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Nomenclature

αθ(k,m) = undetermined coefficients in ROM approximation, k = 1, 2, · · ·K, m = 1, 2, · · ·M

gθ(x, t) = boundary conditions

M = correlation matrix in POD

N∗
t = coarse temporal mesh size

Nt = number of time steps

N∗
x = coarse spatial mesh size

Nx = spatial mesh size

t = time

θ = vector of parameters in researched problem

uθ = exact solution of the parameterized nonlinear PDE problem

ûθ = approximated solutions with ROM

uθ0(x) = initial conditions

v̂θ(x, t) = auxiliary term in ROM approximation

x = spatial coordinates

∆ = error estimator of Greedy approach

Ω = physical space

∂Ω = boundary of physical space

ϕk(x) = spatial basis of the parameterized nonlinear problem, k = 1, 2, · · · ,K

ξm(t) = temporal basis of the parameterized nonlinear problem, m = 1, 2, · · · ,M

λk = the k-th eigen value for Correlation matrix

µ = penalized parameter in least square approach

φ(r) = RBF kernel

γkmi = RBF coefficients

σ = scaling factor of RBF

ψ(r) = RBF-QR kernel

2



I. Introduction

Although the ability to numerically model complex phenomena is sustainably improved, nu-

merical simulation in optimization, design and control with lots of degree of freedoms (DOFs) still

remains challenging due to the high computational cost. As an engineering compromise to ap-

proximate the full problem, the development of reduced-order method (ROMs) [1, 2] that enables

approximating solutions with an acceptable loss of accuracy has gained a substantial interest. ROMs

aim to approximate the full problem by projecting it onto a specific subspace with much smaller

DOFs. Once properly chosen, the reduced linear space can adequately represent the dynamics of

the full system at a substantially reduced cost. Examples of these developments include proper

orthogonal decomposition (POD) [3], Harmonic Balance approach (HB) [4], and Volterra theory [5].

Usually, ROMs extract a set of reduced basis functions from snapshots of the full solutions and

then adopt Galerkin projection [6] to approximate the full system with the reduced basis. As the

projection approaches depend on governing equations, the source codes have to be modified, leading

to the fact that the process is inconvenient for complex nonlinear problems and even impossible

when the source code is unavailable. To address this concern, there is a recent interest in non-

intrusive ROMs (NIROMs) which seeks to develop ROMs based solely on access to snapshots and

doesn’t utilize governing equations. In the context of fluid dynamics, [7] presents a second-order

Taylor series method as well as an approach based on a Smolyak sparse grid collocation method,

and applies the two NIROMs to simulate the flow past a cylinder with wind driven gyre. In [8], the

authors explore the use of empirical interpolation method [9] to recover a reduced model based on

a non-intrusive approach. Other researchers [10–13] seek to develop NIROMs by basing on POD

and radial basis function (RBF). In these approaches, RBF is used to interpolate undetermined

coefficients of reduced basis. Although there exist other nonlinear interpolation approaches such

as BP network or Kriging, RBF is more popular in non-intrusive ROMs’ development. The reason

is that RBF is flexible, convenient and accurate when approximating a function through scattered

data, demonstrated in [14]. It has also been validated in numerical cases that the non-intrusive

approaches using RBF can present a good performance in fluid dynamics, even for strong nonlinear

flow fields. For example, [11] adopts POD and RBF onto unsteady flow over an oscillating ONERA
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M6 wing, and [12] demonstrates that the NIROM also performs well in a lock exchange problem as

well as a flow past a cylinder.

Development of ROMs for parameterized time-dependent problems is another issue. For such

problems, ROMs for time-dependent parameterized partial differential equations (PDEs) have to

approximate solutions as a function of time, spatial coordinates and a parameter vector, which turns

out to be more challenging especially when the boundary conditions vary with time. Some work on

this topic is dealing with simple parameterized time-dependent PDEs such as convection-diffusion

problems [15] and boussinesq equations [16]. To solve unsteady parameterized Navier-Stokes equa-

tions, [17] and [18] both utilize POD-Galerkin and achieve a good approximation in adaptation of

Mach and Reynolds number. [19] also adopts intrusive ROMs in patient-specific haemodynamics

with shape parameters. Discrete empirical interpolation method (DEIM) proposed in [20] is an

intrusive ROM for nonlinear problems. DEIM reduces the complexity as well as the dimension of

nonlinear terms and has proven to be efficient and accurate to approximate nonlinear problems.

Although intrusive ROMs have made great achievements in model adaption, this paper prefer to

adopt NIROMs since those don’t rely on governing equations as presented above. [21] presents

a general NIROM for parameterized time-dependent nonlinear PDEs. This approach constructs

snapshots and local basis functions for any parameter point by interpolating those from samples

and then generates hyper-surfaces to represent the dynamical system over the reduced space. [13]

proposes a NIROM consisting of two-level POD as well as RBF, which can deal with general prob-

lems with time-dependent boundary conditions. Considering that the NIROM in [13] is simpler on

implementation and requires less memory than that in [21], the former is adopted.

Besides, it is equally important to carefully selecting appropriate snapshots in model adaption.

The process to generate snapshots by a numerical solver or experiments contributes a lot to the

computational cost for ROMs. Thus, under the premise that requirements of ROMs’ approximation

accuracy are reached, fewer candidates are chosen, more efficient the ROMs perform. However,

due to the variation of possible solutions, it is impossible to determine the optimal candidates for

snapshot generation. Usually a uniform sampling or a random strategy such as Latin Hypercube

sampling [22], Centroidal voronoi tessellations (CVT) [23], Monte Carlo methods [24], etc., is used
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to generate snapshots for ROMs. As these approaches don’t utilize the useful information from

the researched problem, they are not optimal. To guarantee the accuracy of the reduced model,

they often require an excessive number of snapshots, which leads to an unacceptable computational

cost. To deal with this difficulty, recently, some researches have been devoted to propose adaptive

sampling approaches for guiding the selection of snapshots. In [25], an algorithm that iteratively

applies surrogate-model optimization in the generation of snapshots is developed. Other related

approaches are based on a greedy algorithm. In such approaches, the snapshots are adaptively

determined by finding the locations in the predetermined parameter space where the error estimator

reaches the maximum, quantifying the quality of the ROM. In [26, 27], a POD-Greedy approach is

introduced to recover the ROMs, albeit in an intrusive manner, with a discussion of convergence

offered in [28, 29]. Patera et al. [30–33] has researched a lot on Greedy sampling for POD-Galerkin

method when approximating parameterized problems. Tan Bui-Thanh and Karen Willcox [34] also

propose a model-constrained adaptive Greedy sampling method for large-scale systems with high-

dimensional parametric input spaces [35]. However, to the authors’ knowledge, little work has been

done to develop greedy sampling for non-intrusive methods.

The paper aims to develop a greedy sampling approach for the NIROM put forward in [13],

which is applicable for time-dependent parameterized nonlinear problems. The non-intrusive ROM

employs a two-level approach to construct the spatial and temporal basis functions. And RBF is

adopted to estimate the undetermined coefficients of reduced basis because of its features stated

above. While the discussion in this paper is appropriate for problems in a general degree, the paper

mainly focus on problems and examples in the context of fluid dynamics. Different from previous

work in [13], the reduced model in this paper adaptively generate snapshots basing on a greedy

approach to minimize the overall computational cost, thus forming a greedy NIROM (GNIROM).

