
Greedy, Prohibition, and Reactive Heuristics
for Graph Partitioning

Roberto Battiti, Member, IEEE Computer Society, and Alan Albert Bertossi

AbstractÐNew heuristic algorithms are proposed for the Graph Partitioning problem. A greedy construction scheme with an

appropriate tie-breaking rule (MIN-MAX-GREEDY) produces initial assignments in a very fast time. For some classes of graphs,

independent repetitions of MIN-MAX-GREEDY are sufficient to reproduce solutions found by more complex techniques. When the

method is not competitive, the initial assignments are used as starting points for a prohibition-based scheme, where the prohibition is

chosen in a randomized and reactive way, with a bias towards more successful choices in the previous part of the run. The relationship

between prohibition-based diversification (Tabu Search) and the variable-depth Kernighan-Lin algorithm is discussed. Detailed

experimental results are presented on benchmark suites used in the previous literature, consisting of graphs derived from parametric

models (random graphs, geometric graphs, etc.) and of ªreal-worldº graphs of large size. On the first series of graphs, a better

performance for equivalent or smaller computing times is obtained, while, on the large ªreal-worldº instances, significantly better results

than those of multilevel algorithms are obtained, but for a much larger computational effort.

Index TermsÐGraph bisection, graph partitioning, heuristic algorithms, iterative improvement, local search, reactive search.

æ

1 INTRODUCTION

THE graph partitioning problem on a graph G � �V ;E�, V
being the set of vertices and E the set of edges, consists

of dividing the vertices into disjoint subsets such that the
number of edges whose endpoints are in different subsets is
minimized. We consider the balanced partitioning problem,
where the difference of cardinalities between the largest
and the smallest subset is at most one. When the number of
subsets is equal to two, equivalent terms are graph bisection,
or graph bipartitioning problem.

In detail, a 0/1 balanced bipartition or bisection of a graph
G�V ;E� is an unordered pair �set0; set1� of subsets of V
such that set0 [set1 � V and set0 \ set1 � ;. In addition,
the difference between the cardinalities of the two sets, i.e.,
jjset0j ÿ jset1jj is as small as possible: zero if V contains an
even number of vertices, one otherwise. An edge �i; j� 2 E
is cut by a bisection if its endpoints belong to different
subsets, i.e., if i 2 set0 and j 2 set1 or i 2 set1 and j 2 set0.
In the minimum bisection problem, one aims at minimizing
the cut size, denoted as f�set0; set1�, given by the number of
edges that are cut by the given partition.

The partitioning problem arises in many areas of
computer science, like parallel computing, sparse matrix
factorization, network partitioning, and VLSI circuit place-
ment. In particular, the partitioning problem models the
placement of data onto a multiprocessor computer with
distributed memory, where the computation load has to be
balanced among the different processors and the amount of
communication has to be minimized [53], [24], [55], [60],
[32], [26]. The bisection problem is of great relevance in

VLSI design because it models the problem of optimally
placing ªstandard cellsº to minimize the ªrouting areaº
required to connect the cells [19]. In addition, the bisection
problem models the problem of minimizing the number of
holes on a circuit board, subject to pin preassignment and
layer preferences, and also has applications in physics to
find the ground state magnetization of spin glasses [3]. A
review of the related and more general hypergraph
partitioning problem appeared in [2].

The graph bisection problem is a fundamental problem
and has been studied extensively in the past [9], [10], [13].
The problem is NP-hard for general graphs, as well as for
bipartite graphs [25], and even finding good approximation
solutions for general graphs or arbitrary planar graphs is
NP-hard [11]. Approximation algorithms for the biparti-
tioning problem, into two bounded but not necessarily
equal-sized sets, are available, but they are not practical
[39]. Therefore, heuristics appear as the only viable option
for the solution of real-world partitioning problems in
acceptable computing times.

While it is not the purpose of this paper to present an
exhaustive review of heuristics for the problem, let us
mention some references that are of particular interest for
our work. In particular, different aspects of greedy
heuristics are described in [20], [21], [55], [38], [5], while
[33] presents a detailed empirical study of Simulated
Annealing (SA), following the application proposed in
[36], [37]. The starting point of our investigation was the
recent paper by Bui and Moon [14]. It contains a detailed
discussion of previous studies and heuristics for the
problem, presents a state-of-the-art Genetic Algorithm
(GA) for its solution, called BFS-GBA, with extensive
experimental comparisons with Simulated Annealing ap-
proaches [37], [54], [51], [57], [33], and with the classic
Kernighan-Lin (KL) algorithm [35]. Different implementa-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999 361

. The authors are with the Dipartimento di Matematica, UniversitaÁ di
Trento, Via Sommarive 14, 38050 Povo (Trento), Italy.
E-mail: {battiti, bertossi}@science.unitn.it.

Manuscript received 20 Feb. 1997; revised 23 Mar. 1998.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 103605.

0018-9340/99/$10.00 ß 1999 IEEE

tion aspects of the KL algorithm are discussed in [23], [31],
[17], while a combination of KL with SA is proposed in [41].

While the reader is referred to [14] for a detailed
discussion of the KL, SA, and GA heuristics, we will briefly
summarize some Tabu Search approaches for the problem
in Section 4. Tabu Search (TS), introduced by Glover [27]
and, independently, by Hansen and Jaumard [29] with the
term SAMD (ªsteepest ascent mildest descentº), is based
upon local search and it adopts a simple prohibition scheme
to obtain diversification. As will become clear in Section 4,
the method is deeply related to the KL heuristic. Recent
applications of TS to graph partitioning include [50] and
[16]. In particular, [16] argues that the Genetic Algorithm
presented in [45], [49] developed for the general bipartition-
ing is not appropriate for the 0-1 bipartitioning problem
because it is dominated by the randomized greedy
procedure (GRASP) proposed in [38]. Furthermore, the TS
procedure proposed in [16] tends to beat GRASP on random
graphs. It is therefore of interest to extend the computa-
tional comparison of [14] to include prohibition-based
diversification methods.

This was the starting motivation of our work. In the
process of comparing the different heuristic alternatives, a
very fast and effective greedy procedure (MIN-MAX-
GREEDY) was discovered. In particular, independent repeti-
tions of MIN-MAX-GREEDY reach competitive results on a
subset of the graphs considered in [14], while graphs with a
geometric structure and, especially, random graphs require
more refined algorithms. When the MIN-MAX-GREEDY

procedure is used to generate starting points for short runs
of TS and a simple randomized and reactive scheme is used to
change the crucial parameter of TS, the prohibition period, a
new heuristic with a superior performance with respect to
BFS-GBA [14] is obtained.

