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Abstract—We show that complex (scale-free) network topolo-
gies naturally emerge from hyperbolic metric spaces. Hyperbolic
geometry facilitates maximally efficient greedy forwarding in
these networks. Greedy forwarding is topology-oblivious. Nev-
ertheless, greedy packets find their destinations with 100% prob-
ability following almost optimal shortest paths. This remarkable
efficiency sustains even in highly dynamic networks. Our findings
suggest that forwarding information through complex networks,
such as the Internet, is possible without the overhead of existing
routing protocols, and may also find practical applications in
overlay networks for tasks such as application-level routing,
information sharing, and data distribution.

I. INTRODUCTION

Routing information is the most basic and, perhaps, the most

complicated function that networks perform. Conventional

wisdom states that to find paths to destinations through the

complex network maze, nodes must collectively discover a

current state of the network topology by exchanging informa-

tion about the status of their connections to other nodes. This

communication overhead is considered one of the most serious

scaling limitations of our primary communication technologies

today, including the Internet [1] and emerging wireless and

sensor networks [2]. Finding intended communication targets

in other networks, such as P2P overlays, relies on flooding-

based mechanisms, random walks, and other techniques,

whose efficiency may be unpredictable, and overhead costs

unbounded [3].

However, many networks in nature can somehow “route

traffic” efficiently. That is, nodes in these networks can effi-

ciently find intended communication targets even though they

do not possess any global view of the system. Milgram’s 1969

experiment [4] showed a classic demonstration of this effect.

Milgram asked some random individuals—sources—to send

a letter to a specific person—the destination, described by

name, occupation, age, and city of residence. The sources were

asked to pass the letter to friends chosen to maximize the

probability of the letter reaching its destination. The results

were surprising: many of the letters reached their destina-

tion by making only a small number of hops, even though

nodes had no global knowledge of the human acquaintance

network topology, except their local connections and some
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characteristics (e.g., occupation, age, city of dwelling) of their

connections.

Much later, Jon Kleinberg offered the first popular ex-

planation of this surprising effect [5]. In his model, each

node, in addition to being part of the graph representing the

global network topology, resides in a coordinate space—a

grid embedded in the Euclidean plane. The coordinates of a

node in the plane, its address, abstracts information about the

destination in Milgram’s experiments. Each node knows: 1) its

coordinates; 2) the coordinates of its neighbors; and 3) the

coordinates of the destination written on the packet. Given

these three pieces of information, the node can route greedily

by selecting its direct neighbor closest to the destination in the

plane.

Clearly, the described greedy forwarding strategy can be

efficient only if the network topology is in some way congru-

ent with the underlying space. But the Kleinberg model does

not (try to) reproduce the basic topological properties of social

networks through which messages were traveling in Milgram’s

experiments. For instance, the model produces only k-regular

graphs while social networks, the Internet, and many other

complex networks [6] are known to be scale-free, meaning

that: i) the distribution P (k) of node degrees k in a network

follows power laws P (k) ∼ k−γ with exponent γ often lying

between 2 and 3; and ii) the network has strong clustering,

i.e., a large number of triangular subgraphs [7].

Our work follows Kleinberg’s formalism. We assume that

nodes in complex networks exist in some spaces that underlie

the observed network topologies. We call these spaces hidden

metric spaces. The observed network topology is coupled

to the hidden space geometry in the following way: a link

between two nodes in the topology exists with a certain

probability that depends on the distance between the two

nodes in the hidden geometry. A plausible explanation for

the Kleinberg model’s inability to naturally produce scale-free

topologies is that the spaces hidden beneath such topologies

are not Euclidean planes.

The primary contribution of this paper is the demonstration

that a simple mechanism of network growth in a hyperbolic

hidden metric space naturally leads to the emergence of scale-

free topologies. One attractive property of such topologies is

that greedy forwarding using node coordinates in the hyper-

bolic space results in 100% reachability with nearly optimal

path lengths even under dynamic network conditions, with link

failures and node arrivals and departures. Most importantly,

nodes do not change their coordinates upon network topology

changes. Therefore, nodes do not have to exchange any routing



information even in dynamic networks. Our work thus paves

a path to nearly optimal forwarding in complex networks,

such as the Internet, without expensive and brittle routing

protocols. Our results may also find practical applications in

overlay networks for tasks such as application-level routing,

information sharing, and data distribution.

The rest of the paper is organized as follows. In Section II

we discuss related work. In Section III we reveal the con-

nection between scale-free network topologies and hyperbolic

geometries, and present a simple model that builds scale-free

networks using such geometries. This model builds a network

as a whole at once. In the same section we demonstrate the

remarkable efficiency and robustness of greedy forwarding in

dynamic scenarios with link failures. Since in many practical

applications nodes may arrive to the system gradually, in

Section IV we extend our model for scale-free networks

that grow in hyperbolic spaces. We demonstrate that greedy

forwarding strategies are still extremely efficient, even under

highly dynamic network conditions with nodes randomly arriv-

ing and departing the system. We discuss practical applications

of our findings in Section V, and conclude with directions for

future research in Section VI.

