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Abstract

We describe simple greedy algorithms to construct the
shortest set of loops that generates either the fundamental
group (with a given basepoint) or the first homology group
(over any fixed coefficient field) of any oriented 2-manifold.
In particular, we show that the shortest set of loops that gen-
erate the fundamental group of any oriented combinatorial
2-manifold, with any given basepoint, can be constructed
in O(n log n) time using a straightforward application of
Dijkstra’s shortest path algorithm. This solves an open
problem of Colin de Verdière and Lazarus.

In memory of John R B Whittlesey (1927–2003)

1 Introduction

Several geometric problems call for topologically com-
plex surfaces to be cut into one or more topolog-
ical disks. Examples in computer graphics include
denoising, texture mapping, remeshing, compression,
and morphing (see references in [8]); more theoretical
examples include computing separators and tree decom-
positions of non-planar graphs [7]. In light of these
applications, a natural algorithmic problem is to find
optimal method for cutting surfaces to simplify their
topology.

Erickson and Har-Peled [8] were the first to consider
the problem of optimally cutting a surface into a single
topological disk by removing a so-called cut graph of
minimum total length. Erickson and Har-Peled showed
that computing minimum-length cut graphs is NP-hard,
by a reduction from the classical Steiner tree problem.
They also developed a brute-force polynomial-time algo-
rithm for manifolds with constant genus and a constant
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number of boundary components, as well as a greedy
algorithm that computes a O(log2 g)-approximation of
the shortest cut graph in O(g2n log n) time.

Colin de Verdière and Lazarus [5] considered the
special case of one-vertex cut graphs, which they called
systems of loops. Every system of loops for an orientable
surface of genus g with no boundary contains 2g loops
through a common basepoint. Systems of loops also
provide a minimal presentation for the fundamental
group of the surface. Given a triangulated manifold and
a system of loops as input, their algorithm computes
the shortest system of loops in the same homotopy
class, in polynomial time under a mild assumption
about the input geometry. A more recent extension
of this algorithm by the same authors optimizes pants

decompositions within a given free homotopy class [6].

At the end of their paper [5], Colin and Verdière and
Lazarus ask, “How does one compute the shortest sys-
tem of loops, among all systems, relaxing the homotopy
condition? Comparing with the work of Erickson and
Har-Peled, we expect this last problem to be much less
tractable than those solved in the present paper.” In
this paper, we show that finding the shortest system of
loops is considerably more tractable than either finding
the shortest cut graph or finding the shortest system of
loops in a given homotopy class. We describe a simple
greedy algorithm, based on Dijkstra’s shortest path
algorithm, that computes the shortest system of loops
with a given basepoint in O(n log n) time. Running this
algorithm once for every basepoint gives us the overall
shortest system of loops in O(n2 log n) time.

The difference between finding the shortest cut graph
and finding the shortest system of loops boils down to
how the lengths of these objects are defined. The length
of a cut graph is just the sum of the lengths of its edges.
The length of a system of loops, however, is the sum
of the lengths of the loops; if any path is traversed
more than once by the loops, or even by the same loop,
its length is counted more than once. The situation
is similar to the difference between Steiner trees and
minimum spanning trees for points in the plane. The
minimum Steiner tree is a set of paths that touches every
point whose total length is as small as possible; the
Euclidean minimum spanning tree is a set of point-to-

point paths that touch every point, the sum of whose

lengths is as small as possible. Computing minimum
Steiner trees is NP-hard; computing minimum spanning
trees is easy. (We develop this analogy further in
Section 3.3; see Lemma 3.8.)
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Figure 1. Four types of graphs on a two-holed torus. (a) A cut graph that is not a system of loops. (b) A system of loops. (c) A homotopy
basis that is not a system of loops. (d) A homology basis that is neither a homotopy basis nor a cut graph.

The rest of the paper is organized as follows. In
Section 2, we describe some relevant topological back-
ground. We develop our greedy algorithm for computing
optimal systems of loops in Section 3. Finally, in
Section 4, we generalize our techniques to find the
shortest set of loops that generate the homology group
of a given 2-manifold, over any coefficient field, in
polynomial time.

2 Topological Background

We begin with some standard definitions from topology;
for a more thorough introduction, we refer the interested
reader to Hatcher [11] or Stillwell [28].

A 2-manifold is a topological space in which every
point has a neighborhood homeomorphic to IR2. This
paper considers only connected, compact, orientable 2-
manifolds without boundary. The genus of a 2-manifold
is the number of disjoint cycles that can be removed
without disconnecting the manifold. Two connected,
compact, orientable, 2-manifolds without boundary are
homeomorphic if and only if they have the same genus.

