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Sparse Representation

Volkan Cevher (Senior Member) and Andreas Krause

Abstract—We develop an efficient learning framework to

construct signal dictionaries for sparse representation by selecting

the dictionary columns from multiple candidate bases. By sparse,

we mean that only a few dictionary elements, compared to

the ambient signal dimension, can exactly represent or well-

approximate the signals of interest. We formulate both the

selection of the dictionary columns and the sparse representation

of signals as a joint combinatorial optimization problem. The

proposed combinatorial objective maximizes variance reduction

over the set of training signals by constraining the size of the

dictionary as well as the number of dictionary columns that can

be used to represent each signal. We show that if the available

dictionary column vectors are incoherent, our objective function

satisfies approximate submodularity. We exploit this property

to develop SDSOMP and SDSMA, two greedy algorithms with

approximation guarantees. We also describe how our learning

framework enables dictionary selection for structured sparse

representations, e.g., where the sparse coefficients occur in

restricted patterns. We evaluate our approach on synthetic signals

and natural images for representation and inpainting problems.

I. INTRODUCTION

An important problem in machine learning, signal

processing and computational neuroscience is to deter-

mine a dictionary of basis functions for sparse repre-

sentation of signals. A signal y ∈ R
d has a sparse

representation with y = Dα in a dictionary D ∈ R
d×n,

when k ≪ d coefficients of α can exactly represent or

well-approximate y. Myriad applications in data analysis

and processing–from deconvolution to data mining and

from compression to compressive sensing–involve such

representations. Surprisingly, there are only two main

approaches for determining data-sparsifying dictionaries:

dictionary design and dictionary learning.

In dictionary design, researchers assume an abstract

functional space that can concisely capture the underly-

ing characteristics of the signals. A classical example is

based on Besov spaces and the set of natural images,
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for which the Besov norm measures spatial smoothness

between edges (c.f., [1] and the references therein).

Along with the functional space, a matching dictionary

is naturally introduced, e.g., wavelets (W) for Besov

spaces, to efficiently calculate the induced norm. Then,

the rate distortion of the partial signal reconstructions yDk
is quantified by keeping the k largest dictionary elements

via an ℓp norm, such as σp(y, y
D
k ) = ‖y − yDk ‖p ≡(∑d

i=1 ‖yi − yDk,i‖p
)1/p

; the faster σp(y, y
D
k ) decays

with k, the better the observations can be compressed.

While the designed dictionaries have well-characterized

rate distortion and approximation performance on sig-

nals in the assumed functional space, they are data-

independent and hence their empirical performance on

the actual observations can greatly vary: σ2(y, y
W
k ) =

O(k−0.1) (practice) vs. O(k−0.5) (theory) for wavelets

on natural images [2].

In dictionary learning, researchers develop algo-

rithms to learn a dictionary for sparse representation

directly from data using techniques such as regular-

ization, clustering, and nonparametric Bayesian infer-

ence. Regularization-based approaches define an objec-

tive function that minimize the data error, regularized

by the ℓ1 or the total variation (TV) norms to enforce

sparsity under the dictionary representation. The pro-

posed objective function is then jointly optimized in the

dictionary entries and the sparse coefficients [3], [4], [5].

Clustering approaches learn dictionaries by sequentially

determining clusters where sparse coefficients overlap on

the dictionary and then updating the corresponding dic-

tionary elements based on singular value decomposition

[6]. Bayesian approaches use hierarchical probability

models to nonparametrically infer the dictionary size

and its composition [7]. Although dictionary learning

approaches have great empirical performance on many

data sets in denoising and inpainting of natural images,

they lack theoretical rate distortion characterizations of

the dictionary design approaches.

In this paper, we investigate a hybrid approach be-

tween dictionary design and learning. We propose a

learning framework based on dictionary selection: We

build a sparsifying dictionary for a set of observations by

selecting the dictionary columns from multiple candidate
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bases, typically designed for the observations of interest.

We constrain the size of the dictionary as well as

the number of dictionary columns that can be used to

represent each signal with user-defined parameters n
and k, respectively. We formulate both the selection

of basis functions and the sparse reconstruction as a

joint combinatorial optimization problem. Our objective

function maximizes a variance reduction metric over the

set of observations.

We then propose SDSOMP and SDSMA, two com-

putationally efficient, greedy algorithms for dictionary

selection. We show that under certain incoherence as-

sumptions on the candidate vectors, the dictionary se-

lection problem amounts to optimizing a function that

is approximately submodular. We then use this insight

to derive theoretical performance guarantees for our

algorithms. We also demonstrate that our framework

naturally extends to dictionary selection with restrictions

on the allowed sparsity patterns in signal representation.

As a stylized example, we study a dictionary selection

problem where the sparse signal coefficients exhibit

block sparsity, e.g., sparse coefficients appear in pre-

specified blocks.

Lastly, we first evaluate the performance of our al-

gorithms in both on synthetic and real data. Our main

contributions can be summarized as follows:

1) We introduce the problem of dictionary selection

and cast the dictionary learning/design problems

in a new, discrete optimization framework.

2) We propose new algorithms and provide their theo-

retical performance characterizations by exploiting

a geometric connection between submodularity

and sparsity.

