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Abstract: The Internet of Things (IoT) is defined as interconnected digital and mechanical devices
with intelligent and interactive data transmission features over a defined network. The ability of
the IoT to collect, analyze and mine data into information and knowledge motivates the integration
of IoT with grid and cloud computing. New job scheduling techniques are crucial for the effective
integration and management of IoT with grid computing as they provide optimal computational
solutions. The computational grid is a modern technology that enables distributed computing to
take advantage of a organization’s resources in order to handle complex computational problems.
However, the scheduling process is considered an NP-hard problem due to the heterogeneity of
resources and management systems in the IoT grid. This paper proposed a Greedy Firefly Algorithm
(GFA) for jobs scheduling in the grid environment. In the proposed greedy firefly algorithm, a greedy
method is utilized as a local search mechanism to enhance the rate of convergence and efficiency of
schedules produced by the standard firefly algorithm. Several experiments were conducted using
the GridSim toolkit to evaluate the proposed greedy firefly algorithm’s performance. The study
measured several sizes of real grid computing workload traces, starting with lightweight traces with
only 500 jobs, then typical with 3000 to 7000 jobs, and finally heavy load containing 8000 to 10,000
jobs. The experiment results revealed that the greedy firefly algorithm could insignificantly reduce
the makespan makespan and execution times of the IoT grid scheduling process as compared to other
evaluated scheduling methods. Furthermore, the proposed greedy firefly algorithm converges on
large search spacefaster , making it suitable for large-scale IoT grid environments.

Keywords: grid; IoT; job scheduling; greedy; firefly algorithm

1. Introduction

The computational grid is a distributed technology consisting of multiple distributed
heterogeneous resources in different network sites [1–3]. The Internet of Things (IoT) is
defined as interconnected digital and mechanical devices with intelligent and interactive
data transmission features over a defined network [4,5]. Grid computing is a large-scale
computational environment consisting of a huge number of heterogeneous resources
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combined to perform complex processes [6]. From a communication viewpoint, the IoT
is identified as a system of interconnected things, each with a unique address to deliver
computational services and connect using specified protocols. The IoT comprises things
such as sensors, computing devices, embedded systems, objects, and animals with unique
identifiers and that have the capacity to transmit data over a specified network [4,5,7–9].
The IoT grid was introduced to integrate the grid services with IoT architecture [10,11].
The IoT grid benefits from deploying grid service architecture for IoT technology [10,12].
The grid sites are clusters, super computers, or multiprocessor computing networks [1].
Moreover, global resources and tasks send application jobs through the global grid job
scheduler. Given several clients’ jobs and several heterogeneous resources, the grid job
scheduling problem is finding a schedule that maps the client’s jobs to site resources to
optimize specified scheduling criteria [13,14]. The complexity of the computational grid
increased due to the high heterogeneity of grid resources, the complexity of computational
problems, and the dynamic nature of resources [15]. These complexities of computational
grid environments offer an opportunity and challenge for developing grid job scheduling
mechanisms based on metaheuristics and nature-inspired methods to optimize the grid
job scheduling process. The job scheduling process aims to find the optimal mapping of
clients’ jobs to grid resources that minimize the execution and makespan times [16]. The
exponential increase in the size of the solution search space inspired more research to utilize
optimization methods to tackle grid job scheduling gaps [17].

Nature-inspired metaheuristics have established a high degree of success in solving
optimization problems with large scale search space [18,19]. Several genetic algorithm (GA)
methods have been introduced for grid job scheduling problems [20–22]. To improve the
genetic algorithm further, a hybrid job clustering combining fuzzy C-Mean and a genetic
algorithm was developed in [23]. A task scheduler with fault tolerance based on ACO
is proposed to guarantee that tasks are performed efficiently, even if resource failure has
arisen [24].

The firefly algorithm is a nature-inspired metaheuristic based on the flashing behavior
of fireflies [25]. A study in [26] presented job scheduling mechanisms for grid computing
based on the standard firefly algorithm. Each firefly algorithm denotes one schedule in the
solution search space in the standard firefly algorithm. The job scheduling standard mech-
anism based on FA starts with an initial random population of schedules or fireflies [26].
In each stage, greedy algorithms rely on current options to make their decisions and do
not consider future possibilities [27,28].

