
Greedy Approximation Algorithms for Directed Multicuts

Yana Kortsarts
Department of Computer Science, Widener University, Chester, Pennsylvania 19013

Guy Kortsarz
Department of Computer Science, Rutgers University, Camden, New Jersey 08102

Zeev Nutov
Open University of Israel, Klauzner 16 Str., Ramat-Aviv, Israel

The Directed Multicut (DM) problem is: given a simple
directed graph G = (V , E) with positive capacities ue
on the edges, and a set K ⊆ V × V of ordered pairs of
nodes of G, find a minimum capacity K-multicut; C ⊆ E
is a K-multicut if in G − C there is no (s, t)-path for any
(s, t) ∈ K. In the uncapacitated case (UDM) the goal is
to find a minimum size K-multicut. The best approxi-
mation ratio known for DM is O(min{√n, opt}) by Gupta,
where n = |V |, and opt is the optimal solution value.
All known nontrivial approximation algorithms for the
problem solve large linear programs. We give the first
combinatorial approximation algorithms for the prob-
lem. Our main result is an Õ(n2/3/opt1/3)-approximation
algorithm for UDM, which improves the O(min{opt,

√
n})-

approximation for opt = �(n1/2+ε). Combined with the
article of Gupta, we get that UDM can be approximated
within better than O(

√
n), unless opt = �̃(

√
n). We also

give a simple and fast O(n2/3)-approximation algorithm
for DM. © 2005 Wiley Periodicals, Inc. NETWORKS, Vol. 45(4),
214–217 2005

Keywords: directed; graphs; multicuts; approximation

1. INTRODUCTION AND PRELIMINARIES

An instance of the Directed Multicut (DM) problem con-
sists of a simple directed graph G = (V , E) with integral
capacities ue on the edges and a set K ⊆ V × V of ordered
pairs of nodes of G. The goal is to find a minimum K-multicut,
that is, a minimum capacity edge set C so that in G−C there
is no (s, t)-path for any (s, t) ∈ K . In the uncapacitated case
(UDM), all edges have capacity 1.

Received June 2004; accepted March 2005
Correspondence to: G. Kortsarz; e-mail: guyk@camden.rutgers.edu
DOI 10.1002/net.20066
Published online in Wiley InterScience (www.interscience.wiley.
com).
© 2005 Wiley Periodicals, Inc.

The minimum multicut problem is one of the most fun-
damental problems in optimization. Edge (and vertex) cuts
are important for the study of Markov chains and geometric
embedding. They also appear in the study of clustering, divide
and conquer approaches, PRAM emulation, VLSI layout, and
packet routing in distributed networks (see, e.g., [4] and ref-
erences therein). The directed multicut problem is the dual of
the fundamental multicommodity flow problem. See Chap-
ter 5 of the book [10] for more details on multicut problems
in the context of approximation algorithms. Although the
undirected graph case enjoys some efficient approximation
algorithms (see references below) the directed case seems
much harder. Few approximation results exist for the directed
case despite the considerable attention it has received.

We survey some related work. The case |K| = 1 is polyno-
mially solvable based on the fundamental Max-Flow Min-Cut
Theorem. For |K| > 1 the min-cut max-flow equality breaks
down even on undirected graphs. In fact, the undirected
multicut problem is MAXSNP-hard even on stars [8]. A
2-approximation algorithm is given in [8] for the undirected
multicut problem on trees. The best approximation ratio for
the minimum multicut problem on general undirected graphs
is O(log |K|) [7].

In [11], a related problem is studied. The input is as in
the DM problem, except that the pairs in K are unordered.
The goal is to remove a min-capacity edge set C so that
in G − C no cycle contains a pair from K . This problem
seems easier than the DM problem. In particular, divide-
and-conquer methods similar to the ones in [4, 7, 12] give
an O(log2 |K|)-approximation for this variant [11]. In [4], a
relatively general scheme is presented handling many prob-
lems that are “decomposable,” but DM does not seem to
lend itself in any way to the divide-and-conquer approach.
Given this fact, it may be that the directed multicut problem
is harder to approximate than the undirected one. In particu-
lar, a (poly)logarithmic approximation is not known for DM,

NETWORKS—2005

nor for UDM. However, so far, an exact proof separating the
approximability of the undirected and directed problems does
not exist. In fact, the only approximation threshold known for
the directed case is the one derived from the undirected case:
namely, that the problem is MAXSNP-hard.