The structure of this paper is organized as follows. In Section II, a NIROM is developed,

including a two-level basis development and RBF approximation. The use of the RBF-QR method

[36] is also briefly discussed to improve RBF’s robustness. Afterwards, a Greedy sampling approach

is proposed in Section III to reduce the computational cost when generating the reduced basis. This

sets the stage for Section IV where the efficiency and accuracy of present ROM is confirmed through
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problems of heat conduction and lid-driven cavity flows. Finally, Section V lists a few concluding

remarks and plans in our follow-up work.

II. Construction of the non-intrusive reduced order model

The following part presents the construction of the NIROM to approximate time-dependent

problems, which is parameter dependent. It begins the discussion by focusing on the approach put

forward in [13] in which the basis is extracted using a two-level POD. And these are subsequently

combined with a RBF to estimate undetermined coefficients of the reduced basis.

A. Problem statement

Consider the general parameterized time-dependent PDEs with initial and boundary conditions:































∂uθ

∂t
+ F (uθ) = fθ x ∈ Ω× t ∈ (0, T ]

uθ|t=0 = uθ0(x) x ∈ Ω

uθ(x, t) = gθ(x, t) x ∈ ∂Ω× t ∈ (0, T ]

(1)

where t ∈ [0, T ] denotes time, x ∈ Ω are the spatial coordinate vector, and Ω is the physical domain

with a boundary ∂Ω. θ represents a vector of control parameters with dimension p(p ≥ 1). It is

assumed that θ is within the range Θ. uθ represents the state variables, which is a function of

space, time and θ.

The general problems take three spaces into consideration, namely, the temporal space,the

physics space and the parameter space. To deal with this kind of problems, the basic assumption is

that uθ(x, t) can be expressed as the following ansatz:

uθ(x, t) ≈ûθ(x, t) = v̂θ(x, t) +

K
∑

k=1

M
∑

m=1

αθ(k,m)ϕk(x)ξm(t) (2)

In (2), two types of basis functions are introduced: spatial basis functions ϕk(x) and temporal

basis functions ξm(t). The coefficients αθ(k,m)(k = 1, 2, · · · ,K;m = 1, 2, · · · ,M) denote the

undetermined coefficients in the approximation. v̂θ(x, t) denotes the auxiliary term created to

properly account for boundary and initial condition thus the term is required to meet:
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





























∂v̂θ

∂t
−△v̂θ = 0 x ∈ Ω× t ∈ (0, T ]

v̂θ|t=0 = uθ0(x) x ∈ Ω

v̂θ(x, t) = gθ(x, t) x ∈ ∂Ω× t ∈ (0, T ]

(3)

and at the same time the reduced basis have to satisfy














ϕk
|∂Ω = 0

ξm(0) = 0

(4)

The reason to adopt the ansatz (2) is that it can directly deal with general time-dependent

problems with design parameters. And introducing temporal and spatial basis at the same time

can help approximate the spatio-temporal dynamic system well, just like the work of biorthogonal

decomposition (BOD) [37].

In this paper’s first case, although the boundary conditions vary with time, the governing

equation is the diffusion problem, the same to that of auxiliary PDEs, and adopting the NIROM

without the axillary term can perform well in this case.

And in the second case, a problem with constant boundary conditions is considered, and v̂θ(x, t)

should be correspondingly set as u0(x) to meet (3). The following is the proof:

Proof. Concretely, consider the initial condition,

ûθ(x, 0) = v̂θ(x, 0) +

K
∑

k=1

M
∑

m=1

αθ(k,m)ϕk(x)ξm(0) (5)

The second term on the right hand side in (5) vanishes because of the assumption that

ξm(0)|m=1,2,··· ,M = 0. By introducing v̂θ(x, t) = u0(x) into (5),

ûθ(x, 0) = u0(x) (6)

For the boundary condition, the term
∑K

k=1

∑M
m=1 α

θ(k,m)ϕk(x)ξm(0) can also be ignored with

ϕk
|∂Ω = 0, thus

ûθ|∂Ω(t) = ûθ|∂Ω(t = t0) = gθ (7)

Therefore, for problems with constant boundary conditions, v̂θ(x, t) = u0(x) satisfies (3) and

the boundary and initial conditions are satisfied.
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B. Basis creation by POD

POD, first developed to correlate statistical data [38], has been widely used to recover eigen-

modes for spatio-temporal problems. The central idea is to derive an optimal linear basis from

ensembles of statistical data with optimality measured in a least-square sense.

Consider a state variable y(x, t)(x ∈ Ω, t ∈ [0, T ]) with snapshots y(x, ti)(ti ∈ [0, T ], i =

1, 2, · · · , n;x ∈ Ω). POD approximate solutions as

y(x, t) ≈ y0(x) +

K
∑

i=1

ai(t) · Φi(x) (8)

where y0(x) represents the mean part. Orthogonal basis Φi(x) is extracted to approximate the

fluctuating part y′(x, t) = y′(x, t)− y0(x) and K is the number of retained POD basis. POD seeks

an optimal basis Φi(i = 1, 2, · · ·K) in a Hilbert space such that

max
Ψ∈L2

< (y′,Ψ) >

(Ψ,Ψ)
=
< (y′,Φ) >

(Φ,Φ)
(9)

The inner product (·, ·) is defined as (f, g) =
∫

x∈Ω
f(x)g(x)dx and < · > denotes a statistically

average operator. Assume that reduced basis functions Φi(x) are unit and orthogonal, (Φi,Φj) = δij .

The maximization problem (9) is transformed equivalently to solve the following eigen problem of

a two-point time correlation matrix. Define the correlation matrix M ∈ Rn×n with the elements as

M(i, j) =
1

n
(yi, yj) 0 ≤ i, j ≤ n (10)

As M is a symmetric positive semi-definite matrix, according to the Hilbert-Schmidt theorem, there

exists n nonnegative eigenvalues λi(i = 1, 2, · · ·n) for matrix M. Assume that λi ≥ λ2 ≥ · · · ≥ λn. vi

denotes the relative eigenvector of λi, which satisfies that M ·vi = λivi. The values of λi determines

the "energy" which the relative basis vector captures. Define a small threshold 0 < ε < 1, the

retained modes number K is truncated through

K = min{k ∈ [1, n]|

∑k
i=1 λi

∑n
i=1 λi

≥ 1− ε} (11)

Then the POD reduced basis can be determined by Φi(x) =
∑n

j=1 vi(j) · y(x, tj).

C. Two-level basis development

To develop a ROM for the parameterized time-dependent PDEs (1), two-level approach, based

on POD, is adopted in [13] to construct both the temporal and the spatial basis. The reason to
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extract spatial and temporal modes separately is to introduce the coarse grids which aims to speed

up ROM’s offline computations. As the generations for spatial and temporal basis are similar, only

the process of generating spatial modes is discussed here.