This paper proposed a greedy firefly algorithm (GFA) for IoT grid job scheduling. The
greedy firefly algorithm enhances the standard firefly algorithm by combining the firefly
method with the greedy mechanism. In the proposed greedy firefly algorithm, the greedy
method is utilized as a local search mechanism to enhance the speed of convergence and
efficiency of the solution generated by the standard firefly algorithm. The proposed GFA
aims to obtain better coverage as the search space increases. This is because the greedy
algorithm increases the search exploitation process. The search exploitation implemented
by the greedy algorithm increases the probability of finding the optimum solution. Fur-
thermore, the study considers the balance between exploitation achieved by the greedy
algorithm and the exploration implemented by the firefly algorithm.

The remainder of this paper is organized as follows. Section 2 reviews the related
works. Section 3 discusses the basic idea of the proposed greedy firefly algorithm. Section 4
describes experiments and results. Finally, we conclude in Section 5.

2. Related Works

The IoT grid was introduced to integrate the grid services with IoT architecture [10].
The IoT grid benefits from deploying grid service architecture to IoT technology [10,12].
Several researchers have presented hybrid high-performance computing systems with IoT
technologies [29–31]. The research by Deniziak and Bąk in [32] suggests a new scheduling
mechanism for IoT distributed jobs in heterogeneous cloud computing. The researchers
considered that jobs that demand execution are identified as directed acyclic graphs. Ac-
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cording to [33], grid computing is a group of clusters connected over high-speed networks
that involve coordinating and sharing computational power, data storage, and network
resources operating across dynamic and geographically dispersed locations. In the desktop
grid model, the job is submitted for execution only when the system is idle, and there
is no guarantee that the job will entirely execute without disruption. In 2017, Shiny and
Jetlin described a secure resource allocation method capable of allocating the resources to
authenticated grid users by improving the system’s functionality by submitting the jobs on
a machine with a higher probability of being available at a given time [33]. Furthermore,
they proposed a system where the number of jobs was fewer than the available resources,
with checkpointing and replication tools were being used to mitigate the volatility of the
resource, hence reducing job processing time. In the same year, an improved ant colony
optimization algorithm with fault tolerance for job scheduling in the grid computing system
was proposed to ensure that jobs were executed successfully even when resource failure
occurred. In addition, the design applied a resource failure and checkpoint-based rollback
recovery strategy to reduce the amount of work lost upon system failure by immediately
saving the system’s state [24].

An Application-aware Deadline Constraint Job Scheduling Mechanism On A Large-
Scale Computational Grid was proposed to overcome earlier models’ challenges due to
the heterogeneity, dynamics of resources, and diversity of application requirements [34].
Since the scheduling task had remained a challenging task, a Hybrid Heuristic of Vari-
able Neighborhood Descent and Great Deluge Algorithm for efficient task scheduling in
grid computing was proposed. It synergized the Great Deluge algorithm and variable
Neighborhood Decent algorithm to schedule independent tasks, effectively minimizing the
makespan [35]. Furthermore, a fuzzy priority deadline-based task scheduling algorithm
(FPDSA) having a fuzzy deadline limitation to competent job execution was proposed in
2020 to enhance the existing grid’s performance regarding Average Actual execution and
the number of non-delayed Jobs [15]. A recent survey showed that most of the algorithms
developed a long time ago are in constant development, making them still used today due
to their efficiency. These algorithms include the Ant Colony algorithm, Compact Genetic
algorithm, Load Balanced Min-Min algorithm, and Divisible Load Scheduling algorithm.
They are still widely used for scientific and medical purposes [36]. To guarantee that jobs
complete their execution within the estimated completion time, a dynamic job scheduling
model (DTSCA) that uses job characteristics to map them to resources with minimum
execution time was proposed. The system would make virtual machine choices closer
to their expectations [37]. The recent development has been tailored to provide a very
low-cost distributed computing platform to group members using their personal comput-
ers. The proposed Static Job Scheduling Algorithm Considering CPU Core Utilization for
User-PC Computing System has the master PC receiving user tasks and assigning them
to available worker PCs [38]. High-Performance Computing (HPC) systems offer massive
computation strength to execute large-scale applications, hence consuming a lot of energy
and increasing carbon emissions. To overcome these drawbacks and improve searching
efficiency, a performance-aware, energy-efficient parallel job schedule in HPC grids using
nature-inspired hybrid meta-heuristics was proposed [1].