When the size of the graphs becomes very large, a recent
stream of research advocates the use of multilevel algo-
rithms, in which the original graph is approximated by a
sequence of increasingly smaller graphs. The smallest graph
is then partitioned using an efficient technique, and this
partition is propagated back through the hierarchy of
graphs and refined. Multilevel techniques have been
proposed in [12] and in [31], inspired by the work of [4].
In [31], the edge and vertex weights are modified during the
coarsening. The effectiveness of different coarsening
schemes and choices for the partitioning and refinement
heuristics is investigated in [34]. A recent comparison of
multilevel techniques with the Helpful Sets (HS) heuristic,
where sets of vertices take part in repeated exchanges
aiming at reducing the cut size, is presented in [43]. The
state-of-the-art multilevel techniques consist of highly
tuned methods designed to reduce the computational
effort needed to partition large graphs. As expected, the
multilevel techniques are much faster than our algorithm
when the dimension of the (sparse) graphs becomes very
large (� 100,000-500,000 nodes). On the other hand, the
solutions obtained by our algorithm are significantly
better in most cases.

The remaining part of this paper is organized as follows:
The benchmark graphs of [14], [33], [43] are briefly
summarized in Section 2. Then, the work is subdivided

into two main sections. The first (Section 3) is dedicated to

the MIN-MAX-GREEDY heuristic. After a description of the

motivation and of the improved experimental results, the

effects of independent repetitions (Section 3.4) and of

detailed implementation choices (Section 3.5) are analyzed.
The second main section (Section 4) is dedicated to

prohibition-based heuristics. These techniques have a long

history (the well-known Kernighan-Lin [35] algorithm can

be interpreted as a simple prohibition-based scheme) and

are now mostly known with the term ªTabu Search.º The

study proceeds in steps, by first studying a basic realization

(Section 5) and the effect of the crucial parameter, the

prohibition period, on the performance (Section 5.1). Two

remedies are then proposed to avoid an explicit tuning

phase: a simple but surprisingly effective randomization

(Section 6) and a reactive (feedback) loop to bias the random

choice in a way that depends on the previous history of the

current search (Section 7). The final algorithm proposed

(REACTIVE-RANDOMIZED-TS) integrates the new greedy

construction with the use of a randomized and reactive

choice of the prohibition and demonstrates a significantly

better performance.
Finally, a comparison of the proposed algorithm with the

state-of-the-art methods for very large sparse graphs is

presented in Section 8.

2 TEST BEDS AND EXPERIMENTAL SETUP

The computational tests in this paper are executed on two

groups of graphs. The first group consists of the same

collection of graphs used in [14], obtained from the authors

of that paper. The collection is composed of eight random

graphs and eight geometric graphs originally proposed in

[33], with a number of vertices ranging from 500 to 1,000,

plus 24 graphs proposed in [14], with a number of vertices

from 134 to 5,252 (eight random regular graphs, eight

caterpillar graphs, and eight grid graphs). We refer to the

original papers for a detailed discussion of the properties

and results obtained on these graphs. The different classes

are briefly described below.

. Gn:d: A random graph with n vertices, where an
edge between any two vertices is created with
probability p such that the expected vertex degree,
p�nÿ 1�, is d.

. Un:d: A random geometric graph with n vertices
uniformly scattered in the unit square. Two vertices
are connected by an edge if and only if their
Euclidean distance is t or less, where d � n�t2 is
the expected vertex degree.

. breg:n:b: A random regular graph with n vertices of
degree 3, whose optimal bisection size is b with
probability 1ÿ o�1�, see [10].

. cat:n: A caterpillar graph with n vertices. It is
constructed by starting with a straight line (the
spine), where each vertex has degree two except the
outermost vertices. Each vertex on the spine is then
connected to six new vertices [14], the legs of the
caterpillar. With an even number of vertices on the
spine, the optimal bisection size is 1.

362 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

. rcat:n: A caterpillar graph with n vertices, where
each vertex on the spine has

���

n
p

legs. All caterpillar
graphs have optimal bisection size of 1.

. grid:n:b: A grid graph with n vertices, whose optimal
bisection size is b.

. w-grid:n:b: The same grid graph as above, but the
boundaries are wrapped around.

While the first group contains graphs derived from

simple parametric models, the second group contains

graphs related to applications in the area of parallel

computing that have been used in a recent comparison of

multilevel partitioning techniques [43]. It contains four

numerical grids (airfoil1, big, wave, nasa4704), two graphs

obtained from the Harwell-Boeing collection [18] (bcspwr09,

bcsstk13), and two De Bruijn networks (DEBR12, DEBR18).

The numerical grids and the Harwell-Boeing graphs are

widely used in the literature to show the performance of
different partitioning methods on ªreal-worldº problems,
see, for example, [46], [28], while the De Bruijn networks are
4-regular Cayley graphs defined by shuffle- and shuffle-
exchange permutations. All graphs have been obtained
from the authors of [43]. The dimensions of these graphs are
listed in Table 1.

Because we are not interested in sacrificing fast devel-
opment times and easy reuse capabilities to obtain the best
possible CPU times, all code has been developed in a high-
level object-oriented language (C++). The compiler used is
the g++ compiler from GNU, the target machine is a Digital
AlphaServer 2100 Model 5/250 with four CPU Alpha, 1 GB
RAM, 12 GB Hard Disk, with the OSF/1 vers. 4.0 operating
system. No parallel processing has been used, all times are
for a single CPU usage. A recent benchmark dedicated to
integer operations is the SPECint92 set: The value obtained
for the machine is of 277.1 SPECint92 for a single CPU.
Therefore, our CPU is approximately 12.7 times faster than
the Sun SPARC IPX used in [14] for integer operations.
Although the machine is recent, it is not the state-of-the-art
at the time of writing: New models are already available
that are approximately five times faster for integer opera-
tions. The times listed do not include the input/output
times and the times to create the initial graph data
structures because these are the same for all algorithms
and independent of the number of iterations.

While the CPU times are reported because they are of
interest for users of the proposed algorithms and because
they permit a comparison with previous approaches, the
number of incremental changes (iterations) executed by the

BATTITI AND BERTOSSI: GREEDY, PROHIBITION, AND REACTIVE HEURISTICS FOR GRAPH PARTITIONING 363

TABLE 1
ªReal-Worldº Benchmark Graphs Used in [43] (see text for

details)

Fig. 1. The MIN-MAX-GREEDY algorithm. (*) lines are not present in the standard greedy algorithm.

local-search-based heuristics is a more natural measure of
computational effort. This number is proportional to the
CPU time with a factor that depends on machine, language,
and compiler, but is approximately independent of the
particular algorithm tested, provided that all algorithms are
based on the same local search method (i.e., the neighbor-
hood evaluation has the same computational cost, as it is
the case for our prohibition-based algorithms).