2.1 Loops and Homotopy. Let x be a fixed base-

point in some 2-manifold M . A loop based at x is
(the image of) a continuous function ℓ : [0, 1] → M
such that ℓ(0 = ℓ(1) = x. Two loops ℓ and ℓ′

with the same basepoint are homotopic (relative to
the basepoint) if there is a continuous function h :
[0, 1]×[0, 1] → M such that h(0, t) = ℓ(t), h(1, t) = ℓ′(t),
and h(s, 0) = h(s, 1) = x for all s, t ∈ [0, 1]. A loop
is contractible if it is homotopic to the constant loop.
The set of homotopy equivalence classes of loops based
at x forms a group under concatenation, called the
fundamental group and denoted π1(M, x). The identity
element of the fundamental group is the homotopy

class of contractible loops. Fundamental groups of
the same connected space with different basepoints are
isomorphic.

We define a homotopy basis to be any set of 2g
loops whose homotopy classes generate the fundamental
group π1(M, x); see Figure 1(b). Homotopy bases are
a generalization of the systems of loops studied by
Colin de Verdière and Lazarus [5]; a system of loops
is a set of 2g simple loops (with a common basepoint)
whose complement in the manifold is a topological disk.
Every system of loops is a homotopy basis, but the
converse is not true; homotopy bases can contain (self-)
intersections that cannot be removed by homotopy. See
Figure 1(c) for an example.

2.2 Cycles and Homology. Let R be an arbitrary
ring. A k-chain is a formal linear combination of
oriented k-simplices1 with coefficients in the ring R.
The set of k-chains forms a chain group Ck(M ; R) under
addition. The boundary operator ∂k : Ck → Ck−1 is
a linear map taking any oriented simplex to the chain
consisting of its oriented boundary facets. A k-chain
is called a k-cycle if its boundary is empty and a k-

boundary if it is the boundary of a (k + 1)-cycle; every
k-boundary is a k-cycle. Let Zk and Bk denote the
subgroups of k-cycles and k-boundaries in Ck. The
kth homology group Hk(M ; R) is the quotient group
Zk/Bk. If M is an oriented 2-manifold of genus g, then
H1(M ; R) ∼= R2g.

More intuitively, a homology cycle is a formal linear
combination of oriented cycles with coefficients in R.

1In simplicial homology, we assume that M is a simplicial
complex and build chains from its component simplices. In
singular homology, continuous maps from the canonical k-simplex
to M play the role of ‘k-simplices’. These two definitions yield
isomorphic homology groups for manifolds.
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Figure 2. (a) The cut locus of a topological torus, after Sinclair and Tanaka [27]; the basepoint is hidden by the surface. The reduced cut locus
has two branch points and three cut paths. (b) The reduced cut locus is the projection of a Voronoi diagram in the universal cover. Dashed
paths are lifts of the shortest loops crossing the cut paths.

The identity element of the homology group is the
equivalence class of separating cycles, that is, cycles
whose removal disconnects the surface. Two homology
cycles are in the same homology class if one can be
continuously deformed into the other via a deformation
that may include splitting cycles at self-intersection
points, merging intersecting pairs of cycles, or adding
or deleting separating cycles. Throughout the paper,
we let [ℓ] denote the homology class of a loop ℓ.

We define a homology basis for M to be any set of
2g cycles whose homology classes generate H1(M ; R).
Any homotopy basis is also a homology basis, but not
vice versa, since the cycles in a homology basis generally
do not have a common point; see Figure 1(d).

2.3 The Cut Locus and Its Friends. Most of
our topological proofs assume that the manifold M
is a smooth surface, or more precisely, a complete
real-analytic Riemannian manifold [9]. This restric-
tion allows us to exploit nice properties of geodesics
without the additional technical machinery required
for piecewise-linear [24, 23, 25] and combinatorial sur-
faces [5]. Our algorithmic results, on the other hand,
are necessarily restricted to piecewise-linear and combi-
natorial surfaces.2

The cut locus X = X(M, x) is the closure of the
set of points in M with at least two shortest paths
from a basepoint x ∈ M . For smooth surfaces (but
not in general for piecewise-linear surfaces), the cut
locus X is the embedding of a finite graph onto M ,
and X is a deformation retract of M \ {x}, where the
retraction follows the shortest paths from x out to the
cut locus. Symmetrically, M \ X can be retracted to
the basepoint x along the same shortest paths. Thus,
the cut locus is a cut graph in the sense of Erickson and
Har-Peled [8]; that is, M \ X is a topological disk.