Nature-inspired optimization methods have been applied to handle the job scheduling
problem on the computational grid [39]. Natural metaheuristics are derived and inspired
by natural behaviors to address complex real-world issues [40]. The essential methods
representing the field are evolutionary optimization techniques and swarm intelligence
mechanisms [28,41]. Metaheuristic evolutionary techniques such as Genetic Algorithms
(GA) and Differential Evolution (DE) methods have proven their usefulness in solving
the problem of spanned design space [41,42]. In recent years, swarm intelligence (SI)
mechanisms such as PSO and FA have been considered successful search methods that
perform better than evolutionary techniques when applied to various problems [39].

GA starts with a random population of candidate solutions. The initial random
population is a set of integer numbers, and each solution in the population denotes a
chromosome. To enhance GA further, a hybrid job clustering using a fuzzy C-Mean and
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a genetic algorithm was developed in [23]. This hybrid genetic algorithm was presented
to reduce the GA’s generations’ repetitions. Delavar at el. [43] presented a job scheduling
method to attain a shorter execution times and lower communication costs. A rank-
based genetic for the computational grid is introduced to increase the genetic algorithm
convergence and reduce the search time [44]. A new research work presented two hybrid
meta-heuristic job scheduling methods for the computational grid.

A task schedule with fault tolerance based on ACO is proposed to guarantee that tasks
are performed efficiently even if resource failure has arisen. The ACO fault tolerance task
scheduling mechanism is based on the resource failure rate and the checkpoint-rollback
approach. The check-pointing parts of the mechanism aim to decrease the total effort lost
during grid failure by instantly saving the status of the grid computing system [24]. A grid
architecture for scalable monitoring and enhanced, dependable job scheduling is presented
in [45]. The proposed scalable monitor architecture focuses on two critical distributed
heterogeneous and multi-domain grid computing features: the scalable distribution of
control and administration data and system recovery of when job failures occur [45]. On the
other hand, HC is used in grid task scheduling [46,47]. HC optimization has a plateau
problem in flat search space. In the plateau problem, HC can not find the next best position.
HC will occasionally choose directions that do not have the best schedules [48]. Tabu Search
(TS) has an advantage over HC as it has a memory that supports continuous exploration,
even if the mechanism does not generate better solutions. In addition, the memory avoids
TS searching from local optima trapping.

The basic job scheduling approaches, such as shortest job first, select the best schedule
by considering a single criterion. For instance, the goal of MET is to map tasks with their
most suitable resources. Still, this can produce a serious load imbalance within resources.
Similarly, the FCFS mechanism may produce weak scheduling in a task with high resource
requests being submitted to the global scheduler, causing long execution times for several
grid resources [15].

The greedy approach Tabu Search (TS) utilizes a one-search path of job scheduling.
This constraint generates scheduling solutions appropriate for lightweight scheduling
problems. Yet, it is challenging for the single path approaches to obtain the optimal
schedules in case of heavy system loads. Furthermore, single path scheduling mechanisms
suffer from plateau problems and solution search space diversity issues. As a result of these
weaknesses, TS generates long execution times in heavy load system states.

Genetic algorithms and other evolutionary algorithms are sometimes trapped in local
optimals. As a result, they are unable to progress any further extent [49]. This happens
as the diversity of schedules in the population is decreased, which makes the crossover
and mutation processes not capable of producing enhanced chromosomes [50]. Likewise,
evolutionary algorithms sometimes suffer in obtaining optimal schedules due to the diffi-
culty in handling the population changes [51]. The limitations of evolutionary algorithms
influence the job scheduling process on the computational grid as GA, and DE generate
long makespan and flowtime in some scenarios [50,52–55].

Swarm intelligence job scheduling approaches such as PSO and ACO suffer from sev-
eral problems. For instance, PSO reduces the convergence speed while close to the optimal
schedule. In addition, PSO scheduling solutions need to handle partial optimism issues.
Even if scheduling search space convergence is secured in ACO, the time to convergence is
still uncertain [56].