II. RELATED WORK

The most relevant earlier work is the groundbreaking re-

sult by Robert Kleinberg, who shows in [8] how any given

graph can be embedded in the hyperbolic plane such that

greedy forwarding can achieve 100% reachability. However,

to construct the embedding one needs to know the graph

topology in advance. R. Kleinberg’s work has been recently

complemented by the work in [9], where the authors propose

a simple technique for online embedding of any given graph

in the hyperbolic plane. The graph can also be dynamic, in

the sense that once the initial graph is embedded, its topology

can change, and greedy forwarding can still maintain 100%
reachability.

While [8] and [9] show how any given graph can be

embedded in a hyperbolic space so that greedy forwarding

maintain 100% reachability, here we approach the problem

from the opposite direction. We fix the hyperbolic space and

construct graphs in it in the simplest possible manner. We

show that the resulting graphs are not any graphs but scale-

free graphs, naturally congruent with underlying hyperbolic

geometry. That is, we do nothing to enforce these graphs to

be scale-free; their scale-free topology emerges naturally as a

consequence of underlying hyperbolic geometry. Because of

this congruency, greedy forwarding strategies are maximally

efficient, even in presence of network dynamics. In terms of

practical applications, the studies in [8] and [9] are more

suitable for cases where the initial network topology is already

globally known, and where the costs associated with such

global knowledge are low, while our work here is more

applicable to cases where networks are formed dynamically,

where we do not know their exact topology in advance, such

as in overlay network applications, [3], [10], and to cases

where such global topology awareness may be prohibitive in

terms of associated routing overhead costs. See Section V for

a discussion of potential applications.

As mentioned earlier, the first popularization of greedy

routing as a mechanism that might be responsible for efficient

forwarding “in the dark”, i.e., without the knowledge of

network topology, is due to Jon Kleinberg [5]. A vast amount

of literature followed this seminal work, as reviewed in [11].

Other works, dealing with hyperbolic geometry in the network

context, include [12], [13], [14], [15]. No earlier work has

considered hidden hyperbolic geometries, which can be used to

efficiently guide the forwarding process on complex networks.

Finally, there has been a great deal of research trying to

explain the scale-free structure of complex networks [16],

among which preferential attachment [17] appears to be the

most popular. However, no existing effort has considered

hidden hyperbolic geometry as a possible explanation.

III. SCALE-FREE NETWORKS AND HYPERBOLIC SPACES

In this section we first provide high-level intuition behind

the connection between scale-free network topologies and

hyperbolic geometries. We then proceed by presenting a sim-

ple model where scale-free topologies naturally emerge from

such geometries, and demonstrate the remarkable efficiency of

greedy forwarding strategies that use these geometries.

A. Intuition

The main metric property of hyperbolic geometry that we

use in this paper is the exponential expansion of space. For

example, in the hyperbolic plane, which is the two-dimensional

hyperbolic space of negative curvature −1, the length of

a circle and the area of a disc of radius R are 2π sinhR
and 2π(coshR − 1), both growing as ∼ eR with R. 1 The

hyperbolic plane is thus metrically equivalent to an e-ary tree,

i.e., a tree with the average branching factor equal to e. Indeed,

in a b-ary tree, the analogies of the circle length or disc area

are the number of nodes at distance exactly R or not more

than R hops from the root. These numbers are (b + 1)bR−1

and ((b+1)bR−2)/(b−1), both growing as ∼ bR. Informally,

hyperbolic spaces can therefore be thought of as “continuous

versions” of trees. Other properties of hyperbolic geometry

can be found in various (text)books, e.g., [18].

To see why this exponential expansion of hidden space

is intrinsic to scale-free networks, observe that their topol-

ogy represents the structure of connections or interactions

among distinguishable, heterogeneous elements abstracted as

nodes. The heterogeneity implies that nodes can be somehow

classified, however broadly, into a taxonomy, i.e., nodes can

be split into large groups consisting of smaller subgroups,

which in turn consist of even smaller subsubgroups, and so

on. The relationships between such groups and subgroups,

called communities [19], can be approximated by tree-like

structures, in which the distance between two nodes estimates

how similar they are [20], [21]. The smaller the distance, the

more similar the two nodes are, and the more likely they are

1In this paper, symbols ‘∼’ and ‘≈’ mean, respectively, proportional to

and approximately equal.



connected. Importantly, the node classification hierarchy need

not be strictly a tree. Approximate “tree-ness,” which can be

formally expressed solely in terms of the metric structure of

a space [22], makes the hidden space hyperbolic. 2

B. Models of scale-free networks in hyperbolic spaces

We now put our intuitive considerations to qualitative

grounds. We want to see what network topologies emerge

in the simplest possible settings involving hidden hyperbolic

metric spaces. Specifically, we use the following strategy to

formulate a network model. We specify: 1) the hyperbolic

space; 2) the distribution of nodes in it, i.e., the node den-

sity; and 3) the connection probability as a function of the

hyperbolic distance between nodes, i.e., we connect a pair of

nodes located at hyperbolic distance d with some probability

p(d).
The simplest hyperbolic space is the two-dimensional hy-

perbolic plane of constant negative curvature −1 we discussed

earlier. The simplest way to place N nodes on the hyperbolic

plane is to distribute them uniformly over a disc of radius

R. The hyperbolically uniform node density implies that we

assign the angular coordinates θ ∈ [0, 2π] to nodes with

the uniform density f(θ) = 1/(2π), while the density for

the radial coordinate r ∈ [0, R] is exponential f(r) =
sinh r/(cosh R − 1) ≈ er−R ∼ er, as the circle length at

distance r from the disc center is 2π sinh r (vs. f(r) ∼ r in

the Euclidean plane, where the circle length is 2πr). We can

also generalize the model by distributing nodes non-uniformly

on the disc using:

f(r) =
α sinhαr

coshαR − 1
≈ αeα(r−R) ∼ eαr, (1)

with α = 1 corresponding to the hyperbolically uniform node

density.

