m. Thus, with high probability T is

independent in M′(k, h,m) and has the same value under both objective functions F̂ (y(S)) and

Ĝ(y(S)), which implies, by Lemma 19, F̂ (y(S)) = Ĝ(y(S)) ≤ 1 − e−1/k + h−1 + ε′. Hence, in

conclusion we proved

E[F̂ (y(T ))] ≤ 1− e−1/k + h−1 + ε′ + o(1) .

On the other hand, Lemma 18 shows that Mk,h,m contains an independent set of value of at

least 1− 2k/h− ε′ (with respect to F̂ (y(S))). Thus, the approximation ratio of the algorithm is no
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better than

1− 2k/h− ε′

1− e−1/k + h−1 + ε′ + o(1)

≥ (1− e−1/k + h−1 + ε′ + o(1))−1 − (1− e−1/k)−1(2k/h+ ε′)

≥ (1− e−1/k)−1 − (1− e−1/k)−2(h−1 + ε′ + o(1))− (1− e−1/k)−1(2k/h+ ε′)

≥ (1− e−1/k)−1 − (k + 1)2(h−1 + ε′ + o(1))− (k + 1)(2k/h+ ε′) ,

where the last inequality holds since 1− e−1/k ≥ (k+1)−1. Choosing a large enough h (compared

to k) and a small enough ε′ (again, compared to k), we can make this approximation ratio larger

than (1− e−1/k)−1 − ε for any constant ε > 0.

Appendix B. Missing Proofs of Section 4

Lemma 9 For every 1 ≤ i ≤ ℓ, f(Si) ≥ 1
k+1f(Si ∪ (OPT ∩Ni)) and f(S′

i) ≥ f(Si ∩ OPT)/α.

Proof The set Si is the output of the greedy algorithm when executed on the k-system obtained

by restricting (N , I) to the ground set Ni. Note that OPT ∩ Ni is an independent set of this k-

system. Thus, the inequality f(Si) ≥ 1
k+1f(Si ∪ (OPT∩Ni)) is a direct application of Lemma 3.2

of [Gupta et al. (2010)] which states that the sets S obtained by running greedy with a k-system

constraint must obey f(S) ≥ 1
k+1f(S ∪ C) for all independent sets C of the k-system.

Let us now explain why the second inequality of the lemma holds. Suppose that OPTi is the

subset of Si maximizing f . Then,

f(S′
i) ≥ f(OPTi)/α ≥ f(Si ∩ OPT)/α ,

where the first inequality follows since α is the approximation ratio of the algorithm used for uncon-

strained submodular maximization, and the second inequality follows from the definition of OPTi.

Lemma 10
ℓ
∑

i=1
f(Si ∪ OPT) ≥ (ℓ− 1)f(OPT).

Proof The proof is based on the following known result.

Claim 21 (Lemma 2.2 of Buchbinder et al. (2014)) Let g : 2N → R≥0 be non-negative and

submodular, and let S a random subset of N where each element appears with probability at most

p (not necessarily independently). Then, E[g(S)] ≥ (1− p)g(∅).

Using this claim we can now prove the lemma as follows. Let S be a random set which is equal

to every one of the sets {Si}ℓi=1 with probability 1
ℓ . Since these sets are disjoint, every element of

N belongs to S with probability at most p = 1
ℓ . Additionally, let us define g : 2N → R≥0 as
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g(T ) = f(T ∪ OPT) for every T ⊆ N . One can observe that g is non-negative and submodular,

and thus, by Claim 21,

1

ℓ

ℓ
∑

i=1

f(Si ∪ OPT) = E[f(S ∪ OPT)] = E[g(S)] ≥ (1− p)g(∅) =

(

1− 1

ℓ

)

f(OPT) .

The lemma now follows by multiplying both sides of the last inequality by ℓ.

Lemma 11 Suppose f is a non-negative submodular function over ground set N . For every three

sets A,B,C ⊆ N , f(A ∪ (B ∩ C)) + f(B \ C) ≥ f(A ∪B).