This paper defines a coarse spatial grid as χ = {χj ∈ Ωh(j = 1, 2, · · · , N∗
x)} and a coarse

temporal one as Υ = {tn|0 = t1 < t2 < · · · tN∗

t
= T}. Furthermore, a set of samples θi ∈ Θ(i =

1, 2, · · · , N) are defined for generating snapshots from a given parameter space.

Through execution of the numerical solver, the shifted spatial snapshots can be recovered as

Ψ = {uθi(·, tj)− vθi(·, tj), j = 1, 2, · · ·N∗
t }. For each sample θi, POD is adopted onto the temporal

snapshots with the same threshold denoted by ε1. K
i represents the number of modes truncated

by ε1. And rk,i(k = 1, 2, · · ·Ki) are the relative eigenvectors. The corresponding spatial modes are

finally recovered as

ϕk,i(x) =

N∗

t
∑

n=1

(rk,i)n(u
θi(x, tn)− v̂θi(x, tn)) (12)

With the aforementioned work, a total of
∑N

i=1K
i spatial basis can be obtained. And by

application of SVD with another threshold ε2, the eigenfunction would be further compressed while

K spatial modes ϕk(k = 1, 2, · · ·K) retains.

To achieve temporal modes, temporal snapshots are given by {uθi(χj , ·) − v̂θi(χj , ·), j =

1, 2, · · ·N∗
x}. By using the similar approach, M temporal modes ξm(m = 1, 2, · · ·M) can be re-

covered.

In the above process, coarse meshes are introduced and spatial and temporal modes are ex-

tracted independently, which aims to speed up ROM’s offline computations. Detailed computation

complexity for extracting reduced modes is listed in Table 1. If no coarse meshes are introduced

and spatial and temporal modes are extracted at the same time by POD with the snapshot, the

complexity is also listed in Table 2, where K̂i denotes the extracted basis number for θi and K̂i de-

notes extracted basis number compressed by SVD. For simple cases like the two cases in this paper,

N∗
x and N∗

t are both much less than N∗
t . As a result, N ·N∗

x
2 ·Nt +N ·N∗

t
2 ·Nx < N ·Nt

2 ·Nx,

N∗
t
3 ·

∑N
i=1K

i + Nt
3 ·

∑N
i=1 K̂

i < Nt
3 ·

∑N
i=1 K̂

i, and a reduction of offline computational cost is

achieved by comparing the two tables above. This is the reason for introducing coarse meshes and

extracting spatial and temporal modes separately.
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Table 1: Computation complexity to extract spatial and temporal modes separately

Process Detailed Steps Computational complexity

Achieve spatial modes

Assemble correlation matrix o(N ·N∗

t
2
·Nx)

Extract modes for θi o(N∗

t
3
·
∑N

i=1
Ki)

Extract ϕk o(K · (
∑N

i=1
Ki)3)

Achieve temporal modes

Assemble correlation matrix o(N ·N∗

x
2
·Nt)

Extract modes for θi o(N∗

x
3
·
∑N

i=1
M i)

Extract ξk o(M · (
∑N

i=1
M i)3)

Table 2: Computation complexity to extract temporal modes at the same time

Detailed Steps Computational complexity

Assemble correlation matrix o(N ·Nt
2
·Nx)

Extract modes for θi o(Nt
3
·
∑N

i=1
K̂i)

Extract ϕk o(K̂ · (
∑N

i=1
K̂i)3)

However, for more complex problems, where Nx is very big, setting N∗
x less than Nt will cause a

loss in accuracy. Thus, the approach above loses its advantage in efficiency. For such problems when

extracting temporal modes, although the same snapshots {uθi(χj , ·)− v̂
θi(χj , ·), j = 1, 2, · · ·N∗

x} are

used, the correlation matrix M is defined as M ∈ RNt×Nt
rather than M ∈ RN∗

x×N∗

x
and the

temporal modes are just the eigenvectors of correlation matrix. The complexities for extracting

temporal modes are listed as Table 3 and at this moment the total offline computational cost can

also be reduced by extracting spatial and temporal modes separately.

Table 3: Computation complexity to extract temporal modes for complex problems

Detailed Steps Computational complexity

Assemble correlation matrix o(N ·Nt
2
·N∗

x )

Extract modes for θi o(Nt
3
·
∑N

i=1
M i)

Extract ϕk o(M · (
∑N

i=1
M i)3)
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D. RBF approximation

The final challenge for developing a ROM is to estimate the coefficients αθ at any θ ∈ Θ in (2)

while retaining a good approximation accuracy. To deal with this, a RBF method is employed to

interpolate αθ using the sample data.

At first, direct training data for RBF should be provided: the samples’ coefficients denoted by

αθi(k,m)(i = 1, 2, · · ·N ; k = 1, 2, · · ·K;m = 1, 2, · · ·M) . Substitute shifted snapshots uθi −vθi into

(2),

uθi(x, t) ≈ vθi(x, t) +

K
∑

k=1

M
∑

m=1

αθi(k,m)ϕk(x)ξm(t) (i = 1, 2, · · ·N) (13)

and rewrite (13) in a simpler form as

uθi ≈ vθi + ϕαθiξT (14)

At this time, a penalized least square approach [39] is adopted to determine αθi : Define a residual

as the difference between an observed solution and the fitted solution. αθi should be determined to

minimize the sum of squared residuals in the least-squares sense:

min
αθi∈RK×M

(||uθi − vθi − ϕαθiξT ||
2

2 + µ||αθi ||22) (15)

where µ ≥ 0 is a penalized parameter to avoid overfitting and || · ||2 represents the 2-norm for a

matrix with the definition ||A||2 = tr(ATA).

Coefficients αθi corresponding to θi can be computed by

(ϕTϕ)αθi(ξT ξ) + µαθi = ϕT (ui − vi)ξ (16)

With the computed data αθi , RBF approximates αθ(k,m) as follows:

αθ(k,m)≈
N
∑

i=1

γkmi φ(||θ − θi||) (k = 1, 2, · · ·K;m = 1, 2, · · ·M) (17)

where φ(r) is the chosen RBF kernel function and γkmi denotes the undetermined coefficients, which

are independent on θ. || · || denotes the 2-norm for a vector. By substituting θj and relating αθj

into (17), γkmi (i = 1, 2, · · ·N ; k = 1, 2, · · ·K;m = 1, 2, · · ·M) are computed though

αθj (k,m)≈

N
∑

i=1

γkmi φ(||θj − θi||)

(i = 1, 2, · · ·N ; k = 1, 2, · · ·K;m = 1, 2, · · ·M)

(18)
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Finally from γkmi (i = 1, 2, · · ·N ; k = 1, 2, · · ·K;m = 1, 2, · · ·M), α can be recovered for arbi-

trary θ value in parameter space though (17). There are variety of kernel functions and in this work

a Gaussian radial basis function[40] is used, defined as

φ(r) = exp
(

−(σr)2
)

(19)

with a parameter σ > 0. Define a matrix as:

Φi,j = φ(||θi − θj ||) (i, j = 1, 2, · · ·N) (20)

When σ is very large, the matrix Φ defined in (20) to be used in (18), will be ill-conditioning. As a

result, the approximation will break down. On the contrary, if σ is very small, the approximation

accuracy gets affected.

