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Abstract
We address the design of optimal strategies for a pursuer
trying to catch a moving evader. When the pursuer has
available two teams of agents with different capabilities
—one that can “search for the evader” and the other one
that can “catch the evader”—, the game can be naturally
formulated as an optimal control problem on a hybrid
system. We show that solving the hybrid pursuit game
is equivalent to finding a Stackelberg equilibrium solu-
tion for a partial information Markov game, which can
be solved using dynamic programming. Since for most
realistic situations this approach is computationally very
difficult, we propose a two-level suboptimal solution that
uses a greedy control for coordinating the agents within
each team, and a threshold-based logic for orchestrating
the switching between teams. Simulations are included to
show the feasibility of the approach.

1 Introduction
In this paper, we consider games where a pursuer is mov-
ing in some region trying to catch (or more generally han-
dle in some way) an evader. The pursuer has a finite
amount of time to accomplish its mission. Possible scenar-
ios for such pursuit games includes search and rescue oper-
ations, localize and retrieve parts in a warehouse, localize
and neutralize environmental threats, search and capture
missions, etc. In some of these problems the evader is
approximately moving randomly (e.g., search and rescue
operations), whereas in other ones it is actively avoiding
detection (e.g., search and capture missions).
There is a large body of literature dealing with pursuit
games. The reader is referred for example to the text-
book [1]. For a formulation of pursuit games that takes
visual occlusion into account, see, e.g., [9]. The search
and rescue problems [17, 5] are also closely related to the
pursuit games addressed here.

We deal with ‘structured’ games in which the pursuer has
available different resources for performing different oper-
ations. These operations cannot be executed simultane-
ously, therefore the pursuer must decide their sequencing

to accomplish its mission. Executing a mission then in-
volves i) choosing a strategy for coordinating the agents
belonging to the same team during each mode of oper-
ation, and ii) orchestrating the switching between the
different modes. In our formulation, the performance
achieved by a strategy is measured by an index taking
into account the operations costs and the time to accom-
plish the mission.

In Section 2, the game is formulated as a controller synthe-
sis problem for a hybrid system, hence its denomination
“hybrid pursuit game”. The state of the hybrid system has
two components: a discrete state representing the mode
of operation, and a continuous state representing the po-
sitions of pursuer and evader. The transitions between
the discrete modes are always enabled and actually oc-
cur when selected by a discrete input corresponding to a
switching command. As for the evolution of the contin-
uous state, the evader’s motion is assumed to be open-
loop, whereas the pursuing agents’ motion depends on an
applied continuous input as well as on the value of the
discrete state. Solving the game means designing a feed-
back controller for the pursuer that, at each time instant,
decides which discrete and continuous inputs should be
applied to the system so that the performance index is
minimized. These decisions are based on noisy measure-
ments of the state of the system.
In general, partial information stochastic games are poorly
understood and the literature is relatively sparse. Notable
exceptions are games with lack of information for one of
the player [10, 16] and games with particular structures
such as the Rabbit and Hunter game [3], the Searchlight
game [11].
Here, we avoid some of the inherent difficulties of partial
information games by assuming a known open-loop pol-
icy for the evader. The resulting problem can then be
viewed as a Stackelberg equilibrium in which the evader
has announced its policy. In Section 3, we show how the
described hybrid pursuit game can be solved using dy-
namic programming. This approach, however, becomes
computationally unfeasible as the dimension of the prob-
lem grows (“curse of dimensionality”, [2]). In Section 4,
we then propose a suboptimal hierarchical solution where
first the control for performing each single operation is
designed, and then a switching rule between operation



modes is selected. The use of a hierarchical decomposi-
tion that partitions the problem in subproblems of smaller
dimension is not new in the literature and it has been pro-
posed, for example, in [4] and [12]. In our case, however,
the decomposition is generated by the nature of the prob-
lem itself rather then being artificially imposed through a
somewhat arbitrary partition of the state space.
Simulation results show the feasibility and performance of
the proposed suboptimal solution.

