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Abstract

The greedy paradigm of algorithm design is a well

known tool used for efficiently solving many classical

computational problems within the framework of pro-

cedural languages. However, it is very dificult to ex-

press these algorithms within the declarative framework

of logic-based Janguages. In this paper, we extend the

framework of Datalog-like languages to provide sim-

ple and declarative formulations of such problems, with

computational complexities comparable to those of pro-

ceduralformu!ati ens. This is achieved through the use of

constructs, such as least and choice, that have seman-

tics reducible to that of negative programs under stable

model semantics. Therefore, we show that the formula-

tion of greedy algorithms using these constructs lead to

a syntactic class of programs, called stage-stratified pro-

grams, that are easily recognized at compile time. The

jhpoint-based implementation of these recursive pro-

grams is very eficient and, combined with suitable stor-

age structures, yields asymptotic complexities compara-

ble to those obtained using procedural languages.

1 Introduction

Current research in deductive databases is tackling
the formidable problem of providing declarative logic-

based semantics and efficient implementations for non-

stratified logic programs containing non-monotonic con-

structs such as negation and aggregates. The inter-

esting theoretical challenges posed by this problem

are made more urgent by the fact that these con-

structs are critically needed to express a host of prac-

tical applications, ranging from the ‘Bill of Materials’
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to graph-computation algorithms. Proposed solutions

must provide suitable language constructs, declarative

non-monotonic semantics and the enabling technology

for their efficient implementation—including compila-

tion methods, execution algorithms, and supporting

storage structures. The problem of finding efficient

implementations for declarative logic-based languages,

represents one of the most ardous and lasting research

challenges in computer science, and one to which deduc-

tive databases have recently offered new ideas and in-

roads toward solutions. In particular, in this paper, we

show that a careful choice of metalevel constructs hav-

ing a first order semantics can be used to produce declar-

ative formulation and nearly optimal execution for the

important class of problems solvable using greedy algo-

rit hms.

In Section 2 of this paper, we define extrema and

choice-based constructs using meta-level notation and

first-order semantics. In Section 3, we show that a

combination of these constructs defines programs that

are locally stratified according to stage variables—

yielding a stable-model semantics, for which a fixpoint

characterization is given in Section 4. Thus, in Section

5, we express various greedy algorithms and, in Section

6, we show that, through seminaive refinements and

suitable storage structures, a fixpoint computation

yields low asymptotic complexity on these problems. In

the conclusion we review the many opportunities for

further research, including the use of matroid theory to

push extrema predicates into choice-based programs.

2 Non-Monotonic Constructs

CDL’S choice construct provides an example of the

benefits of using meta-level predicates with first-order

semantics to extend the power of a Horn-clause language

in a way that is easy for users to understand and

simple for the system designer to implement. The

choice construct was int reduced in [7], to express non-

determinism in a declarative fashion. Thus, a meta-

level predicate choice (X, Y) is used to denote that the

functional dependency X ~ Y must hold in the model
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defining the meaning of this program.

Example 1: One student per course and one course

per student.

a-st(St, Crs) - takes(St, Crs),

choice(Crs, St), choice(St, Crs).

The choice goals in this rule specify that the afit

predicate symbol must associate exactly one student

to each course, and vice-versa. Thus the functional

dependencies CTS * St, St -+ Crs hold in the (choice

model defining the) meaning of a program containing

such a rule.

Thus the program of Example 1, with the following

set, X, of facts:

takes (andy, engl ,4) . takes (mark, engl, 2) .

takes (arm, math,3) . takes (mark, math, 2) .

has the following three choice models:

Ml = { a~t(andy, engi, 4], a-.st(ann, math, J)

}Ux,
M2 = { a_st(mark, engl, 2), a-.st(ann, math, 3)

}Ux,
MS = { a-.st(andy, engl, 4), a_st(mark, math, 2)