The simplest connection probability we could think of

is the step function p(d) = Θ(R − d), meaning that we

connect a pair of nodes with polar coordinates (r, θ) and

(r′, θ′) by a link only if the hyperbolic distance between

them is d ≤ R, where d is given by the hyperbolic law of

cosines: cosh d = cosh r cosh r′ − sinh r sinh r′ cos∆θ, with

∆θ = |θ − θ′| mod π. The following theorem states that the

node degree distribution in the resulting network is a power

law.

Theorem 1: The described model produces graphs with the

power law node degree distribution:

P (k) ∼ k−γ , with γ =

{

2α + 1 if α ≥ 1
2 ,

2 if α ≤ 1
2 .

(2)

Proof: We first compute the average degree k̄(r) of nodes

located at distance r from the disc center. Such nodes are

connected to all nodes in the intersection area of the two discs

of the same radius R, one in which all nodes reside, and the

2We call the space hidden to emphasize that the distance between two nodes
in it is a measure of how similar they are; it is not their shortest path distance
in the observable network graph as in [12], [13], [14], [15].

other centered at distance r from the center of the first disc.

Its approximate, simplified expression is:

k̄(r) ≈ N

{

2

π

α

α − 1
2

e−
1
2 r +

(

1 −
2

π

α

α − 1
2

)

e−αr

}

, (3)

where the limit α → 1
2 is k̄(r) → N

(

1 + r
π

)

e−
1
2 r. 3 From

Equation (3) we see that k̄(r) decreases exponentially, i.e.,

k̄(r) ∼ e−βr, with β = 1
2 if α ≥ 1

2 and β = α if α ≤ 1
2 .

Therefore, r̄(k) ∼ − 1
β

ln k. Given f(r) from Equation (1),

it is easy to see that P (k) ≈ f(r̄(k)) |r̄′(k)| ∼ k−γ with

γ = α
β

+ 1. Thus, γ = 2α + 1 if α ≥ 1
2 and γ = 2 if α ≤ 1

2 .

We thus see that by changing α, which according to our tree

analogy regulates the average branching factor of the hidden

tree-like hierarchy, we can construct power-law graphs with

any exponent γ ≥ 2, as observed in a majority of known

complex networks, including the Internet [7].

The average node degree k̄ =
∫ R

0 k̄(r)f(r)dr, is:

k̄ ≈ N
2α2e−

1
2 R

π
(

α − 1
2

)2 +

N

[(

(π − 2)α3 − (π − 1)α2 + απ
4

)

R − 2α2
]

e−αR

π
(

α − 1
2

)2 ,

where the limit α → 1
2 is k̄ → N R

2

(

1 + R
2π

)

e−
1
2R. Therefore,

given a target k̄, a target exponent γ, which is related to α
via Equation (2), and the number of nodes N , the right value

for the hyperbolic disc radius R is (numerically) computed by

the above formula. From the formula, we can also see that the

relationship between R and N is approximately logarithmic,

i.e., R ∼ lnN .

Theorem 1 states that the degree distribution is a power law,

but it does not give its exact expression. Skipping calculations,

this expression is:

P (k) = 2αξ2α Γ (k − 2α, ξ)

k!
, (4)

where ξ = k̄(2α − 1)/(2α) and Γ is the incomplete gamma

function.

Our networks also possess strong clustering. Strong clus-

tering, or large numbers of triangles in generated networks, is

a simple consequence of the triangle inequality in the metric

space. Indeed, if node a is close to node b in the plane, and b
is close to a third node c, then a is also close to c because of

the triangle inequality. Since all three nodes are close to each

other, links between all of them forming triangle abc exist.

In Figures 1(a) and 1(b) we show, in log-log scale, the

degree distribution P (k) and average clustering as a function

of the node degree c̄(k) [24], for modeled networks with N =
10000 and k̄ = 6.5. We observe agreement between simulation

results and the analytical prediction for the degree distribution

in Equation (4). In Figures 1(c) and 1(d) we compare the same

statistics between the modeled networks with γ = 2.1, and

3We omit the intermediate calculations for brevity. All the omitted calcu-
lations can be found in the technical report [23].
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Fig. 1. The first two plots show the degree distribution P (k), and average clustering c̄(k) of k-degree nodes. The degree distribution for γ = 2.5 is not
shown for clarity. Solid lines in the first plot are the theoretical prediction given by Equation (4). The last two plots show the same statistics for simulated
networks with γ = 2.1 vs. AS topologies from RouteViews BGP tables [25] and DIMES traceroute data [26].

the AS Internet topologies from RouteViews BGP tables [25]

and DIMES traceroute data [26]. The degree distribution in

our networks is remarkably close to the empirical AS degree

distribution. The shape of the clustering curve c̄(k) in our

networks is similar to the Internet’s. In [27] we also show

how clustering can be matched exactly.