2We are deliberately avoiding the term “polyhedral surface”,
since this term has been used to describe both combinatorial
surfaces, where paths are restricted to the 1-skeleton [8], and
piecewise-linear surfaces, where paths can cross through the
interior of faces [24].

We define the reduced cut locus Φ = Φ(M, x) as the
set of points in M with at least two non-homotopic

shortest paths to x. The reduced cut locus is a subgraph
of the cut locus, obtained by repeatedly removing
vertices of degree 1. The reduced cut locus can also be
defined as the projection to M of the Voronoi diagram
(with respect to the shortest path metric) of the lifts of x
in the universal cover M̃ . The reduced cut locus is also a
cut graph; in particular, any non-contractible loop in M
must cross Φ at least once. We view Φ as an embedded
graph in M with minimum degree 3, whose vertices we
call branch points and whose edges we call cut paths.
Euler’s formula implies that if M is an oriented manifold
of genus g > 0, then Φ has at most 4g−2 branch points
and 6g−3 cut paths, with equality if every branch point
has degree 3 [8, Lemma 4.2].

Let φ be a cut path in Φ, oriented arbitrarily. For
any point c in the interior of φ, let σ(c, φ) denote the
shortest non-contractible loop that contains c, oriented
so that it crosses φ from left to right. This loop is
the union of two non-homotopic shortest paths from x
to c. For any two points c, c′ ∈ φ, the loops σ(c, φ)
and σ(c′, φ) are homotopy-equivalent. For each branch
point b adjacent to φ, let σ(b, φ) denote the shortest
non-contractible loop that contains b and is homotopic
to σ(c, φ) for some c ∈ φ. Finally, let σ(φ) denote the
shortest loop of the form σ(c, φ) over all points c in
the closure of φ; intuitively, this is the shortest non-
contractible loop based at x that crosses φ. In general,
σ(φ) may not be the shortest loop in its homotopy class.

Our proofs implicitly rely on the assumption that
for any two distinct points c, c′ on the reduced cut
locus Φ, any two shortest crossing loops σ(c, φ) and
σ(c′, φ′) intersect only at the common basepoint x. This
assumption holds for any smooth Riemannian mani-
fold [9, Corollary 2.111] but requires some additional
machinery when the manifold is combinatorial [5] or
piecewise linear [24]. We omit further details from this
extended abstract.



3 The Greedy Homotopy Basis

3.1 Definition. Fix an oriented 2-manifold M and
a basepoint x ∈ M . We inductively define the greedy

homotopy basis γ1, γ2, . . . , γ2g as follows:

For each i, γi is the shortest loop ℓ such that
M \ (γ1 ∪ γ2 ∪ · · · ∪ γi−1 ∪ ℓ) is connected.

(In general, there may be several candidates for each
greedy loop γi, possibly even in different homotopy
classes; choose one arbitrarily.) Our main result is
that the greedy homotopy basis is the shortest set of
generators for the fundamental group π1(M, x). Since
the greedy homotopy basis is a system of loops, and
every system of loops is a homotopy basis, our result
implies that the greedy loops also comprise the shortest
system of loops.

3.2 No Free Lunch. Most problems for which
greedy algorithms provide optimal solutions can be
modeled as matroids. A matroid is a non-empty col-
lection of subsets of a ground set X , called independent

sets, that satisfies two axioms: (1) any subset of an
independent set is an independent set, and (2) if A and
B are independent sets with |A| > |B|, then there is
an element a ∈ A \ B such that B ∪ {a} is also an
independent set. Maximal independent sets are called
bases of a matroid; every basis of a matroid has exactly
the same cardinality.

As we will see in Section 4, computing the shortest ho-

mology basis is a straightforward matroid optimization
problem. Unfortunately, finding the optimal homotopy
basis does not fit the matroid framework quite as
readily. For example, we can define a partial homotopy

basis to be any finite set of loops L = {ℓ1, ℓ2, . . . , ℓr}
that generates a (not necessarily proper) subgroup G of
the fundamental group π1(M, x), such that no subset
of L also generates G.

Theorem 3.1. The set of partial homotopy bases of a

2-manifold is not necessarily a matroid.