}Ux. ❑

Therefore, the meaning of a choice program accord-

ing to [4] is defined by extracting a maximal subset

that obeys the given functional dependencies from the

model of the program obtained by stripping out the

choice goals. One such model always exists—frequently,

several such models could exist denoting that a non-

deterministic choice can be made among them. A sec-

ond milestone in the of choice, was its characteriza-

tion in terms of negation [9] under stable model seman-

tics [3], According to [9], choice can be viewed as a met-

alevel construct with first-order semantics: a rule with

choice can be viewed as a short-hand of convenience for

a program with negation. The equivalent of the choice

rule of Example 1 is:

Example 2:

a=t(St, Crs, G) e takes(St, Crs, G), chosen(Crs, St).

chosen(Crs, St) + takes(St, C!rs, G),

=diffChoice(Crs, St).

diffChoice(Crs, St) +- chosen(Crs, ~, St # ?%.

diffChoice(Crs, St) - chos en(~, St), Crs # ~.

c1

Negative programs so constructed have at least one

total stable model (frequently, several stable models,

denoting the presence of non-determinism) [9]. ‘

The characterization of non-determism by means of

negation, provided in [9] unifies two important notions

of logic programming and sheds new insights on the

nature of stable models. Furthermore, it leads to

a constructive semantics where a simple and efficient

implementation of the construct is obtained by the

memoing of previous results [4]. In a nutshell, the

constructive semantics recognizes that a choice program

re-written as the program P above consists of two kinds

of rules:

1.

2.

the chosen rule(s) with head the chosen predicates

and a negated diffchoice goal in the body,

the remaining rules, including (a) the original

program rules without choice goals, (b) the rewritten

positive rule containing the goal chosen, and also (c)

the auxiliary rules defining diffChoice. (For now,

we can assume that these are Horn rules.)

If Tc and T!, define the immediate consequence

operator respectively, for the chosen rules (1), and the

remaining rules (2), then we can provide a constructive

semantics as follows [4].

Let 1 be an interpretation for the re-written program

P. Then, g denotes the non-deterministic operator that

maps I into a set that is either empty or contains exactly

one element, defined as follows:

1. if TC(I) – I = @ then g(l) =$,

2. ,if TC(l) – 1 # 0 then g(l) = {x}, where x 6

TC(I) – 1.

Thus, applying g to 1 means computing all the new

implied facts and then arbitrarily selecting a member

of this set. We will call g, the one-consequence

operator for P. Now, let -y(l) = g(l) U 1 denote

the inflationary version of g, and let Q(l) = T’(1) U

I be the inflationary version of T’. Consider the

following transfinite procedure that alternates between

the application of the one-consequence operator y (i.e.,

the firing an instance of a rule chosen) and the firing of

all the remaining rules till saturation.

Moreover, the choice fixpoint procedure is also (non-

deterministically) complete in the following sense: if

Qm is finite at each iteration, then, the choice fixpoint

algorithm computes every stable model, for suitable

instantiations of the non-deterministic one-consequence

operator -f.

1When the program contains several rules with choice, a

distinguished choseni and dif f Choicei must be generated for

each rule —a different value of i for each choice rule.
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Choice Fixpoint:

begin

5“ := 0;

repeat

s := s’;
S’ := Qm(-y(S));

until S’ = S

end.

Then we have the following result [4]:

Lemma 1 Let P be a positive program where rules con-

tain choice goak. Then the Choice Fixpoint Procedure

produces all stable models of P. •1

Furthermore, when there are nofunction symbols

(Datalog programs), we have a finite Herbrand base and

the following lemma also holds:

Lemma 2 Let P be a positive Datalog program where

rules contain choice goals. Then

●

●

The Choice Fixpoint procedure is (non- deterministically)

comp~ete for P.

The data complexity of computing a stable model for

P is polynomial time.