Proof Observe that

f(A ∪ (B ∩ C)) + f(B \ C) ≥ f(A ∪ (B ∩ C) ∪ (B \ C)) + f((A ∪ (B ∩ C)) ∩ (B \ C))

≥ f(A ∪ (B ∩ C) ∪ (B \ C)) = f(A ∪B) ,

where the first inequality follows from the submodularity of f , and the second inequality follows

from its non-negativity.

In the proof of Theorem 5 we omitted the calculation showing that for ℓ = ⌈
√
k⌉, we get

k + α
2 ℓ+ 1− α

2

1− 1
ℓ

≤ k + α
2 (
√
k + 1) + 1− α

2

1− 1√
k

=
k + α

2

√
k + 1

1− 1√
k

≤ k +
(

1 +
α

2

)√
k + 2 +

α

2
+

4 + α√
k

,

where the last inequality holds because for k ≥ 4 it holds that

[

k +
(

1 +
α

2

)√
k + 2 +

α

2
+

4 + α√
k

](

1− 1√
k

)

= k +
α

2

√
k + 1 +

4 + α

2
√
k
− 4 + α

k

≥ k +
α

2

√
k + 1 .

Appendix C. Missing Proofs of Section 5

Lemma 12 f(S) ≥ f(S ∪ OPT)− ∑

u∈N
|Ou \ S|∆f(u|Su).

Proof We first show that f(S) ≥ f(O), then we lower bound f(O) to complete the proof. By P1

and P2, we have O ∈ I and S ⊆ O, and thus, S + v ∈ I for all v ∈ O \ S because (N , I) is

an independence system. Consequently, the termination condition of Algorithm 3 guarantees that

∆f(v|S) ≤ 0 for all v ∈ O \ S. To use these observations, let us denote the elements of O \ S by

v1, v2, . . . , v|O\S| in an arbitrary order. Then

f(O) = f(S) +

|O\S|
∑

i=1

∆f
(

vi|S ∪ {v1, . . . , v|O\S|}
)

≤ f(S) +

|O\S|
∑

i=1

∆f (vi|S) ≤ f(S) ,
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where the first inequality follows by the submodularity of f .

It remains to prove the lower bound on f(O). By definition, O is the set obtained from OPT after

the elements of ∪u∈NOu are removed and the elements of S are added. Additionally, an element

that is removed from O is never added to O again, unless it becomes a part of S. This implies that

the sets {Ou \ S}u∈N are disjoint and that O can also be written as

O = (S ∪ OPT) \ ∪u∈N (Ou \ S) . (6)

Denoting the the elements ofN by u1, u2, . . . , un in an arbitrary order, and using the above, we get

f(O) = f(S ∪ OPT)−
n
∑

i=1

∆f
(

Oui \ S|(S ∪ OPT) \ ∪1≤j≤i(Ouj \ S)
)

(Equality (6))

≥ f(S ∪ OPT)−
n
∑

i=1

∆f(Oui \ S|Sui)

≥ f(S ∪ OPT)−
n
∑

i=1

∑

v∈Oui\S
∆f(v|Sui)

= f(S ∪ OPT)−
∑

u∈N

∑

v∈Ou\S
∆f(v|Su) ,

where the first inequality follows from the submodularity of f because Sui ⊆ S ⊆ (S ∪ OPT) \
∪u∈N (Ou \ S) and the second inequality follows from the submodularity of f as well.

To complete the proof of the lemma we need one more observation. Consider an element u for

which Ou is not empty. Since Ou is not empty, we know that u was considered by the algorithm at

some iteration. Moreover, every element of Ou was also a possible candidate for consideration at

this iteration, and thus, it must be the case that u was selected for consideration because its marginal

contribution with respect to Su is at least as large as the marginal contribution of every element of

Ou. Plugging this observation into the last inequality, we get the following desired lower bound on

f(O).

f(O) ≥ f(S ∪ OPT)−
∑

u∈N

∑

v∈Ou\S
∆f(v|Su)

≥ f(S ∪ OPT)−
∑

u∈N

∑

v∈Ou\S
∆f(u|Su) = f(S ∪ OPT)−

∑

u∈N
|Ou \ S|∆f(u|Su) .

Lemma 13 E[f(S)] ≥ 1
k+1

∑

u∈N
E[Xu∆f(u|Su)].