3) We extend our dictionary selection framework to

allow structured sparse representations.

4) We evaluate our approach on several real-world

sparse representation and show that it provides

practical insights to existing image coding stan-

dards. We also provide an image inpainting exam-

ple to understand the limitations of our approach

as compared to dictionary learning.

This work extends our earlier work [9]. Compared to

[9], we introduce a new structured sparsity model for

dictionary selection in this paper to enforce sparsity on

average for the given collection of training signals. We

show that this model leads to a matroid constraint that

can be readily handled within our dictionary selection

framework. Additional experiments on natural images

show that learning with the average sparsity model leads

to better dictionaries for sparse representation on test

data. Our preliminary results were also presented at [8].

The paper is organized as follows. Section II sets the

stage by introducing the dictionary selection for sparse

representation and describing its computational chal-

lenges. Section III unifies key geometric and combinato-

rial properties in dictionary selection, which motivate the

use of two computationally scalable greedy approxima-

tion algorithms. Section IV then describes the algorithms

along with their theoretical guarantees. Sections V and

VI discuss structured models in dictionary selection for

the sparse representation of individual signals as well

as the signal ensembles. Section VII provide extensive

numerical studies that support the effectiveness of our

algorithms. Section VIII presents concluding remarks

and discusses promising directions for future research.

II. THE DICTIONARY SELECTION PROBLEM

In the dictionary selection problem (DiSP), we seek

a dictionary D to sparsely represent a given collection

of signals Y = {y1, . . . , ym} ∈ R
d×m. We compose

D using the variance reduction metric, defined below,

by selecting a subset out of a candidate set of vectors

Φ = {φ1, . . . , φN}, indexed by set V = {1, . . . , N},
and where each φi ∈ R

d. Without loss of generality, we

assume ‖yi‖2 ≤ 1 and ‖φi‖2 = 1, ∀i. In the sequel,

we define ΦA = [φi1 , . . . , φiQ ] as a matrix containing

the vectors in Φ as indexed by A = {i1, . . . , iQ} where

A ⊆ V and Q = |A| is the cardinality of the set A. We

do not assume any particular ordering of V .

DiSP objectives: For a fixed signal ys and a set of

vectors A, we define the reconstruction accuracy as

Ls(A) = σ22(ys, y
A) = min

w
||ys − ΦAw||22. (1)

The problem of optimal k-sparse representation with

respect to a fixed dictionary D then requires solving the

following discrete optimization problem:

As = argmin
A⊆D,|A|≤k

Ls(A), (2)

where k is the user-defined sparsity constraint on the

number of columns in the reconstruction.

In DiSP, we are interested in determining a dictionary

D ⊆ V that obtains the best possible reconstruction

accuracy for not only a single signal but all signals Y on

the average. Each signal ys can potentially use different

columns As ⊆ D for representation; we thus define

Fs(D) = Ls(∅)− min
A⊆D,|A|≤k

Ls(A), (3)

where Ls(∅) = ‖ys‖22 and Fs(D) measures the im-

provement in reconstruction accuracy, also known as

variance reduction, for the signal ys and the dictionary
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D. Moreover, we define the average improvement for all

signals as

F (D) = 1

m

∑

s

Fs(D). (4)

The optimal solution to the DiSP is then given by

D∗ = argmax
|D|≤n

F (D), (5)

where n is a user-defined constraint on the number of

dictionary columns. For instance, if we are interested in

selecting a basis, we have n = d.

DiSP challenges: The optimization problem in (5)

presents two combinatorial challenges. (C1) Evaluating

Fs(D) requires finding the set As of k basis functions–

out of exponentially many options–for the best recon-

struction accuracy of ys. (C2) Even if we could evaluate

Fs, we would have to search over an exponential number

of possible dictionaries to determine D∗ for all signals.

Even the special case of k = n is NP-hard [10]. To cir-

cumvent these combinatorial challenges, the existing dic-

tionary learning work relies on continuous relaxations,

such as replacing the combinatorial sparsity constraint

with the ℓ1-norm of the dictionary representation of the

signal. However, these approaches result in non-convex

objectives, and the performance of such relaxations is

typically not well-characterized for dictionary learning.

III. SUBMODULARITY IN SPARSE REPRESENTATION

In this section, we first describe a key structure in the

DiSP objective function: approximate submodularity.

We then relate this structure to a geometric property

of the candidate vector set, called incoherence. We use

these two concepts to develop efficient algorithms with

provable guarantees in the next section.

Approximate submodularity in DiSP: To define this

concept, we first note that F (∅) = 0 and whenever

D ⊆ D′ then F (D) ≤ F (D′), i.e., F increases

monotonically with D. In the sequel, we will show that

F is approximately submodular: A set function F is

called approximately submodular with constant ε, if for

D ⊆ D′ ⊆ V and v ∈ V \ D′ it holds that

F (D ∪ {v})− F (D) ≥ F (D′ ∪ {v})− F (D′)− ε. (6)

In the context of DiSP, the above definition implies that

adding a new column v to a larger dictionary D′ helps

at most ε more than adding v to a subset D ⊆ D′. When

ε = 0, the set function is called submodular.