The study [57] presented a method using ant-based systems to reproduce and rep-
resent grid service information on the computational grid, allowing a specific semantic
classification of such facilities. System information is distributed using agents, which
navigate the computational grid using P2P interconnections between grid sites.
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3. The Proposed GFA for IoT Grid Job Scheduling

This paper proposed an enhanced greedy firefly algorithm for job scheduling on
the IoT grid. The proposed greedy algorithm is based on a discrete firefly algorithm.
The study applied the smallest position value (SMV) mechanism [58]. The idea behind
the proposed greedy firefly algorithm is to combine the benefits of the firefly algorithm
and greedy algorithms by using the greedy choice to help enhance the firefly algorithm
schedule. Furthermore, the greedy choice allows the firefly solution to search for schedules’
near-optimal solutions. The IoT grid environment is presented in Figure 1. The IoT grid
environments consist of four layers: a sensing layer, a grid network layer, an open grid
service architecture layer, and the client interface layer. The sensing layer contains the
sensors’ RFID readers and other IoT devices. The grid network layer represents the grid
computing network core. The third layer is an open grid service architecture in which
service integration is provided between grid resources and IoT devices. The last layer is
the IoT grid user interface. The process starts when grid clients build an IoT application
that needs computational grid power. Next, the client application is submitted to grid
resources, and clients can require additional resource specifications. When the execution
process starts, the information requested by the sensors is collected using the embedded
system’s devices. The next step includes submitting the execution request to the grid IoT
scheduler. The grid IoT scheduler schedules all the submitted jobs based on the proposed
scheduling mechanism. Finally, the execution results are sent back to the IoT system.

Figure 1. IoT Grid Environment.

Figure 2 depicts the elements and components of IoT grid scheduling architecture. The
IoT grid applications send their tasks to the global grid scheduler. The proposed greedy
firefly algorithm-based global scheduler distributes IoT application tasks to the appropriate
resources in the available sites. Each grid site has its local tasks and receives tasks from
other sites using the global scheduler. The IoT grid applications started submitting jobs to
the global scheduler. Then, the global scheduler submits jobs to suitable IoT grid resources
using the specific scheduling method using the network connections. Each grid site consists
of several resources, a local scheduler, and a global access component. The local scheduler
is responsible for the local scheduling policy. The global access components allow the
global scheduler to access the local resource information. Finally, the proposed GFA is
performed within the global scheduler component.
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Figure 2. GFA IoT Grid Task Scheduling Architecture.

3.1. Mathematical Modeling

In this study, the following assumptions are considered:

• All clients’ jobs are independent.
• The submitted jobs have different executions times.
• The model assumes that the IoT grid resources deliver only one type of service.
• Pre-emption is not allowed, i.e., each job cannot be interrupted before its completion

on the assigned resource.
• At any given time, a resource can run only one job.

To formulate the IoT grid job problem, this study consider n clients jobs Jn =
[j1, j2, j3, . . . , jn] and m grid resources Rm = [r1, r2, r3, . . . , rm] with an objective of mini-
mizing job execution and makespan times. The speed of resources is measured in million
instructions per second (MIPS). The job length is defined as the number of instructions in
millions (MI). Figure 3 describes the IoT grid job scheduler model. Jobs allocated to each
resource are handled on a first-come, first-serve basis. If a resource is busy, jobs are queued
in the resource queue.

 

 Clients Tasks 

Scheduler 

Resource 1 

Resource 2 

Resource m 
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Figure 3. Model of IoT Grid Job Scheduler.
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This study considers the execution and makespan times to be minimized. First, the
study defined Cj as the time that the last job, jk completed execution. Consider Cmax =

max{Cj, j = 1, . . . , n} as representing makespan time and ∑
j=1
j=n cj represents the execution

time. The proposed scheduling method improves the standard firefly algorithm presented
in [25]. In the proposed method, the study combines the standard firefly algorithm with
the greedy algorithm to enhance the scheduling and minimize the makespan time. In the
greedy firefly algorithm, the greedy method is employed as a local search mechanism to
improve the rate of convergence and quality of the solution generated by the standard
firefly algorithm, as shown in Figure 4.