❑

The different stable models for P, called the choice

models for P, are produced by different instances of the

non-deterministic ~ function. An efficient implemen-

tation for choice programs only requires memorization

of the chosen predicates; from these, the di f f Choice

predicates can be generated on-the-fly. Moreover, for

Datalog programs, the Choice Fixpoint Procedure ter-

minates in polynomial time (although, computation of

stable models is, in general, NP-hard), Thus, choice

provides a good example of how, out of the very power-

ful class of stable models that in the raw is neither suit-

able for system building or users’ consumption, an im-

portant subclass can be encapsulated that is amenable

to efficient implementation and appealing to intuition.

Mets-level notation is also expedient with extrema

aggregates (e. g., rein) max) least and most) that can
be defined using negation [1]. For instance, to find the

names of courses, and, for each course, the students

who took the least grade among the students who have

grades above 1, we can write the following program:

bttm=t(St, Crs, G) +-- takes (St, Crs, G), G > 1,

least(G, Crs).

where the meaning of least is defined via the following

expansion:

bttmst(S, C, G) + takes(S, C, G), G >1,

=(takes(S’, C, G’), G’ > 1, G’ < G).

Thus, the meaning of least (G, C) is to select among

the bindings that make the body of the rule true, those

such that there is no other instantiation of the body of

the rule that has the same value of the variable C but

a lesser value for the variable G. Often, least (G, ())

may be used to select the binding that makes the body

of the rule true and has the smallest value of the variable

G, without regard to the value of the other variables.

This is often abbreviated as least(G).

The use of the metalevel predicates for extrema

simplifies the notation and allows the compiler to use

a more efficient implementation. However, it does not

solve the problem of semantics, since the unrestricted

use of, say, least in recursion can produce programs

that have no accepted declarative meaning (i.e., no total

well-founded or stable model exist for such programs

[11, 3]). This is different from choice which has efficient

implementation and clear semantics even in recursive

rules [4]. In this paper, we will provide declarative

semantics and efficient implementation for a powerful

class of recursive programs featuring an interesting

mixture of choice and extrema predicates.

For instance, consider a combination of the previous

examples: bi-injective pairs of student/course that have

received the lowest grades above 1:

bist&(St, Crs, G) + takes(St, Crs, G), G >1, least((

choice(St, Crs), cholce(Crs, St)

The meaning of rules containing both choice and

least is naturally resolved by applying the rewriting for

choice before the rewriting for least as exhibited by the

following intermediate result: 2

bi=t-c(St, Crs, G) + takes(St, Crs, G), G > 1,

2
least(G , chosen(Crs, St).

chosen(Crs, St) + takes(St, rs, G), G > 1,

least(G), ~dif f C

Y%7$)”diffChoice(Crs, St) +- chosen(Crs, St

diffChoice(Crs, St) i-- chosen(~, St), Crs # ~.

Therefore, we are selecting bi-injective pairs out of

those with bottom grade > 1, and not the bottom

grades out of randomly selected bi-injective pairs. (The

least goal in the top rule can be eliminated since it

only recomputes the one in the lower rule). Two stable

models for this last rule and the X facts of Example 1

are (omitting di f f Choice facts):

Ml = { bi~t.c(mark, engl, 2), chosen(mark,

engl, 2) } U X

M2 = { bi~t..(mark, math, 2), chosen(mark,

math, 2,) } U X

2The complete expansion of the second rule, therefore is:
chosen(Crs, St) + takes (St ,Crs, G) , G>l ,

m diffChoice(Crs, St) , ~(takes(St}, Crs2 ,G>) ,

G> > I, T diffChoice(Crs >, St>), G’ ~ G).
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3 Stage Variables

The use of choice in logic programs enables elegant

expression of classical graph algorithms and their

efficient implementation. For instance suppose that an

undirected graph is stored as pairs of edges, g(Y, X, C),

g(x, Y, C ), with C the cost of the edge. Then a spanning

tree for this graph, starting from the source node a, can

be computed as follows:

Example 3: Spanning tree

st(nil, a, O).

st(x, Y, c) + st(a X, _), g(X, Y, C), choice(y, (X, c)).

(If there is only one cost per arc, the variable c can be

eliminated from choice. ) Cl

A different formulation of this problem can be

expressed using a stage variable I that associates each

edge with a unique value of the index 1, and vice versa.