The first nontrivial approximation ratio of O(
√

n log n)

for DM is due to Cheriyan et al. [1]. This was slightly
improved by Gupta [9] to O(

√
n). Gupta’s analysis also gives

an O(opt2) capacity solution, with opt being the optimal
multicut capacity. This can be considered as an O(opt)-
approximation algorithm, and is useful when opt is “small.”
Both algorithms [1] and [9] require solving large linear
programs.

We design combinatorial approximation algorithms for
DM. Let n and m be the number of nodes and edges, respec-
tively, in the input graph. We use the Õ notation, which
ignores polylogarithmic factors. Our main result is:

Theorem 1.1. For UDM there exists an algorithm with run-
ning time Õ(n2m) that finds a multicut C of size O((n log n ·
opt)2/3) = Õ((n · opt)2/3).

The approximation ratio is Õ(n2/3/opt1/3). Therefore,
Theorem 1.1 implies that for UDM the

√
n-approximation

can be improved if opt is large (e.g., opt = �(n1/2+ε) for
some ε > 0). This is the first algorithm whose approximation
ratio improves as opt gets larger. Combined with the results
of [9], which provide an O(opt)-approximation, we get an
approximation ratio better than Õ(

√
n), unless opt = �̃(

√
n).

Our additional result is:

Theorem 1.2. DM admits an O(n2/3)-approximation algo-
rithm with running time Õ(nm2).

The approximation ratio in [1, 9] is better than the one in
Theorem 1.2. However, our algorithm is very simple, and runs
faster than the algorithms in [1, 9]; the latter can be imple-
mented in O(n2m2) time using the algorithm of Fleischer [5]
for finding an approximate solution of multicommodity-flow
type linear programs.

We prove Theorems 1.1 and 1.1 in Sections 2 and 3,
respectively.

We now describe the notation used. Let G = (V , E) be
a directed graph. For s, t ∈ V the distance dG(s, t) from s
to t in G is the minimum number of edges in an (s, t)-path;
dG(s, t) = ∞ if no (s, t)-path exists in G. For disjoint subsets
S, T ⊆ V of V let δG(S, T) = {st ∈ E : s ∈ S, t ∈ T}.
We often omit the subscript G if it is clear from the context.
An edge set C ⊆ E is an (s, t)-cut if C = δ(S) for some
S ⊆ V − t with s ∈ S. Let u(C) = ∑{ue : e ∈ C} be
the capacity of C; u(C) = |C| if no capacities are given.
For simplicity of exposition, we ignore that some numbers
are not integral. The adaptation using floors and ceilings is
immediate. Unless specifically stated otherwise, all logs in
the article are to the base 2.

Before we describe the algorithm, a few preliminary
remarks are required. Our algorithms run with certain para-
meters, which should get appropriate values that depend on n

and opt to achieve the claimed approximation ratios. Specif-
ically, for UDM we show an algorithm that for any integer �

computes a multicut of size � · opt + O((n log n)2/�2). Set-
ting � = (n log n)2/3/opt1/3 gives the claimed approximation
ratio. Because opt is not known, we execute the algorithm for
� = 1, . . . , (n log n)2/3, and among the multicuts computed
output one of minimum size. For DM, we show an algorithm
that for any integers �, µ with 1 ≤ � ≤ n − 1 and µ ≥ opt
computes a K-multicut of capacity ≤ µ · (2� + n2/�2). Set-
ting � = n2/3 and µ = opt gives the claimed approximation
ratio. Since opt is not known, we apply binary search to
find the minimum integer µ so that a multicut of capac-
ity ≤ µ · (2� + n2/�2) is returned. Note that if µ ≥ opt,
a multicut C of capacity ≤ µ(2� + n2/�2) is returned. If
µ < opt, then either the returned multicut C is of capacity
≤ µ(2� + n2/�2) < 3(opt · n)2/3, which is fine or we know
that µ < opt as the above inequality fails.

Remark. Recently we became aware of the article [13],
which gives an Õ(n2/3)-approximation algorithm for the
related Edge-Disjoint Paths problem. Our result for UDM,
which was derived independently, and the main result in [13]
rely on the same combinatorial statement (Corollary 2.5 in
our article, Theorem 1.1 in [13]), but the proofs are different.

2. THE UNCAPACITATED CASE

Definition 2.1. For X, Y ⊆ V, let RG(X, Y) = |{(x, y) ⊆
X × Y : x �= y, dG(x, y) < ∞}| denote the number of pairs
(x, y) ⊆ X × Y such that an (x, y)-path exists; let R(G) =
RG(V , V).

