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ABSTRACT. We describe a "greedy" algorithm for partitioning the natural

numbers into sets free of arithmetic progressions of length 3. A recursive

formula governing the resulting partition is proved, and some features of its

asymptotic behavior are discussed.

Introduction. In 1927, van der Waerden [12] showed that if the set of non-

negative integers is partitioned into a finite number of sets, one of these sets must

contain arithmetic progressions of length 3, and indeed of arbitrary length. Of

course, if one instead allows an infinite number of sets in the partition, it is easy to

ensure that each of the sets contains no arithmetic progression of length 3; one can

for example partition N = {0,1,2,... } into singletons {0}, {1}, {2},_A natural

idea for constructing a more "economical" partition of N into sets So,Sx,S2,...

with the aforementioned property is to assign each successive integer to the set Si

with i as small as possible, subject to the constraint that no Si may contain three

integers in arithmetic progression. Thus:

OeSo,
le So,
2GSi (since 0,1 € S0),

3eS0,
4€50,

5eSi (since 3,4 6 So),
6G5i (since 0,3 € S0),

7 G S2 (since 1,4 € S0 and 5,6 G Si),
8GS2 (since 0,4 G S0 and 2,5 € Si),

This is the greedy algorithm for partitioning N into sets free of length 3 arithmetic

progressions. The set So constructed in this way consists (as will be shown) of

those integers whose base 3 representations contain only the digits 0 and 1. This

set was first considered by Szekeres (see [1]), but the sets Si,S2,... appear to be

new.

Throughout this paper, we will frequently represent the partition {So, Si, S2,... }

in terms of its "characteristic sequence" (an)o°i where

an = k   exactly if   nG Sfc.

Received by the editors June 20, 1986 and, in revised form, November 19, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 05A17, 11B25; Secondary

05B10, 11B13, 11P68.
During the writing of this article, James Propp was supported by a National Science Foundation

fellowship.

©1988 American Mathematical Society

0002-9939/88 $1.00 + $.25 per page

765

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



766 JOSEPH GERVER, JAMES PROPP AND JAMIE SIMPSON

That is,

Mg0 = (0,0,1,0,0,1,1,2,2,...).

It will prove convenient to pass back and forth between the partition-representation

and the sequence-representation of the greedy construction.

The major result proved in this article is the following recurrence formula which

allows on to be determined quite easily, even for very large values of n:

(1) a3k+r = [|(3a* + r)\   for k > 0, 0 < r < 2.

The relation (1) was discovered empirically. A computer was used to check the

conjecture for values of n = 3fc + r up to 37 — 1 = 2186 and this gave us the

confidence to search for a proof.

We emphasize that for any natural density-related notion of optimality, our

partition is far from optimal. The sets S¡t follow the density law |Sfcn[0, n-l]| « na

with a = log 2/ log 3 ss .63, whereas a theorem of Salem and Spencer [10] says that

much denser sets free of arithmetic progression exist (for instance, the exponent

may be replaced by any number less than 1). Readers interested in results along

these lines should read Rankin's article [8].

One direction in which further work seems warranted is the investigation of

the greedy partitioning algorithm under different initial conditions, in the spirit of

Odlyzko and Stanley [7] (see section E10 of [5]); they grew sets free of arithmetic

progressions from various initial "seeds" and observed an interesting mix of orderly

and random behavior.

Also worthy of study is the greedy partition of the natural numbers that arises

when one forbids only subsets that contain a length k arithmetic progression (with

k > 3). When k is composite, apparent chaos ensues [4, 3], but for k — p prime, the

greedy partition is extremely orderly; for instance, the set So ends up containing

all those nonnegative integers that have no p — l's in their base p representations

(this too was known by Szekeres, as described in [1]). No analogue of formula (1)

has been found even for the case p = 5 (in particular, the plausible conjecture that

apk+r — (pak + r)

seems to fail at ap3_p2+p_i whenever p > 3), but it appears likely that some

recursive formula exists. Indeed, observed regularities in the partition depend in

an intriguing way on the prime factorization of p - 1. We hope further work by

ourselves and others will shed some light on this situation.

In §1, notations and conventions are introduced. In §11, equation (1) is proved.

Finally, §111 answers some questions concerning the asymptotic behavior of (an).

I. Notations and conventions.  Inductively define an (n > 0) as the least

nonnegative integer such that for no positive integer d < n/2 does the relation

(2) an = an-d = an~id

hold. Set ¿>o = 0 and define bn (n > 0) according to the recurrence relation

(3) b3k+r = [i(36fc +r)\    for k > 0, 0 < r < 2.
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Put Si = {n > 0: an = i} and T¿ = {n > 0: bn = i} for i > 0. Equation (1) is

tantamount to the claim that a„ = bn for all n, or equivalently, that S¿ = T¿ for all

i. In proving this, the following notation will be useful:

A + B = {a + b: a G A, bG B},        kA = {ka: a G A},

where k is an integer and A, B are sets of integers. Furthermore, in those cases

where a set is a singleton and there is no possibility of confusion, we omit the

brackets, so that for example A + 2 is an abbreviation for A + {2}.