The resulting program is:

st(nil, a, O, O).

st(X, Y,C, I) - st(q-, -,11), l = 11 + 1,

choice(I, (X, Y, C)), choice((X, Y, C), I),

g(X, Y, C), choice(Y, (X, C)).

The first four goals in the recursive rule are most

interesting, inasmuch as they ensure that for each triple

(X,Y,C) returned by the remaining two goals, exactly

one new value is returned for argument 1. Thus, the

argument I becomes a siage variable that introduces a

local stratification in the recursive program. We will

thus introduce a new meta-level predicate next(I) to

simplify the use of stage variables in our programs:

next (I) operates as a meta-level construct with first-

order definition, according to the following macro-

expansion:

p(W, I) t- next(I), restmf.body.

where WU{ I } is the argument list in the head, is

replaced by:

p(W, I) + rest-f .body, p(-, 11), I = 11 + 1,

choi.ce(I, W), choice(w, I).

Thus, our algorithm for finding a spanning tree can

be replaced by:

st(nil, a,O, 0).

st(X, Y, C, I) +- next(I), g(X, Y, C), choice(Y, (X, C)).

Since next is only a short-hand for the use of

choice, these program have a declarative semantics

based on stable models (the actual program defining

this semantics is obtained by applying first the next

expansion, then the rewriting for choice and, finally,

the rewriting for least). Moreover, as we shall see

next, many recursive programs combining next (I) and

extrema have a stable-model semantics. Take for

instance, the computation of minimum spanning trees

according to Prim’s algorithm:

Example 4: Prim’s Algorithm.

prm(nil, a, O, O).

prm(X, Y, C, I) - next(I), new_g(X, Y, C, J), J < I,

least(C, I), choi.ce(Y, X).

new_g(X, Y, C, J) - prm(? X, -, J), g(X, Y, C). ❑

Here the relation prm collects arcs in the minimum

spanning tree, their cost, and the step at which they

were entered. We can easily visualize the computation

of our mutually recursive predicate, in terms of a

fixpoint procedure: at each new iteration, new arcs

new~(X, Y, C, 1 ) connected to current spanning tree are

generated (by the last rule). Then, the second rule

selects a new arc with least cost of the possible choices;

this new arc is added to prm while the stage variable is

incremented by one. Notice that the choice in next(I)

forces a new selection for each value of 1.

4 Semantics

Consider a program P containing rules with negated

goals, extrema, next goals, and choice goals, and let Q

denote the program obtained from P by,

1.

2.

3.

expanding the next goals,

removing all choice goals and,

rewriting the least goals using negation.

Then, if Q is locally stratified, we will say that the

original program P is locally strut ijied, modulo choice.

Our previous examples are locally stratified modulo

choice. Thus, we have the following theorem [2].

Lemma 3 A stable model exists for every program that

is locally stratified modulo choice. ❑

Locally stratified programs have a unique stable

model (which is also a well-founded model and a

perfect model) [8]; but, programs that are stratified

modulo choice normally have several stable models.

The perfect model of a locally stratified program can

be constructed through a possibly infinite sequence of

fixpoint computations that saturates stratum j after

stratum j — 1 [8]. A similar procedure, where the

operator Qm (Y()) is used to saturate each stratum

yields the stable models for programs that are locally

stratified modulo choice [10]. In this paper, we

concentrate on a subclass of locally stratified programs
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modulo choice that we call stage programs. These are

defined next:

Aruleris said to be a next rwle ifit has the form:

r:p(..., X)...) i- . . ..next(X) . . . .

Then p is said to be a stage predicate and the argument

position where X appears is said to be a stage argument

for p. When p is a stage predicate, with X occupying

its stage argument, and there exists a rule of the form,

r’ : q(..., X)...) - . . ..p( . . .. Y)... )....

then, q is also called a stage predicate and X denotes its

stage argument. A rule such as r’ which does not have

choice goals will be called a flat rule. The recursive

application of these definitions produces all possible

stage predicates, and their arguments. A maximal set of

mutually recursive predicates defines a recursive clique.