Figure 4. The Flowchart of the Proposed GFA.

The proposed GFA starts when grid clients submit jobs to the global scheduler. After
that, the global scheduler gathers information of resources in each grid site. After obtaining
jobs’ and resources’ information, the proposed GFA generates a random population of
solutions from the solution search space. In each population, the solution represents a
firefly. The makespan time and execution times are considered as firefly attractiveness.
Starting with the random initial solutions, the firefly algorithm is executed. If the new
population achieves the required fitness value, the algorithm finishes. However, suppose
the new population does not produce the required fitness. A greedy algorithm is then
implemented to exploit the solution search space by searching for better solutions near the
current solution. This is achieved by searching and moving to solutions near the existing
solutions. The algorithm then returns to the firefly algorithm execution. This process is
repeated until the required fitness value is achieved.

The continuous firefly algorithm needs to be modified to solve discrete problems such
as job scheduling problems. Discrete optimization problems apply modified nature-inspired
metaheuristics optimization methods [59]. The study used the smallest position value rule
(SPV) [58]. Several studies utilized the SPV rule to adjust the continuous optimization with
a discrete computational problem [58,60–62].

3.2. Greedy Algorithm

The greedy method is integrated with the standard firefly algorithm as a local search
mechanism to enhance the speed of convergence and efficiency of the solution generated
by the standard firefly algorithm. The idea of greedy scheduling is that there is a group of
jobs to be scheduled on some resources, and each job j has a given length lj. The greedy
scheduling method aims to schedule as many jobs as possible on the cloud provider’s
resources. Starting from the empty schedule, provided at least one cloud job exists, the jobs
that lead to minimum makespan time are continuously added. A The greedy algorithm
can choose any option that may seem to be the best in a particular step, and then it resolves
partial problems that will appear later. In each phase, the greedy algorithm selects a
solution, and this selection process is based only on the current phase and not the future
phases. The greedy algorithm repeats the generations of a greedy solutions to transform
a given problem into a smaller one. Sometimes, greedy algorithms fail to obtain the best
solution. Furthermore, the greedy algorithm can generate the worst solution from the
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search space. The details of the proposed Greedy Algorithm for the IoT grid job scheduling
steps are stated in Algorithm 1.

Algorithm 1 Greedy Algorithm for Job Scheduling.

Require: GreedySchedule(s, f )
1: J ← submittedJobs
2: R← available_Resources
3: S← empty
4: 0← fmakspan
5: Sort jobs J by increasing order of length
6: while (iteration_bestiteration < nmax) do
7: iteration = iteration + 1
8: for (job = 1) to n do
9: for (resource = 1) to m do

10: assign jobi = resourcej
11: Ci,j ← f inish_time
12: if Ci,j ← prev_ f inish then
13: Ci,j > prev_ f inish
14: Ci,j ← prev_ f inish
15: ∑n

j=1 Ci,j ← Ti
16: end if
17: end for
18: max(Ti)← fmakspan(c)
19: S ∪ (j)← S
20: end for
21: return S
22: end while

3.3. Firefly Algorithm

Firefly algorithm is a nature-inspired optimization. Each firefly attracts mating part-
ners and preys on other fireflies using flashing lights [39,63,64]. The details of the proposed
firefly algorithms for IoT grid job scheduling steps are stated in Algorithm 2.

Figure 5 describes an example of a valid firefly algorithm schedule. As shown in
Figure 5, job number 1 is scheduled to the resource with ID 4, and job number 2 is scheduled
to resource with ID 8, and so on.

Figure 5. The Firefly Permutation Representation of a Valid Schedule.
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Algorithm 2 Firefly Algorithm for Job Scheduling.

Require: Form each firefly to represent a schedule
1: max ← maxIteration
2: generate initial random population of fireflies
3: Sort jobs J by increasing order of length
4: while (iteration < max) do
5: for each firefly do
6: calculate the light intensity as makespan time
7: estimate the firefly’s distances
8: estimate the firefly’s attractiveness
9: if the firefly has the highest brightness value then

10: the firefly has the highest brightness value
11: else
12: if the firefly has the highest brightness value then
13: execute the greedy algorithm
14: move the firefly to the firefly with highest brightness value
15: end if
16: end if
17: end for
18: Return the best firefly
19: end while

3.4. The Proposed GFA in Details

This section explains the proposed job scheduling mechanisms using the greedy firefly
algorithm. To illustrate the proposed greedy firefly algorithm clearly, an example instance
with nine jobs and four resources are defined in Tables 1 and 2, respectively.