We use the term "arithmetic progression" to signify an arithmetic progression

of length 3 whose common difference is not zero.

II. The main theorem. The plan of this section is as follows. We split the

claim that S¿ = T¿ for all i into two parts:

THEOREM 1.   None of the sets Ti (i > 0) contains an arithmetic progression.

THEOREM 2. If n G Tí and j < i, then there exists 0 < d < n/2 such that

n-d,n-2dGTj.

The first of these can be settled easily by induction. The other is harder, and

will require the use of a supplementary induction hypothesis.

To see why Theorems 1 and 2 together imply that S¿ = 7¿ for all i, fix n and

assume that Sj D [0, n -1] = Tj- n [0, n — 1] for all /; consider what happens at the nth

stage of the greedy algorithm, when it is determined to which of the Sj's we should

assign n. Say n G Ti. Theorem 2 says that n may not be assigned to any of the

sets So, Si,..., Si-i, while Theorem 1 says that n can (and hence will) be assigned

to Si without creating an arithmetic progression. Induction on n completes the

argument.

Proof of Theorem l (by contradiction). Let {n - 2d, n - d, n} be a
minimal counterexample, so that n, n — d, n — 2d G Tt for some i; that is, bn =

bn-d = bn-2d = i- Put n = 3fc + r with 0 < r < 2.

Case I: If 3\d, write d = 3e so that b3k+r = b3(k-e)+r = °3(k-2e)+r = *• By

(3), each of the numbers 3bk + r, 36jt_e + r, and 3bk-2e + r is either 2i or 2i +■ 1.

Since the three numbers are all congruent to one another modulo 3, no two can be

consecutive, so they must all be equal. But then bk — bk-e = bk-2e, contradicting

the minimality of n.

Case II: If 3 f d, then n,n — d, and n -2d are pairwise incongruent modulo 3,

so that we can write &3fc0+o = ¿3*1+1 = ¿3fc2+2 = i, where 3fc0 + 0, 3fci + 1, Zk2 + 2

is some permutation of n, n — d, n — 2d. By (3), each of the numbers 3¿>fc0 + 0,

36fcx + 1, 36fc2 + 2 is either 2i or 2i + 1. Hence two of them must be equal. But this

is impossible, since they are distinct modulo 3.    G

Before proving Theorem 2, we need a couple of lemmas.

LEMMA l.   For all n > 0,

(4)      . bn < bn-l + 1.

PROOF. Put n - 3k + r with 0 < r < 2.

¿>3fc+i = [|(3i* + 1)] < [}(3fc)l + l = b3k + l;

b3k+2 = [\®bk + 2)] < [\(3bk + 1)] + 1 = b3k+i + 1;

and
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b3k+3 = [¿(3bk+i)} < [§(3(6* + 1))]    (by induction, since k + K 3k + 3)

< [¡(3fck + 2)] + 1 = ftsfc+2 +1.    a

LEMMA 2.   (a) T3m = 3T2m + {0,1},

(b) T3m+i = (3T2m + 2) U (3T2m+i),

(c)r3m+2=3T2m+i + {l,2}.

PROOF. If k G T2m, then bk = 2m so that

b3k = [\(Zh + 0)] = [|(6m)] = 3m    and

b3k+i = [¡(36* + 1)] = [¡(6m + 1)] = 3m,

whence 3k, 3k + 1 G T3m. Conversely, suppose n G T3m. Write n = 3fc + r with

0 < r < 2. By (3),

3m = bn = [\(3bk + r)\

so that 3bk + r = 6m or 6m +■ 1. This implies that r = 0 or 1 and that bk = 2m,

whence k G T2m. Thus (a) is established; the proofs of (b) and (c) are similar.    G

Note that (a) implies, in the case m = 0, that TQ is the set of integers whose

base 3 representations contain only 0's and l's.

We now state and prove

THEOREM 2 (STRENGTHENED). If n G Ti and j < i, then there exists d =

d(n,j) > 0 such that

n-dGTj    and    n-2dGTj.

If moreover j < i, then there exists e = e(n,j) > 0 such that

n — e G Tj+X    and   n — 2e — iGTj.

(Note that if j = i we may take d = 0, while if j < i, d must be positive since Ti

and Tj are disjoint. Hence the first half of the claim is equivalent to the original

version of Theorem 2.)