Definition 2.2. We say that G = (V , E) is a p-layered graph
if V can be partitioned into p layers L1, . . . , Lp so that every
e ∈ E belongs to δG(Li, Li+1) or to δG(Li, Li) for some i ∈
{1, . . . , p − 1}, or to δG(Lj, Li) for some i ∈ {1, . . . , p − 1},
j ∈ {2, . . . , p}, j > i.

Lemma 2.1. Let G = (V , E) be a 4-layered graph con-
taining at least k edge-disjoint (L1, L4)-paths such that G −
δG(L2, L3) is a simple graph. Then R(L1, L3)+R(L2, L4) ≥ k.

Remark. Observe that the graph induced by L2 ∪ L3 may
contain parallel edges.

Proof. We will prove the statement by induction on k.
The case k = 0 is obvious. Assume k ≥ 1, and that E is a
union of the k edge-disjoint paths. Let st ∈ δG(L2, L3), let
G′ = G − {s, t}, and let S = {v ∈ L1 : vs ∈ E}, T = {v ∈
L4 : tv ∈ E}. Then G′ contains at least k − (|S| + |T |) edge-
disjoint (L1, L4)-paths. Also, RG′(L1, L3) ≤ RG(L1, L3) − |S|
and RG′(L2, L4) ≤ RG(L2, L4) − |T |. This follows because
of the removal of {s, t}. By the induction hypothesis, if k >

|S| + |T |, then RG′(L1, L3) + RG′(L2, L4) ≥ k − (|S| + |T |).
Thus, RG′(L1, L3) + RG′(L2, L4) ≥ max{k − (|S| + |T |), 0}.
Combining, we get the statement. ■

Lemma 2.2. Let G be a simple �-layered graph containing k
edge-disjoint paths from the first layer to the last layer, and let

NETWORKS—2005 215

S and T be the union of the pS ≥ 2 first and pT ≥ 2 last layers,
respectively, so that S ∩ T = ∅. Then R(S, T) = �(kpSpT).

Proof. By Lemma 2.1, R(Li, Lj)+R(Li+1, Lj+1) ≥ k for
every two pairs Li, Li+1 ⊆ S and Lj, Lj+1 ⊆ T . This is shown
as follows. Start with the graph induced by Li ∪ Li+1 ∪ Lj ∪
Lj+1. Let P be one of the k paths guaranteed by the premise
in the lemma. Associate with P a pair of nodes ui+1, uj with
ui+1 ∈ Li+1 and uj ∈ Lj. The ui+1 vertex is the first Li+1

vertex in P and uj is the last Lj vertex in P . For every pair
ui+1 ∈ Li+1, uj ∈ Lj put p(ui+1, uj) parallel edges from ui+1

to uj with p(ui+1, uj) the number of P paths associated with
this pair. Hence, we have constructed a 4−layered subgraph
as in Lemma 2.1 and this lemma implies that R(Li, Lj) +
R(Li+1, Lj+1) ≥ k. The statement follows by summing the
contribution of all such pairs. ■

We use the following special case of the Max-Flow Min-
Cut theorem (c.f., [3]).

Theorem 2.3 (Menger’s Theorem). Let s, t ∈ G. The max-
imum number of edge-disjoint (s, t)−paths in G equals the
size of a minimum (s, t)−cut.

Lemma 2.4. Let s, t be a pair of nodes in a simple graph G
with dG(s, t) ≥ 4p log n + 2. Then there exists an (s, t)-cut C
so that R(G) − R(G − C) = �(|C|p2).

Proof. Consider the corresponding dG(s, t) BFS layers
from s to t, where nodes that cannot reach t are deleted. Let
Xi be the layer at distance i from s, and let Yi be the layer
at distance i to t. Let kj be the maximum number of edge-
disjoint (Xj·p, Yj·p)-paths in the graph Gj induced by all the
layers starting with Xj·p and ending at Yj·p, j = 1, . . . , 2 log n.

We claim that there exists an index j with kj ≤ 2 · kj−1.
Otherwise, because k0 ≥ 1, we have kj ≥ 2j. For j =
2 log n + 1 we get kj ≥ 2n2, which is not possible in a simple
graph.

Let j be such an index with kj ≤ 2 · kj−1, and let C be a
minimum (Xj·p, Yj·p)-cut, so |C| = kj. We now apply Lemma
2.2 on the graph Gj−1. Note that Gj−1 contains at least |C|/2
edge-disjoint paths between its first layer X(j−1)·� and its last
layer Y(j−1)·�; this is because kj = |C| by Menger’s Theorem,
and kj−1 ≥ kj/2 by the choice of j. Because C separates the
first and the last p layers of Gj−1, the statement follows from
Lemma 2.2. ■

Corollary 2.5. For UDM there exists an algorithm that
for any integer � > 4 log n + 2 finds in Õ(mn2/�2) time
a K-multicut B with |B| = O((n log n)2/�2), where K =
{(u, v) : d(u, v) ≥ �}.