C. Greedy forwarding

We now evaluate the performance of greedy forwarding

(GF) strategies on our modeled networks. A node’s address is

its hyperbolic coordinates, and each node knows only its own

address, the addresses of its neighbors, and the destination

address written in the packet. GF forwards a packet at each

hop to the neighbor closest to the destination in the hyperbolic

space. We present simulation results for two simple forms of

GF, original (OGF) and modified (MGF). The OGF algorithm

drops the packet if the current hop is a local minimum, mean-

ing that it does not have any neighbor closer to the destination

than itself. The MGF algorithm excludes the current hop from

any distance comparisons, and finds the neighbor closest to

the destination. The packet is dropped only if this neighbor is

the same as the packet’s previous hop. We report the following

metrics: (i) the percentage of successful paths, ps, which is the

proportion of paths that reach their destinations; and (ii) the

average and maximum stretch of successful paths, denoted by

s̄ and max(s) respectively. The stretch is defined as the ratio

between the hop-lengths of greedy paths and the corresponding

shortest paths in the graph.

We initially focus on static networks, where the network

topology does not change, and then emulate network topology

dynamics by randomly removing one or more links from

the topology. As before, we fix the target number of nodes

in the network to N = 10000 and its average degree to

k̄ = 6.5, which roughly matches the Internet’s AS topology.

For each generated network, we extract the Giant Connected

Component (GCC), and perform GF between 10000 random

source-destination pairs.

Static networks. Figures 2(a) and 2(b) show the results

for static networks of different degree exponent γ. We see

that the success ratio ps increases and the stretch decreases

as we decrease γ to 2. For example, for γ = 2.1, i.e.,

equal to γ observed in the AS Internet, OGF and MGF

yield ps = 0.99920 and ps = 0.99986, with the OGF’s

maximum stretch of 1, meaning that all greedy paths are

shortest paths. In summary, GF is exceptionally efficient in

static networks, especially for the small γ’s observed in the

vast majority of complex networks [7]. The two GF algorithms

yield high success ratios close to 1 and optimal (or almost

optimal) path lengths, i.e., stretch close to 1. The reason for

this remarkable GF performance is the congruency between

the network topology and the underlying hyperbolic geometry,

as visually demonstrated in Figure 3.

Fig. 3. Visualization of a modeled network embedded in the hyperbolic plane,
and greedy forwarding in it. The figure shows two hyperbolically straight lines,
i.e., geodesics, the dashed curves, vs. the greedy paths, the solid lines, between
the same source-destination nodes. The source is the top circled node, and
the destinations are marked by crosses. The geodesics and greedy paths are
approximately congruent as they follow the same pattern, first going to the
disc center, and then veering off towards the destination.

Link failures. We next study the GF performance in dy-

namic scenarios with link failures. We consider the following

two link-failure scenarios. In Scenario 1 we remove a percent-

age pr, ranging from 0% to 30%, of all links in the network,

recompute the GCC, and compute the new success ratio pnew
s .

In Scenario 2, we provide a finer-grain view focusing on

paths that used a removed link. We remove one link from

the network, recompute the GCC, and find the percentage pl
s

of successful paths, only among those previously successful

paths that traversed the removed link and belong to the new

GCC. We repeat the procedure for 1000 random links, and

report the average value for pl
s. Figures 2(c) and 2(d) present

the results. We see that for small γ’s, the success ratio pnew
s
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Fig. 2. Performance of greedy forwarding (GF).

remains remarkably high, for all meaningful values of pr. For

example, MGF on networks with γ = 2.1 and pr ≤ 0.1, yields

pnew
s > 0.99. Note that the simultaneous failure of 10% of

the links in networks like the Internet is a rare catastrophe,

but even in this case GF is still efficient. The percentage pl
s of

MGF paths that used a removed link and that found a by-pass

after its removal is also remarkably high, close to 100% for

small γ’s. We do not present the stretch results for brevity.

In both scenarios, and for all γ’s, the average stretch remains

remarkably low, below 1.1.

In summary, GF is not only efficient in static networks, but

its efficiency is also remarkably robust with respect to network

topology dynamics. Thanks to high path diversity in scale-free

networks, there are many shortest paths, disjoint over some

links or nodes, between the same source and destination, which

all closely follow their geodesics. Link removals affect some

shortest paths, but others remain, and greedy forwarding can

use the underlying hyperbolic “guidance system” to find them.

Greedy forwarding modifications. Although the success

ratios in scale-free networks with small γ’s are extremely close

to 1, they are not exactly 1. However, since the performance

of our simple GF strategies deteriorates quite slowly with

increasing network dynamics, we can expect that simple GF

modifications can achieve 100% success ratio and small stretch

even in more extreme dynamic network conditions than those

we have studied above. We will check our expectations in

the next section, in scenarios with random node arrivals and

departures.