Proof: Let M be a two-holed torus, and let {a, b, c, d}
be a canonical generating set for its fundamental group
π1(M) = 〈a, b, | abāb̄cdc̄d̄〉. Consider the sets A =
{aba, a2, b} and B = {a, b}. A generates a free subgroup
of rank 3 in π1(M), and B generates a free subgroup
of rank 2. Thus, both A and B are partial homotopy
bases. However, neither {a, b, aba} nor {a, b, a2} is a
partial homotopy basis, because in each case the newly
added element is redundant.

By exploiting the fact that any free group has free
subgroups of arbitrary large rank [28], we can also con-
struct arbitrarily large partial homotopy bases for M .
Specifically, for any non-negative integer n, the set
{b, a2, ab2a, aba2ba, . . . , (ab)n(ba)n, (ab)na(ba)n} gener-
ates a free subgroup of rank 2n + 2. �

Similarly, we can define a partial system of loops to
be any finite set of loops L = {ℓ1, ℓ2, . . . , ℓr} such that
M \ (ℓ1 ∪ · · · ∪ ℓr) is connected.

Theorem 3.2. The set of partial systems of loops of a

2-manifold is not necessarily a matroid.

Proof: Let M be a standard one-holed torus, and let
(a, b) denote the standard torus knot that wraps ‘around
the hole’ a times and ‘through the hole’ b times. This
loop is simple if and only if gcd(a, b) = 1, and two loops
(a, b) and (c, d) form a system of loops if and only if
|ad − bc| = 1. The sets A = {(0, 1), (1, 0)} and B =
{(3, 5)} are both partial systems of loops, but neither
{(3, 5), (0, 1)} nor {(3, 5), (1, 0}) is a partial system of
loops. �

3.3 Structure and Optimality.

Lemma 3.3. Every loop in the greedy homotopy basis

is has the form σ(φ) for some cut path φ.

Proof: The greedy homotopy basis can be defined in
a fashion similar to Dijkstra’s single-source shortest
path algorithm. Imagine a circular wavefront growing
around the basepoint x. At any time t, the wavefront
contains all points whose shortest path to x has length t.
At various values of t, the wavefront meets itself; the
meeting point c is (by definition) on the cut locus. If
the two shortest paths to c form a non-contractible
loop, then c lies on a cut path φ in the reduced cut
locus, and the non-contractible loop is actually σ(c, φ) =
σ(φ). If σ(φ) can be added to the greedy basis without
separating M , then σ(φ) is a greedy loop. Otherwise,
no greedy loop is even in the same homotopy class as
σ(φ).

On the other hand, the set of all loops σ(φ) re-
dundantly generates the fundamental group, so the
greedy construction must eventually halt with a (non-
redundant) homotopy basis. �

This lemma allows us to redefine the greedy loop γi

as the shortest loop of the form σ(φ) such that M \
(γ1 ∪ · · · ∪ γi−1 ∪ σ(φ)) is connected.

Any set of loops that generates the fundamental
group π1(M) also generates the homology group
H1(M, ZZ). The homology class of any loop ℓ can be
written as a formal linear combination (with integer
coefficients) of the homology classes of the greedy

loops: [ℓ] =
∑2g

i=1 λi[γi]. We say that γi is a greedy

factor of ℓ if the corresponding integer coefficient λi

is non-zero. If we express the homotopy class of ℓ
as a concatenation of greedy loops, then any greedy
factor γi and its inverse γi appear a different number
of times.



Lemma 3.4. If γ is a greedy factor of σ(φ), then |γ| ≤
|σ(φ)|.

Proof: Let γ1, . . . , γi be all the greedy loops shorter
than σ(φ). Define two embedded graphs Γi = γ1∪· · ·∪γi

and Γ′

i = γi ∪ σ(φ). By definition, M \ Γi is connected.
If M \ Γ′

i is also connected, then γi+1 = σ(φ). In this
case, γi+1 is the only greedy factor of σ(φ).

On the other hand, suppose M \ Γ′

i is disconnected.
Let C be a minimal separating subgraph of Γ′

i; this
subgraph must contain σ(φ). If C contains no greedy
loops, then σ(φ) is null-homologous and therefore has
no greedy factors, and the lemma is satisfied vacuously.
So suppose C contains the greedy loops γj1 , γj2 , . . . , γjr

.
Then assuming these loops are oriented appropriately,
the cycle σ(φ)(γj1γj2 · · · γjr

)−1 = σ(φ)γjr
· · · γj2

γj1
is

separating, which implies that σ(φ) is in the same
homology class as the cycle γj1γj2 · · · γjr

. Thus, the only
greedy factors of σ(φ) are the greedy loops in C, none
of which are longer than σ(φ). �

Lemma 3.5. If γ is a greedy factor of an arbitrary

loop ℓ, then |γ| ≤ |ℓ|.