3 MIN-MAX GREEDY

A simple greedy construction algorithm for the bipartition-
ing problem is immediately obtained by placing two
random ªseedº vertices into the two sets of the partition
and by repeatedly adding to the two sets a vertex that
produces the minimum possible increase�f of the cut sizef ,
the function to be minimized. Variations of this basic greedy
approach are used for example in [38], where one vertex at a
time is added, randomly selected among the first k vertices
with smallest �f , k being a fixed parameter, and in [16],
where one starts from two ªseedº vertices for the two sets
and adds at each iteration a couple of vertices with minimal
�f . The modification introduced in our algorithm is minor,
although with a crucial effect, therefore, Fig. 1 can be used
also to describe the standard greedy algorithm. In fact, the
standard algorithm is obtained by canceling line nos. 14-15
in the figure.

Let us introduce some notation. Let n be the number of
vertices in the graph, n � jV j andm be the number of edges,
m � jEj. Given a subset set of the vertex set V and a vertex
i 2 V , let us define as E�i; set� the number of edges incident
on vertex i whose other endpoint is in the given set:

E�i; set� � jf�i; j� 2 E such that j 2 setgj: �1�
For j 2 V , let X�j� be the set vertex j belongs to, set0 or set1.
When the meaning is clear from the context, we will denote
a given set by the digit 0 or 1, e.g., see line 8 in Fig. 1. The
complete assignment is therefore represented by a binary
string X 2 f0; 1gn. While the assignment is being con-
structed, a third value, e.g., X�j� � ÿ1, can be used to
signify that a vertex j is not yet assigned. Without loss of
generality, let us assume that n is even: In this case, a legal

assignment, i.e., such that the two sets are equal-sized, is
represented by a binary string such that the number of bits
set to 1 is equal to the number of bits set to 0. Let f be the
function to be minimized:

f�X� � jf�i; j� 2 E such that X�j� 6� X�i�gj;
addset the set of the partition one is adding a vertex to, and
otherset the other one. After adding to addset an arbitrary
vertex i not already contained in the two sets, the function
increases by �f � E�i; otherset�. A greedy addition to
addset consists, therefore, of adding a vertex i that
minimizes the quantity E�i; otherset�. Let us now comment
on the standard greedy algorithm in Fig. 1. The two random
and different seed vertices are chosen and added to the two
sets (lines 1-4). The initial set of yet unassigned vertices
(tobeadded) is initialized to contain all vertices apart from
the two seeds (line 5). The initial f value is 0 if the two seed
vertices are not connected, 1 otherwise (lines 6-7). Then, the
main loop follows (lines 10-19). In the loop, additions
alternate between set1 and set0. First, the set where the
vertex is to be added (addset) is ªflippedº and, conse-
quently, otherset is updated (lines 10-11). Then, the
minimum number of additional edges in the cut introduced
by the new addition is determined (minedges in line 12).
Finally, the candidate vertices are determined as those
producing the givenminedges value (line 13), lines 14-15 are
skipped, and a random vertex in the candidates set is
chosen (bestvertex, line 16) and added to the given set (line
17). The cut size f is updated (line 18) and the vertices to be
added loose bestvertex (line 19).

3.1 Experimental Motivation

Let us now describe the motivation for introducing the
modified algorithm called MIN-MAX-GREEDY. In a pre-
liminary series of experiments, we observed a large number
of ties (vertices producing the same �f), especially for low-
density graphs. Fig. 2 shows the average number of ties, i.e.,
the size of the candidates set at line 13 of Fig. 1, as a function
of the minedges value during execution of the standard
greedy algorithm of Fig. 1. Because the algorithm is
randomized, see line 16, 100 runs with different seeds for
the random number generator have been executed for each
of the G1000 files described in Section 2. It can be noted that
a very large number of candidates exists when theminedges
or, equivalently, �f values are zero or very small, an event
that happens from the beginning of the greedy algorithm
until the last steps, where larger �f values must be picked.
The number of ties decreases for larger �f values, but it
remains large, especially in the denser graphs (see graph
G1000:20). For the given G1000 graphs, during most
iterations, the algorithm is forced to make a random choice
between a large number of candidates, of a size comparable
to that of the tobeadded set.

The experimental findings can be explained by a simple
model. Let us assume that d is the average degree of the
nodes in a random graph and let us assume that nodes are
added independently to the two sets without considering
their degrees. After t additions, t=2 nodes will be added to
set0 and t=2 to set1 (for simplicity, let us assume that t is
even). On average, the nodes in set0will have d t=2 edges to

364 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

Fig. 2. Number of ties while executing the greedy algorithm on random
graphs of 1,000 vertices and different densities. Averages of 100 runs.

nodes in the tobeadded set. Some of these edges can connect
to the same nodes in the tobeadded set, although, if t is very
small with respect to n, all connections will be to different
nodes with high probability. In any case, a set of at least
nÿ tÿ �d t=2� nodes in the tobeadded set have no edges to
nodes in set0 and will cause �f equal to zero if added to
set1. In other words, the number of ties in the initial part of
the greedy construction, with the given assumptions, is
equal to or larger than nÿ tÿ �d t=2�, see also [5].

3.2 A Tie-Breaking Rule

The MIN-MAX-GREEDY algorithm adds a tie-breaking rule
as follows: Among the candidates with the same minedges
value, a subset with the largest number of edges to addset is
extracted (lines 14-15). The criterion is illustrated in Fig. 3. A
random extraction is then executed if more than one
candidate survives the sieve (line 16). The rationale behind
this choice is that, when vertex i is added to addset, the
internal edges connecting i to members of addset, number-
ing E�i; addset� will never be part of the cut in the later
phase of the greedy construction. The more edges become
internal during the initial iterations, the less the probability
that one will be forced to place large number of edges across
the cut during later steps. Now, for a given number
minedges of new edges added across the cut, the maximum
number of edges that can be packed as internal edges is
maxedges (derived in line 14, Fig. 1). The term ªMin-Maxº
reflects the two-step selection process, where the primary
goal is to minimize E�i; otherset�, the secondary one to
maximize E�i; addset�.

3.3 Experimental Tests

The MIN-MAX-GREEDY algorithm has been tested on the
entire benchmark suite of [14] and compared with the
standard greedy algorithm and with the extraction of a
random configuration, where a random subset of n=2
vertices is set to 1. The last algorithm has a computational
complexity of O�jEj�, where the dominant contribution
comes from the evaluation of f on the randomly generated
string: f is initialized to 0, then all edges are examined, and,
when the endpoints are in different sets, f is incremented.

The results of 1,000 runs on each task are collected in
Table 2. For each method, the table lists the minimum f
value found by all 1,000 runs, the average, with standard
deviation of the distribution, and the CPU time in seconds
for an individual run, for constructing the assignment and
for calculating the f value. The ªBestº column lists the
heuristically best values from [14]. These values are either
the globally optimal ones, for the caterpillar, grid, and
regular graphs (with a probability close to one for these last
graphs), or the best values obtained on the graphs by all
algorithms considered in [14], including multistart KL, SA,
GBA, and BFS-GBA. In the table, a value in boldface means
that the value is the lowest minimum or average value
obtained when one considers all algorithms summarized in
the given table.