IV. NETWORKS GROWING IN HYPERBOLIC SPACES

The model we presented in the previous section generates

a whole network at once. However, in many applications, the

network topology is formed by nodes gradually arriving over

time. In this section, we extend our model for scale-free net-

works that grow in hyperbolic spaces. We then demonstrate the

remarkable efficiency of greedy forwarding in highly dynamic

conditions, with nodes randomly arriving and departing the

system.

A. Growing model

We assume that the network initially consists of 0 nodes.

We number each arriving node by its order of arrival. We

do not consider node departures for now. A new node i ≥
1 that arrives to the system needs to know: (i) the current

number of nodes in the network, including itself, N(i) = i;
(ii) a system pre-specified parameter α for the node radial

density, which as before, will determine the exponent of the

degree distribution γ; and (iii) a system pre-specified constant

c, which will determine the average node degree as will be

explained below. Then, to connect to the network, the node

performs the following operations inspired by the model in

Section III:

i. select an angular coordinate θ uniformly distributed in

[0, 2π];
ii. compute the current hyperbolic disk radius R(i) accord-

ing to R(i) = 1
α

ln i
c
, i.e., i = ceαR(i);

iii. select a radial coordinate r ∈ [0, R(i)], according to the

probability density function f(r|R(i)) = αsinh(αr)
cosh(αR(i))−1 ≈

αeα(r−R(i));

iv. connect to every node 1 ≤ j < i, already in the network,

for which the hyperbolic distance to it, denoted by dij ,

satisfies dij ≤ R(i). 4

To build the network in a fully decentralized manner, each

arriving node must be able to discover the current number of

nodes in it, and the nodes to connect to, i.e. its neighbors. We

will present a technique for this later. Before doing so, we

analyze the statistical characteristics of the resulting network

topologies, and show that they are scale-free.

As before, strong clustering is a direct consequence of the

triangle inequality in the hidden space, but we have to show

that the node degree distribution follows a power law at any

time instance, as soon as the number of nodes in the network

is sufficiently large. The analysis becomes more complicated

than in Section III, because the hyperbolic disc radius is no

longer constant, but grows with the number of nodes in the

network.

To proceed, we first compute: (1) the probability density

function f(r, t) of the radial coordinate r of a randomly

selected node when the number of nodes in the network is

some value t ≫ 1, and (2) the average degree k̄(r, t) of

nodes located at distance r from the disc center. Having the

expressions for f(r, t) and k̄(r, t) ready, we can then tell how

these quantities scale as a function of r, and use arguments

similar to those in the proof of Theorem 1 to find the degree

4To maintain graph connectedness at any time instance, node i having such
coordinates that dij > R(i) ∀j can randomly re-select new coordinates until
dij ≤ R(i) for at least one j.



distribution. The derivation of f(r, t) and k̄(r, t) is in the

Appendix. Below we present the final expressions and show

that the degree distribution is a power law.

Let R(t) be the hyperbolic disc radius when the number of

nodes in the network is t. According to the model, R(t) =
1
α

ln t
c
. The approximate expression for the node radial density

f(r, t) is:

f(r, t) ≈ α2(R(t) − r)eα(r−R(t)), (5)

leading to:

Lemma 1: For r < R(t) and t ≫ 1, f(r, t) ∼ eαr.

For α > 1
2 , the average node degree as a function of r and

t is, approximately:

k̄(r, t) ≈ t

{

P (r) +
1 − e−α(R(t)−r)

α(R(t) − r)
(G(r) − P (r))

}

, (6)

where:

G(r) =

(

1 −
2α2

π(α − 1
2 )2

+ (1 −
2α

π(α − 1
2 )

)αr

)

e−αr

+
2α2

π(α − 1
2 )2

e−
1
2 r, (7)

P (r) =
2α

π(α − 1
2 )

e−
1
2 r −

1

2(α − 1
2 )

e−2α ln π
2 e−αr, (8)

and the limit α → 1
2 is well defined. 5 The equations above

lead to:

Lemma 2: For α ≥ 1
2 and t ≫ 1, k̄(r, t) ∼ e−

1
2 r.

Taken together the two lemmas above result in:

Theorem 2: The described growing model with α ≥ 1
2

produces graphs with a power law node degree distribution

P (k, t) ∼ k−γ , where γ = 2α + 1.

Proof: The proof is similar to that of Theorem 1. For

t sufficiently large, by Lemma 2, k̄(r, t) ∼ e−
1
2 r. Hence,

r̄(k, t) ∼ −2 lnk. By Lemma 1, f(r, t) ∼ eαr, approximately.

Therefore, P (k, t) ≈ f(r̄(k, t), t)|r̄′(k, t)| ∼ k−γ , with

γ = 2α + 1.