Table 1. Data for the Example Instance Jobs.

Jobs J1 J2 J3 J4 J5 J6 J7 J8 J9

Length 85 92 44 78 63 68 74 30 30

Table 2. Data for the Example Instance Resources.

Resource R1 R2 R3 R4

Speed 5.5 8 5 7

The greedy firefly algorithm starts with a random initial schedule, as shown in Figure 5.
Figure 6 describes the corresponding schedule.

The greedy firefly algorithm generates a fitness value for each schedule in the sec-
ond step. The fitness value represents the makespan time in the proposed greedy firefly
algorithm. The makespan time is calculated using Equation (1).

makespantime = maxT1, T2, T3, . . . , Tm (1)

and

Tk =
i=1

∑
n

Li
Sk

,

where Li represents the length of jobi, and Sk represents the speed of resource k.
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Tk =
i=1

∑
n

Li
Sk

=

S1 S2 S3 S4
R1 36.37 47.00 28.18 26.91
R2 19.13 28.38 22.88 18.50
R3 31.00 33.20 30.40 29.20
R4 13.11 10.57 10.57 17.43

Theinitailmakespantimes (β0) = S1 = 47.00, S2 = 28.38, T3 = 33.20, T4 = 17.43

To calculate the brightness of each schedule, first we need to find the distances between
each schedules using Equation (2) and (3):

distancei,j =
∥∥xi − xj

∥∥ =

√
n

∑
k=1

(xi,k − xj,k)2 (2)

distanci,j =


S1 S2 S3 S4

S1 0 2.00 3.46 5.10
S2 2.00 0 4.47 4.90
S3 3.46 4.47 0 5.10
S4 5.10 4.90 5.10 0

 (3)

The brightness of the schedule is calculated using Equation (4):

β(r) = Tke−γdistance2
i,j (4)

The movements towards the brightest firefly is calculated using Equation (5):

f ire f lyi(t + 1) = f ire f lyi(t) + Tke−γdistance2
i,j + αεi (5)

The remaining steps of the proposed greedy firefly algorithm focus on the greedy
choice by selected the schedule that handles as many jobs as possible on the cloud provider
resources. Starting from the empty schedule, provided that at least one cloud job exists,
continuously add in the job that leads to the minimum makespan time. The idea behind the
proposed greedy firefly algorithm is to combine the benefits of firefly algorithm and greedy
algorithms by using the greedy choice to help in enhancing the firefly algorithm schedule.
The greedy choice allows the firefly solution to search for schedules near optimal solutions.

Figure 6. Corresponding Gantt chart of S1 and S2.
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4. Performance Evaluation

Generally, the simple mathematical models of job scheduling metaheuristics fail when
dynamic changes occur in the IoT grid configurations or the scheduling configuration. For
this reason, the empirical evaluation of the greedy firefly algorithm is considered a good
choice to assess the effectiveness of the proposed mechanism in the IoT grid. However,
the empirical evaluation of the greedy firefly algorithm requires specifications of a wide
range of parameters for the environment [65]. Therefore, simulation experiments have
been conducted to assess the efficiency of the greedy firefly algorithm for IoT grid job
scheduling. The simulation results focus on representing the performance advantages of
the greedy firefly algorithm over the standard firefly algorithm and other states of arts
scheduling mechanism.

GridSim simulator, a discrete event simulator, developed to simulate the distributed
heterogeneous systems such as cloud systems and computational IoT grid environments, is
used as a tool [66]. The workload traces to employed in our evaluation are obtained from
the Grid Workload Achieve (GWA). Grid Workload Achieve is built based on a real grid
workload trace as a public dataset to conduct real data experiments [67].

4.1. The Experiments

To evaluate the greedy firefly algorithm, the study considered different sizes of work-
load traces. As a result, the number of jobs range from lightweight loads with less than
1000 jobs to the heavy workload with 10,000 jobs. The parameter values for the proposed
greedy firefly algorithm are described in Table 3 [43,64,68]. The experimental parameters
in the study are based on the relevant literature [69–72].