Such a clique is called a stage clique when the following

conditions are satisfied:

. each recursive predicate in the clique is a stage

predicate, with exactly one stage argument,

● any two recursive rules defining a predicate in the

clique must be of the same kind (i. e., either they are

both next rules or flat rules, but not a mixture of

them).

An znst ante of a rule r is obtained by assigning

values from the Herbrand universe to the variables of

r. When this assignment satisfies all the equality and

inequality goals, then we obtain an ant erpret ed inst ante

of r. We can now introduce the notion of stage-stratified

recursive cliques. Let r be a rule in the stage clique

(e.g., a next rule) and let r’ denote the rule obtained

from r by (1) rewriting the next goal, (2) eliminating

the choice goals and (3) rewriting the least goals.

Now, consider the stage predicates in r’ and their stage

arguments. Then, if for every interpreted instance of r!

the value of the stage argument in the head is ~ than

each stage arguments in the tail, then we say that r is

siage-st rat ijed. When all the inequalities hold in the

strict sense, we will say that the rule is strictly stage-

stratified. For instance, if r is the next rule in Example

4, then r) is:

prm(X, Y, C, I) +

Here, the stage

prm(_, -,_, Ii), I = 11+1

new-g(X, Y,C, J), J < I,

~(prm(-, -, -, 11’), I = 11’+ 1

new&X’, Y’, C’, J’), J’ < I,

c’ < c).

variables in the body are 11, 11’,

J and J’. The values of these stage variables are all

less than that of 1 in any interpreted occurrence of

this rewritten rule. Thus we conclude that the original

rule is strictly stage-stratified. (Observe the role of

least (C, I) in ensuring this result; if we replace this

goal by least (C, -), the stage-stratification is lost.)

Likewise, we conclude that the flat rule of Example 4 is

stage-stratified.

Therefore we have the following definition: a clique is

said to be stage-stratified, if it is a stage clique and

. next rules are strictly stage-stratified, and

● Each positive goal in flat rules is stage stratified

w.r. t. the stage variable in the head and each

negated goal is strictly stage stratified w.r.t. the

stage variable in the head.

A program will be said to be stage-stratified if it

consists of Horn clauses and stage-stratified cliques.

Example 4 illustrating Prim’s algorithm is an example

of a stage-stratified program. Obviously, stage-stratified

programs are locally stratified modulo choice, and there

exist one or more stable models for each stage-stratified

program. Moreover, we have the following important

result [2]:

Theorem 1: Let P be a stage-stratified program.

Then, every set of facts produced by the Choice Fizpoint

is a stable mode! for P.

Proof [outline]: Consider any rule instance r used

by the choice fixpoint procedure in constructing a

candidate stable model M. M is a model for P.

To prove that it is a stable model, observe, that, if

~g is a goal in r then g is not in M. (If g is a

diffChoice predicate, then g is not in M because

of the symmetry in the rules defining di f f Choice; if

g is anything else, the conclusion follows from the

stage stratification assumption.) Thus as we apply the

stability transformation to r, using M, [3]), we find all

its negative goals are satisfied, and are thus removed

from r yielding a positive rule r’. Thus the positive

program produced by the stability transformation has

a minimal model that is a superset M. ❑

A program P containing negation, extrema, choice

and next goals will be said to be a next-Dat slog program

if the only instances of function symbols (or evaluatable

predicates) in the program are those used in the

definition of next. The reduced Herbrand universe and

base for these programs are those obtained neglecting

these function symbols. Then, it follows that:

Theorem 2: Let P be a stage-stratified next-Data!og

program. Then,

. The Reduced Herbrand Universe and Reduced Her-

brand Base of P are finite.

● The Choice Fixpoint procedure is (non- deterministica!ly,

complete.
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● The data complexity of computing a stable model for

P is polynomial time.