A fundamental result by [11] proves that for mono-

tonic submodular functions G with G(∅) = 0, a simple
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Fig. 1. Example geometry in DiSP. (Left) Minimum error decom-

position. (Right) Modular decomposition.

greedy algorithm that starts with the empty set D0 = ∅,
and at every iteration i adds a new element via

vi = argmax
v∈V\D

G(Di−1 ∪ {v}), (7)

where Di = {v1, . . . , vi}, obtains a near-optimal solu-

tion. That is, for the solution Dn returned by the greedy

algorithm, we have the following guarantee:

G(Dn) ≥ (1− 1/e) max
|D|≤n

G(D). (8)

The solution Dn hence obtains at least a constant fraction

of (1− 1/e) ≈ 63% of the optimal value. Using similar

arguments, [12] show that the same greedy algorithm,

when applied to approximately submodular functions,

instead inherits the following–slightly weaker–guarantee

F (Dn) ≥ (1− 1/e) max
|D|≤n

F (D)− nε. (9)

In Section IV, we explain how this greedy algorithm

can be adapted to DiSP. But first, we elaborate on how

ε depends on the candidate vector set ΦV .

Geometry in DiSP (incoherence): The approximate

submodularity of F explicitly depends on the maximum

incoherency µ of ΦV = [φ1, . . . , φN ]:

µ = max
∀(i,j),i 6=j

|〈φi, φj〉| = max
∀(i,j),i 6=j

|cosψi,j | ,

where ψi,j is the angle between the vectors φi and φj .
The following theorem establishes a key relationship

between ε and µ for DiSP.

Theorem 1: If ΦV has incoherence µ, then the vari-

ance reduction objective F in DiSP is ε-approximately

submodular with ε ≤ 4kµ.
Proof: Let ws,v = 〈φv, ys〉2. When ΦV is an

orthonormal basis, the reconstruction accuracy in (1) can

be written as follows

Ls(A) =
∣∣∣
∣∣∣ys −

Q∑

q=1

φiq〈ys, φiq〉
∣∣∣
∣∣∣
2

2
= ||ys||22 −

∑

v∈A
ws,v.
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Hence the function Rs(A) ≡ Ls(∅) − Ls(A) =∑
v∈Aws,v is additive (modular). It can be seen that then

Fs(D) = maxA⊆D,|A|≤k Rs(A) is submodular.

Now suppose ΦV is incoherent with constant µ.

Let A ⊆ V and v ∈ V \ A. Then we claim that

|Rs(A ∪ {v}) − Rs(A) − ws,v| ≤ µ. Consider the

special case where ys is in the span of two subspaces

A and v, and w.l.o.g., ||ys||2 = 1; refer to Fig. 1 for

an illustration. The reconstruction accuracy as defined

in (1) has a well-known closed form solution: Ls(A) =
minw ||ys−ΦAw||22 = ||ys−ΦAΦ

†
Ays||22, where † denotes

the pseudoinverse; the matrix product P = ΦAΦ
†
A is

simply the projection of the signal ys onto the sub-

space of A. We therefore have Rs(A) = 1 − sin2(θ),
Rs(A ∪ {v}) = 1, and Rs({v}) = 1 − sin2(ψ − θ),
where θ and ψ are defined in Fig. 1. We thus can bound

εs ≡ |Rs(A ∪ {v})−Rs(A)− wv,s| by

εs ≤ max
θ

∣∣sin2(ψ − θ) + sin2(θ)− 1
∣∣

= |cosψ|max
θ
|cos(ψ − 2θ)| = µ.

If ys is not in the span of A ∪ {v}, we apply above

reasoning to the projection of ys onto their span.

Define R̂s(A) =
∑

v∈Aws,v. Then, by induction,

we have |R̂s(A) − Rs(A)| ≤ kµ. Note that the

function F̂s(D) = maxA⊆D,|A|≤k R̂s(A) is submod-

ular. Let As = argmaxA⊆D,|A|≤k Rs(A) and Âs =

argmaxA⊆D,|A|≤k R̂s(A). Therefore, it holds that

Fs(D)=Rs(As)≤R̂(As)+kµ≤R̂(Âs)+kµ= F̂s(D)+kµ.
Similarly, F̂s(D) ≤ Fs(D) + kµ. Thus, |F̂s(D) −
Fs(D)| ≤ kµ, and hence |F̂ (D) − F (D)| ≤ kµ holds

for all candidate dictionaries D. Therefore, whenever

D ⊆ D′ and v /∈ D′, we can obtain the following

F (D ∪ {v})− F (D)− F (D′ ∪ {v}) + F (D′)

≥F̂ (D ∪ {v})− F̂ (D)− F̂ (D′ ∪ {v}) + F̂ (D′)− 4kµ

≥− 4kµ,

which proves the claim.

When the incoherency µ is small, the approximation

guarantee in (9) is quite useful. There has been a

significant body of work establishing the existence and

construction of collections V of columns with low coher-

ence µ. For example, it is possible to achieve incoherence

µ ≈ d−1/2 with the union of d/2 orthonormal bases

(c.f. Theorem 2 of [13]). In general settings, the Welch

bound can be used to obtain a lower-bound on the value

of µ.