Proof For each u ∈ N , let Gu be a random variable whose value is equal to in the increase in the

value of S when u is added to S by Algorithm 3. If u is never added to S by Algorithm 3, then the

value of Gu is simply 0. Clearly,

f(S) = f(∅) +
∑

u∈N
Gu ≥

∑

u∈N
Gu .
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By the linearity of expectation, it only remains to show that

E[Gu] =
1

k + 1
E[Xu∆f(u|Su)] . (7)

Let Eu be an arbitrary event specifying all random decisions made by Algorithm 3 up until the

iteration in which it considers u if u is considered, or all random decisions made by Algorithm 3

throughout its execution if u is never considered. By the law of total probability, since these events

are disjoint, it is enough to prove that Equality (7) holds when conditioned on every such event Eu.

If Eu is an event that implies that Algorithm 3 does not consider u, then, by conditioning on Eu, we

obtain

E[Gu|Eu] = 0 =
1

k + 1
E[0 ·∆f(u|Su)|Eu] =

1

k + 1
E[Xu∆f(u|Su)|Eu] .

On the other hand, if Eu implies that Algorithm 3 does consider u, then we observe that Su is a

deterministic set given Eu. Denoting this set by S′
u, we obtain

E[Gu|Eu] = Pr [u ∈ S | Eu] ∆f(u|S′
u) =

1

k + 1
∆f(u|S′

u) =
1

k + 1
E[Xu∆f(u|Su)|Eu] .

where the second equality hold since an element considered by Algorithm 3 is added to S with

probability (k + 1)−1.

Lemma 14 For every element u ∈ N ,

E[|Ou \ S|∆f(u|Su)] ≤
k

k + 1
E[Xu∆f(u|Su)] . (8)

Proof As in the proof of Lemma 13, let Eu be an arbitrary event specifying all random decisions

made by Algorithm 3 up until the iteration in which it considers u if u is considered, or all random

decisions made by Algorithm 3 throughout its exectution if it never considers u. By the law of total

probability, since these events are disjoint, it is enough to prove Inequality (8) conditioned on every

such event Eu. If Eu implies that u is not considered, then both |Ou| and Xu are 0 conditioned on

Eu, and thus, the inequality holds as an equality. Thus, we may assume in the rest of the proof

that Eu implies that u is considered by Algorithm 3. Notice that conditioned on Eu the set Su is

deterministic and Xu takes the value 1. Denoting the deterministic value of Su conditioned on Eu
by S′

u, Inequality (8) reduces to

E[|Ou \ S| | Eu]∆f(u|S′
u) ≤

k

k + 1
∆f(u|S′

u) .

Since u is being considered, it must hold that ∆f(u|S′
u) > 0, and thus, the above inequality is

equivalent to E[|Ou \S| | Eu] ≤ k
k+1 . There are now two cases to consider. If Eu implies that u ∈ O

at the beginning of the iteration in which Algorithm 3 considers u, then Ou is empty if u is added

to S and is {u} if u is not added to S. As u is added to S with probability k
k+1 , this gives

E[|Ou \ S| | Eu] ≤
1

k + 1
· |∅|+

(

1− 1

k + 1

)

|{u}| = k

k + 1
,
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and we are done. Consider now the case that Eu implies that u 6∈ O at the beginning of the iteration

in which Algorithm 3 considers u. In this case, Ou is always of size at most k by the discussion

following Algorithm 3, and it is empty when u is not added to S. As u is, again, added to S with

probability k
k+1 , we get in this case

E[|Ou \ S| | Eu] ≤
1

k + 1
· k +

(

1− 1

k + 1

)

|∅| = k

k + 1
.

In the proof of Theorem 4 we omitted the explanation why the inequality E[f(S ∪ OPT)] ≥
k

k+1f(OPT) holds. To see why this is the case, let us define g : 2N → R≥0 as g(T ) = f(T ∪OPT)
for every T ⊆ N . One can observe that g is non-negative and submodular. Since S contains every

element with probability at most (k + 1)−1, we get by Claim 21

E[f(S ∪ OPT)] = E[g(S)] ≥
(

1− 1

k + 1

)

g(∅) =
k

k + 1
f(OPT) .
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