D

In our examples, the programs satisfy the follow-

ing additional property: Qm (Y(S)) = Q(-y(S)). These

programs will be called alternating stage-stratified pro-

grams. Here the computation of stable models, basically

reduces to the traditional fixpoint, with the rule firing

alternating between next rules (y) and flat rules (Q).

Alternating Stage-Choice Fixpoint

begin

s’ := 0;

repeat

s := s’;

S’ := Q(-Y(S));

until S’ = S

end.

The following completeness theorem holds for alter-

nating stage-stratified programs.

Theorem 3: The Alternating Stage-Choice Fixpoint

procedure is (non-deterministically) complete for alter-

nating stage-stratified programs. c1

This approach can be also extended to all programs

where the flat rules alone (i. e., without the next rules)

do not define a recursive clique. In this case, Qm = Qn,

with n equal to or less than the number of flat rules

in the clique. Then it is possible to order these rules

in such a way, that Q“ can be computed in one pass,

by letting the results of one flat rule feed into the next

rule. In this case the computation alternates between

the firing of the next rules and the firing of a chain of n

flat rules.

5 Examples

In this section, we present some examples to show that

many classical greedy algorithms may be expressed as

stage stratified programs.

Example 5: In this example, we sort a relation. Given

a set of tuples p(X, C ) we generate a new set of tuples

of the form sp(X, C, I ) such that for any two tuples

sp(a, c, i) and sp(b, c’, j) , i < j iff c s c’. Intuitively, at

each step the smallest tuple from the remaining set of

tuples is selected and inserted into sp.

sp(nil, O, O).

sp(X, C, I) e next(I), p(X, C), least(C, I), ❑

Example 6: Huffman codes is a prefix text-compression

technique, based on assigning shorter codes to the char-

acters appearing more frequently. The following pro-

gram generates a tree, called Huffman tree, that can

be scanned to generate the codes. The base predicate

letter (X, C) gives the relative frequency C with which

the character X appears in the text. The predicate

h(X, C, I ) denotes that X is a subtree of the Huffman tree

with cost C and is obtained when the value of the stage

variable is I. The predicate f easible(t (X, Y) , C, I) in-

dicates that X and Y are both subtrees of the Huffman

tree and the tree constructed by having X as the left

child and Y as the right child has a cost of C. The func-

tor t is the tree constructor.

h(X, C, O) ~ letter(X, C).

h(t(X, Y), C, I) - next(I), feasible(t(X, Y), C, J),

J < I, least(C),

choice(X, I), choice(Y, I).

feasi.ble(t(X, Y), C, I) - h(X, Cl, J), h(Y, C2, K),

7subtree(X, Ll), L1 < 1,

7subtree(Y, L2), L2 < 1,

I = max(J, K), X # Y,

C= CI+C2.

subtree(X, I) e h(t(X, -), -, I).

subtree(X, I) e h(t(., X), -, I).

cl

Example 7: The problem is to find a maximal

matching in a directed graph with the minimum cost.

A matching is a set of arcs such that no two arcs in the

set share a common vertex. The cost of a matching is

the sum of the costs of the arcs in the matching. The

predicate g( X, Y, C ) describes the arcs and the cost of

the arcs in the given graph.

mat ching(nil, nil, O, O).

matching(X, Y, C, I) t next(I), g(X, Y, C),

least(C, I), choice(Y, X),

choice(X, Y).

❑

Computation of Sub-Optimals: Greedy algorithms

often provide efficient approximate solutions to NP-hard

problems such as the Traveling Salesperson Problem.

Given a complete undirected graph, a greedy solution

starts by selecting the arc with minimum cost (by the

exit rule defining the t sp-chain predicate). Then, the

arc with minimum cost from node X to node Y is

selected, provided that an arc with starting node Y has

not been previously selected. We repeat this operation

until a Hamiltonian path is obtained.

tsp_chain(X, Y, C, 1) -

tsp_chain(X, Y, C, I) -

least3rcs(X, Y, C),

choice((), (X, Y)).

next(I), new+(X, Y, C, J),

I = J + 1, least(C, I),

choice(Y, X).
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new~(X, Y, C, J) - tspxhain(~ X,., J), g(X, Y, C),

leastarcs(X, Y, C) 4-- g(X, Y, C), least(C). •1

Other greedy algorithms that have been expressed

as stage-stratified programs, include the set covering

problem, the convez hull problem, several scheduling

algorithms and others [2].