Unfortunately, when n = Ω(d) and ε = 4kµ, the

guarantee (9) is vacuous since the maximum value of

F for DiSP is 1. In Section IV, we will show that if,

instead of greedily optimizing F , we optimize a modular

approximation F̂s of Fs (as defined below), we can

improve the approximation error from O(nkµ) to O(kµ).

A modular approximation to DiSP: The key idea

behind the proof of Theorem 1 is that for incoherent

dictionaries the variance reduction Rs(A) = Ls(∅) −
Ls(A) is approximately additive (modular). We exploit

this observation by optimizing a new objective F̂ that

approximates F by disregarding the non-orthogonality

of ΦV in sparse representation. We do this by replac-

ing the weight calculation ws,A = Φ†
Ays in F with

ws,A = ΦT
Ays:

F̂s(D) = max
A⊆D,|A|≤k

∑

v∈A
ws,v, and F̂ (D) = 1

m

∑

s

F̂s(D),

(10)

where ws,v = 〈φv, ys〉2 for each ys ∈ R
d and φv ∈ ΦV .

We call F̂ a modular approximation of F as it relies on

the approximate modularity of the variance reduction Rs.

Note that in contrast to (3), F̂s(D) in (10) can be exactly

evaluated by a greedy algorithm that simply picks the

k largest weights ws,v. Moreover, the weights must be

calculated only once during algorithm execution, thereby

significantly increasing its efficiency.

The corollary below follows directly from the proof

of Theorem 1 and summarizes the essential properties of

F̂ :

Corollary 1: Suppose ΦV is incoherent with constant

µ. Then, for any D ⊆ V , we have |F̂ (D)−F (D)| ≤ kµ.
Furthermore, F̂ is monotonic and submodular.

Proof: Using the same arguments in Theorem

1, we first note that |Fs(A ∪ {v}) − Fs(A) −
ws,v| ≤ µ. By concatenation, we then have |F (D) −∑

v∈A,A⊆D,|A|≤k ws,v| ≤ kµ, proving the desired result.

Corollary 1 shows that F̂ is a close approximation

of the DiSP set function F . We exploit this modular

approximation to motivate a new algorithm for DiSP

and provide better performance bounds in Section IV.

IV. SPARSIFYING DICTIONARY SELECTION

In this section, we describe two sparsifying dictionary

selection (SDS) algorithms with theoretical performance

guarantees: SDSOMP and SDSMA. Both algorithms

make locally greedy choices to handle the combinatorial

challenges C1 and C2, defined in Section II. Pseudo-

code for the algorithms is presented in Algorithm 1.

The algorithms differ only in the way they address

C1, which we further describe below. Both algorithms

tackle C2 by the same greedy scheme in (7). That is,

both algorithms start with the empty set and greedily
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Input: Collection of N candidate column vectors

Φ; collection of m signals Y; desired

sparsity level k; bound on number n of

columns selected; approximation method

M ∈ {OMP,MA}
Output: Dictionary D
begin

D ← ∅;
for ℓ = 1 to n do

if M=OMP then

i∗ ← argmaxi∈V\D FOMP (D∪{i}; Φ,Y, k);
else if M=MA then

i∗ ← argmaxi∈V\D F̂ (D ∪ {i}; Φ,Y, k);
Set D ← D ∪ {i∗};

end

end

Algorithm 1: The SDSOMP and SDSMA algo-

rithms

Input: Collection of N candidate column vectors

Φ; collection of m signals Y; desired

sparsity level k; candidate dictionary D
Output: Value FOMP (D) = FOMP (D; Φ,Y, k)
begin

for s = 1 to m do
Use OMP to approximately solve

As = argminA⊆D:||A||≤k Ls(A);
rs ← Ls(∅)− Ls(As);

end

return 1
m

∑m
s=1 rs

end

Algorithm 2: Algorithm for computing FOMP

add dictionary columns to solve DiSP. Interestingly,

while SDSMA has better theoretical guarantees and is

much faster than SDSOMP , Section VII empirically

shows that SDSOMP often performs better.

SDSOMP : SDSOMP employs the orthogonal matching

pursuit (OMP) [14] to approximately solve the sparse

representation problem in (2). It greedily maximizes

FOMP (pseudo code for evaluating FOMP is given in Al-

gorithm 2), and has the following theoretical guarantee:

Theorem 2: SDSOMP uses the scheme in (7) to build

a dictionary DOMP one column at a time such that

F (DOMP) ≥ (1− 1/e) max
|D|≤n

F (D)− k(6n+ 2− 1/e)µ.

Before we prove Theorem 2, we state the following

result whose proof directly follows from Theorem 1

and Corollary 1.

Input: Collection of N candidate column vectors

Φ; collection of m signals Y; desired

sparsity level k; candidate dictionary D
Output: Value F̂ (D) = F̂ (D; Φ,Y, k)
begin

for s = 1 to m do

for v = 1 to N do ŵs,v ← φTv ys;
Sort ŵs,1, . . . , ŵs,N , and let i1 6= · · · 6= iN
s.t. ŵs,i1 ≥ · · · ≥ ŵs,iN ;

rs ←
∑k

ℓ=1 ŵs,iℓ ;

end

return 1
m

∑m
s=1 rs

end

Algorithm 3: Algorithm for computing F̂

Proposition 1: At each iteration, SDSOMP approxi-

mates F with a value FOMP such that |FOMP (D) −
F (D)| ≤ kµ over all dictionaries D.