The average node degree k̄(t) =
∫ R(t)

0
k̄(r, t)f(r, t)dr is:

k̄(t) ≈ 2αc
(

e(α− 1
2 )R(t)C1 − αR(t)2C2 − R(t)C3 − C4

)

,

(9)

where C1 = 2α3

π(α− 1
2 )3(2α− 1

2 )
, C2 =

2α−π(α− 1
2 )

2π(α− 1
2 )

, C3 =

α
π(α− 1

2 )2
, C4 = 2

π(α− 1
2 )

(

α
2(α− 1

2 )2
+ 1

)

, and the limit α → 1
2

is again well defined. Using Equation (9) we can thus choose

constant c to set the average node degree to a target value

in synthetic networks grown to a target size t. For fixed

c and α → 1
2 the first exponential term in Equation (9)

vanishes, and k̄(t) grows very slowly with t, as a function

of ln t, since R(t) = 1
α

ln t
c
. This property is desirable, as

in practical applications, we want the average node degree to

depend weakly on the system size. Interestingly, by Theorem

2, α = 1
2 yields degree exponent γ = 2, which as we have

seen in Section III, also maximizes the efficiency of greedy

forwarding.

5For α < 1

2
Equation (6) does not hold. See [23] for more details.

In Figure 4, we check the accuracy of our analytic pre-

dictions. The figure is for a synthetic network growing with

parameters α = 0.75, i.e., target γ = 2.5, and c = 0.0014,

i.e., target k̄(t) = 6.5 when t = 10000. Figure 4(a) shows, in
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Fig. 4. (a) k̄(r, t) at t = 10000, and (b) degree ccdf at various t.

semi-log scale, that Equation (6) closely matches simulations.

Figure 4(b) shows, in log-log scale, the node degree ccdf as the

network grows, i.e., at various t. The ccdf approximately fol-

lows a power law with the slope, i.e., exponent γ−1, 6 virtually

independent of t, as Theorem 2 predicts. The exponent γ is

approximately 2.5. We further observe that the ccdf is slightly

shifting to the right, indicating that the average node degree in

the network grows slowly. At t = 10000 the average degree is

6.5768, which is very close to our target value. Similar results

hold for other parameter values.

B. Decentralized implementation

As mentioned earlier, to build a network in a decentralized

manner, each arriving node must be able to discover its

neighbors and the current number of nodes in the network.

Below we describe an efficient and simple greedy algorithm

implementing these tasks. This algorithm is just an example,

and other techniques and optimizations are possible.

In a nutshell, the algorithm operates as follows. Each

arriving node first contacts a random node currently in the

network, which acts as a bootstrap node. The bootstrap node

then sends an exploration packet to the network. Each hop

that receives the packet writes in it its id and coordinates, as

well as the ids and coordinates off all its neighbors, and then

forwards the packet to its highest degree neighbor that has

not seen the packet before. The process terminates when all

neighbors of a node have seen the packet. Below we describe

the process in more detail.

The exploration packet starts from the bootstrap node and

keeps a list of the node ids it has visited, denoted by LV . It

also keeps a list of node ids along with their corresponding

coordinates, denoted by LC . Each node that receives the packet

records its own id into LV , and its id and coordinates into

LC . Further, it also records the id and the corresponding

coordinates of each of its neighbors into LC . The node then

selects from its neighbors that are not included in LV , the one

with the maximum degree, and forwards the packet to it. The

process terminates when all neighbors of a node are listed in

6If pdf P (k) is a power law with exponent γ, then ccdf P (k > k′) is a
power law with exponent γ − 1.



LV , in which case the exploration packet is sent back to the

bootstrap node. The list LC is then given to the arriving node.

This process, called search utilizing high degree nodes, is

very efficient in power law graphs. In particular, for degree

exponents 2 < γ < 3, the exploration packet can discover

a large percentage of nodes in the graph along with their

coordinates (recorded in LC ), by traversing only a small

number of hops ∼ N2− 4
γ (recorded in LV ), see Chapter 13 in

[16]. Having an estimate of the number of nodes, the arriving

node can compute the current hyperbolic disc radius, and in

turn, its own coordinates. Knowing the hyperbolic disc radius,

the coordinates of the nodes, and their ids, it can also compute

to which nodes it should connect.

One possible modification of the above basic technique is

to impose an upper bound on the size of the LC list. Once

such a bound is reached, the current LC list is returned to

the bootstrap node, and then cleared in the exploration packet.

This extension adds control on the maximum size that the

exploration packet can have.

C. Greedy forwarding

We now evaluate via simulation the performance of greedy

forwarding in highly dynamic conditions, with random node

arrivals and departures. Our setup is as follows.

Without loss of generality, time is slotted. During each time

slot, a new node arrives w.p. p = 0.1, and each node currently

in the network departs w.p. q = 10−5. Initially the network

consists of 0 nodes. An arriving node joins the network

according to our growing model. It also discovers the current

number of nodes in it and their coordinates according to

the procedure described earlier. In our experiments below the

exploration packet discovers 95% of nodes in the network on

average, by traversing only 1.5% of all nodes. If all neighbors

of a node depart, the node re-initiates the join process to

reconnect to the network. To ensure that the network remains

connected, we assume that the first tstart = 200 nodes never

depart. According to our growing model, these nodes will

have high degrees. High degree nodes are required to maintain

connectivity in scale-free graphs [16]. See also the discussion

in Section V.

The average number of nodes in the network grows and sta-

bilizes at the steady state value t̄steady = p
q
+tstart = 10200. 7

Note that tstart

t̄steady
≈ 2%. We set the system parameters to

α = 0.5 and c = 0.01, which according to our earlier analysis,

correspond to the average node degree of k̄(t̄steady) = 6.5 and

degree exponent γ = 2. Recall from Section III that γ = 2
maximizes the efficiency of greedy forwarding, and makes the

average degree depend logarithmically on the network size.