Notation: (Ω,F) denotes the relevant measurable space. Bold
face symbols are used for random variables. Given a probabil-
ity measure P : F → [0, 1] and a random variable ξ : Ω → Z,
P(ξ = z) is the probability of ξ taking the value z ∈ Z. More-
over, E[ξ|B] is the expected value of ξ conditioned to an event
B ∈ F . Given a set C, we denote by P(C) the family of all
probability distributions on C, and by pc the probability of
c ∈ C in the distribution p ∈ P(C).

2 Hybrid 2-modes pursuit game
We consider a game where the pursuer has available two
modes of operation to accomplish its mission: it can either
search the evader or capture it once found. Depending
on the particular context, “capture” may actually mean
handling the evader in some particular way (for example
rescuing it). The resources available to the pursuer for
executing the two operations are:

- a team of nS agents for the search operation. Typically,
each searching agent can only move slowly but it is ca-
pable of sensing the surrounding region for the evader;

- a single agent for the capture operation. Typically,
the capturing agent can move fast and is appropriately
equipped for executing the capture operation, but it has
poor sensors.

We assume that the search and capture operations cannot
be done at the same time. This would happen, for ex-
ample, when keeping the capturing agent moving around
while the evader has not yet been detected is expensive
or may cause the equipment to be damaged. The pursuer
must then appropriately switch between the two opera-
tion modes. The game ends when the capture operation
is successfully performed.

We describe next the game in terms of a hybrid sys-
tem optimal control problem. The proposed model differs
from those commonly adopted in the literature (see, e.g.,
[15, 18]), in that it is stochastic. The probabilistic embed-
ding is useful for modeling different sources of uncertainty
affecting the system, e.g., actuators/sensors inaccuracy.
We assume that the game is quantized both in time and
in space. All events take, in fact, place on a set of equally
spaced event times T := {0, 1, . . . , T}, where T < ∞ is
the duration of the game, and the pursuit region consists
of a finite collection R of cells. The system is hybrid in
that: i) each player’s position evolves under the influence
of a control input that is applied at every time instant,
whereas ii) the transitions between modes are determined

by an event-driven switching input.

The discrete state component of the hybrid system rep-
resents the operation mode. It takes values in the set
Q := {qS, qC, qover}, where qS and qC respectively denote
the search and capture mode, and qover is a mode intro-
duced to represent the game-over condition. The continu-
ous state component of the hybrid system corresponds to
the players’ position. The pursuer’s position takes values
in RnS when the mode is qS, and in R, when the mode
is either qC or qover. The evader’s position takes values
in R, irrespectively of the operation mode. For ease of
reference, in the sequel we shall refer to the pursuer and
the evader as U and D, respectively.

Definition 1 (probabilistic hybrid system) A prob-
abilistic hybrid system model for the game is a 7-tuple
HG = (s, w, y, p0, e, f, h), where

- s := (q, xU , xD) is the state, with q the discrete state
variable and x = (xU , xD) the continuous state variable.
sU = (q, xU) represents the operation mode and the pur-
suer’s position, and xD the evader’s position. The state
space is S := SU × XD, where SU := {qS} × RnS ∪
{qC, qover} × R, and XD := R.

- w := (uq, ux, d) is the input, with uq the discrete input
variable and wx = (ux, d) the continuous input variable.
u = (uq, ux) is under the control of the pursuer and d
under the control of the evader. The input set W =
U×D, where U = Uq×Ux with Uq = {qC , qS}, is assumed
finite.

- y := (yq, yxU , yD) is the output, with yq the discrete out-
put variable and yx = (yxU , yD) the continuous output
variable. yU = (yq, yxU ) represents the observation avail-
able to the pursuer on the operation mode and its own
position, and yD the observation on the evader’s position.
The output set Y = YU × YD is assumed finite.

- p0 ∈ P(S) is the a-priori distribution of the state.
- e : S × Uq ×D → P(S) is the discrete transitions proba-
bility map governing the transitions between modes.

- f : S×Ux×D → P(X ), where X := XU×XD with XU :=
RnS ∪ R, is the continuous transitions probability map
governing the evolution of the continuous state within
each mode.