PROOF (BY INDUCTION ON i AND n). We will show that if the theorem holds

for all i' and n' such that i' < i and n' <n then it holds for i and n. The basis for

the induction is easy: when i = 0, the only j to be considered is j — 0, for which

we put d = 0. Now suppose i > 1. Fix n — 3k + r G Ti with 0<r<2;n>2

because 0,1 G T0 and i ^ 0. Since i = bn = [|(36fc -I- r)] and i > 1, we have

3bk <3bk + r = 2t    or    2t + 1

< 2t +1 < 3t,

so that bk < i. Since n > 0, we have either k > 0 or r > 0, so that k < 3k + r = n.

Hence it will suffice to prove that the theorem holds for i, n given that it holds for

all i',n' with i' < bk, n' < k.

Fix j < i. If j = i, we take d = 0 and are done. Otherwise, write j = 3m +1

with 0 < t < 2. Since

3bk + r = 2t   or   2t + 1

> 2t > 2(j + 1) = 2(3m + t + 1),

we have

(5) bk-2m> \(2t + 2-r).
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Hence bk > 2m. Applying our induction hypothesis to n' = k and i' = bk with 2m

in the role of j, we may assert that there exists do such that

k - do G T2m,    k - 2do G T2m.

The analysis now divides naturally into cases, according to the values of t and r.

As long as (t,r) ^ (0,2), inequality (5) implies that bk > 2m, or bk > 2m + 1.

This implies (apply the induction hypothesis to n' = k and i' = bk with 2m + 1 in

the role of j) that there exists dx such that

k - dx G T2m+i,    k - 2di G T2rn+Í.

It also implies (use n' — k and i' = bk with 2m in the role of j) that there exists eo

such that

fc-e0eT2m+i,    k - 2e0 - 1 G T2m.

Moreover, by Lemma 1, bk-i > bk — 1 > 2m, and this implies (use n' = k — 1 and

i' = bk-i with 2m in the role of j) that there exists d'Q such that

(k-l)-d'0GT2m,     (k-l)-2d'oGT2m.

Finally, in the cases (t,r) = (1,0), (2,0), (2,1), and (2,2), inequality (5) implies

that bk > 2m + l,or bk> 2m + 2. This implies (use n' = k and i' = bk with 2m +1

in the role of j) that there exists ex such that

k-ei G T2m+2,    k-2ei - 1 G T2m+i.

Moreover, in these cases Lemma 1 gives ¿>k-i > bk — 1 > 2m + 1, and this implies

(use n' = k — 1 and i' = bk-i with 2m +1 in the role of j) that there exists d'x such

that

(k - 1) - d'x G T2m+i,    (k - 1) - 2d'i G T2m+i.

To summarize the preceding paragraphs: in our task of finding d(n, j) and e(n, j),

we have available to us

do = d(k, 2m) : all cases,

dx = d(k, 2m + 1) : all cases except (t, r) — (0,2),

d'o = d(k — 1,2m) : all cases except (t, r) = (0,2),

d'x = d(k - 1,2m + 1) : (t, r) = (1,0), (2,0), (2,1), or (2,2),

eo = e(k, 2m) : all cases except (i, r) = (0,2),

ei=e(fc,2m + l): for) = (1,0),(2,0),(2,1), or (2,2).

We now find d(n,j) and e(n,j) by cases.

(r, r) = (0,0): Take d = 3d0, e = 3d'0 + 1. Then

n - d = 3k — 3do = 3(k — d0) G 3T2m C T3m = Tj;

n-2d = 3k-6d0 = 3(k - 2d0) G 3T2m C T3m = Tj;

n - e = 3k - 3d'0 - 1 = 3(* - 1 - d'0) + 2 G 3T2m + 2 C T3m+i = T]+x;

n - 2e - 1 = 3k - 6d'0 - 3 = 3(k - 1 - 2d'0) G 3T2m C T3m = Tj.

The other eight cases are similar.

(t,r) = (0,1):   Take d = 3d0, e = 3e0 + 1.

(t, r) = (0,2):    Take d = 3d0 + 1, e = 3d0.
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(f,r) = (l,0):    Take d - 3di, e = 3d'i + l.
(i,r) = (l,l):    Take d = 3e0 + l, e = 3di.

(t,r) = (1,2):    Take d = 3d0, e = 3e0 + 1.

(t,r) = (2,0):    Take d = 3d'i+l,e = 3ei.

(t,r) = (2,1):   Take d = 3di, e = 3ei+ 1.

(i,r) = (2,2):    Take d = 3du e = 3ei + 1.

This completes the construction of d and e, and the theorem now follows by

induction.    G

Note that in each case, both d(n,j) and e(n,j) are of the form 3x or 3a;+l, where

x is some earlier constructed d or e. (Of course this recursive construction does

not nest indefinitely; ultimately we reach the level of d(n, 0) = 0 with n G To.) It

follows that the d and e given by the proof of Theorem 2 have base 3 representations

containing only 0's and l's and thus lie in the set T0. In general, there may be

many different values of d and e that validate Theorem 2 for a particular pair n, j.