Proof of Theorem 2: From Theorem 1 and Propo-

sition 1 we can see that FOMP is 6knµ-approximately

submodular. Thus, according to [12]:

FOMP (DOMP) ≥ (1− 1/e) max
|D|≤n

FOMP (D)− 6knµ.

(11)

Using Proposition 1, we substitute F (DOMP) + kµ ≥
FOMP (DOMP) and max|D|≤n FOMP (D) ≥ max|D|≤n

F (D)− kµ into (11) to prove the claim.

SDSMA: SDSMA greedily (according to (7)) optimizes

the modular approximation (MA) F̂ of the DiSP

objective F (pseudo code for evaluating F̂ is given in

Algorithm 3) and has the following guarantee:

Theorem 3: SDSMA builds a dictionary DMA s.t.

F (DMA) ≥ (1− 1/e) max
|D|≤n

F (D)− (2− 1/e)kµ. (12)

Corollary 1 and Theorem 2 directly imply Theorem 3.

In most realistic settings with high-dimensional sig-

nals and incoherent dictionaries, the term (2 − 1/e)kµ
in the approximation guarantee (12) of SDSMA is

negligible. Note that the approximation guarantee of

Theorems 2 and 3 is stated in terms of the variance

reduction F , instead of the residual reconstruction error.

We leave the derivation of approximation guarantees for

the reconstruction error as an open problem for future

work.

At the time of this publication, [15] improved our ad-

ditive bounds on dictionary selection with multiplicative

bounds by using a new concept called submodularity

ratio.
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V. SPARSIFYING DICTIONARY SELECTION

FOR BLOCK SPARSE REPRESENTATION

Structured sparsity: While many man-made and natural

signals can be described as sparse in simple terms, their

sparse coefficients often have an underlying, problem de-

pendent order. For instance, modern image compression

algorithms, such as JPEG, not only exploit the fact that

most of the DCT coefficients of a natural image are

small. Rather, they also exploit the fact that the large

coefficients have a particular structure characteristic of

images containing edges. Coding this structure using an

appropriate model enables transform coding algorithms

to compress images close to the maximum amount pos-

sible and significantly better than a naive coder that just

assigns bits to each large coefficient independently [16].

We can enforce structured sparsity for sparse co-

efficients over the learned dictionaries in DiSP, cor-

responding to a restricted union-of-subspaces (RUS)

sparse model by imposing the constraint that the feasible

sparsity patterns are a strict subset of all k-dimensional

subspaces [17]. To facilitate such RUS sparse models

in DiSP, we must not only determine the constituent

dictionary columns, but also their arrangement within the

dictionary. While analyzing the RUS model in general

is challenging, we here describe below a special RUS

model of broad interest to explain the general ideas.

Block-sparsity: Block-sparsity is abundant in many ap-

plications. In sensor networks, multiple sensors simul-

taneously observe a sparse signal over a noisy chan-

nel. While recovering the sparse signal jointly from

the sensors, we can use the fact that the support of

the significant coefficients of the signal are common

across all the sensors. In DNA microarray applications,

specific combinations of genes are also known a priori to

cluster over tree structures, called dendrograms. In com-

putational neuroscience problems, decoding of natural

images in the primary visual cortex (V1) and statistical

behavior of neurons in the retina exhibit clustered sparse

responses.

To address block-sparsity in DiSP, we replace (3) by

Fi(D) =
∑

s∈Bi

Ls(∅)− min
A⊆D,|A|≤k

∑

s∈Bi

Ls(A), (13)

where Bi ⊆ {1, . . . ,m} is the i-th block of signals (e.g.,

simultaneous recordings by multiple sensors) that must

share the same sparsity pattern. Accordingly, we redefine

F (D) = ∑
i Fi(D) as the sum across blocks, rather than

individual signals, as Section VII further elaborates.

This change preserves (approximate) submodularity.

VI. DICTIONARY SELECTION FOR AVERAGE

SPARSITY

When facing a large collection of natural signals, it is

only expected that some signals carry a lot of information

(e.g., faces in natural images), whereas other signals can

be compressed using a only few non-zero coefficients

(e.g., flat background). In such settings, it may be

advantageous to use different amounts of compression

for different signals. Thus, a valid question is whether

sparsifying dictionaries can be selected for which signals

can be represented using a small number of columns on

average.

In this section, we explain how our dictionary se-

lection framework allows to handle an average sparsity

structure for signal ensembles for the dictionary selec-

tion problem. To define our model, we reformulate the

variance reduction objective F (D) from (4) as

Favg(D) = max
A1,...,Am⊆D

|As|≤k′,
∑

s
|As|≤mk

1

m

∑

s

(
Ls(∅)−Ls(As)

)
.

(14)

Thus, the value of a dictionary D is the average variance

reduction across all signals, where each signal s is

represented using a set As of at most k′ columns from D.