It can be noted that MIN-MAX-GREEDY reaches average
f values that are significantly lower than the values
obtained by the standard greedy algorithm (the standard
error [48] of the average is equal to the standard deviation
divided by the square root of the number of values, i.e.,

����������

1000
p

� 31 in our case of 1,000 independent tests).
Furthermore, results of interest are obtained by considering
the Min values: While these are close, but still significantly
larger than the Best value for the random G graphs, they are
much closer and, in some cases, coincident with the Best
value, for the geometric U graphs. In addition, almost all
optimal values are reproduced for the regular, caterpillar,
and grid graphs. Only for Breg500.20 and Breg5000.16 is a
larger value is obtained. Let us note the dramatic improve-
ment of the Min values for some classes of graphs. For
example, the Min value for U1000.40 is 8,788 with a random
assignment, 1,486 with the standard greedy, 741, close to the
Best value of 737, for MIN-MAX-GREEDY. For Breg5000.16,
the three Min values are: 3,600, 1,390, and 18, close to the
Best value of 16.

The conclusion is that the repetition of independent runs of
MIN-MAX-GREEDY easily solves most of the regular,
caterpillar, and grid graphs. Let us note that the CPU time
of each run is very small, ranging from about 1 millisecond
to 100 milliseconds, and of the same order of magnitude as
the CPU time required to build a random configuration and
to evaluate its cut size. Therefore, even 1,000 repetitions
require less than 60 seconds in most cases.

The reason why the average is much larger than the Min
value and the standard deviation is large is related to the
random choice of seeds (by chance, the two seeds may
belong to the same optimal set) and to the remaining
ªblindº breaking of ties executed in line 16 of Fig. 1.
Independent repetitions are therefore crucial to obtain
competitive solutions.

In Section 3.4,we investigate how independent repetitions
ofMIN-MAX-GREEDY canprovide competitive results for the
regular, caterpillar, and grid graphs. In Section 7, it will be
shown how the embedding of the MIN-MAX-GREEDY

algorithm into a prohibition-based local search scheme
achieves competitive results also for the G and U graphs.

3.4 Independent Repetitions of Min-Max Greedy

In order to measure how many independent repetitions are
necessary in order to reach a certain performance, the
statistical distribution of the results obtained by MIN-MAX-

BATTITI AND BERTOSSI: GREEDY, PROHIBITION, AND REACTIVE HEURISTICS FOR GRAPH PARTITIONING 365

Fig. 3. MIN-MAX-GREEDY in action: situation before adding a new vertex
to set0.

GREEDY has been investigated. A total of 100,000 repetitions

have been executed for each task. Some representative

histograms are shown in Fig. 4, where the count in each bin

is divided by the total number of repetitions to obtain an

estimate of the probability.
In all cases, one observes a nonnegligible probability for

values of the cut size that are very close to the optimal one.

For example, on the Breg500.0 task, one has a probability

close to 0.5 of obtaining the minimum value, while the

remaining probability is clustered for a value of about 90. A

larger spread of the distribution is present for the regular

graphs with larger degrees, for the caterpillar graphs ((e),

(f), (g), and (h) in Fig. 4), and for the grid graphs ((i), (j), (k),

and (l) in Fig. 4).
The probability distribution affects the ªbest-so-farº

value found during a sequence of repetitions in an

immediate way,1 see also [33]. For example, Fig. 5 shows

how the ªbest-so-farº value evolves as a function of the

repetitions k for the Breg500 tasks. The values reported are

averages of 100 runs, each run consisting of a sequence of

1,000 repetitions.2 To avoid cluttering the figure, the

standard deviation bars are shown only for the Breg500.20

task. As predicted from the probability distribution, a

couple of independent repetitions are sufficient to reach

very low cut sizes for the Breg500.0 task, while a larger

number is required for the denser graphs. In all cases,

values very close to the optimal ones are reached in about

1,000 iterations, corresponding to a couple of seconds of

CPU time, see Table 2.
The purpose of the following analysis is that of assessing

the expected number of repetitions necessary to obtain

either the minimum value or a very close approximation

(Min plus �). From the 100,000 repetitions of MIN-MAX-

GREEDY executed to study the probability distribution one

derives the fraction of times such that the cut size obtained

is less than or equal to Min + �, for different � values

ranging from 0 to 5. The fraction, estimate of the probability,

is then inverted to get an estimate of the expected number

of repetitions necessary to reach a certain performance,

reported in Table 3. It can be observed that all Min values,

reached in 100,000 runs, coincide with those of [14].

Furthermore, in most cases, a very good approximation to

the minimum is reached within acceptable numbers of

repetitions for a total CPU time of the order of some

seconds. The conclusion of this investigation is that the

simple repetition of independent runs of MIN-MAX-GREEDY

achieves results that are competitive with those obtained by

having a population of interacting solutions in the Genetic

Algorithm proposed in [14].

3.5 Implementation of MIN-MAX-GREEDY

The CPU times shown in Table 2 are obtained through a
careful implementation of the policy described in a high-
level pseudolanguage in Fig. 1.

While the algorithm runs, a support ªbucketsº data
structure is maintained, see Fig. 6. Two arrays of buckets,
one for each set of the partition are maintained.
bucket�set��value� contains the set of nodes j such that the
number of edges E�j; set� is equal to value. This can be done
in the case of the 0-1 (unweighted) partitioning problem
because the range of possible E�j; set� values is limited by
the maximum vertex degree dmax, in turn upper bounded
by n. A similar structure has been used in [23]. Let us
consider the example of Fig. 6: The shaded areas represent
vertices stored in the buckets. In a simple realization,
requiring O�n2� memory, each bucket is an array of
maximum size n containing the vertices with the given
value in the first positions. If the available memory is scarce,
a linked-list implementation can be used, requiring O�n�
memory. We will consider the array implementation
because it is simpler to explain. The number of vertices
contained for each value is stored in two size vectors, for
set0 and set1. The offsets of a given vertex in the two
buckets is stored in two offset vectors. The maximum and
minimum value of E�i; set� over all vertices min�set� and
max�set� are maintained so that the first and last nonempty
buckets are immediately retrieved when needed. For
example, in Fig. 6, vertex 9 has E�9; set0� � 2, and
E�9; set1� � 6. It appears in the bucket for set0 correspond-
ing to value 2 with offset 2 (offsets start from 0) and in the
bucket for set1 corresponding to value 6 with offset 1.
Vertex 9 reaches the maximum number of connections (six)
to set1.