Figure 5(a) shows the average node degree k̄(t) as a function

of the current number of nodes t in the network, until and when

7In the steady state we still have node arrivals and departures, but the
network does not grow on average. Indeed, if t̄(s) is the average number of
nodes in some time slot s, excluding the first tstart nodes, and t̄(s + 1) is
the corresponding number in slot s + 1, then t̄(s + 1) = t̄(s)(1 − q) + p,
leading to the steady state value of t̄ = lims→∞ t̄(s) = p

q
. Adding tstart

to this last quantity yields t̄steady .

we reach steady state. The average degree grows initially and

then stabilizes above, but close to, our target value of 6.5. 8

Figure 5(b) shows the node degree ccdf. The degree exponent

is γ ≈ 2, and it does not change as the network grows, as

expected.

As mentioned in Section III, we expect simple GF mod-

ifications to achieve better performance than our OGF and

MGF strategies, even in highly dynamic network conditions.

We check these expectations with the Gravity-Pressure Greedy

Forwarding algorithm (GPGF) from [9], described below.

Gravity-Presure Greedy Forwarding (GPGF). Each packet

carries a bit to indicate whether the packet is in Gravity or

Pressure forwarding mode. The packet starts in Gravity mode,

where the forwarding procedure is exactly the same as in

our OGF algorithm. However, if the packet reaches a local

minimum, it is not dropped as in OGF. Instead, it first records

the distance of the local minimum to the destination, which we

call current local-minimum distance, and then enters Pressure

mode. In Pressure mode, the packet maintains a list of the

nodes in the network it has visited since it entered this mode,

and the number of visits to each node. A node that receives

the packet determines all neighbors that the packet has visited

the least number of times, selects among those the one with

the minimum distance to the destination, and forwards the

packet to this neighbor. This process continues until the packet

either reaches the destination or a node whose distance to the

destination is smaller than the current local-minimum distance.

In the latter case, the packet switches back to and continues

in the Gravity mode.

Regardless of underlying space geometry, the success ratio

of GPGF is guaranteed to be always ps = 1 [9], which

we confirm in Figure 5(c). What is not guaranteed by the

algorithm is the stretch, which can be enormous, as in the

worst case a packet can visit all nodes in the network to find

its destination. However, in Figure 5(d) we see that GPGF’s

stretch is exceptionally low in our networks. In particular,

we see that the average stretch s̄ remains extremely close to

1, while the maximum stretch max(s) never exceeds 2. As

before, this remarkable efficiency is due to the congruency be-

tween scale-free network topology and underlying hyperbolic

geometry, which persists even in highly dynamic conditions.

V. DISCUSSION

In this section we discuss potential practical applications

of our results. One of such applications is overlay network

construction [3], [10]. Indeed, the idea of using an underlying

geometry to guide the forwarding process is similar in spirit

to Distributed Hash Table (DHT) overlay architectures [3].

In overlay networks, messages searching for data content are

usually greedily forwarded, based on some distance metric, to

the node in the network responsible for the data, usually the

node that is closer to the data in terms of the distance metric.

8The observed discrepancy is due to that the network is not growing exactly
according to the model. Instead, it grows on average. The exact analysis
accounting for the specifics of the node arrival and departure stochastic
processes is beyond the scope of this paper.
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The main objective is to have a low average node degree, and

a short average hop-length of search paths [3]. Both metrics

should grow slowly with the number of nodes in the network

N . The best efficiency with O(ln lnN)-long search paths, and

O(1) average node degree, can be achieved only in scale-free

networks since only in scale-free networks do shortest paths

grow as ∼ ln lnN , independently of the average node degree

[16]. Therefore, given that greedy paths are approximately

shortest in our networks, a property we proved in [28], our

results can be used for overlay network construction and

routing [10] to improve routing/search efficiency.

However, by no means do we propose a solution which is

better than all existing overlay architectures in all aspects. For

example, it is often desirable that all nodes in a network have

similar degrees, which is not the case with scale-free networks.

Another concern may be that while scale-free networks are

robust to random node failures/departures, they are vulnerable

to failures of the highest degree nodes, resulting in network

disconnection [16]. To address this concern, one may consider,

for example, hybrid architectures with resilient super-nodes

(the high degree nodes) [29], or use techniques similar to those

in [30] to ensure recovery when such nodes fail. However, as

we have demonstrated in the previous section, it is enough to

ensure that high degree nodes corresponding to only 2% of

the total steady state number of nodes, do not fail.

Our results also suggest that forwarding information through

existing scale-free networks, such as the Internet, should be

possible without global topology knowledge and associated

routing overhead, which is one of the most serious scaling

limitations with the existing Internet architecture [1]. In other

words, our results lay the groundwork for potentially mov-

ing to an Internet where forwarding can take place without

routing.

VI. CONCLUSION

We have shown that scale-free network topologies naturally

emerge from, and are congruent with, hyperbolic geome-

tries. This congruency can be used to efficiently guide the

forwarding process to find destinations with 100% success

probability, following almost optimal shortest paths, even in

highly dynamic networks. Our findings complement the im-

portant work in [5], and can have several practical applications

in overlay network construction for improving routing/search

performance.