This phenomenon would become particularly problematic when the number of candidates in-

creases or an unstructured sampling pattern in parameter space is used. To address this, RBF-QR

proposed in [36] is adopted in this paper. In this approach, one eliminates the effect of σ by QR

decomposition and restores high accuracy even for small σ.

Although derivation processes of RBF-QR are similar for different kernel functions or different

number of design parameters, it is difficult to give a general description. In this paper, only deriva-

tion process for Gauss kernel function and two design parameters θ = (θ1, θ2) are presented. Gauss

RBF centered on θ0 can be expanded as

φ(r) = φ(||θ − θ0||) = e(−σ·||θ−θ0||
2) = e(σ·θ

2) · e(σ·θ0
2) · e(2σ·θ0·θ) (21)

The term e(2σ·θ0·θ) can be expanded by Taylor series e(2σ·θ0·θ) =
∑∞

j=0
(2σ2)j

j! (θ · θ0)
j . And

φ(||θ − θ0||) is expanded as

φ(||θ − θ0||) = e(σ·θ
2) · e(σ·θ0

2) ·

∞
∑

j=0

(
(2σ2)j

j!
(θ · θ0)

j) (22)

When further expanding (22), [36] points out that the monomials may be nearly linearly de-

pendent with each other. To deal with this, two approaches are adopted: Firstly, transform the

expression form orthogonal coordinate (θ1, θ2) to polar coordinate (r, α) and the centered point in

the polar coordinate is denoted by (r0, α0):

φ(||θ − θ0||) = 2e−σ2r20 · e−σ2r2 · (A+B) (23)
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where














A =
∑∞

i=0

(

σ2r0r
)2i ∑i

j=0
1
2

1
(i+j)!(i−j)!G(2j)

B =
∑∞

i=0

(

σ2r0r
)2i+1 ∑i

j=0

(

1
2

1
(i+1+j)!(i−j)!G(2j + 1)

)

(24)

and function G is defined as G(m) = cos(m · α0) cos(m · α) + sin(m · α0) sin(m · α).

Secondly, express r’s powers with Chebyshev splines Ti(r), see [41],

r2j+p =

∞
∑

i=0

hl · T2l+p(r) p, l = 0, 1, · · · ,∞ (25)

and φ(θ) is finally expanded as

φ(||θ − θ0||) =
∞
∑

j=0

j−p
2

∑

m=0

dj,m · cj,m(θ0) · T
c
j,m(θ) +

∞
∑

j=0

1−p
∑

m=0

dj,m · sj,m(θ0) · T
s
j,m(θ) (26)

Where






























































dj,m = σ2j

2j−2m−1( j+2m+p
2

)!( j−2m−p
2 )!

T c
j,m(θ0) = e−σ2r2r2mTj−2m(r)cos ((2m+ p)α)

T s
j,m(θ0) = e−σ2r2r2mTj−2m(r)sin ((2m+ p)α)

cj,m(θ0) = f(2m+ p)t(j − 2m)e−σ2r0
2

r0
j cos ((2m+ p)α0) 1F2(ajm, bjm, σ

4r0
2)

sj,m(θ0) = f(2m+ p)t(j − 2m)e−σ2r0
2

r0
j sin ((2m+ p)α0) 1F2(ajm, bjm, σ

4r0
2)

(27)

ajm = j−2m+p+1
2 ,bjm = [j−2m+1, j+2m+p+1

2 ], and 1F2 denotes hypergeometric function. Function

f(x) and t(x) is defined as:

f(x) =



















1 x = 0,

2 x > 0.

,

t(x) =



















0.5 x = 0,

2 x > 0.

The expansion in (26) can be written into a matrix form:

φ(r) = C ·D · T (r) (28)

where T (r) is a matrix consisting of Chebyshev splines, D is a diagonal matrix of σ’s increasing

powers o(σ2j)(j = 1, 2, · · ·∞), and C is a matrix with elements o(1). And the σ’s effect mainly stems
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from the diagonal matrix D. [36] proposes a new form of RBF, by adopting QR decomposition on

C and multiplying φ(r) with D−1
N R−1

N QT :

ψ(r) = D−1
N ·R−1

N ·QT · φ(r)

= D−1
N ·R−1

N ·QT ·Q ·R ·D · T (r)

= D−1
N ·R−1

N ·R ·D · T (r)

(29)

D−1
N and R−1

N is the first N ×N sub-matrix of D and R respectively. It is predicted in [36] that

the matrix D−1
N ·R−1

N ·R ·D is less senstive to σ, leading to the fact that ψ(r) is more stable than

φ(r).

Section IV further compares the performance of the GNIROM with RBF-QR and that of the

standard RBF through a specific problem.

E. Overview

Once the spatial and temporal basis functions are determined and the coefficients αθ are ex-

pressed through the expansion of RBF, the solutions at any θ in the parameter space can be approx-

imated through (2). Algorithm 1 outlines the steps for the NIROM. It is also worth noting that, for

problems with multiple state variables the NIROM is used for each variable independently, which

may cause different mode number achieved. However, in intrusive ROMs, it is common to consider

a vector mode (u, v, p) all together. [10] compares the two methods in NIROMs consisting of POD

and RBF in SECTION 2.2 and concludes that: "Although costlier, the approach considering the

state variables independently allows for a more detailed exploitation of the information contained

in the snapshots, with the space of representable solutions being enlarged." And for the NIROMs,

if only the relative reduced basis can predict the flow field accurately for each state variable, no

physical and mathematical concerns would raise from a forced decoupling in governing equation.

Thus in this paper, it is preferred to adopt the NIROM for different state variable independently.
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Algorithm 1 Reduced-order method approach

1: Generate snapshots with an appropriate numerical solver.

2: for each θi(i = 1, 2, · · · , N) do

3: set a threshold ε1 and apply POD to extract a set of temporal modes ϕk,i and spatial modes ξm,i;

4: end for

5: Collect all the temporal and spatial basis functions, and then apply SVD to determine the final required

reduced basis ϕk(k = 1, 2, · · ·K) and ξm(m = 1, 2, · · ·M) with another threshold ε2.

6: Utilize the reduced basis, snapshots and appropriate RBF φ(r) to compute γkm
i .

7: Detemine coefficients αθ at any condition using (17) and then approximate the solution with (2).

III. A greedy approach for model development

The remaining problem in the algorithm discussed so far is the sampling. In [13], samples are

selected in a simple manner. For further improvements in sample selection, this paper conducts ap-

plication of a greedy algorithm to propose adaptive sampling. The core idea of the greedy algorithm

is to select samples adaptively and iteratively by locating the new sample at each iteration where the

estimated error in the reduced model reaches the maximal in the predetermined parameter space.