Proof: If ℓ is a contractible cycle, then ℓ has no
greedy factors, and the lemma is vacuously satisfied.
Otherwise, ℓ must cross the reduced cut locus Φ at least
once. Suppose ℓ crosses the cut paths φ1, φ2, . . . , φr

in that order. Then ℓ is homotopy equivalent to
the concatenation of loops σ(φ1)σ(φ2) · · ·σ(φr). See
Figure 3. It follows that any greedy factor of ℓ is a
greedy factor of at least one σ(φj) in this sequence. The
definition of σ(φj) imply that |ℓ| ≥ |σ(φj)|. The result
now follows immediately from the previous lemma. �

Figure 3. A loop crossing the reduced cut locus three times, as seen
in the universal cover.

Lemma 3.6. Let {α1, α2, . . . , α2g} be any set of loops

that generate the fundamental group π1(M, x). There is

a permutation π ∈ S2g such for each i, γπ(i) is a greedy

factor of αi.

Proof: Since the αi’s and γj ’s each generate the fun-
damental group, their homology classes also generate
the homology group H1(M, ZZ) ∼= ZZ

2g. Any basis for
the lattice ZZ

2g can be transformed into any other by a

nonsingular linear transformation. Let M ∈ ZZ
2g×2g be

the matrix representing the linear transformation that
maps the greedy homology basis onto the α-basis. For
all i and j, we have

[αi] =

2g∑

j=1

mij [γj ].

Observe that γj is a greedy factor of αi if and only if
mij 6= 0. The matrix M has full rank; in particular its
determinant is non-zero:

detM =
∑

π∈S2g

(−1)sgn(π)

2g∏

i=1

mi,π(i) 6= 0.

(In fact, det M = ±1.) Thus, there is at least one
permutation π such that mi,π(i) 6= 0 for all i. �

Lemmas 3.5 and 3.6 immediately imply our main
result.

Theorem 3.7. For any 2-manifold M and any base-

point x ∈ M , the greedy homotopy basis is the shortest

set of generators of π1(M, x).

Finally, the following lemma provides a further anal-
ogy between greedy homotopy bases and Euclidean
minimum spanning trees. Let P be a set of points
in the plane. Two points p, q ∈ P are joined by a
Gabriel edge if the circle with diameter pq has no points
of P in its interior, or equivalently, if pq is an edge
in the Delaunay triangulation of P that intersects its
dual Voronoi edge. It is well known that every edge in
the Euclidean minimum spanning tree of P is a Gabriel
edge [22]. Intuitively, the following lemma implies that
every loop in the greedy homotopy basis is a ‘Gabriel’
loop.

Lemma 3.8. Each loop γi in the greedy homotopy

basis is the shortest loop in its homotopy class.

Proof: Colin de Verdière and Lazarus [5] prove that
for any system of loops, the shortest homotopically
equivalent system of loops consists of simple loops that
are shortest in their individual homotopy classes. The
lemma follows from this result and the optimality of the
greedy homotopy basis (see below), but we can give a
simpler, self-contained proof.

Let φ∗ denote the shortest loop in the homotopy
class of σ(φ). (Intuitively, φ∗ is a ‘Delaunay’ path.)
Suppose φ∗ 6= σ(φ), or equivalently, that φ∗ does not
cross φ. Let φ1, φ2, . . . , φr be the sequence of cut paths
crossed by φ∗. The proof of the Lemma 3.5 implies that
|σ(φi)| ≤ |φ∗| < |σ(φ)| for each i. Thus, every greedy
factor of σ(φ) is strictly shorter than σ(φ). It follows
from Lemma 3.4 that σ(φ) is not a loop in the greedy
homotopy basis. �



3.4 Computing the Greedy Loops from the
Cut Locus. Recall that the reduced cut locus Φ is a
deformation retract of the punctured manifold M \{x}.
Let G = {φ1, . . . , φr} be any subgraph of Φ, and let Σ =
{σ(φ1), . . . , σ(φr)} be the corresponding set of shortest
crossing loops. Because each loop σ(φi) intersects Φ
in exactly one point, Φ \ G is a deformation retract of
M \ Σ. In particular, Φ \ G is connected if and only if
M \ Σ is connected.