To derive the computational complexity of the MIN-
MAX-GREEDY algorithm, it is useful to separate the
operations required to maintain the ªbucketsº data struc-
ture from the operations required to select the best vertex to
add; that will be discussed in the following sections. For the
analysis, let us assume that jEj is
�jV j�, the usual case for
applications of partitioning algorithms.

The following operations are executed in O�1� steps:
. INSERTION�v�: For each set, vertex v is inserted

at the bucket for value E�v; set� in the first free
position: bucket�set��value�� size�set��value� �. There-
fore, offset�set��v� becomes size�set��value�, then
the given position of the size array is incremented
by one.

. DELETION�v�: For each set, the vertex in the last
bucket position is copied into the position containing
v, then size�set��E�v; set�� is decremented.

. INCREASE�set; v�: Executed when E�v; set� in-
creases by one during the greedy algorithm. It is
immediately realized by first deleting v from the
appropriate bucket and then inserting it into the
bucket corresponding to a value incremented by one.

The only nontrivial analysis to derive the complexity to
maintain the ªbucketsº structure is related to the operations
needed to update the max and min values. Now, the worst-
case computational complexity required to update the max
and min values is O�1� after a single INSERTION�v�,

366 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

1. The probability that a given target value is obtained in at least one of k
repetitions is equal to one minus the probability that all runs fail, in turn
equal to the product of the individual failure probabilities, because of the
independence assumption. All individual failure probabilities are equal and
they are estimated by summing the frequencies of the bins in the histograms
for values larger than the target.

2. Given the speed of each repetition, we did not use the more efficient,
but less reliable, way described in [33] and based on large number ofm >> k
of repetitions, used in a subsequent phase to extract k random samples.

O�dmax� after a single DELETION�v�, dmax being the

maximum vertex degree (if a bucket becomes empty, the

max ormin value may jump to another value in the range 0,

..., dmax), and O�1� after a single INCREASE�set; v�. At a

single iteration of MIN-MAX-GREEDY, the node bestvertex

is deleted and INCREASE must be called for all neighbors of

bestvertex still in tobeadded, for a total of O�jEj� INCREASE

operations during the entire greedy construction.
Now, if one considers the entire sequence of DELETION

and INCREASE operations executed during MIN-MAX-

GREEDY, one can demonstrate that the total computational

complexity to update the max and min values is O�jEj�. Let
us consider themin value first: Its value is nondecreasing so

that a total of at most dmax changes happen. If one considers

also the checks needed to see whether a bucket becomes

empty, one obtains a total of O�jEj� checks because of the

O�jEj� INCREASE operations, for a total complexity O�jEj�.
The max value can both increase by one unit, after some

calls of INCREASE, and decrease by a step of up to dmax

units, after some calls of DELETION. Fortunately, by using

amortized analysis techniques, one demonstrates that the

complexity for the whole sequence is again O�jEj�, see, for
example, [5]. In particular, by using the ªaccountingº

method, one can ªprepayº one unit of credit when max

increases, so that the accumulated credit can be used when

max decreases, for a total complexity O�jEj�, considering
also the checks.

Therefore, if one considers that a total of O�jEj�
INCREASE operations, and that a total of jV j INSERTION

and DELETION operations are executed, the total computa-

BATTITI AND BERTOSSI: GREEDY, PROHIBITION, AND REACTIVE HEURISTICS FOR GRAPH PARTITIONING 367

TABLE 2
MIN-MAX-GREEDY Algorithm Compared with Standard Greedy and Random Initialization

Averages are on 1,000 tests. ªBestº lists the heuristically best values from [14].

tional complexity required to maintain the ªbucketsº data

structure (including max and min) during the MIN-MAX-

GREEDY algorithm is O�jEj�.
Let us now consider how the choice of the next vertex to

add in the MIN-MAX-GREEDY algorithm (lines 12-16 in

Fig. 1) can be efficiently implemented. The first design

choice is that of substituting the randomized selection
among the winning candidates (line 16) with a single

randomization of the indices executed before the main loop

starts.

368 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

Fig. 4. MIN-MAX-GREEDY distribution of cut sizes (probability measured from 100,000 repetitions). (a) Breg500.0, (b) Breg500.12, (c) Breg500.16,
(d) Breg500.20, (e) Cat.352, (f) Cat.702, (g) Cat.1052, (h) Cat.5252.

In detail, a random permutation of f1; . . . ; ng is gener-
ated, in O�n� steps, and the vertices are inserted into the
tobeadded set, realized by the buckets data structure, in the
order given by the permutation (line 5 in Fig. 1). In this
manner, the order of the vertices in the buckets (i.e., their
offset value), is randomized. The random choice of line 16
is then substituted by a deterministic choice, where the
first winning element encountered is chosen. Let us note
that the new randomized algorithm obtained does not have
the same statistical properties of the original one: After the
first iteration in the loop, some INCREASE�set; v� opera-
tions will delete nodes and insert them at the end of different
buckets and not in a random positionÐan operation that
would require larger CPU times. In our tests, no signifi-
cantly different behavior has been observed between the
two randomization strategies, apart from a sizable reduc-
tion of the CPU times for the ªinitial randomizationº
strategy.

3.5.1 First-Min Option for BEST-VERTEX

Let us now consider how the single winning vertex is
determined (lines 12-15 in Fig. 1), for an addition to a given
set. Without loss of generality, let us assume that the
addition is to set0. One possible choice (called ªfirst-minº,
see Fig. 7) is to examine the vertices contained in the bucket
corresponding to the minimum number of connections to
set1 (bucket�1��min�1��, the lower right bucket in Fig. 6), to
determine one vertex i with the maximum E�i; set0�.
Because, after the initial random permutation, one is
satisfied with a deterministic choice, the examination is

terminated immediately if one vertex with E�i; set0� �
max�0� is encountered (line 8, in Fig. 7).

A ªnaiveº implementation is defined as the algorithm in
Fig. 7 without line 8. If no vertex in the bucket reaches
max�0�, the one with maximal E�i; set0� and smallest offset
in bucket�1��min�1�� is picked. In the example of Fig. 6 it
would be vertex number 4. The worst-case computational
complexity of each call of the BEST-VERTEX routine is
O�jV j� because as many as O�jV j� vertices can be considered
at each iteration. The total complexity caused by the O�jV j�
calls of BEST-VERTEX during the MIN-MAX-GREEDY algo-
rithm is, therefore, O�jV j2�.

BATTITI AND BERTOSSI: GREEDY, PROHIBITION, AND REACTIVE HEURISTICS FOR GRAPH PARTITIONING 369

Fig. 4. (continued) MIN-MAX-GREEDY distribution of cut sizes (probability measured from 100,000 repetitions). (i) Grid100.10, (j) Grid500.21, (k)
Grid1000.20, (l) Gird5000.50.

Fig. 5. MIN-MAX-GREEDY initialization: average min cut size as a
function of the number of repetitions (Breg500 tasks).