There are several interesting directions for future work. One

is to explore other techniques for decentralized implementa-

tion. Another is the design of greedy forwarding strategies that

could also be used for improving other network performance

metrics, e.g., strategies that could avoid congestion areas,

perform load-balancing, and so on.

Finally, our results suggest that forwarding information

through existing scale-free networks, e.g., the Internet, should

be possible without routing overhead. Therefore, one of the

most interesting, yet challenging, future work directions is the

following inverse problem: Can we embed any real scale-free

network, e.g., the Internet topology, into a hyperbolic space,

so that we can greedily forward through this embedding with

similar efficiency? How can each node compute its coordinates

in the space having no global knowledge of the network

topology, so that the resulting embedding is congruent with

the space, requiring no coordinate and routing updates even if

the network is highly dynamic?
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APPENDIX – GROWING MODEL ANALYSIS

Here we consider a growing network at some time instance

where the number of nodes in it is some value t, and derive the

expressions for the node radial density f(r, t) and the average

node degree k̄(r, t). We number each node by its order of

arrival. Recall that there are no node departures, and that each

node i ≥ 1 that arrives to the system computes a hyperbolic

disc radius R(i) = 1
α

ln i
c
. The radial coordinate r ∈ [0, R(i)]

of node i is distributed according to the density f(r|R(i)) ≈
αeα(r−R(i)).

We start with f(r, t). Let {R(1)...R(t)} be the sequence

of the hyperbolic disc radii that nodes {1...t} compute on

their arrival, and let R be the random variable representing

the computed disc radius of a randomly selected node from

{1...t}. It is easy to see that for i ∈ {1...t}, P (R ≤ R(i)) =
i
t

= ceαR(i)

ceαR(t) = eα(R(i)−R(t)).

We treat R as a continuous random variable. As we see in

Section IV this does not affect the accuracy of the predictions.

Therefore, if we denote by F (R, t) = eα(R−R(t)) the distribu-

tion function of the computed disc radius R, then the proba-

bility density function of R, denoted by f(R, t), is f(R, t) =
αeα(R−R(t)) and it is obtained by differentiating F (R, t) w.r.t.

R. Since, given the value of R a node computes its radial coor-

dinate r according to f(r|R) ≈ αeα(r−R) and r ≤ R ≤ R(t),

we can write f(r, t) =
∫ R(t)

r
f(r|R)f(R, t)dR. Performing

the integration, we get Equation (5).

We now proceed with k̄(r, t). Its computation is rather long,

and we omit it for brevity, see [23]. We can break k̄(r, t) into
two parts. The first part k̄init(r, t) is the initial average degree

of nodes with radial coordinate r, i.e., the average number of

nodes already in the network, to which the node connects upon

its arrival. The second part k̄new(r, t) is the average number

of new connections to nodes at r, coming from new nodes

arriving to the system after. Clearly, k̄(r, t) = k̄init(r, t) +
k̄new(r, t).

We first compute k̄init(r, t). Suppose that the node at r
computed a disc radius equal to R when it arrived. According

to our model, the node then connected to all other nodes in the

network, for which the hyperbolic distance to it was d ≤ R.

The average number of these nodes, denoted by k̄init(r|R),
can be computed [23], and its approximate expression for α ≥
1
2 is k̄init(r|R) ≈ ceαRG(r), where G(r) as given by Equation

(7).

To obtain k̄init(r, t), we now have to remove the condition

on R from k̄init(r|R) by accounting for all possible R
with r ≤ R ≤ R(t). To do so, we need the conditional

probability density for R, given that a node’s radial coordi-

nate is r, denoted by f(R, t|r). Given f(r|R), f(R, t) and

f(r, t), we have f(R, t|r) = f(r|R)f(R,t)
f(r,t) , and k̄init(r, t) =

∫ R(t)

r
k̄init(r|R)f(R, t|r)dR.

We now proceed with k̄new(r, t). Let Nnew be the number

of new nodes that arrived to the system after a node with radial

coordinate r. Clearly, the computed hyperbolic disc radius R′

of a new such node satisfies r ≤ R′ ≤ R(t). According to

our model, the new node connects to the node at r only if the

hyperbolic distance to it is d ≤ R′. In [23] we show that if

α ≥ 1
2 the probability that a new node connects to the node at

r is approximately independent of the exact value of R′ and

depends only on r. This probability, denoted by P (r), can be

easily computed, and is given by Equation (8).

Now, given that the node at r was the ith node arrival,

Nnew = t − i. If k̄new(r, t|i) denotes the average number

of new connections to node i, we can write k̄new(r, t|i) ≈
(t− i)P (r) = (t− ceαR(i))P (r). To find k̄new(r, t), we need

to remove the condition on the index i. In other words, we

need to account again for all R with r ≤ R ≤ R(t). The

conditional density of R, f(R, t|r), was computed earlier.

Therefore, k̄new(r, t) ≈
∫ R(t)

r
(t − ceαR)P (r)f(R, t|r)dR.

Adding k̄init(r, t) and k̄new(r, t), and performing the integra-

tion, we get k̄(r, t) given by Equation (6).