A. Initial Sampling

To start the adaptive sampling, N0 initial candidates should be given. As the Greedy approach

selects samples locally, the sampling selection is very sensitive to the initialization. Considering that

Greedy approach proposed in this Section aims to provide optimum candidates at each step, fewer

initial points are selected, more efficient of GNIROM performs. On the other hand, the NIROM

proposed in Section III performs well in interpolation, but not very well in extrapolation (which

means that the point to be approximated is outside the range in the parameter space which the

samples span). Therefore, it is suggested to select all the corner points in the parameter space as

initial points, to ensure a good start of the iteration.
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B. Error estimator

From the ROM presented above, the error estimator at the iter-th iterative step can be directly

proposed as

∆(iter) = ||uθ − ûθ||2 = ||uθ − vθ − ϕeαθξe
T ||2 (30)

where ϕe and ξe represents basis functions at the current iterative step. Here || · ||2 still denotes

the squared norm for a matrix with ||A||2 = tr(ATA). And θ in parameter space which makes

||(uθ−vθ−ϕeαθξeT )||2 reach the maximal is selected as the new candidate, denoted by θs. However,

as uθ and vθ is undetermined except when the numerical solver is used, it would be too expensive

to determine θs directly with this error estimator (30).

To develop an efficient alternative, recall the process of computing αθ using the least square

as well as RBF approximation in Section II. To recover the undetermined matrix γkmi , αθl is

substituted by (16) into (17) as

αθl(k,m) =

Ne

∑

i=1

γkmi

(

φ

(

|θl − θi|

σ

))

(l = 1, 2, · · ·Ne; k = 1, 2, · · ·K;m = 1, 2, · · ·M)

(31)

Where Ne = iter+N0 denotes the candidate number at the current step. From (31), γkmi is easy

to be solved, and then αθ can be computed for any θ using (17). Finally, the approximated solution

ûθ is recovered through (2) and αθ. Clearly, the approximated solution for any θ is recovered similarly

to the interpolation of snapshots in parameter space. The difference is that the former interpolates

the coefficients αθ(k,m) of each candidate, instead of interpolating the snapshots directly. Therefore

it is suggested to take the point where the mean distance between αθ and αθl is the largest as the

new candidate.

The distance between αθl(l = 1, 2, · · · , Ne) and αθ can be expressed by

αθ(k,m)− αθl(k,m) =

Ne

∑

i=1

γkmi (φ(
|θ − θi|

σ
)− φ(

|θl − θi|

σ
))

(l = 1, 2, · · · , Ne, k = 1, 2, · · ·K;m = 1, 2, · · ·M)

(32)
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Thus an alternative for error estimator on the form in 2-norm sense based on α distance is

given as:

∆1(iter) =

∑Ne

l=1 ||
∑K

k=1

∑M
m=1[(α

θ(k,m)− αθl(k,m))ξek(x)ξem(t)]||2
Ne

=

∑Ne

l=1 ||
∑K

k=1

∑M
m=1[(

∑Ne

i=1γ
km
i (φ( |θ−θi|

σ
)− φ( |θl−θi|

σ
)))ϕek(x)ξem(t)]||2

Ne

=

∑Ne

l=1 ||
∑Ne

i=1(φ(
|θ−θi|

σ
)− φ( |θl−θi|

σ
))(

∑K
k=1

∑M
m=1(γ

km
i )ϕek(x)ξem(t))||2

Ne

(33)

where
∑K

k=1

∑M
m=1(γ

km
i ϕek(x)ξem(t)) is independent on θ and considered as coefficients.

However, if θ is considered as a continuous variable vector, the Greedy method would be

impractical for high cost of direct computation (33). To solve this, a series of discrete points

θ∗ii(ii = 1, 2, · · ·N∗) are selected in the parameter space, from which the new candidate can be

identified. Subsequently, with ∆1 for each sample point computed, the new candidate would be

easily obtained by searching the one with the maximum value of ∆1.

To further reduce the computational cost when choosing the candidate from the N∗ points, a

simpler error estimator ignoring basis function is also proposed as:

∆2(iter) =

√

∑Ne

l=1||α
θ(k,m)− αθl(k,m)||22

Ne
=

√

∑Ne

l=1||
∑Ne

i=1γ
km
i (φ( |θ−θi|

σ
)− φ( |θl−θi|

σ
))||22

Ne
(34)

∆2 is just the mean error of α distance. Strictly speaking, ∆1 and ∆2 don’t belong to error

estimators but could be an estimator for us to find points with large errors. The computational

complexity of ∆1 is N∗2 ×K ×M while that of ∆2 is N∗2, predicting that computational cost for

both error estimators are very small. And the two error estimators are compared and discussed in

the diffusion problem in Section IV.

For problems with multi-state variables u(q)(q = 1, 2, · · ·Q), GNIROM is adopted to each state

variable independently and the error estimator (33) or (34) is computed for each state variable,

denoted by ∆1(q, iter) or ∆2(q, iter). The key point to deal with this issue is to propose an error

estimator which can consider all the state variables and provide a new candidate at each iterative

step. Drawing the ideas form multi-objective optimization, priority weightings w(q)(q = 1, 2, · · ·Q)

are set for each state variable, and the error estimator for this problem denoted by ∆mul is defined
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as

∆mul(iter) =

√

√

√

√

Q
∑

q=1

w(q) ∗∆i(q, iter)2 (i = 1 or 2) (35)

Generally, the chosen of w(q) is subjective and problem dependent.

C. Termination criterion

To terminate the growth of the reduced basis, there are various available strategies. For example,

the adaptive sampling can terminate the iteration by just setting the number of iterative steps to

a constant, or basing on the decrease of the approximation error below a certain threshold. Under

the goal of reducing the overall approximation error, the present criterion includes the following two

steps:

At first, an appropriate step number Npre is set to run the GNIROM’s iteration. As Greedy

Approach aims to reduce the offline computational cost, the approximation accuracy is the key

factor which determines whether to terminate the sampling. However, parameters set in the ROM,

such as ε1, ε2 in Section II (C) and σ in equation (19), may not be appropriate which will cause

more unnecessary iterative steps needed to meet the accuracy requirements, especially when the

iterations have proceeded for 10 or more steps. Thus, it is preferred to set a certain value Npre

and then check whether the adaptive sampling goes well. If not, the thresholds will be changed at

Npre-th step. To make the approach efficient, the value Npre should not be too small or too big. 10

for 1-parameter problem and 20 for 2-parameter problems are empirically suggested. And then the

iteration continues.

Secondly, iteration proceeds until when the approximation error between the solver and G-

NIROM is less than a preset value. And once this assumption is invalid, the GNIROM terminates.

As to which kind of error to focus on, it is preferred in this paper to use the 2-norm of errors on

a set of test points as the error indicator. However, in concrete application, this often results in a

substantial computational cost. As an alternative, the mean error on the determined new candidates

is chosen as the indicator.
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D. Summery of GNIROM Approach

As presented above, two alternatives for error indicators are proposed to decide sampling, how-

ever, both are heuristic and it is difficult to provide a rigorous bound for them. In numerical cases

of section IV, the ROM performs well with candidates determined by the indicator, demonstrating

that those may not be optimal but at least very good samples for building reduced basis.

By adopting the error indicator as well as the criterion for termination, the whole GNIROM

scheme can be expressed and summarized in Algorithm 2. As the first Npre steps are set to check

the thresholds, this process is not mentioned in Algorithm 2.

Algorithm 2 GNIROM Scheme

1: Choose initial samples as a start.