- h : S → P(Y) is the output probability distribution map.
When Y = S and hy(s) = 1, iff y = s, for all s ∈ S,
then HG is said to be a full-state information hybrid sys-
tem. This models the case when the pursuer has perfect
state-measuring sensors. When this does not happen, the
hybrid system is said to be partial-state information.

We have set Uq = {qC , qS} with the understanding that if
the pursuer is in mode qC and wants to switch to mode
qS, it applies uq = qS. Viceversa for switching from qS
to qC. As for the transition to qover, it is taken when the
state belongs to a certain set Sover := {qC}×Xover, which



models a successful capturing operation. Here, Xover =
{(xU , xD) ∈ X : xD = xU}.
Definition 2 (stochastic execution) A stochastic
process (s,w,y) is a stochastic execution of HG if, for all
t ∈ T ,
- the random variables s(t), w(t), and y(t) take values in
S, W , and Y , respectively.

- s(t+1) is conditionally independent of all other random
variables at times smaller or equal to t, given s(t) and
w(t). Moreover, for all s0 = (q0, x0), s = (q, x) ∈ S,
w = (uq, ux, d) ∈W ,

P (s(t+ 1) = s0 | s(t) = s,w(t) = w) = p(s, s0, w),
where p : S × S ×W → [0, 1] is given by

p(s, s0, w) = (1)

1, q = qover ∧ s0 = s
1, s ∈ Sover ∧ q0 = qover ∧ x0 = x
es0(s, uq, d), uq 6= q ∧ q 6= qover ∧ s /∈ Sover
fx0(s, ux, d), uq = q = q

0 ∧ q 6= qover ∧ s /∈ Sover
0, otherwise.

For clarity of notation we shall write p(s
ud−→ s0) for

p(s, s0, (u, d)).

- s(0) is independent of all the other random variables at
time 0, and it has probability distribution p0.

- y(t) is conditionally independent of all the other ran-
dom variables at times smaller or equal to t, given s(t).
Moreover, for all s ∈ S, y ∈ Y,

P
¡
y(t) = y | s(t) = s¢ = hy(s). (2)

In this paper, we assume that, when a transition between
modes is taken, the continuous state component of the
system is subject to a reset condition. In particular, the
evader’s position evolves irrespectively of the fact that the
transition is taken, whereas the searching and capturing
agents positions are reset to a fixed position b ∈ R repre-
senting, for example, the position of the base from which
the pursuer coordinates the mission. This corresponds to
a discrete transitions probability map of the form: For
s0 = (q0, x0U , x0D) ∈ S, x = (xU , xD) ∈ X , uq ∈ Uq, d ∈ D,

es0((qS, x), uq, d) =

(
²x0D(xD, d), uq = q

0 = qC ∧ x0U = b
0, otherwise;

es0((qC, x), uq, d) =(
²x0D(xD, d), uq = q

0 = qS ∧ x /∈ Xover ∧ x0U = bnS
0, otherwise,

where ² : XD ×D → P(XD) essentially corresponds to the
evader’s transitions probability function.
In order to model the fact that the players can indepen-
dently control their own positions when the game is not

over, f is defined as follows: For s = (q, xU , xD) ∈ S,
x0 = (x0U , x

0
D) ∈ X , ux ∈ Ux, d ∈ D,

fx0(s, ux, d) =


φx0U (xU , ux)²x0D(xD, d), q = qS

ϕx0U (xU , ux)²x0D(xD, d), q = qC

0, otherwise.

where ϕ : R× Ux → P(R), and φ : RnS × Ux → P(RnS ).
The maps ϕ, φ, and ² can be chosen so as to model differ-
ent motion capabilities of the capturing/searching agents
and the evader.
Figure 1 represents the hybrid system HG .

Figure 1: Probabilistic hybrid system model of the game.