Thus, once we have computed the reduced cut lo-
cus Φ, the sequence of greedy loops can be constructed
as follows. First, weight each cut path φ with the length
of its shortest crossing loop σ(φ). Then consider the cut
paths in order of increasing weight. For each cut path φ,
if Φ \φ is connected, remove φ from Φ and declare σ(φ)
to be the next greedy loop.

In addition to computing the greedy homotopy basis,
this algorithm also reduces Φ to its maximum spanning
tree. The algorithm follows a ‘reverse greedy’ strategy
[1, Exercise 13.19] based on Tarjan’s ‘red rule’: The
shortest edge in any cycle is not in the maximum
spanning tree [29]. Although this procedure could
be implemented efficiently as stated with appropriate
dynamic graph data structures [13], it is much faster to
compute the maximum spanning tree directly. Φ has
O(g) edges and O(g) vertices, so classical MST algo-
rithms run in O(g log g) time [29]; Chazelle’s deter-
ministic algorithm [2] runs in O(gα(g)) time; and the
randomized algorithm of Klein, Karger, and Tarjan [17]
runs in O(g) expected time.

Finally, we observe that it is unnecessary to compute
the reduced cut locus, since the maximum spanning
tree of the unreduced cut locus must contain all the
topologically redundant cut paths.

3.5 Combinatorial Surfaces. Following Colin de
Verdière and Lazarus [5], a combinatorial surface M =
(M, G) consists of an abstract 2-manifold M and a
weighted graph G embedded on M, such that every
face of the embedding is a topological disk; the weight
of each edge in G is the length of the corresponding
path on M; and we only allow paths that are subgraphs
of G. In particular, the basepoint x must be a vertex
of G. Combinatorial surfaces generalize surfaces of non-
convex polyhedra where all paths are constrained to
the 1-skeleton. The faces of a combinatorial surface
are not necessarily flat—in fact, we don’t care about
the internal geometry of faces at all—and the lengths of
edges need not correspond to Euclidean distances. Com-
binatorial surfaces are sometimes also called maps [7].

For any combinatorial surface (M, G), the dual

graph G∗ is the graph whose vertices are the faces of G,
with an edge e∗ between any pair of faces that share
an edge e in G.

Erickson and Har-Peled [8] describe an algorithm
to compute the shortest non-separating loop through
a given basepoint in O(n log n) time. Näıvely apply-
ing this algorithm O(g) times, we can compute the
greedy homotopy basis of a combinatorial manifold in
O(gn log n) time. This can be improved to O(n log n) by
being more careful, but we can derive an even simpler
algorithm with the same running time using a special
case of Eppstein’s tree-cotree decomposition [7].

Let T be the tree of shortest paths in G from the
basepoint x to every other vertex of G. For each edge
e ∈ G \ T , let σ(e) be the shortest loop that contains e;
this loop consists of the two shortest paths from x to the
endpoints of e plus the edge e itself. The graph (G\T )∗,
consisting of edges of the dual graph G∗ that do not
correspond to edges of T , is essentially the cut locus
of M with respect to the basepoint x. Let T ∗ be the
maximum spanning tree of (G\T )∗, where the weight of
any dual edge e∗ is |σ(e)|. The greedy homotopy basis
consists of all loops σ(e), where e is an edge of G that is
neither in T nor crossed by T ∗. Euler’s formula implies
that there are exactly 2g such loops, and it is easy to
verify that they do actually form a homotopy basis [7].

Theorem 3.9. Given any combinatorial surface M
and any basepoint x ∈ M , we can compute the shortest

system of loops with basepoint x in O(n log n) time, or

in O(n) time if M has genus O(n1−ε) for some ε > 0.

Proof: We can compute T in O(n log n) time using
Dijkstra’s algorithm [29], or in O(n) time if g = O(n1−ε)
for some ε > 0 using an algorithm of Henzinger
et al. [12].3 We can easily compute the length of σ(e) for
each edge e ∈ G\T in O(n) time from the shortest path
tree. The maximum spanning tree T ∗ can be computed
directly in O(n log n) time with any classical algorithm.
Alternately, in O(n) time, we can compute an abstract
reduced cut locus Φ from X by repeatedly removing any
degree-1 vertices and contracting any paths of degree-2
vertices; we can then compute the maximum spanning
tree of Φ in O(g log g) time as described in the previous
section. �

For any two basepoints x, y ∈ M , the groups π1(M, x)
and π1(M, y) are isomorphic. Thus, it is natural to ask
for the shortest system of loops over all possible base
points. For combinatorial manifolds, we can simply try
all n basepoints.