2: for iter = 1; iter ++ do

3: Apply two-level POD to extract reduced basis ξe and ϕe, and utilize RBF to compute γkm
i .

4: Use the error indicator to determine the new candidate in the whole parameter space.

5: Add the determined candidate to the existing snapshots.

6: Once the 2-norm of errors on a set of test points is less than a preset value, terminate the Greedy

sampling iteration.

7: end for

8: Use the ROM in section II to extract basis functions from the snapshots determined above and approx-

imate required solutions .

IV. Numerical test-case

In the following, the efficiency and accuracy of GNIROM are demonstrated through two numer-

ical cases on 4 cores of a workstation running at 3.50GHZ. Although both validation cases belong

to problems of fluid dynamics, it is worth emphasizing that the proposed algorithm is generic and

applicable to general problems.

A. Two-dimensional heat diffusion

Consider the time-dependent diffusion equation with only one parameter:

∂u

∂t
= υ△u in Ω = [0, 1]2, t ∈ [0, T ] (36)
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where T=5.0s, and viscosity coefficient υ = 1. The single parameter is located in the boundary

condition:

On the upper boundary,

gθ(x, t) = sin(
πt

2T
)(1− θsin(2π(x− 0.5))) +

θt

T
(37)

and on the other three boundaries,

gθ(x, t) = 0 (38)

where θ ∈ [0.5, 1.5]. Initial solutions are set 0 everywhere in Ω = [0, 1]2: uθ0(x) = 0.

The problem is solved using a second order finite difference method with a uniform spatial grid

of 41× 41 points. The time-step dt is set 0.004 seconds and thus Nt = 1251. N∗
t = 101 points are

selected uniformly in [0,T] to generate spatial snapshots, and a coarse spatial mesh of 11×11 points

is used to generate temporal snapshots.

The parameters in the NIROM like ε1 in (11) and σ in (19), are important for the ROM’s

approximation. However, when the parameters’ values are adjusted at the initial phase of GNIROM,

those values may be not appropriate with more candidates added. As a result, before adopting

GNIROM, the paper applies the NIROM in Section II with uniform sampling (25 samples spread

uniformly in the parameter space in this case) at first and adjusts the parameters’ values to make

the ROM more efficient. The adjusted parameters are listed: the thresholds ε1 in (11) to recover

temporal and spatial modes are both set 10−3; when applying the SVD on these different sets of

modes in Section II (C), the threshold ε2 for temporal modes is set to 10−3, and ε2 for spatial

modes equals to 10−4; gaussian radial basis functions with σ = 141.4 in (19) is adopted as the

kernel function. When GNIROM is used, those parameters are fixed to the same values.

To evaluate the accuracy, N∗ = 26 test points θ∗ locate uniformly in the parameter space and

three different errors between the approximated solutions ûθ and direct solutons uθ are defined as

Maximal error : Error1 = max
tn∈[0,T ]

||ûθ(·, tn)− uθ(·, tn)||Ω (39)

Mean errors at T ≥ t ≥ 0 : Error2 =
1

Nt

Nt
∑

n=1

||ûθ(·, tn)− uθ(·, tn)||Ω (40)
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Mean error at t=1s : Error3 = ||ûθ(·, t = 1)− uθ(·, t = 1)||Ω (41)

The norm || · ||Ω is defined as ||f ||Ω =
√

(f, f) and the inner product (·, ·) is defined as (f, g) =

∫

x∈Ω
f(x)g(x)dx. For fixed θ and time instant tn, ûθ(·, tn) = uθt=tn

is a vector of spatial coordinates

x ∈ Ω.

The greedy approach is initiated from two candidates θ = 0.5, 1.5 as stated in Section III,

and at each iteration it provides a new one. In Section III, two error estimators are presented in

(33) and (34), and the GNIROM’s results with the two estimators are compared. As both error

estimators base on the distance between αθ and αθi(i = 1, 2, · · · , Ne), plots of |αθ(k,m)−αθi(k,m)|

for θ = 1.06, 0.74 are made when k=1,m=1 and k=2,m=2 as presented in Figure 1. All the solutions,

such as θi, α
θ(k,m) and αθ(k,m) , come from the GNIROM’s solution where ∆1 in (34) acts as

the error estimator. From the figures, when θi is closer to θ, the distance is smaller. And if k or m

differs and ∆2 is used, the plot is similar and the trend is the same. From the Table 4, the two error

estimators provide the same candidates before 8 iterations, but the subsequent chosen candidates

are totally different. To judge whether error estimator performs better, the error distributions of

test points for the two error estimators are presented at the same iterative step in Figure 2 and

Figure 3. And the errors for test points are computed through eqn. (41). Blue vertical solid lines

mark the candidates at the current iteration and red vertical dashed lines mark the new candidates

at the next iteration. As the candidates are the same before 8 iterations, there is no need to compare

error distributions before 8 iterations. Figure 3 shows that ∆2 provides good samples when the step

order is less than 13, as the new candidates are located at one of the peaks in the relative error

distribution of test points. But the candidates determined by ∆2 at 13th, 14th and 15th step are

not appropriate, as the optimal candidates, of which the errors reach the maximal, are most likely

located at 0.5 < θ < 0.6 by observing the error distributions. But ∆1 always find a point which

is very close to the "optimal" candidate, as presented in Figure 2. On the other hand, although

compared to ∆2, computing ∆1 for discrete points is more time-consuming, the timing of ∆1 is also

very small, as stated in Section III (B). Going forward, the error estimator ∆1 in (34) is adopted

to drive the greedy selection in θ and only solutions with ∆1 are presented.
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Table 4: θ of chosen candidates at each iteration by the two error estimators

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

∆1 0.89 1.19 0.69 1.34 1.04 0.79 0.6 1.48 0.51 1.44 1.28 0.95 0.56 1.12 1.37

∆2 0.89 1.19 0.69 1.34 1.04 0.79 0.6 0.96 1.11 1.26 1.41 1.47 0.63 1.49 0.61

(a) k=1,m=1 (b) k=2,m=2

Fig. 1: Plot of α distance |αθ(k,m)− αθi(k,m)| for θ = 1.06, 0.74

After the error estimator determined, the adaptive sampling finally terminates at the 16th

iteration with the termination criterion stated in Section III (C). In the above approximation, RBF-

QR is used in the GNIROM approach. To validate RBF-QR’s advantange over standard RBF,

solutions of standard RBF are also presented as a comparison. Table 5 lists the samples determined

in the iterative approach, using the standard RBF approximation as well as the RBF-QR technique

and it can be noted that the candidates selected by the two approach are different, in particular

as the iteration count increases. The difference is explained by the fact that the kernel function

of RBF is introduced into the error estimator of adaptive sampling. When the standard RBF is

replaced by RBF-QR, the error estimator varies, leading to a totally different sampling.