Let us now analyze the bookkeeping required at the end

of a single iteration in the main loop of MIN-MAX-GREEDY.

After bestvertex is added to the given addset, the E�i; set�
values stored in the buckets data structure need to be

updated. First, DELETION�bestvertex� is called to eliminate

the vertex from the buckets. Then, for all neighbors i of

bestvertex in the graph, the value E�i; addset� increases by

one and, if the neighbor is still in tobeadded, the routine

INCREASE�addset; i� must be called to update the buckets

structure. After remembering the previous result that the

total computational complexity to update the ªbucketsº

data structure during the entire greedy construction is

O�jEj�, one derives that the total computational complexity

370 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

TABLE 3
MIN-MAX-GREEDY Algorithm: Expected Number of Repetitions to Reach the Minimum Value Plus �, for � 2 0; 1; . . . ; 5

Data from 100,000 tests. ªBestº lists the optimal values from [14], ªMinº the minimum value reached.

Fig. 6. MIN-MAX-GREEDY algorithm: ªbucketsº data structure.

of MIN-MAX-GREEDY implemented with the ªfirst-minº
choice of Fig. 7 is O�jV j2�.

The ªfirst-minº option is probably the most natural one,
but it suffers from the following drawback: During the first
iterations in the main loop, a very large number of
candidates can be present in bucket�1��min�1��. In fact, for
low-density graphs, at the first addition, the value min�1�
will be zero and all vertices not connected to set1 will be in
the corresponding bucket. Because set1 contains only a
single vertex v1 at the first addition, the number of vertices
to be examined i s l a rge r than or equa l to
jtobeaddedj ÿ deg�v1�, deg�v1� being the vertex degree in
the given graph and jtobeaddedj being equal to nÿ 2. In the
following steps, the size of the winning bucket tends to
gradually decrease, but, in any case, after na additions to
set1 such that at least one vertex in tobeadded is still not
connected to set1, the winning value remains zero and the
size of bucket�1��0� is still larger than or equal to
jtobeaddedj ÿ dmaxna. Furthermore, the experimental evi-
dence of Fig. 2 witnesses that the average size of the
winning bucket is a large fraction of n when the winning
value is zero. In fact, it ranges between about 430, for d =
2.5, and 280, for d = 20, for the random graphs of dimension
1,000.

3.5.2 First-Max Option for BEST-VERTEX

Clearly, the above analysis implies that the number of
vertices in tobeadded that are connected to a given set by one
or more edges is very small, at the beginning, for low-
density graphs. Let us keep the assumption that the
addition is done to set0. The second option (called ªfirst-
maxº, see Fig. 8) consists of examining the vertices by
considering first the buckets corresponding to the max-
imum values of connections to addset, i.e., to set0. They are
the upper left buckets in Fig. 6. The examination stops and
determines the winning candidate as soon as one vertex v
with minimal number of connections to set1 is encountered,
i.e., one with E�v; set1� � min�1�. Clearly, there is no
guarantee that this vertex will be found in the bucket
corresponding to the max�0� value so that buckets corre-
sponding to lower values may have to be considered. In the

example of Fig. 6, the winning vertex would be vertex
number 3. The worst-case complexity of BEST-VERTEX with
the ªfirst maxº implementation is not reduced: Again, all
O�jV j� nodes may need to be considered at each call (and
moving to different buckets during the examination
requires at most O�jV j� checks to see whether a bucket is
empty or contains some nodes) for a total complexity of
O�jV j2� during the entire MIN-MAX-GREEDY algorithm.

Nonetheless, for random low-density graphs and in the
initial phase of the greedy construction, there is a large
probability that, among the vertices connected to set0 with
the largest number of edges, there will be vertices not
connected to set1. In fact, if more edges connect to set0,
fewer edges will connect to set1, on average. The relation is
clear in constant-degree graphs, but the timing results in the
experiments testify that the strategy is very effective also for
low-density random and geometric graphs.

Let us note that the ªfirst-maxº, ªfirst-minº, and ªnaiveº
implementations produce solution with statistically equiva-
lent quality so that the dominating option is the one with
lower CPU times. The experiments show that CPU time
required by the ªfirst-maxº implementation of the MIN-
MAX-GREEDY algorithm is not much larger than that for a
random assignment. The factor is between about 2 and 11
and it does not increase rapidly when the size of the
random and geometric (G and U) graphs is doubled. In fact,
the factor remains approximately constant for the low-
density graphs (d � 2:5; 5), a result consistent with an
approximate average complexity of O�jEj� for low-density
graphs, although the worst-case complexity is O�jV j2�. A
notable speedup is obtained by passing from the naive
implementations of the MIN-MAX-GREEDY algorithm, to
the ªfirst-maxº implementation. As expected, the speedup
is larger for the lower density graphs. For example, the
random graphs show a speedup between 3.8 and 4.8 for
n � 500, 1,000, and d � 2:5, while the implementations
require similar or slightly less CPU times for an average
degree larger than 10. As a function of the problem
dimension, the speedup tends to increase, for example, it
approximately doubles when the size of the geometric U
graphs doubles, it reaches values close to two orders of

BATTITI AND BERTOSSI: GREEDY, PROHIBITION, AND REACTIVE HEURISTICS FOR GRAPH PARTITIONING 371

Fig. 7. MIN-MAX-GREEDY algorithm: determination of the winning candidate in the ªfirst-minº option. Naive implementation if (*) is absent.

magnitude for the larger regular, caterpillar, and grid
graphs (speedup is 25.6 for Breg5000.16, 74.2 for Cat.5252,
49.7 for RCat.5114, 56.5 for Grid5000.50, 59.8 for W-
grid5000.100).

More detailed results are reported in the Appendix.

4 PROHIBITION-BASED (TABU) SEARCH

Given a cost functionf to minimize defined on a set of
solutions, the classic local search method attempts to improve
on a given solution by a series of incremental, local changes
and stops if the current solution is a local minimizer, i.e., the
function value is a local minimum and it cannot be improved
by any local change. In particular, we consider a version,
denoted as LOCAL-SEARCH, where all local changes are
tried and the best one (the one causing the greatest
improvement) is applied if and only if the function
improves.

The Tabu Search meta-heuristic [27] is based on the use
of prohibition techniques and ªintelligentº schemes as a
complement to basic local search heuristics, with the purpose
of guiding the basic heuristic beyond local optimality. Ideas
similar to those proposed in TS can be found in the denial
strategy of [56] (once common features are detected in many
suboptimal solutions, they are forbidden) or in the opposite
reduction strategy of [40] (in an application to the Traveling
Salesman Problem, all edges that are common to a set of
local optima are fixed).