We consider the case when the pursuer knows perfectly
the operation mode and its agents’ positions, but not the
evader’s location and in fact uses the search team to ex-
plore the pursuit region. This can be modeled by setting
YU = SU and defining h as follows: For y = (yU , yD) ∈ Y ,
s = (sU , xD) ∈ S,

hy(s) =

(
ηyD(s), yU = sU

0, otherwise,

where the map η : S → P(YD) and the set YD can be
chosen so as to model the different sensing capabilities of
the capturing and searching agents.

Closed-loop control policies

Given a hybrid system HG , we want to impose a certain
behavior to its stochastic executions (s, (u,d),y). In or-
der to achieve this, we can use the input u, which we
hence call the control, while the input d acts as a distur-
bance. u and d are in fact the inputs of the pursuer and
the evader, respectively. Here, we assume that the evader
moves according to a known open-loop policy. For sim-
plicity, we take this policy to be stationary, characterized
by a distribution δ ∈ P(D). The pursuer, however, can
use a feedback controller. We proceed by stating precisely
what we mean by this.
Fix a time instant t ∈ T and consider the sequence:

Yt := {y(0),u(0),y(1),u(1), . . . ,y(t− 1),u(t− 1),y(t)},



which is said to be of length t. Yt represents the informa-
tion available to the pursuer at time t for deciding which
action to take. We denote by Y∗ the set of all possible
outcomes Y for Yt, t ∈ T , and by `(Y ) the length of
Y ∈ Y∗. A feedback controller is then a map µ : Y∗ → U .
We denote by ΠU the set of all the feedback controllers.

Definition 3 (closed-loop stochastic execution)
Given δ ∈ P(D), a stochastic execution (s, (u,d),y) of
HG is said to be closed-loop controlled by µ ∈ ΠU if it
satisfies the following conditions, for all t ∈ T ,
- u(t) is conditionally independent of all other random
variables at times smaller or equal to t, given Yt. More-
over, for all Y ∈ Y∗, with `(Y ) = t,

Pµ(u(t) = u | Yt = Y ) =

(
1, if µ(Y ) = u

0, otherwise
, u ∈ U .

- d(t) is independent of all other random variables at times
smaller or equal to t, and Pδ(d(t) = d) = δd, d ∈ D.
Remark: In general, for each pair (µ, δ) we have a different
probability measure Pµδ. When an assertion holds true with
respect to Pµδ independently of µ, or δ, or both µ and δ, we
write Pδ, Pµ, or P, respectively. Similarly for the expectation
E. According to this notation, Pµ(u(t) = u | Yt = Y ) and
Pδ(d(t) = d) above are respectively independent of δ and µ,
whereas equations (1) and (2) and the distribution of s(0) are
independent of both µ and δ.

Given δ ∈ P(D), we aim at designing a controller
µ ∈ ΠU such that the closed loop stochastic execution
(s, (uq,ux,d),y) of HG controlled by µ reaches the game-
over state in minimum time, with some added cost kC for
each unsuccessful attempt at capturing the evader, and an
added reward kover for a successful capture. This trans-
lates into selecting µ ∈ ΠU that minimizes

Jµδ = Eµδ
£ TX
t=0

c(s(t),uq(t))
¤
, (3)

where, for all s = (q, x) ∈ S, uq ∈ Uq,

c(s, uq) =


0, q = qover

−kover, s ∈ Sover
kC , uq = qC

1, otherwise.

3 Dynamic programming solution
Consider the hybrid pursuit game modeled by HG . Given
δ ∈ P(D), we show next that there exists a solution to the
game, i.e., a feedback controller

µ∗ ∈ ΠU such that Jµ∗δ = inf
µ∈ΠU

Jµδ, (4)

which can be computed using dynamic programming. Due
to space limitations, all the results are stated without
proof (see [13] for details).