Proof. Let p = �/(4 log n + 2). The algorithm starts
with B = ∅. Although there is an (s, t)-path for some (s, t) ∈
K it computes an (s, t)-cut C = Cst as in Lemma 2.4, and
sets B ← B ∪ C, G ← G − C. We claim that at the end
of the algorithm |B| = O(R(G)/p2) = O(n2/p2); we get

that |B| = O((n log n)2/�2) by substituting p = �/(4 log n).
Lemma 2.2 implies that there exists a constant α > 0 so that
each time Cst is deleted, R(G) is reduced by at least α|Cst |p2.
Thus, we get

αp2 · |B| ≤ αp2 ·
∑

(s,t)∈K

|Cst | ≤ R(G) ≤ n2. (1)

The dominating time at each iteration is spent for comput-
ing a cut as in Lemma 2.4. This can be done using O(log n)

max-flow computations as follows directly from the proof
of Lemma 2.4. Thus, it can be computed in Õ(m|Cst |) time
using the Ford-Fulkerson algorithm [6]. Thus, the total time
required is Õ(m|B|) = Õ(mn2/�2). ■

We are now ready to prove Theorem 1.1. Given an integer
�, apply the following procedure starting with A, B = ∅:

Phase 1:

While there is an (s, t)-path P with |P| ≤ � for some
(s, t) ∈ K do:

A ← A + P, G ← G − P.

End While

Phase 2: Find in G−A a K-multicut B as in Corollary 2.5.

For any integer �, the algorithm computes a K-multicut
C = A ∪ B of size � · opt + O((n log n)2/�2); |A| ≤
� · opt because any K-multicut contains at least one edge
of each path removed, and |B| = O((n log n)2/�2) by Corol-
lary 2.5. As was explained in the introduction, we execute
the algorithm for � = 1, . . . , (n log n)2/3, and among the
multicuts computed output one of minimum size. For � =
(n log n)2/3/opt1/3 we get the claimed approximation ratio.

Let us now discuss the implementation of the algorithm.
After executing Phase 1 at iteration �, the graph G − A is
used as an input for iteration � + 1. As the total length of
the paths removed is at most n2, and each iteration requires
a shortest path computation the total time of Phase 1 exe-
cutions is O(mn2). The total time of Phase 2 executions is
Õ

(∑n2/3

i=1 mn2/i2
) = Õ(mn2). Thus, the time complexity is as

claimed, and the proof of Theorem 1.1 is complete.

3. AN O(n2/3)-APPROXIMATION ALGORITHM
FOR DM

3.1. The Algorithm:

Consider the following algorithm:

Input: An instance (G, u, K) of DM, and integers �, µ.
Initialization: C ← ∅.
While in G there is an (s, t)-path P for some (s, t) ∈ K do:

(a) Let P′ be the union of the first and the last � edges of
P (P′ = P if |P| < 2�);

(b) Among the (s, t)-cuts in G disjoint with P′ compute
one C′ of minimum capacity (u(C′) = ∞ if P′ = P);

216 NETWORKS—2005

(c) If P = P′ then C ← C ∪ P, G ← G − P.
(c i) Else, if u(C′) > µ then: ue ← ue−min{ue :

e ∈ P′} for every e ∈ P′; C ← C∪P′
0, G ←

G − P′
0, where P′

0 = {e ∈ P′ : ue = 0}.
(c ii) Else (u(C′) ≤ µ) C ← C∪C′, G ← G−C′.

End While

Lemma 3.1. At the end of the algorithm C is a K-multicut.
If µ ≥ opt then u(C) ≤ µ · (2� + n2/�2).

Proof. Assume that µ ≥ opt. Consider a specific itera-
tion of the main loop, and the edge sets P′, C′ found. There
are three possible cases.

If P′ = P, then P is added to C. Because the optimum
contains at least one of these edges, the number of edges
added in these case throughout the algorithm is at most 2 ·
� · opt ≤ 2 · � · µ. If u(C′) > µ, then u(C′) > µ ≥ opt.
This implies that any minimum K-multicut contains at least
one edge from P′. Hence, after setting ue ← ue − min{ue :
e ∈ P′} for every e ∈ P′ the optimum decreases by at least
min{ue : e ∈ P′}. Because |P′| = 2�, the total capacity of the
edges in all sets P′

0 added into C during the algorithm is at
most 2�opt ≤ 2�µ.