Corollary 3.10. Given any combinatorial surface M ,

we can compute the shortest system of loops for M
in O(n2 log n) time, or in O(n2) time if M has genus

O(n1−ε) for some ε > 0.

3The shortest-path algorithm of Henzinger et al. [12] can be
modified to run in O(n) time for any minor-closed family of graphs
with separators of size O(n1−ε). The family of graphs of genus
g is closed under taking minors, and any graph of genus-g graph
has a separator of size O(

√
ng) [7, 10, 18].



3.6 Piecewise-Linear Surfaces. Now suppose M
is a piecewise-linear manifold—for example, a non-
convex polyhedron in IR3—and we are interested in
arbitrary loops on the surface of M . In this case, for
any basepoint x, we can compute the exact cut locus of
x, often called the geodesic Voronoi diagram of x in this
context, in O(n2) time using the ‘continuous Dijkstra’
algorithm of Chen and Han [3]; see also [16, 15, 24].
With the cut locus in hand, we can compute the greedy
homotopy basis as described in Section 3.4.

Theorem 3.11. Given any piecewise-linear manifold

M in IR3 and any basepoint x ∈ M , we can compute

the shortest system of loops for M based at x in O(n2)
time.

Alternately, one can express the expanding distance
wave as a differential equation and compute a numer-
ically accurate solution using any number of efficient
numerical methods [19, 20, 30, 25, 31]. For example,
Kimmel and Sethian’s popular fast marching method
[20] numerically approximates geodesic distances on a
piecewise-linear surface with fat4 triangular facets in
O(n log n) time. Using this method, we can compute
a numerical approximation to the shortest system of
loops in O(n log n) time.

Computing the shortest homotopy basis over all
possible basepoints is considerably harder for piecewise-
linear manifolds than for combinatorial manifolds, be-
cause the number of possible basepoints is no longer
finite. In fact, even the simpler problem of finding
the shortest non-separating cycle in a piecewise-linear
manifold appears to be open.

4 The Greedy Homology Basis

Homology groups for compact oriented 2-manifolds
without boundary have an extremely simple structure:
If the manifold M has genus g, then H1(M, R) ∼= R2g.
If the coefficient ring R is a field, such as ZZ2 or (Q,
then H1(M ; R) is a vector space, and thus the sets
of independent homology classes form a matroid. It
immediately follows that the shortest homology basis
over any field has the following greedy characterization:
For all i, γi is the shortest simple cycle whose homology
class is not a linear combination (over the coefficient
field) of the homology classes [γ1], [γ2], . . . , [γi−1].

In this section, we describe an algorithm that ef-
ficiently constructs this greedy homology basis, over
any fixed field of coefficients, for a given combinatorial
surface. Our algorithm is essentially an adaptation of a
greedy algorithm of Horton [14] for computing the short-
est cycle basis—or in our terminology, the shortest ZZ2-
homology basis [4]—for a weighted undirected graph.

4Sethian and Vladimirsky [26] discuss the numerical instability
of fast marching methods caused by extremely obtuse triangles.

To simplify the exposition, we describe the algorithm for
ZZ2 coefficients only; only minimal changes are required
for other coefficient fields.5

A simple cycle ℓ is tight if it contains a shortest path
between every pair of points in ℓ.

Lemma 4.1. Every cycle in the shortest homology

basis is tight.

Proof: Let ℓ1, ℓ2, . . . , ℓ2g be an arbitrary homology
basis. If ℓ1 is not a simple cycle, then it can be
decomposed into two smaller cycles ℓ′1 and ℓ′′1 . At least
one of these two cycles, say ℓ′1, is not spanned by the
other basis cycle ℓ2, . . . , ℓ2g; otherwise, ℓ1 would not be
in the basis. Thus, ℓ′1, ℓ2, . . . , ℓ2g is a shorter homology
basis.

Now suppose ℓ1 is a simple cycle but is not tight.
Let x and y be arbitrary points on ℓ1 such that ℓ1

does not contain a shortest path from x to y; these
points break ℓ1 into two paths α and β from y to x.
Let σ be a shortest path from x to y. Finally, define
two cycles ℓ′1 = ασ and ℓ′′1 = βσ. At least one of
these cycles, say ℓ′1, is not spanned by the other basis
loops ℓ2, . . . , ℓ2g; otherwise, ℓ1 ≃ ℓ′1ℓ

′′

1 would not be in
the basis. Thus, ℓ′1, ℓ2, . . . , ℓ2g is a shorter homology
basis. �

To compute the greedy homology basis, we will
leverage our greedy homotopy algorithm, but we need
to modify our notation since we no longer have a fixed
basepoint. Let Φ(x) be the reduced cut locus of M with
respect to any point x ∈ M ; and let σ(x, φ) denote the
shortest loop that contains x and crosses the cut path φ
in Φ(x), possibly at one of the endpoints of φ.