For generality, we also impose an additional constraint

that at most mk columns are selected overall, where k′

is given as a parameter.

At first glance, the problem

max
|D|≤n

Favg(D)

appears to be more challenging: Previously, in order to

evaluate F (D), we had to solve m sparse reconstruction

problems with fixed sparsity budget for each signal. Now,

in addition, we have to optimize over the number of

columns |As| selected for each signal s.
Fortunately, we can still resort to our modular approxi-

mation technique: Reusing the notation from Section III,

we define the modular approximation

F̂avg(D) = max
A1,...,Am⊆D

|As|≤k′,
∑

s
|As|≤mk

1

m

∑

s

R̂s(As),

where R̂s(A) =
∑

v∈Aws,v is the modular approxima-

tion to the variance reduction for signal s using columns

A.

We have the following result, which strictly general-

izes Corollary 1:

Theorem 4: Suppose ΦV is incoherent with constant

µ. Then, for any D ⊆ V , we have |F̂avg(D)−Favg(D)| ≤
k′µ. Furthermore, F̂avg is monotonic and submodular.

Proof: Similar arguments as used in the proof of

Theorem 1 show that |R̂s(A) − Rs(A)| ≤ k′µ for all
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signals s and sets A s.t. |A| ≤ k′. This immediately

proves the first claim. Monotonicity of F̂avg is immediate

as well. It remains to prove the submodularity of F̂avg.

Define the set V ′ = {1, . . . ,m} × V of all pairs of

signals and columns of Φ. Any subset A′ ⊆ Φ′ can

thus be interpreted as a “joint support set”, indicating

which columns of V are used as support in each of the

m signals. Define set function G : 2V
′ → R as

G(A′) =
∑

(s,v)∈A′

ws,v,

i.e., is the total weight of the joint support in the modular

approximation. G is a modular function. Call a subset

A′ ⊆ V ′ independent if |A′| ≤ mk and, for all s, |({s}×
V) ∩ A′| ≤ k′. Thus, a candidate joint support set A′

is independent if it respects the constraints dictated by

average sparsity. Now fix a subset W ′ ⊆ V ′, and let

I(W ′) ⊆ 2V
′

be the collection of all subsets A′ ⊆ W ′

that are independent. It can be seen that for any W ′, the

pair (W ′, I(W ′)) forms a matroid, and I(W1) ⊆ I(W2)
whenever W1 ⊆ W2. Further,

max
A1,...,Am⊆D

|As|≤k′,
∑

s
|As|≤mk

∑

s

R̂s(As) = max
A′∈I({1,...,m}×D)

G(A′).

Proposition 3.2 of [11] now proves that the function

F̂avg(D) = max
A′∈I(⋃

v∈D
{1,...,m}×{v})

G(A′)

is submodular.

Thus, the results of Theorems 2 and 3 generalize, with

k replaced by k′. In addition, the proof of Theorem 4

suggests an efficient algorithm for evaluating F̂avg(D).
The problem

max
A1,...,Am⊆D

|As|≤k′,
∑

s
|As|≤mk

∑

s

R̂s(As)

requires maximizing a modular function subject to a ma-

troid constraint, which is optimally solved using a greedy

algorithm: We start with As = ∅ for all s, and then

greedily choose the pair (s, v) such that all constraints

remain satisfied, and ws∗,v∗ is maximized. We then add

column v∗ to set As∗ . We continue until no more ele-

ments can be added. The resultant collection of support

sets A1, . . . ,Am satisfies F̂avg(D) = 1
m

∑
s R̂s(As).

Note that if we set k′ = Ω(
√
d), then even for the case

of incoherent (µ = Ω( 1√
d
)) collections V of columns, the

guarantees of Theorem 4 can be rather weak. However,

in practice, one likely intends to limit the maximum

number of coefficients used to represent each signal k′,
for example, to counter overfitting. In such cases, where

k′ is a small constant, the guarantees of Theorem 4 are

quite useful.

VII. EXPERIMENTS

We evaluate our SDSOMP and SDSMA algorithms

on several sparse representation problems both on syn-

thetic and real data. In our implementation, we use lazy

evaluations [18] to speed up the SDSOMP and SDSMA

algorithms.

Finding a dictionary in a haystack: To understand

how the theoretical performance reflects on the actual

performance of the proposed algorithms, we first perform

experiments on synthetic data.

We generate a collection ΦU with 400 columns by

forming a union of five orthonormal bases and a nor-

malized tight frame with d = 64, including the discrete

cosine transform (DCT), different wavelet bases (Haar,

Daub4, Coiflets), noiselets, and the Gabor frame. This

collection ΦU is not incoherent—in fact, the various

bases contain perfectly coherent columns. As alterna-

tives, we first create a separate collection ΦS from ΦU ,

where we greedily removed columns based on their

incoherence, until the remaining collection had inco-

herence of µS = 0.5. The resulting collection contains

245 columns. We also create a collection ΦR with 150
random columns, which results in µR = 0.2.