6 Complexity Analysis

In this section, we consider the efficient implementation

of the Alternating Stage-Stratified fixpoint for a sub-

class of alternating stage stratified programs. Suppose

that the body of a next rule r is of the form

next(I), p(~, J), [J < I, least(C, I)], [choice

predicates],

(where the predicates within brakets could be miss-

ing). Then, we say that two p-facts fl and f2 are r-

congruent, if they agree on all arguments of p except

possibly the stage arguments, the cost argument (i.e.,

the first argument in a least predicate), and the func-

tionally determined attributes of choice.

The combination of least and next in a rule r may

be efficiently implemented as a data structure Dr =

(Rr, Q., L.), where Q. denotes the priority queue of the

candidate solutions to the least predicate, Lr consists of

those facts which have been used to fire the rule in the

previous iteration and R, contains those tuples which

cannot be candidate solutions (or Redundant tuples).

The operations supported are insertion and retr~eve

!east from D,.

1.

2.

The insertion operation takes a p-fact f and begins

with searching for a fact fl ~ QV U L. such that
fl and f are r-congruent. If fl E L, then f is

inserted in R,, which is maintained as a simple set.

If fl E Q., then f is inserted in R, if the cost of

fl is less than the cost off; otherwise, fl is deleted

from Q, and inserted in R, and f is inserted in Q,.

If there is no such fl then f is inserted into Qr.

The least operation is supported by maintaining Qr

as a priority queue. This operation deletes a smallest

element retrieved from Qr and also inserts into Lr.

This fact is then returned as the chosen value. In

case of several least elements, exactly one is chosen.

If the priority queue contains n elements, then the

complexity of this operation is O(log n).

If the next rule r does not have a least predicate,

then Q. may be maintained as a simple set and not as

a priority queue. The retrieve least operation is then a

retrieve any operation. Assuming availability of indices,

the insertion operation described above is O(log(lQl).

Prim’s Algorithm: Complexity of Example 4

Consider the program expressing Prim’s algorithm

presented at the end of Section 3. The (R, Q, L) struc-

ture is maintained for the predicate new-g, where the

congruence is defined as new-g(a, b, c, i) = new.g(e, f, g, j)

if a = e. Let n and e be the number of vertices and

edges respectively in the graph. The priority queue, Q

is a set of edges and hence its size is bounded by e.

The maximum number of tuples in new-g is bounded

bye, Thus, insertion into the queue takes O(e x log e).

Finally, assuming indices, the cost to compute one tu-

ple of new-g is constant. Hence, the worst case time

complexity of our implementation of Prim’s algorithm

is O(e x /og e), which is comparable to the classical

complexity of O(e x log n).

Sorting: Complexity of Example 5

The implementation of Example 4 has a complexity

bound of O(n x iog n). The predicate p is first stored

as a priority queue (at a cost of O(n x log n) if n is the

cardinality of p), At each iteration, the smallest tuple

of Q is moved into L, this costs O(n x log n). Hence, the

complexity of this algorithm is O(n x log n). We notice

that although the program expresses an “insertion sort”

like algorithm, the fixpoint algorithm implements a

“heap-sort”.

Matching: Complexity of Example 7

The implementation of Example 7 has a complexity

of O(e x log e) where e is the number of arcs in the

graph. The tuples of arc are stored by using a priority

queue Q. The cost of building Q is O(e x log e). At

each step, the least element is selected from Q and, if it

satisfies the choice conditions, then it is moved into L,

otherwise it is moved into R. The maximum number of

tuples in Q is e and the cost of extracting one tuple from

Q is O(log e). Hence, the total cost of the algorithm is

bounded by O(e x log e).