Lemma 4.2. Every cycle in the shortest homology

basis has the form σ(x, φ) for some cut path φ in Φ(x).

Proof: Let σ(x, c) denote the shortest loop that con-
tains the points x ∈ M and c ∈ Φ(x). Every tight loop,
and thus every loop in the greedy homology basis, has
the form σ(x, c) for some points x and c. Moreover, if
c and c′ lie on the same cut path in Φ(x), the greedy
homology basis cannot contain the longer of the two
loops σ(x, c) and σ(x, c′). �

Now we describe an algorithm to compute the
greedy homology basis for a given combinatorial
surface. For some arbitrary vertex x, compute the
reduced cut locus Φ(x) and the greedy homotopy basis
γ1(x), γ2(x) . . . , γ2g(x) with respect to x. Like any
homotopy basis, these loops also form a homology
basis. For each edge e, compute a vector of 2g bits

5Actually, it is unclear whether any changes are required;
perhaps the shortest homology basis is the same for every
coefficient ring! We leave this as an open question.



representing the homology class [σ(x, e)] in the basis
{[γ1(x)], . . . , [γ2g(x)]}. There are only O(g) different
homology vectors to store, one for each cut path in Φ(x)
plus the zero vector for loops that do not cross Φ(x).
With this information, we can compute the homology
class of any cycle ℓ simply by adding (modulo 2) the
bit vectors associated with the edges of ℓ.

Next, for each basepoint y, compute the reduced cut
locus Φ(y) and every loop of the form σ(y, φ). Since
Φ(y) has O(g) cut paths, there are only O(g) such loops.
We can compute the homology vectors for all of these
in O(gn) time by accumulating the bit vectors along
paths in the shortest path tree rooted at y. Altogether,
over all basepoints y, we compute O(gn) candidate loops
and their homology classes in time O(n2 log n+gn2), or
O(gn2) if g is sufficiently small. Note that any tight
loop ℓ will appear in this list of candidates once for
every vertex of ℓ.

Finally, we consider the candidate loops σ1, σ2, . . .
in order from shortest to longest, and for each σj , we
determine whether the homology class of σj is a linear
combination of shorter greedy homology classes. We
can test linear independence of the homology vectors
in O(g2) time by Gaussian elimination. Thus, the
total time spent scanning the list of candidate loops
is O(ng3).

Theorem 4.3. For any combinatorial manifold M , we

can compute the shortest set of cycles that generates

H1(M, ZZ2) in time O(n2 log n + n2g + ng3), or in time

O(n2g + ng3) if g = O(n1−ε) for some ε > 0.

5 Open Problems

By definition, removing a cut graph G from an ori-
ented 2-manifold M leaves a single topological disk,
which is often called a polygonal schema. Each edge
of G appears twice on the boundary of the polygonal
schema, and we can obtain the original manifold M
by identifying every corresponding pair of boundary
edges in opposite orientations. The pattern of cor-
responding boundary edges defines a combinatorial
signature for the cut graph, which we call its gluing

pattern. For example, the so-called canonical systems
of loops constructed by Lazarus et al. [21] have the
gluing pattern a1b1ā1b̄1a2b2ā2b̄2 · · ·agbgāg b̄g. Given cut
graphs G and G′ on two combinatorial manifolds M
and M ′, where the cut graphs have the same gluing
pattern, it is relatively straightforward to construct
a homeomorphism from M to M ′. How quickly can
we compute the shortest cut graph, with a given (or
possibly fixed) gluing pattern?

How quickly can we compute the shortest set of
generators for homology with integer coefficients? As
far as we know, this problem is open even for weighted
undirected graph. Our matroid argument fails because

the homology group H1(M, ZZ) ∼= ZZ
2g is not a vector

space, but merely an integer lattice. Sets of linearly
independent integer vectors still form a matroid, so
we can use the same greedy algorithm to compute the
shortest set of 2g homologically independent loops, but
these loops may not form a basis. We pessimistically
conjecture that this problem is NP-hard.

Finally, how difficult is it to compute other types of
optimal graphs on surfaces, such as pants decomposi-
tions or one-vertex triangulations?
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