Figure 4 shows the trend of Root Mean Square (RMS) for the test samples’ errors (39-41) in

the greedy scheme using both the standard RBF approximation and the improved RBF-QR. From
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(a) 8th step (b) 10th step (c) 12th step

(d) 13th step (e) 14th step (f) 15th step

Fig. 2: Error distribution(eqn. (41)) in log10 scale between ROM and numerical solver for test

points θ∗ when error estimator ∆1 in eqn (33) is used

Table 5: θ of chosen candidates at each iteration

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Standard RBF 1 1.25 0.75 1.44 1.19 0.94 0.7 0.55 1.47 1.41 1.49 1.43 1.39 1.36 1.34 1.33

RBF_QR 0.89 1.19 0.69 1.34 1.04 0.79 0.6 1.48 0.51 1.44 1.28 0.95 0.56 1.12 1.37 0.66

the figure, GNIROM using RBF-QR reduces the errors to values much less than that of standard

RBF. Actually, the code of GNIROM reports an ill-condition problem when standard RBF is used.

The reason is explained: Considering that it is inconvenient to adjust σ in the adaptive sampling,

the value of σ is fixed in the iteration. But as standard RBF is very sensitive to σ, when the

iteration proceeds, fixed σ may be inappropriate and will either cause ill-conditioning problem or

affect approximation accuracy. In contrast, RBF-QR is less sensitive, and thus performs much better

with fixed σ in the GNIROM. This comparison clearly confirms the importance of using improved
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(a) 8th step (b) 10th step (c) 12th step

(d) 13th step (e) 14th step (f) 15th step

Fig. 3: Error distribution(eqn. (41)) in log10 scale between ROM and numerical solver for test

points θ∗ when error estimator ∆2 in eqn (34) is used

technique to ensure the accuracy. Going forward, only solutions with RBF-QR are presented.

In Figure 5, the errors for each test sample all drop when iterative step n grows, demonstrating

a global error reduction achieved.

To further evaluate efficiency, approximations of the NIROM presented in Section II with 18

samples uniformly distributed in the parameter space is considered as a comparison. It is worth

noting that this is the same number with candidates provided by Greedy sampling. The errors’

RMS of both approximation at test points are compared in Table 6. From the table, the errors’

RMS of the GNIROM are a little smaller than that of the ROM with uniform points. Due to the

simplicity of the boundary condition and the single parameter, GNIROM does not present much

advantage over the NIROM with uniform samples in this case.

With those 18 candidates, the GNIROM generates a total of
∑N

i=1M
i = 216 temporal basis and

∑N
i=1K

i = 285 spatial basis. After the SVD compression, 10 temporal basis ξm(m = 1, 2, · · ·M) -
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(a) Standard RBF (b) RBF-QR

Fig. 4: Trend of RMS for test points’ errors(Eq. (39-41)) in the Greedy iteration process. In (a)

the standard RBF is used in the reconstruction while in (b) the RBF-QR is used.

(a) Maximal error (b) Mean error at T ≥ t ≥ 0 (c) Mean error at t=1s

Fig. 5: Error distribution(Eq. (39-41)) in log10 scale between GNIROM and numerical solver for

test points θ∗

see Figure 6 for an illustration of these, and 12 spatial ones ϕk(k = 1, 2, · · ·K), illustrated in Figure

7, are retained. It can be observed that all temporal modes in Figure 6 change rapidly close to 0,

consistent with the rapid changes of the solution during the initial temporal phase.

After the reduced basis built, it takes 0.12 seconds to approximate one point with those reduced

basis while the numerical solver has to spend 251.97 seconds, illustrating that a great online benefit

is achieved in computational cost with the proposed approach.
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Table 6: Errors’ comparison in log10 scale of GNIROM and the ROM with uniform sampling

Approach Maximal error Mean error at T ≥ t ≥ 0 Mean error at t=1s

GNIROM -1.257 -2.592 -3.053

ROM with uniform snapshots -1.257 -2.575 -3.046

m = 1 m = 2 m = 4 m = 10

Fig. 6: The typical temporal modes

It can be seen from Figure 4 that the mean errors become very small after greedy sampling.

However, it is premature to conclude that the GNIROM’s approximation is accurate. To further

evaluate this, the direct error in flow field’s prediction across variations in θ requires further study.

Considering the flow field at two points, neither of which belong to the candidates, one is θ = 0.55

and the other is θ = 1.15. Contours predicted by the numerical solver are presented in Figure 8 at

four time instants and Figure 9 gives the error distributions |uθ(x, t) − ûθ(x, t)| in the whole flow

field between the direct solutions and those approximated by GNIROM. Observed from the figures,

errors in the whole field are small, demonstrating a good accuracy of GNIROM when approximating

the flow fields. By observing Figure 8 together with Figure 9, a high direct error is more likely to

appear at the regions where there is a dramatic change in the state variable u. For example, in the

regions close to boundary conditions, the relative errors are often very big.

B. Lid-driven cavity flow

As a more complex problem in fluid dynamics, a two-dimensional driven cavity flow with two

parameters θ1 and θ2 is considered as the second verification case. In this case, incompressible

26



k = 1 k = 2 k = 6 k = 12

Fig. 7: The typical spatial modes

θ = 0.55

θ = 1.15
(a)t=0.04s (b)t=0.2s (c)t=2s (d)t=5s

Fig. 8: Direct solutions for θ = 0.55, 1.15

Navier-Stokes equations(excluding body forces) is considered:






























∂u
∂x

+ ∂v
∂y

= 0

∂u
∂t

+ u · ∂u
∂x

+ v · ∂u
∂y

= − 1
ρ0

· ∂p
∂x

+ ν∆u

∂v
∂t

+ u · ∂v
∂x

+ v · ∂v
∂y

= − 1
ρ0

· ∂p
∂y

+ ν∆v

(42)
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θ = 0.55

θ = 1.15
(a)t=0.04s (b)t=0.2s (c)t=2s (d)t=5s

Fig. 9: Error distributions ∆u(x, t) = |uθ(x, t)− ûθ(x, t)| for θ = 0.55, 1.15

where ρ0 is a constant. Unlike diffusion problems, there exists three state variables: x-velocity(u),

y-velocity(v), and pressure(p). Reynolds number equals to 100, thus determining the viscosity ν.

Fig. 10: Schematic diagram of computational domain

The computational domain is shown in Figure 10. θ1 denotes the velocity of the top boundary,

and velocities are 0 on the other three boundaries. θ2 refers to the height of the cavity such that
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the computational domain is [0, 1] × [0, θ2]. It is assumed that θ1, θ2 ∈ [1, 2]. The initial velocities

are 0 everywhere at the boundaries except at the top boundary. In numerical simulation, a second-

order finite difference solver with a uniform spatial grid made of 41 × 41 points is used. The total

simulation time T equals to 5.0s and time-step dt is set as 0.01s. In addition, a coarser spatial mesh

of 11 × 11 points is generated to extract temporal snapshots and a uniform N∗
t = 51 point set in

[0,T] is used to generate spatial snapshots.

As the height of the domain is chosen as one design parameter, the domain differs when θ2 varies.

To ensure the approximation accuracy, the length and width of each grid cell remains the same.

However, the numbers of gird points are different, which make it difficult to generate snapshots. In

this paper, when generating snapshot using the solution data, another grid with 41× 41 uniformly

spread in the domain even when the height of domain varies. As a result, the snapshots provided

are the solutions at such grids, which can be easily interpolated through the solver data.