Otherwise, if u(C′) ≤ µ then R(G)−R(G−C′) ≥ �2. Thus
the total number of cuts C′ removed during the algorithm
≤ n2/�2, and their total capacity ≤ µn2/�2.

To see that R(G) − R(G − C′) ≥ �2, let P′
F and P′

L be
the first and the last � nodes in P, respectively. We claim that
RG(P′

F , P′
L) = |P′

F | · |P′
L| = �2 and RG−C′(P′

F , P′
L) = 0.

The first statement follows from the simple observation that
P′

F , P′
L belong to the same path P of G, and thus dG(u, v) < ∞

for every pair u, v with u ∈ P′
F , v ∈ P′

L. To see the second
statement, note that dG−C′(u, v) = ∞ for every such pair
u, v, as otherwise there would be an (s, t)-path in G − C′,
contradicting that C′ is an (s, t)-cut in G. ■

We are now ready to prove Theorem 1.2. As was men-
tioned in the Introduction, for � = n2/3 we use binary search
to find the minimum integer µ so that a multicut of capac-
ity ≤ µ · (2� + n2/�2) is returned. Lemma 3.1 implies that
µ ≤ opt, and the required ratio follows.

We now analyze the running time. We can assume that ue ∈
{1, . . . , n4} or ue = ∞ for every e ∈ E. In this case binary
search for the appropriate µ requires O(log(n4)) = O(log n)

iterations. Indeed, let c be the least integer so that {e ∈ E :
ue ≤ c} is a K-multicut. Edges of capacity ≥ cn2 do not
belong to any optimal solution, and their capacity is set to ∞.
Edges of capacity ≤ c/n2 are removed, as adding all of them
to the solution affects only the constant in the approximation
ratio. This gives an instance with umax/umin ≤ n4, where
umax and umin denote the maximum finite and the minimum
nonzero capacity of an edge in E, respectively. Further, for
every e ∈ E set ue ← ue/umin�. It is easy to see that the loss

incurred in the approximation ratio is only a constant, which
is negligible in our context.

The dominating time is spent for computing O(m) mini-
mum cuts at step (b); each such computation leads to a
removal of an edge, because reducing the capacities along
P′ by min{ue : e ∈ P′} guarantees that at least one edge
gets capacity zero. As a max-flow/min-cut computation can
be done in Õ(nm) time (c.f., [2]), the total running time is
Õ(nm2). This finishes the proof of Theorem 1.2.

Acknowledgment

The second author thanks Joseph Cheriyan for suggesting
the problem and for helpful discussions, and Howard Karloff
and Aravind Srinivasan for useful discussions.

REFERENCES

[1] J. Cheriyan, H. Karloff, and Y. Rabani, Approximating
directed multicuts, Combinatorica, to appear.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Intro-
duction to algorithms, 2nd ed., MIT Press, Cambridge, MA;
1998.

[3] S. Even, Graph algorithms, Computer Science Press, Haifa,
1979.

[4] G. Even, S. Naor, B. Schieber, and S. Rao, Divide-and-
conquer approximation algorithms via spreading metrics,
ACM 47(2000), 585–616.

[5] L. Fleischer, Approximating fractional multicommodity
flows independent of the number of commodities, SIAM
J Discrete Math 13(2000), 505–520.

[6] L.R. Ford and D.R. Fulkerson. Flows in networks, Princeton
University Press, Princeton, NJ, 1962.

[7] N. Garg, V. Vazirani, and M. Yannakakis, Approximate max-
flow min-(multi)cut theorems and their applications, SIAM
Comput 25(1996), 235–251.

[8] N. Garg, V. Vazirani, and M. Yannakakis, Primal-dual
approximation algorithms for integral flow and multicut in
trees, Algorithmica 18(1997), 3–20.

[9] A. Gupta, Improved approximation algorithm for directed
multicut, Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2003,
pp. 12–14.

[10] D.S. Hochbaum (editor), Approximation algorithms for NP-
hard problems, PWS Publishing Company, Boston, MA,
1997.

[11] P.N. Klein, S.A. Plotkin, S. Rao, and E. Tardos, Approxima-
tion algorithms for Steiner and directed multicuts, J. Algo-
rithms 22(1997), 241–269.

[12] P.D. Seymour, Packing directed circuits fractionally, Combi-
natorica 15(1995), 281–288.

[13] K. Varadarajan and G. Venkataraman, Graph decomposition
and a greedy algorithm for edge-disjoint paths, Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2004, pp. 379–380.

NETWORKS—2005 217