It is straightforward to check that a stochastic execution
(s, (u,d),y) of HG is an instance of a partial information
Markov game with state s, inputs u and d, and obser-
vations y ([7]). In the case considered here, player U is
pursuing the objective of catching player D, whereas D
uses a fixed static policy δ. Hence, we can regard player
D as the ‘leader’ of the game with value (3), which de-
clares its policy δ to player U (the ‘follower’). Player U
then does its best to counteract the leader’s choice by se-
lecting its policy µ so as to minimize (3). In this sense
solving the optimal control problem (4) is equivalent to
finding a Stackelberg equilibrium for a partial informa-
tion Markov game with value (3). In the sequel, we shall
consider a fixed δ ∈ P(D).
For a given policy µ ∈ ΠU , we define V

U

µδ(Y ), Y ∈ Y∗,
to be player U’s cost-to-go from Y associated with the
policy µ, after having collected a sequence Y of obser-
vations and controls of length t := `(Y ) ∈ T , i.e.,
Eµδ

£PT
τ=t c(s(τ),uq(τ))

¯̄
Yt = Y

¤
. This expected value

is only well defined when Pµδ(Yt = Y ) 6= 0 but it is actu-
ally convenient to define cost-to-go for any Y ∈ Y∗ such
that there is some policy µ̂Y for which Pµ̂Y δ(Yt = Y ) 6= 0.
To do this we formally define

V U

µδ(Y ) := Eµ̃Y δ

h TX
τ=t

c(s(τ),uq(τ ))
¯̄̄
Yt = Y

i
,

where the policy µ̃Y is given by µ̃Y (Ȳ ) = µ(Ȳ ), if `(Ȳ ) ≥
`(Y ), and µ̃Y (Ȳ ) = µ̂Y (Ȳ ), if `(Ȳ ) < `(Y ), Ȳ ∈ Y∗ (cf.
[13]). The intuition behind this is that once Yt = Y ,
it does not really matter what was the value of the pol-
icy before time t. So we might as well set the value of
the cost-to-go from Y , for a policy µ ∈ ΠU for which
Pµδ(Yt = Y ) = 0, to be identical to that of any policy
µ̃Y taking the same actions as µ from t on, but for which
Pµ̃Y δ(Yt = Y ) 6= 0.
The cost Jµδ associated with µ ∈ ΠU can be easily com-
puted from V U

µδ. Indeed, Jµδ = E
£
V U

µδ

¡{y(0)}¢¤.
We shall see next that it is possible to compute V U

µδ using
the operator TU

µδ from the set of functionals VU := {V :
Y∗ → R} into itself, defined by

TU

µδV (Y ) := Eµ̃Y δ
£
c
¡
s(t),uq(t)

¢
+ V (Yt+1)

¯̄
Yt = Y

¤
,

Y ∈ Y∗, t := `(Y ), where V (YT+1) := 0.

Proposition 1 For each µ ∈ ΠU , V
U

µδ is the unique solu-
tion to V U

µδ = T
U

µδV
U

µδ.

We proceed by showing how to actually compute the func-
tion in VU that results from applying TU

µδ to some function
V ∈ VU . For each u ∈ U , we can define an operator HU

uδ

from VU into itself by setting for each Y ∈ Y∗:

HU

uδV (Y ) :=
X

s,s0,y,d

¡
c(s, uq) + V

¡{Y, u, y}¢¢hy(s0)
p(s

ud−→ s0)δdIδ(s, Y ),



with V
¡{Y, u, y}¢ = 0 if `(Y ) = T . The function Iδ :

S × Y∗ → R is defined recursively by

Iδ(s
0, {Y, u, y}) =

P
s,d hy(s

0)p(s ud−→ s0) δd Iδ(s, Y )P
s̄,d̄,s̄0 hy(s̄

0)p(s̄ ud̄−→ s̄0) δd̄ Iδ(s̄, Y )
,

s0 ∈ S, u ∈ U , d ∈ D, y ∈ Y , and initialized with

Iδ(s
0, {y}) = hy(s

0)p0s0P
s̄0 hy(s̄0)p

0
s̄0
.

It can be shown that, for each µ ∈ ΠU such that Pµδ(Y τ =
Y ) > 0, Iδ(s, Y ) = Pµδ(s(τ ) = s

¯̄
Y τ = Y ), s ∈ S, i.e.,

Iδ is the so-called information state ([8]). Moreover,

TU

µδV (Y ) = H
U

µ(Y )δV (Y ), Y ∈ Y∗.