For each of ΦU , ΦS and ΦR with respective index

sets VU , VS and VR, we repeatedly (50 trials) pick at

random a dictionary D∗ ⊆ V (where V ∈ {VU ,VS ,VR})
of size n = 64 and generate a collection of m = 100
random 5-sparse signals with respect to the dictionary

D∗. Our goal is to recover the true dictionary D∗ using

our SDS algorithms. For each random trial, we run

SDSOMP and SDSMA to select a dictionary D of size

64. We then look at the overlap |D ∩ D∗| to measure

the performance of selecting the “hidden” basis D∗. We

also report the fraction of remaining variance after sparse

reconstruction.

Figures 2(a), 2(b), and 2(c) compare SDSOMP and

SDSMA in terms of their variance reduction as a func-

tion of the selected number of columns. Interestingly, in

all 50 trials, SDSOMP perfectly reconstructs the hidden

basis D∗ when selecting 64 columns for ΦS and ΦR.

SDSMA performs slightly worse than SDSOMP .

Figures 2(e), 2(f), and 2(g) compare the performance

in terms of the fraction of incorrectly selected basis

functions. Note that, as can be expected, in case of

the perfectly coherent ΦU , even SDSOMP does not

achieve perfect recovery. However, even with high co-

herence, µ = 0.5 for ΦS , SDSOMP exactly identifies

D∗. SDSMA performs a slightly worse but nevertheless

correctly identifies a high fraction of D∗.

In addition to exact sparse signals, we also gener-

ate compressible signals, where the coefficients have
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0 50 100
0

0.2

0.4

0.6

0.8

1

# columns selected

Fr
ac

tio
n 

of
 in

co
rr

ec
t a

to
m

s

 

 

SDSOMP
SDSMA

(h) VS–compressible
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(l) Block-sparse

Fig. 2. Results of 50 trials: (a-c) Variance reduction achieved by SDSOMP and SDSMA on the collections VU , VS and VR for 5-sparse

signals in 64 dimensions. (e-g) Percentage of incorrectly selected columns on the same collections. (d) Variance reduction for compressible

signals in 64 dimensions for VS . (h) Corresponding column selection performance. (i) SDSMA is orders of magnitude faster than SDSOMP

over a broad range of dimensions. (j) As incoherence decreases, the algorithm effectiveness in variance reduction improve. (k) The variance

reduction performance of SDSMA improves with the number of training samples. (l) Exploiting block-sparse structure in signals leads to

improved dictionary selection performance.

power-law with decay rate of 2. These signals can

be well-approximated as sparse; however, the residual

error in sparse representation creates discrepancies in

measurements which can be modeled as noise in DiSP.

Figures 2(d) and 2(h) repeat the above experiments for

ΦS ; both SDSOMP and SDSMA perform quite well.

Figure 2(i) compares SDSOMP and SDSMA in run-

ning time. As we increase the dimensionality of the prob-

lem, SDSMA is several orders of magnitude faster than

SDSOMP in our MATLAB implementation. Figure 2(j)

illustrates the performance of the algorithms as a func-

tion of the incoherence. As predicted by Theorems 2 and

3, lower incoherence µ leads to improved performance of

the algorithms. Lastly, Figure 2(k) compares the residual

variance as a function of the training set size (number of

signals). Surprisingly, as the number of signals increase,

the performance of SDSMA improves, and even exceeds

that of SDSOMP .

We also test the extension of SDSMA to block-

sparse signals as discussed in Section V. We generate

200 random signals each with fixed sparsity pattern,

comprising 10 blocks, consisting of 20 signals each. We

then compare the standard SDSMA algorithm with the

block-sparse variant SDSMAB described in Section V

in terms of their basis identification performance (see

Figure 2(l)). SDSMAB drastically outperforms SDSMA,

and even outperforms the SDSOMP algorithm which is

computationally far more expensive. Hence, exploiting

prior knowledge of the problem structure can signifi-

cantly aid dictionary selection.

A battle of bases on image patches: In this experiment,

we try to find the optimal dictionary among an existing

set of bases to represent natural images. Since the

conventional dictionary learning approaches cannot be

applied to this problem, we only present the results of

SDSOMP and SDSMA.

We sample image patches from natural images, and

apply our SDSOMP and SDSMA algorithms to select

dictionaries from the collection ΦU , as defined above.
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Fig. 3. Experiments on natural image patches. (a,b) Fractions of bases selected for SDSOMP and SDSMA with d = 64. (c) Fractions of bases

selected for SDSMA with d = 1024. (d) The variance reduction on test patches with d = 64. (e) The variance reduction on test patches with

d = 64, when average sparsity criterion is used.

Figures 3(a) (for SDSOMP ) and 3(b) (for SDSMA)

show the fractions of selected columns allocated to the

different bases constituting ΦU for 4000 image patches

of size 8×8. We restrict the maximum number of dictio-

nary coefficients k for sparse representation to 10% (6).

We then observe the following surprising results. While

wavelets are considered to be an improvement over the

DCT basis for compressing natural images (JPEG2000

vs. JPG), SDSOMP prefer DCT over wavelets for

sparse representation; the cross validation results show

that the learned combination of DCT (global) and Gabor

functions (local) are better than the wavelets (multiscale)

in variance reduction (compression). In particular,

Fig. 3(d) demonstrates the performance of the learned

dictionary against the various bases that comprise ΦU

on a held-out test set of 500 additional image patches.