7 Conclusion

The results presented in this paper are still preliminary

in nature, and we are in the process of extending and

refining these results and deploying them in actual

systems. [2]. An intriguing possibility consists in the

automatic detection of declarative programs that can

be implemented by greedy algorithms. Consider the

following naive version of the matching problem of

Example 6. The problem of finding a minimum cost

maximal matching is posed as a post-condition on

matching, defined as follows:

outmatching e amatching(C), least(C).

amatchlng(C) +- matching(X, Y, C, I), most(I).

matching(nil, nil, O, O).

Isatching(X, Y, C, I) e next(I), new=rc(X, Y,C, J),

I = J + 1, choice(Y, X),

choice(X, Y).
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new~rc(X, Y, C, J) e new~rc(?., Cl, J),

g(x, Y,c2), c = c1 +C.2.

This program can be transformed into the efficient

solution of Example 7, in a fashion similar to propaga-

tion of extrema predicates into recursion presented in

[1]. The program above corresponds to a partition ma-

troid, while Kruskal’s algorithm for minimum spanning

tree, presented in Example 8 is a graphic matroid. The

problem of deriving simple sufficient conditions for the

propagation of least into stage stratified programs based

on Matroid Theory [12] (or its generalizations such as

greedoid [6] and Matroid embedding [5] is left open.

Another interesting direction of research is the auto-

matic compilation of stage programs into efficient data

structures which extend the generality of technique pre-

sented in Section 6.

Finally, research is needed to extend the class of

stage stratified programs to include porgrams in which

flat rules are not necessarily strictly stratified. The

following example presents a minimum spanning tree

algorithm due to Kruskal. Although the negation in

flat rules are not strictly stratified, the stable model

of this program gives a minimum spanning tree of the

graph, as desired. This example also discusses how data

structures leading to an efficient implementation maybe

designed, similar to the discussion in Section 6.

Example 8: Kruskal’s algorithm computes a minimum

spanning tree on a graph g. Initially, it associates each

node X with a connected component K (predicate comp).

As the algorithm proceeds, at each step 1, is selected a

new arc (X, Y, C ) such that the last identifiers associated

wit h X and Y are distinct with minimum cost. Let

(A, B, C) be the arc selected at step I, and let J and

K be the last identifiers used to denote the components

associated, respect ively, with A and B; then the elements

of the component J are associated with the component K

(recursive rule of comp). The predicate most is the dual

of least. Notice that the predicates most and least

are used in the same clique but no ambiguity arises since

they refer to different arguments.

kruskal(X, Y, C, O) - g(X, Y, C), least(C),

choice((), (X, Y)).

kruskal(X, Y, C, I) +- next(I), g(X, Y, C),

last_comp(X, J, 11),

last_comp(Y, K, 11),

J # K, 11< I, least(C).

last_comp(X, J, I) +- comp(X, J, II), II < I,

most(J, X).

comp(X, K, O) - compO(X, K).

comp(X, K, I) * kruskal(A, B, C, I),

last_comp(A, J, II),

last_comp(B, K, 12),

last_comp(X, J, II).

compO(nil, O).

compO(X, K) + next(K), node(X).

❑

Kruskd Complexity of Example 8

The implementation of Example 7 has a complexity

bound of O(e x n) where e and n are respectively

the number of edges and nodes in the graph. The

computation of the predicate comp has cost O(n). The

edges of the graph g are stored by using a priority

queue Q, at cost O(e x log e). At each step, the edge

with minimum cost connecting two distinct components

is selected from Q. If the edge with minimum cost

connects two nodes of the same component, then it is

redundant and is moved into R. The tuples of comp

are also stored both in Q and R. When the value of

the component of a node X is updated the old tuple is

moved into R because it will never be used. The cost

of updating the nodes of a component is O(n). The

total cost is then O(e x n). Notice that the classical

procedural method takes O(e x log e). The difference is

due to the fact that the classical algorithm ‘merge’ the

smallest component into the ‘largest’.
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