However, it appears that the d(n,j) and e(n,j) constructed above are the only such

values of d and e that lie in To. The same goes for f(n,j), where / is required to

satisfy

n - / - 1 € Tj    and    n - 2/ - 1 G Tj

whenever j <bn; the existence of such an / has been proved, but uniqueness in To

has not. We have used a computer to verify the uniqueness of d, e, and / in T0 for

n < 37 - 1.

The function f(n,j) mentioned above arose in an earlier version of the proof

which used a joint induction on all three functions. It was later seen that / could

be eliminated from consideration. It would be nice to have a proof of Theorem 2

requiring no extra hypothesis whatsoever (i.e., to eliminate e from consideration as

well). Observe that in our proof of Theorem 2, only the prescription "d = 3eo -I-1"

for the case (t,r) = (1,1) prevents us from dropping the induction hypothesis on e

from our proof.

III. Some associated sequences. One question we ask about the limiting

behavior of the partition {So,Si,S2,... } (= {To,Tx,T2,...}) is, how quickly does

|S¿ fi [0, n — 1]| grow as a function of n? In [9], Roth showed (as a special case

of the later Szemerédi Theorem [11, 2]) that the subsets of [0, n — 1] containing

no arithmetic progressions of length 3 have density tending to 0 as n —► oo (for

a short and elementary proof, see [6]); this tells us in particular that for fixed »,

|S¿n[0,n-l]| is o(n).
Let us first consider the set So and define ao(n) = |So PI [0,n — 1]|. Since So

consists of those numbers whose base three expansions contain only 0's and l's,

CT0(3fc) = 2k. It follows that for 3k < n < 3k+1, 2k < <j0(n) < 2k+1, whence

logcT0(n) __^ log 2

log n log 3

as n —► oo. In other words, ao(n) grows like na, where a = log 2/log 3 ss .63.

Now let cii(n) = |S¿ n [0,n - 1]|. The functions tr¿(n) (i > 0) also grow like na;

this is a consequence of the following fact.

THEOREM 3.   For all i, and for all k sufficiently large relative to i,

o-i(3k) = 2k - At

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GREEDILY PARTITIONING THE NATURAL NUMBERS 771

where the sequence (A¿)o° = (0,1,2,4,6,8,12,14,... ) satisfies the recurrence

A<=A[¿(3i)l+A,¿(2t+l)]-

PROOF. Since Si = Ti for all », Lemma 2 of the previous section implies

cTí(3fc)=íTJO(3fc-1)+cT,I(3fc-1)

where jo = [|(2»')], ii = [j(2» + 1)]. For i — 1, the relation

cTi(3fc) = 2fc-1+6Ti(3fc-1)

yields
ax(3k) = 2k~1 + 2k~2 + ■ • ■ + 1 = 2k - 1

for all k > 0. Now fix » > 1, so that jo,ji < i, and assume there exists K such that

ajo(3k) = 2k-A3o    and   <rh (3k) = 2k - A*

for all k>K. Then for all k > K + 1, we have

at(3fc) = (2*-1 - A3o) + (2«-1 - An) = 2k- (AJ0 + An),

so that the theorem is true by induction.    G

Another kind of asymptotic question we ask concerns the subsequence (cfc)g° —

(0,1,2,4,7,... ) of (an)g°, where Ck = an for n — 3k — 1. It may be shown that c* is

the largest of the first 3fc terms of (on), and measures how quickly max{an: n < N}

grows. We have

a3fc+i_i — [\(3a3k_i + 2)],

so Cfc+i = [^(3cfc + 2)]. That is, for each k, either c/t is even, in which case

Cfc+i = §Cfc + 1 and

Cfc+l Cfc 1

(3/2)*+! ~ (3/2)*      (3/2)fc+! '

or Cfc is odd, in which case Cfc+i = (3/2)cjt + 1/2 and

Cfc+i Ck 1/2

(3/2)*+!      (3/2)fc      (3/2)fc+! '

Hence Ck/(3/2)k tends toward the limit

ß = 1(2/3) + i(2/3)2 + l(2/3)3 + l(2/3)4 + |(2/3)5 + • • • ,

where the coefficient of (2/3)fc+1 is 1 if Ck is even and 1/2 if Ck is odd. The coeffi-

cients alternate between 1/2 and 1 in a seemingly erratic fashion, and we have no

idea whether ß can be characterized in terms of the standard algebraic and tran-

scendental functions. Even proving that Ck is odd 50% of the time asymptotically

looks hard.
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