
Greedy Algorithms for Minimum Spanning Tree

Harvey J. Greenberg
University of Colorado at Denver

http://www.cudenver.edu/�hgreenbe/
(url changed December 1, 1998)

March 28, 1998

The glossary de�nes a spanning tree for a connected graph with non-negative weights on its edges,
and one problem: �nd a max weight spanning tree. Remarkably, the greedy algorithm results in a
solution. Here we present similar greedy algorithms due to Prim [3] and Kruskal [2], respectively,
for the problem: �nd a min weight spanning tree. Graham and Hell [1] gives a history of the
problem, which originated with the work of Czekanowski in 1909. The material here is based on
Rosen [4].

The Algorithms

We are given a connected graph, G = [V;E], with n vertices andm edges with non-negative weights,
w(ei). We �rst sort the edges such that w(e1) � : : : � w(em). (This takes O(m logm) time.) The
output is a spanning tree, T , whose total weight is a minimum.

For each algorithm, T is initialized with e1 (an edge with minimum weight) and its two end-
points. The number of vertices in T is denoted v(T ) (which is initialized at 2).

Prim's Algorithm. do while v(T ) < n: interrogate edges (in order) until one is found that is
incident with a vertex in T and does not form a simple circuit in T . Then, add this edge and
its endpoint to T (thereby increasing v(T ) by 1).

Kruskal's Algorithm. do while v(T ) < n: interrogate edges (in order) until one is found that
does not form a simple circuit in T . Then, add this edge and its endpoint(s) to T (thereby
increasing v(T ) by 1 or 2).

The algorithms di�er in that Prim's requires that the next edge added be incident with a vertex
in the (partial) tree, T , whereas Kruskal's just adds the next edge that does not form a circuit. To
illustrate, we present the progression of Prim's and Kruskal's algorithms for the following graph:

a b

d

1

3

1

4

3

e
2

3
2

c

1



a b

c d

e

a b

e

a b

e

a b

d

Prim

a b a b

c d

a b

c d

e

a b

c d

e

Kruskal

They arrive at the same minimum spanning tree whose total weight is 6.

Proof of Optimality

Every graph with n vertices, n � 1 edges and no circuits must be a tree; in particular, the graph
must be connected, and the algorithms result in a spanning tree (whose minimality is shown below).
If the original graph is not connected, Prim's algorithm will �nd a minimum spanning tree in the
component containing e1, then it will fail to add any more edges. Kruskal's algorithm will �nd a
minimum spanning tree for each component. In the following proof of optimality, we assume G is
connected, and the algorithm added the edges in the order ei1 ; ei2 ; : : : ; ein�1 (note: i1 = 1).

For each subset, fei1 ; ei2 ; : : : ; eikg, let Tk denote the associated subgraph consisting of those
edges plus their endpoints. (In the case of Prim's algorithm, Tk is connected, so it is a tree with
v(Tk) = k+ 1.) Choose k to be the maximum integer with the property that a minimum spanning
tree exists that contains Tk. (k = 0 means no minimum spanning tree contains e1, but the following
proof shows this cannot happen.) Let T � be a minimum spanning tree, with total weight w(T �),
that contains Tk (for the maximum k), but k < n�1 (i.e., T � 6= Tn�1). Since eik+1 62 T �, T �[feik+1g

has a simple circuit containing eik+1 . We let ep be any edge in this circuit that was a candidate for
Kruskal's algorithm, and we let eq be a candidate for Prim's algorithm. Here is a picture to clarify
the notation:

2



ei

ei 2

1

ei k+1
{ }T* =

ei k

ei k+1

ep

kT

For Prim’s algorithm, this node

is the same as one above.

eq

(Need not be connected in Kruskal’s.)

is a subtree in Prim’s algorithm.

We then let e0 denote ep or eq, according to which algorithm is executed, and we consider an
exchange of eik+1 for e

0. The circuit cannot contain only edges in Tk because that would make eik+1
ineligible, so e0 is not one of the previously selected edges in Tk, which means the exchange results
in a new spanning tree, T 0, with total weight, w(T 0) = w(T �) + w(eik+1) � w(e0). Since e0 was
a candidate, the rules for adding an edge in either algorithm imply w(eik+1) � w(e0), so w(T 0) �
w(T �). Since T � is a minimum spanning tree, equality must hold, so we have w(T 0) = w(T �), which
means T 0 is also a minimum spanning tree. However, T 0 � Tk+1, which contradicts the maximality
of k.

The implication of this is that either greedy algorithm (Prim or Kruskal) for the minimum
spanning tree problem produces an optimal solution.

References

[1] R.L. Graham and P. Hell. On the history of the minimum spanning tree problem. Annals of

the History of Computing, 7(1):43{57, 1985.

[2] J.B. Kruskal. On the shortest spanning tree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society, 7:48{50, 1956.

[3] R.C. Prim. Shortest connection networks and some generalizations. Bell Systems Technology

Journal, 36:1389{1401, 1957.

[4] K.H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, Inc., New York, NY,
third edition, 1995.

3