The variance reduction of the dictionary learned by

SDSOMP is 8% lower than the variance reduction

achieved by the best basis, which, in this case, is DCT.

Moreover, SDSMA, which trades off representation

accuracy with efficient computation, overwhelmingly

prefers Gabor functions that are used to model neuronal

coding of natural images. The overall dictionary con-

stituency varies for SDSOMP and SDSMA; however, the

variance reduction performances are comparable. Finally,

Figure 3(c) presents the fraction of selected bases for

32×32 sized patches with k = 102, which matches well

with the 8× 8 DiSP problem above.

Figure 3(e) illustrates that the average sparsity as-

sumption can significantly improve the variance re-

duction objective, when applied to natural images. In

this example, we train the dictionary using the average

variance reduction criterion; however, we enforce hard

sparsity during representation. It is then surprising that

only 32 columns are selected with the average sparsity

criterion is able to achieve the same amount of the

variance reduction when trained with the hard sparsity

constraint. We believe that this formulation circumvents

the bias caused by the self similar patches, alleviating

the column selection process to explore a better column

range of the data.

Dictionary selection from dimensionality reduced

data: In this experiment, we focus on a specific image

processing problem, inpainting, to motivate a dictionary

selection problem from dimensionality reduced data.

Suppose that instead of observing Y as assumed in Sec-
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tion II, we observe Y ′ = P1y1, . . . ,Pmym ∈ R
b, where

Pi ∈ R
b×d ∀i are known linear projection matrices. In

the inpainting setting, Pi’s are binary matrices which

pass or delete pixels. From a theoretical perspective,

dictionary selection from dimensionality reduced data is

ill-posed. For the purposes of this demonstration, we will

assume that Pi’s are information preserving.

As opposed to observing a series of signal vectors, we

start with a single image in Fig. 4, albeit missing 50% of

its pixels. We break the noisy image into non-overlapping

8×8 patches, and train a dictionary for sparse reconstruc-

tion of those patches to minimize the average approxima-

tion error on the observed pixels. To form the candidate

vectors, we use DCT, Haar and Daub4 wavelets, Coiflets,

and Gabor frame. We test our SDSOMP and SDSMA

algorithms, approaches based on total-variation (TV),

linear interpolation, nonlocal TV and the nonparametric

Bayesian dictionary learning (based on Indian buffet

processes) algorithms [4], [5], [7]. The TV and nonlocal

TV algorithms use the linear interpolation result as

their initial estimates. We set k = 6 (10%). Figure 4

illustrates the inpainting results for each algorithm sorted

in increasing peak signal to noise ratio (PSNR). Figure 4

also shows the PSNR value of the DCT basis alone

29.47dB. The other bases by themselves obtain 26.87dB

(Haar), 27.18dB (Daub4), 26.16 (Coiflet), and 11.64dB

(noiselet). Gabor frame obtains a denoising performance

of 12.36dB by itself with the same sparsity constraint.

The test image exhibits significant self similarities,

restricting the degrees-of-freedom of the sparse coeffi-

cients. Hence, for our modular and OMP-based greedy

algorithms, we ask the algorithms to select 64 × 32
dimensional dictionaries. While the modular algorithm

SDSMA selects the desired dimensions, the OMP-based

greedy algorithm SDSOMP terminates when the dic-

tionary dimensions reach 64 × 19. Given the selected

dictionaries, we determine the sparse coefficients that

best explain the observed pixels in a given patch and

reconstruct the full patch using the same coefficients. We

repeat this process for all the patches in the image that

differ by a single pixel. In our final reconstruction, we

take the pixel median of all the reconstructed patches.

SDSOMP performs on par with nonlocal TV while

taking a fraction of its computational time. While the

Bayesian approach takes significantly more time (a few

order of magnitudes slower), it best exploits the self

similarities in the observed image to result in the best

reconstruction.

VIII. CONCLUSIONS

Over the last decade, a great deal of research revolved

around recovering, processing, and coding sparse signals.

To leverage this experience in new problems, many

researchers are now interested in automatically determin-

ing data sparsifying dictionaries for their applications.

We discussed two alternatives that focus on this problem:

dictionary design and dictionary learning. In this paper,

we developed a combinatorial theory for dictionary se-

lection that bridges the gap between the two approaches.

We explored new connections between the combinatorial

structure of submodularity and the geometric concept of

incoherence. We presented two computationally efficient

algorithms, SDSOMP based on the OMP algorithm, and

SDSMA using a modular approximation. By exploiting

the approximate submodularity property of the DiSP

objective, we derived theoretical approximation

guarantees for the performance of our algorithms. We

also demonstrated the ability of our learning framework

to incorporate structured sparsity representations in

dictionary learning. Compared to the dictionary design

approaches, our approach is data adaptive and has better

empirical performance on data sets. Compared to the

continuous nature of the dictionary learning approaches,

our approach is discrete and provides new theoretical

insights to the dictionary learning problem. We believe

that our results pave a promising direction for further

research, exploiting combinatorial optimization for

sparse representations, in particular submodularity.
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