In the context of graph partitioning a related heuristic is
the mentioned KL algorithm [35]. The KL algorithm can be
denoted as a variable depth search and it is briefly summar-
ized as follows: KL improves a local search scheme where
the moves from the current solution are 2-exchanges (two
nodes a and b in the two different sets are exchanged) and
the selection criterion is the gain g�a; b�, defined as the
decrease in the cut size that is obtained by exchanging them.

. At each KL cycle one starts from a legal configura-
tion and applies a chain of n=2 tentative 2-exchanges
while monitoring the evolution of the tentative
solution and the corresponding cut size.

. As soon as two nodes are tentatively exchanged,
their membership is ªfrozenº for the rest of the cycle:
They cannot be moved again.

. At the end of the cycle one derives the minimum cut
size along the chain: If it improves the starting cut
size at the beginning of the cycle, one sets the current

solution to the configuration reaching the minimum
and starts a new cycle, otherwise the method stops.

Citing from [1], ªthe basic idea is to allow unfavorable 2-
exchanges in the sequence to eventually obtain a favorable k-
exchange without exhaustive search of the k-exchange neigh-
borhood.º

In more recent times, the full blossoming of ªintelligent
prohibition-based heuristicsº starting from the late eighties
is due to Glover [27], but see also [29] for an independent
seminal paper. The unifying characteristic of the many
realizations of TS is the modification of local neighborhood
search through the introduction of prohibitions (henceforth,
the term ªtabuº). Some selected moves among those that
could modify the current configuration are temporarily
prohibited. TS acts to continue the search beyond the first
local minimizer, therefore also accepting worsening moves
and enforcing appropriate amounts of diversification
through prohibitions to avoid that the search trajectory
remains confined near a given local minimizer.

A competitive advantage of TS with respect to alter-
native heuristics based on local search, like Simulated
Annealing [37], lies in the use of the past history of the
search to influence its future steps. On the contrary, simple
versions of SA generate a Markov chain: The successor of
the current point is chosen stochastically, with a probability
that depends only on the current point and not on the
previous history. The Markovian property permits deriving
asymptotic convergence results, but these results are,
unfortunately, irrelevant for the application of SA to
optimization. In fact, repeated local search [22] and even
random search [15] have better asymptotic results. Accord-
ing to [1] ªapproximating the asymptotic behavior of SA
arbitrarily closely requires a number of transitions that for most
problems is typically larger than the size of the solution space ...
Thus, the SA algorithm is clearly unsuited for solving
combinatorial optimization problems to optimality.º Of course,
SA can be used in practice with fast cooling schedules, but
then the asymptotic results are not directly applicable.

4.1 Discrete Dynamical System

Let us define the notation. In our application, the search
space X is given by the set of binary strings with a given
length n: X � f0; 1gn, X�t� 2 X is the current solution along
the trajectory at iteration (ªtimeº) t. The set N�X�t�� is the
neighborhood of point X�t�, obtained by applying a set of
basic moves �1; �2; :::; �n to the current configuration:

372 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

Fig. 8. MIN-MAX-GREEDY algorithm: determination of the winning candidate in the ªfirst-maxº option.

N�X�t�� � fX 2 X such that X � �i �X�t�; i � 1; . . . ; ng
The moves change (complement) the individual bits and are
therefore idempotent (the inverse of � is equal to �). Some
of the neighbors are prohibited, a subset NA�X�t�� � N�X�t��
contains the allowed ones. The general way of generating the
search trajectory that we consider is given by:

NA�X�t�� � ALLOW�N�X�t��; X�0�; . . . ; X�t�� �2�

X�t�1� � BESTNEIGHBOR�NA�X�t�� �: �3�
The set-valued function ALLOW selects a nonempty subset
of N�X�t�1�� in a manner that depends on the entire search
trajectory X�0�; . . . ; X�t�.

An essential abstract concept in TS is given by the discrete
dynamical system of (2)-(3), obtained by modifying LOCAL-
SEARCH, see [8] for a taxonomy of Tabu Search from the
abstract point of view of the dynamical systems.

In particular, a simple algorithm is obtained by introdu-
cing a prohibition3 T that determines how long a move will
remain prohibited after its execution. The FIXED-TS algo-
rithm is obtained by fixing T throughout the search [27]. A
neighbor is allowed if and only if it is obtained from the
current point by applying a move that has not been used
during the last T iterations. In detail, if LastUsed��� is the
last usage time of move � (LastUsed��� � ÿ1 at the
beginning):

NA�X�t�� � fX � � �X�t�
such that LASTUSED��ÿ1�

< �tÿ T �g: �4�

4.2 Relationship Between Prohibition and
Diversification

For the following discussion, let us define as H�X;Y � the
Hamming distance between two strings X and Y , defined
as the number of corresponding bits that are different in the
two strings. The prohibition T used in (4) is related to the
amount of diversification: The larger T , the larger is the
distance H that the search trajectory must travel before it is
allowed to come back to a previously visited point. But, T
cannot be too large, otherwise no move will be allowed after
an initial phase. In detail, an upper bound T � �nÿ 2�
guarantees that at least two moves are allowed at each
iteration so that the search does not get stuck and the move
choice is influenced by the cost function value (it is not if
only one move is allowed!). Now, if only allowed moves are
executed and T satisfies T � �nÿ 2�, one obtains the
following:

Fundamental relationship between prohibition and

diversification

. The Hamming distance H between a starting point
and successive points along the trajectory is strictly
increasing for T � 1 steps.

H�X�t���; X�t�� � � for � � T � 1

. The minimum repetition interval R along the
trajectory is 2�T � 1�.

X�t�R� � X�t�) R � 2�T � 1�

The demonstration is immediate as soon as one notices
that, after a bit is changed, it is ªfrozenº for the next T
iterations. To visualize this behavior, Fig. 9 shows the
evolution of the configuration X�t�, when the function to be
optimized is given by f�X� � number�X�, where
number�X� is the integer number obtained by considering
X as the standard binary encoding:

number�X� � X1 � 20 �X2 � 21 �Xn � 2nÿ1:

The prohibition T is equal to three.
In Fig. 9, the prohibition T is equal to 3 and the

configuration starts with the all-zero string, a locally
optimal point. At iteration 0, the best move changes the
least significant bit. At iteration 1, the least significant bit is
prohibited (the period in which a bit is ªfrozenº and cannot
be changed is shown with a shaded box in the figure) and
the best allowed move changes the second bit so that the
configuration reaches a Hamming distance of 2 from the
starting configuration. The maximum Hamming distance is
reached at iteration �T � 1�, then the distance decreases and
the initial configuration is repeated at iteration 2�T � 1�. Let
us note that, when a cycle like the one above is generated,
the set of configurations visited during the initial part, up to
H � T � 1, is different from the set visited when H
decreases back toward zero. In other words, one does not
waste CPU time to revisit previously visited configurations,
apart from the initial one. For the given f the locally optimal
point is also the global minimum of the function. In general,
this is not the case, and better values can be obtained by
visiting other locally optimal points. Of course, as soon as a
local minimizer is found, all points in its attraction basin (i.e.,
all points that are mapped to the given minimizer by the
local search dynamics) are not of interest. In fact, by
definition, their f value is equal to or larger than the value
at the local minimizer. The value of T should be chosen so
that a new attraction basin leading to a new, and possibly
better, local minimizer can be reached after reaching
Hamming distance T � 1. Because the minimal Hamming
distance required (a sort of attraction radius for the given
attraction basin) is not known, one will consider the option
of determining T in a randomized way (see Section 6) or in
a simple reactive way, see Section 7.