Proposition 2 Let µ∗ ∈ ΠU be a policy such that

TU

µ∗δV
U

µ∗δ(Y ) = min
u∈U

HU

uδV
U

µ∗δ(Y ), Y ∈ Y∗. (5)

Then, Jµ∗δ = infµ∈ΠU Jµδ.

By Propositions 1 and 2, an optimal feedback controller
µ∗ ∈ ΠU with associated cost Jµ∗δ = E[V U

µ∗δ(y(0))] can
be constructed as follows: for every t ∈ T , and for every
Y ∈ Y∗ with `(Y ) = t,
1. set µ∗(Y ) = argminu∈U HU

uδV
U

µ∗δ(Y ),

2. set V U

µ∗δ(Y ) = H
U

µ∗(Y )δV
U

µ∗δ(Y ),

starting at t = T and going backwards in time.

Remark: In general, the number of elements in Y∗ that
needs to be considered in the procedure above is equal toP

t∈T n
t+1
y ntu =

nT+2y nT+1u −ny
nynu−1 , ny and nu being the cardinal-

ity of Y and U , respectively. Though one can reduce this num-
ber by exploiting the structure of the problem at hand, (for

example, in our case, the optimal controller µ∗ can select an
arbitrary u ∈ U for all those Y ∈ Y∗ revealing that at some
instant the discrete state value is qover), the problem remains

computationally very difficult in most realistic situations.

4 Hierarchical greedy solution
In this section, we propose a solution to the described
hybrid pursuit game which is based on a two-step design
process. In particular, we suggest a greedy control of the
agents’ motion within both the search and capture modes,
and a threshold-based logic for switching between them.
This leads to a suboptimal controller µ ∈ ΠU , but it makes
the problem computationally very attractive.

The greedy control applied within mode q ∈ {qS, qC} con-
sists of, at each time instant t ∈ T , directing the agent(s)
to the locations that maximize the probability of finding
the evader at time t + 1, conditional to the information
Y ∈ Y∗, `(Y ) = t, collected up to time t. This means that,
if Y = {Ȳ , u, (q, xU , yD)}, and no condition for switching
is satisfied, then µ(Y ) is equal to (uq, ux) with uq = q and

ux = arg max
ux∈Ux

Pµδ
¡∃i : xD(t+ 1) = xiU(t+ 1)¯̄

Yt = Y,uq(t) = uq,ux(t) = ux
¢
.

Note that

Pµδ
¡∃i :xD(t+ 1)=xiU(t+ 1)¯̄Yt=Y,uq(t)=uq,ux(t)=ux

¢
=


X
x̄D

ϕx̄D(xU , ux)mδ(x̄D, Y ), uq = qCX
x̄D,x̄U s.t. ∃i: x̄iU=x̄D

φx̄U (xU , ux)mδ(x̄D, Y ), uq = qS,

where mδ(x̄D, Y ) := Pµδ(xD(t+ 1) = x̄D
¯̄
Yt = Y ), x̄D ∈

R, and can be computed as follows:

mδ(x̄D, Y ) =
X
d,xD

²x̄D(xD, d) δd Iδ
¡
(q, xU , xD), Y

¢
.

As for the switching logic, the pursuer switches at time
t ∈ T from the search to the capture mode when the
maximum of mδ(xD,Yt), xD ∈ R, (which is the probabil-
ity of the evader being at its most likely location) exceeds
a certain threshold. If the capture operation is successful,
then the game is over and the pursuer won it. Otherwise,
the pursuer switches back to the search mode so as to
collect more observations and eventually switch back to
the capture mode. If the time horizon allowed to perform
the mission elapses and the evader is not caught, then the
game is over and the pursuer lost it.