Table 3. Parameter values of Greedy Firefly Algorithm.

Parameters Size of Population α γ β Number of iterations

Values 10 9 0.02 1.0 300

Here, β0 represents the attractiveness of each firefly at r = 0, while γ represents the
media light absorption coefficient, and α is a random number.

Table 4 and Figure 7 describes the makespan times of the greedy firefly algorithms
compared to different IoT grid job scheduling methods for different workloads traces with
sizes ranging from 500 jobs to 10,000 jobs.

Figure 7. Makespan times of GFA Compared to Different Scheduling Methods for Different
Workloads.

Each scheduling method’s makespan and execution times were calculated to evaluate
the proposed greedy firefly algorithm. The simulation results for the makespan and
execution times are as stated in Table 4 and depicted in Figure 7. The results in Table 4 state
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that the proposed greedy firefly algorithm mostly has shorter makespan and execution
times than other evaluated scheduling methods, such as TS, GA, and standard firefly
algorithms. This means that the proposed greedy firefly algorithm needs a shorter time to
finish the submitted jobs and has better performance than all other IoT grid job scheduling
methods in different workload traces. Furthermore, the results show that the standard
firefly algorithm is the second best. Therefore, these results prove that makespan times
using the proposed greedy firefly algorithm have better performance than other evaluated
IoT grid job scheduling algorithms.

Table 4. Makespan times of The GFA Compared to Different Scheduling Methods for Different
Workloads.

No. of Jobs 500 1000 1500 2000 3000 4000 5000 6000 7000 8000 9000 10,000

TS 25 20 30 2737 2743 4368 4865 6330 8776 10,022 10,118 12,184
GA 46 46 70 138 2739 4185 4253 5719 6452 6488 6512 9600

Firefly 18 28 46 129 3251 3284 3256 4102 4196 4307 4293 4742
GFA 12 20 32 114 2431 2627 2654 2958 3193 3211 3502 3945

The reasons for the improvements in the results demonstrate that the proposed GFA
has better coverage as the search space increases. This is because the greedy algorithm
increases the search exploitation process. The search exploitation implemented by the
greedy algorithm increases the probability of finding the optimum solution. Furthermore,
the study considers the balance between exploitation achieved by the greedy algorithm
and the exploration implemented by the firefly algorithm.

As reported in Table 5 and revealed in Figure 8 , the GFA has the shortest execution
time compared to other evaluated scheduling methods. The obtained results indicate that
proposed GFA improves the IoT grid job scheduling process when considering execution
time as a performance metric.

Figure 8. Execution times of the GFA Compared to Different Scheduling Methods for Different
Workloads.

Table 5. Execution times of the GFA Compared to Different Scheduling Methods for Different
Workloads.

No. of Jobs 500 1000 1500 2000 3000 4000 5000 6000 7000 8000 9000 10,000

TS 25 20 30 2737 2743 4368 4865 6330 8776 10,022 10,118 12,184
GA 46 46 70 138 2739 4185 4253 5719 6452 6488 6512 9600

Firefly 18 28 46 129 3251 3284 3256 4102 4196 4307 4293 4742
GFA 12 20 32 114 2431 2627 2654 2958 3193 3211 3502 3945
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4.2. Test Case 1: Typical Workload of 5000 Jobs

To evaluate the efficiency of the GFA under different workloads, the study compared
the makespan time and execution times of the proposed method with several scheduling
algorithms using different workloads. The experiments evaluated the proposed GFA with
a typical workload involving 5000 jobs in the first scenario. The makespan and execution
times of varying scheduling methods are described in Table 6 and depicted in Figure 9.

Table 6. Makespan and Execution times for Typical Workloads.

No. of 5000 Jobs TS GA Standard Firefly GFA

GFA 4865 4253 3256 2654
Execution time 101,424 115,148 42,958 21,005

Figure 9. Makespan and Execution times for Typical Workloads.