As stated in the heat diffusion problem, the NIROM with uniform samples (6×6 sample points

in this case) are firstly used to adjust the parameters in GNIROM. It is worth noting that as the

flow field characteristics and accuracy requirements for state variables are different, constants in the

approach are given independently for each state variable: ε1 in (11) to compute temporal and spatial

modes are set {10−3, 10−3, 10−3} for u, v, p; ε2 for the spatial modes in Section II (C) are given by

{10−3, 10−3, 10−4}, while ε2 for the temporal modes are set {10−2, 10−2, 10−3} respectively; and in

RBF σ in (19) is set as {35.4, 35.4, 0.707} for the 3 variables separately.

1. Adaptive sampling

The sampling is initiated from four corner points in the parameter space (θ1, θ2) =

{(1, 1), (1, 2), (2, 1), (2, 2)}. GNIROM terminates at 28th iterations and the selected samples are

located at round spots in Figure 11.

11×11 points are selected as test points uniformly distributed in the parameter space [1, 2]×[1, 2].

Figure 12 shows the trend of RMS for the test points’ errors defined in (39)-(41) between the reduced

order solution and by the numerical solver. With the iteration increasing, errors’ RMS of the three

state variables all gradually decrease and remain almost invariably at around 28th step. At this
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Fig. 11: Final parameter points after 28 iterations
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Fig. 12: Trend of RMS for test points’ errors(Eq. (39-41)) in the Greedy iteration process.

time, mean errors for the velocity components are less than 10−2, while those for the pressure are

less than 10−3.

Table 7: Errors’ comparison of GNIROM and uniform sampling ROM in log10 scale

Approach
Maximal error Mean error at T ≥ t ≥ 0 Mean error at t=1s

u v p u v p u v p

GNIROM -1.744 -1.966 -1.892 -2.012 -2.121 -2.323 -2.044 -2.113 -3.108

ROM with uniform candidates -1.231 -1.355 -1.825 -1.215 -1.368 -1.936 -1.216 -1.332 -2.423

Considering the ROM in Section II with 32 candidates spread uniformly in the parameter space,

the errors’ RMS at test points for the two different approaches are compared and listed in Table (7).

For the same variable, the values of GNIROM system are substantially smaller than those computed
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by the ROM with 32 candidates, showing that in this case the candidates determined by GNIROM

have a notable advantage over the direct uniform sampling approach.

2. Fluid field approximation

After the sampling process, the scheme provides 7, 6 and 3 temporal modes as well as 27, 28

and 5 spatial modes for u, v and p, respectively. For each test sample, GNIROM only copes with

7×27+6×28+3×5 = 372 unknowns. While in this test-case with 3 state variables, the full model

deals with a mesh of 1681 cells and 501 time intervals, meaning that it has to solve 2.52 million

unknowns for each sample. Thus the DOFs of problem solving have been greatly reduced. Figure 13

compares velocity profiles of GNIROM with those by the direct solver when θ1 = 1, θ2 = 1, showing

that the approximated profiles coincide very well with those of the solver as well as solutions in [42].

(a) u-velocity distribution along vertical line through

the geometric center of the cavity

(b) v-velocity distribution along horizontal line

through the geometric center of the cavity

Fig. 13: Velocity profile when (θ1, θ2) = (1, 1)

To further validate the accuracy of the GNIROM, flow fields are compared at four test points

marked by delta spots when t=5.0s in Figure 11. The error distributions of the three state variables

are presented at those test points in Figure 14 specifically. Similar to the diffusion problem, there

always exist bigger errors at the regions with a dramatic change in flow fields. As a whole, the errors

are small in the whole field, demonstrating that GNIROM reconstructs the flow fields very well.

Moreover, streamlines and vorticity contours at t=5.0s between GNIROM’s approximation and
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u error distribution

v error distribution

p error distribution

(a)(1.1, 1.1) (b)(1.3, 1.3) (c)(1.5, 1.7) (d)(1.7, 1.7)

Fig. 14: Error distributions at the four points when t=5.0s

the Direct solver’s result are compared specifically in Figure 15 and 16. From Figure 15, there

exists a minor difference between the two rows of streamlines, which leads to a difference in visual

discrimination, especially at the bottom corners. The reason is that, at the bottom corners the

velocities’ values are close to 0, leading to the fact that minor variations in velocity contours may
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Direct solver

GNIROM

(a)(1.1, 1.1) (b)(1.3, 1.3) (c)(1.5, 1.7) (d)(1.7, 1.7)

Fig. 15: Streamlines at the four test points when t=5.0s

lead to differences in the streamlines in such regions. However, GNIROM is competent in simulating

the trend of streamlines as well as capturing the corner vortices even when the height of cavity varies

a lot. And a very good agreement is presented in vorticity contours in Figure 16. Considering that

vorticity is a differentiated quality, Figure 16 further predicts that a high approximation accuracy

is achieved in this case.

3. Computational cost evaluation

Computational efficiency is a key factor to judge a ROM’s performance and in this section

computational cost of the proposed GNIROM is divided into two parts:

In the offline stage, the approach determines the samples iteratively. At each iterative step,

the GNIROM includes four parts: extracting reduced basis, training RBF with samples’ data,

determining the new candidate and generating the new snapshot with the numerical solver. With

the iterative step growing, the CPU timings of the first three parts increase correspondingly, thus

only time cost at the last cycle is presented in Table 8. As shown in the table, the greedy approach
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Direct solver

GNIROM

(a)(1.1, 1.1) (b)(1.3, 1.3) (c)(1.5, 1.7) (d)(1.7, 1.7)

Fig. 16: Comparison of vorticity contours at the four test points when t=5.0s

is very cheap in computational cost.

In the online stage, solutions are approximated with the extracted basis functions. Table 9 lists

the timing for one test sample approximated by the ROM as well as the direct solver, demonstrating

that the CPU timing’s speed-up is very significant.

Combining with the high approximation accuracy, it can be concluded that the proposed ap-

proach performs excellently and efficiently in this case.

V. Concluding remarks

This paper has presented the development of a non-intrusive ROM based on a greedy approach.

To enable a robust approximation, this paper has introduced the use of RBF-QR. The efficacy and

efficiency of the proposed method has been demonstrated by two cases, including heat conduction
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Table 8: Time cost(in seconds) required by Greedy sampling at 28th cycle.

Phase Time cost(in seconds)

Sampling:Extracting reduced basis 26.53

Sampling:Computing γkm
i (i = 1, 2, · · ·N) 2.45

Sampling:Determining the new candidate 4.25

Numerical Solver 163.4

Total 196.63

Table 9: Time cost(in seconds) required by the solver and ROM (online stage).

Phase Time cost(in seconds)

ROM: approximation for one sample (online) 0.0468

Numerical Solver(for one sample) 163.4

and a driven cavity flow. Although this paper focus on fluid dynamics, the approach is capable for

approximating general parameterized time-accurate problems.

While the results are encouraging and the approach has been demonstrated on non-trivial

examples, future work should seek to improve the effectiveness of the GNIROM algorithm, possibly

through the use of a local reduced basis. It is also expected to adopt this approach to problems of

a more complex nature in aerodynamics and aeroelasticity including those with larger dimension of

parameter space and 3-dimensional problems.
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