We consider next a specific game to which we apply the
proposed approach. In this game the pursuit takes place
in a rectangular grid with nr × nc square cells. The cell
at row i and column j is identified by the vector (i, j).
Hence, R := {(i, j) : i = 1, . . . , nr, j = 1, . . . , nc}, and
RnS is the set of all ordered nS-tuple of elements in R.
In this example, the evader is ‘slow’, in the sense that, in
a single time step, it can only move to a cell in the set
A(x) ⊆ R \ {x} of cells adjacent to its present position
x ∈ R. Then this corresponds to

²x0D(xD, d) =


1, x0D = xD + d ∈ A(xD)
1, x0

D = xD ∧ xD + d /∈ A(xD)
0, otherwise,

d ∈ D, xD, x0D ∈ R, with D := {−1, 0, 1} × {−1, 0, 1}.
As for the pursuer, the capturing agent is ‘fast’ in that
it can move from any cell to any other cell in a single
time step, whereas, similarly to the evader, the searching
agents are slow. This is modeled by setting Ux := DnS∪R,
and defining, for every xU , x

0
U ∈ R, ϕx0U (xU , ux) = 1, if

ux = x0U ∈ R, and 0 otherwise. The definition of φ is
similar to that of ².

We assume that the information the searching agents re-
port regarding the presence of the evader in the cell they
are occupying is accurate, whereas there is a nonzero prob-
ability that a searching agent reports the presence of an
evader in a cell adjacent to its current position, when there
is no evader in that cell and vice-versa. Specifically, the
sensor model is a function of the probability of false posi-
tive νp ∈ [0, 1] (i.e., the probability of detecting an evader



in an adjacent cell, given that none is there), and the prob-
ability of false negative νn ∈ [0, 1] (i.e., the probability of
not detecting an evader, given that the evader is there).
As for the capturing agent, it has no sensors. The sensing
capabilities of the pursuer can then be modeled by setting
YD = 2

R, where 2R denotes the set of all subsets ofR, and
defining η as follows: for yD ∈ YD, and x = (xU , xD) ∈ X ,

ηyD((qC , x)) =

(
1, yD = ∅
0, otherwise,

ηyD((qS, x)) =


1, xD ∈ {xiU}nSi=1 ∧ yD = {xD}
gν(xU), xD /∈ {xiU}nSi=1 ∧ yD ⊆ δA(xU)
0, otherwise,

where δA(xU) denotes the subset of Anp(xU) = A(x1U) ×
. . . × A(xnS

U ) not occupied by any searching agent and
gν(xU) := νk1p (1 − νp)

k2νk3n (1 − νn)
k4 , k1, k2, k3 and k4

being, respectively, the number of false positives, true neg-
atives, false negatives, and true positives.

In the simulations below, we use δd = ρ, d ∈ D \ {(0, 0)},
δ(0,0) = 1 − 8ρ, with ρ ∈ [0, 1/8]. We adopt the algo-
rithms in [6] implementing at low computational cost the
greedy control in both the cases of constrained and un-
constrained motions. Figure 2 refers to the case when
ρ = 1/20, nS = 3, and T = 30. The plot on the left-side
represents cost (3) (kover = 50, kC = 10) as a function of
the threshold. The cost is estimated by Monte Carlo sim-
ulations starting each game with xU(0) = (qS, b

nS ), and
xD(0) extracted at random from the uniform distribution
on R. The right-side represents the frame at t = 6 of a
simulation with threshold equal to the estimated cost min-
imizer. The game is in the search mode with the searching
agents and the evader represented by light stars and a dark
circle. The background color of each cell x ∈ R encodes
mδ(x,Yt): a light color for low probability and a dark
color for high probability. The dark color at cell (3, 14)
reveals the occurrence of a false positive (νp = νn = 1%).
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Figure 2: Hybrid pursuit game (nr = nc = 15, b = (8, 8)).

5 Conclusions
In this paper we consider a game where a pursuer is try-
ing to catch a moving evader in minimum time and with
minimum costs. When the pursuer has available teams
of agents capable of performing different operations that
cannot be done simultaneously, the game can be naturally
formulated as an optimal control problem on a hybrid sys-
tem. We show how an optimal feedback controller can be

computed using dynamic programming in the 2-operations
case. Since this approach is computationally very difficult
in most realistic situations, we then propose a hierarchical
greedy solution.
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