Considering typical workload, the proposed GFA makespan time is 2654, the shortest
makespan time compared with other evaluated scheduling algorithms in Table 6. Fur-
thermore, the obtained results revealed that the GFA has the best execution time: 21,005
compared to 101,424, 115,148, and 4295 for TS, GA, and the standard firefly algorithm,
respectively.

4.3. Test Case 2: The Heavy Load of 10,000 Jobs

The study evaluated the GFA under a heavy workload environment containing 10,000
jobs. The makespan times and execution times of the TS, GA, and standard firefly algorithm
and the GFA are reported in Table 7 and depicted in Figure 10.

Table 7. Makespan and Execution times for Heavy Workloads.

No. of 5000 Jobs TS GA Standard Firefly GFA

Makespan Time 12,184 9600 4742 3945
Execution time 168,322 158,121 93,394 65,049

Figure 10. Makespan and Execution times for Heavy Workloads.
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Figure 10 and Table 7 compare the makespan time between the TS, GA, and standard
firefly algorithm and the proposed GFA. These results show that the makespan time in the
GFA is less than the other evaluated algorithms. In heavy workload, the proposed GFA
produced a makespan time of 3945, which is shorter than the makespan time of 4742 for the
standard firefly algorithm. As shown in Figure 11 and Table 8, the results obtained from
this experiment show that the proposed GFA shows a shorter execution time compared
to other evaluated scheduling methods. Moreover, GA is ranked far below the standard
firefly algorithm in almost all test cases, and TS falls behind GA.

Table 8. Makespan and Execution times for Lightweight Workloads.

No. of 5000 Jobs TS GA Standard Firefly GFA

Makespan Time 20 46 28 20
Execution time 559 1040 557 518

Figure 11. Makespan and Execution times for Lightweight Workloads.

4.4. Test Case 3: Lightweight Load of 1000 Jobs

The study evaluated the GFA in a lightweight workload environment containing
1000 jobs. The makespan times and execution times of GFA and other evaluated scheduling
methods are reported in Table 8 and depicted in Figure 11.

The makespan time for TS was 20 and for GA was 46, while the makespan time
for the standard firefly algorithm was 28. The proposed GFA makespan time for this
experiment was 20. As noted, the TS and GFA require shorter makespan times compared
to other scheduling methods. The TS, GA, and standard firefly algorithms’ execution times
were 559, 1040, and 557, respectively. Meanwhile, the execution time of the GFA was
518. These results prove that the proposed GFA is an effective method in optimizing the
search performance for IoT grid scheduling problems since it minimizes the execution time
required to obtain the optimal schedule. We also find that the standard firefly algorithm
performs a little better than TS in lightweight workload cases; both fall behind the GFA.
To conclude, the obtained results show that the GFA job scheduling mechanism can achieve
better performance than the other scheduling mechanism. The GFA achieves better results
in minimizing the makespan execution times of the IoT grid job scheduling process. Better
GFA makespan and execution times may entice consumers to request GFA inorder to save
money and complete their job on a reasonable time.

5. Conclusions

The performance of IoT grid environments depends mainly on the job scheduling
method applied to manage resources. This paper presented an IoT grid job scheduling
method based on a GFA. The proposed GFA depends on enhancing the efficiency of the
standard firefly algorithm using the greedy approach. Furthermore, the proposed GFA aims
to minimize the makespan and execution simultaneously. The study conducted various ex-
periments to study the efficiency of the proposed GFA compared to those reported in recent
work that used TS, GA, and standard firefly algorithms by conducting extensive simulation
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experiments using different workloads. The obtained simulation results revealed that the
GFA has the shortest execution time, 21,005, compared to 101,424, 115,148, and 42,958 for
the TS, GA, and standard firefly algorithm, respectively. Using the GFA for task scheduling,
where the solution search space is huge, the GFA search takes a shorter time to find an opti-
mal solution. This is because the greedy algorithm increases the search exploitation process.
The search exploitation implemented by the greedy algorithm increases the probability of
finding the optimum solution. Furthermore, the study considered the balance between
exploitation achieved by the greedy algorithm and the exploration implemented by the
firefly algorithm. Future research work for the GFA will include optimizing the process by
integrating a clustering mechanism for clients’ tasks. Furthermore, the evaluation of the
GFA will be extended based on other key parameters and considering a comparison with
an additional scheduling strategy.
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