4.3 Relationship Between Prohibitions and
Kernighan-Lin

The relationship between FIXED-TS and KL is clear: One
obtains a single cycle of KL from FIXED-TS by using 2-
exchanges as basic moves and by setting T � n=2 and
LASTUSED��� � ÿ1 at the beginning of each cycle. A 2-
exchange is allowed iff both involved vertices are allowed
to be moved according to the previous criterion. In this way,
after two vertices a and b are exchanged in a cycle, the
prohibitions imply that they will not be considered any-
more for further exchanges in the same cycle. The crucial
differences between FIXED-TS and KL are that:

BATTITI AND BERTOSSI: GREEDY, PROHIBITION, AND REACTIVE HEURISTICS FOR GRAPH PARTITIONING 373

3. The term prohibition is chosen instead of the more traditional list size
because list size refers to a specific implementation: prohibitions can be
obtained without using any list.

. In FIXED-TS, the concept of ªcycleº disappears: the
solution is updated after each basic move is applied
and not at the end of a chain of n=2 moves,

. FIXED-TS does not terminate, even if the best config-
uration visited in a sequence of n=2 moves is worse
than the initial one.

Of course, a prohibition has to be selected in FIXED-TS so
that a suitable number of allowed moves is available at each
iteration; see the analysis in Section 5.1. The ªbest-so-farº
solution is saved during the run and reported when the run
is terminated, e.g., when the allotted number of iterations
elapses.

5 FIXED-TS FOR GRAPH PARTITIONING

In the literature, a first TS approach for the graph
partitioning problem is presented in [50]. The method starts
from a randomly generated feasible solution, uses the
neighborhood obtained by moving a single node from one
set to the other, and allows a certain degree of ªoscillatingº
imbalance between the size of the two sets. Results in [16]
demonstrate how a simpler TS realization obtains better
results. In the same paper, an enhanced version of TS for the
problem (EnTaS) is presented that starts from a greedy
solution (without tie-breaking) and uses a dynamic prohibi-
tion, two ªmove aspirationº criteria (the prohibition of a
move is relaxed if the move is particularly attractive),
additional diversification by previously evaluated solu-
tions, and periodic restarting. The many parameters present
in the algorithm are determined through preliminary
experiments and the obtained results are better than those
of [50] and [38], except for very sparse geometric graphs.

Because of the limited scope and space constraints of this
paper, our discussion in the next section will be limited to a
simple realization of Tabu Search, similar to the ªbasicº
version considered in [16], but differing because our basic
moves act on a single vertex and not by exchanging two
vertices, because our MIN-MAX-GREEDY algorithm is used
to initialize the solution and because the aspiration criteria
and the additional diversification methods are absent. The

emphasis of our study is on assessing the effect of different
algorithmic ªbuilding blocksº on the performance, where
the different elements are added in successive steps and the
experimental results indicate the incremental performance
improvements. Furthermore, the emphasis is on minimiz-
ing the number of parameters that are to be tuned by the
users: The detailed tuning is substituted by the heavy use of
randomization and by a simple reactive strategy.

In detail, the effect of different fixed prohibition values
on the performance is studied in Section 5.1, while the
utility of a simple randomization strategy is assessed in
Section 6. Finally, the additional benefit of a reactive loop to
bias the random choice of the prohibition is investigated in
Section 7.

The structure of the FIXED-TS algorithm for graph
partitioning is described in Fig. 10. To normalize the
prohibition with respect to the number of bits n, it is useful
to introduce a ªfractional prohibitionº Tf such that
T � bTf nc. The iteration counter t in all algorithms is a
global variable which can be used by all subroutines.
Similarly, fmin is a global variable whose initial value is
equal to the minimum cut encountered during the greedy
initialization, and LAST-USED is a global array that stores at
LASTUSED�v� the last time at which vertex v has been
moved from a set to the other one. In addition, let us define
as N0 � jfi : X�i� � 0gj the cardinality of set0 and as N1 the
cardinality of set1.

The parameters of the routine are the fractional prohibi-
tion Tf , used to determine the prohibition in line 1, and the
number of iterations. After starting from a valid initial
assignment, for example obtained by the MIN-MAX-
GREEDY routine, additions alternate between set0 and
set1 (line 3). At each iteration, the best allowed vertex to
be moved from otherset to addset is determined (line 5), the
move is applied (lines 6-7), the time at which vertex v has
been moved is updated (line 8), and the current iteration
incremented (line 9).

If the assignment is legal and the cut size is better than
the best so far (fmin), it is recorded. An assignment is legal if
and only if jN0 ÿN1j � 1.

The purpose of the function BEST-MOVE�set� is to return
a vertex in the given set that is allowed and that causes the
lowest possible value of f after it is moved to the other set.
Of course, a vertex is returned even if the lowest value of f
that can be obtained by moving an allowed vertex from set
is higher than the current f value. The function BEST-MOVE

is realized by using a ªbucketsº data structure similar to the
one described in Fig. 6. At a given iteration, each vertex is
characterized by a gain value, the decrease in the cut size f
that would be obtained by moving the vertex to the other
set. Two arrays of buckets are present for the two sets and,
contrary to the application in Section 3.5, each vertex is now
listed in only one bucket, corresponding to its current set
and gain value. Because the gain values are changed only
for the just moved vertex v and its connected vertices, the
gain vector is updated after each iteration with O�deg�v��
operations. In addition, maintaining the maximum and
minimum values over the two sets gmax�set� and gmin�set�
requires at most O�dmax� operations, dmax being the
maximum vertex degree.

374 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

Fig. 9. A simple example of the relationship between prohibition T , and
diversification H�X�t�; X�0��. T = 3 in the example. See text for details.

The BEST-MOVE function examines the buckets for the
given set by starting from the one corresponding to the
largest gain (line 12). As soon as one allowed vertex is found,
the function returns it (line 14). With the used notation,
vertex v is allowed if and only the last usage time satisfies:
LASTUSED�v� < �tÿ T �, see also (4). Because the moves are
idempotent, �ÿ1 is equal to � and the move can be identified
by the vertex number.

5.1 Effect of Fixed Prohibition on the Performance

The first investigation aims at determining the effect of the
fixed prohibition value on the performance. Fig. 11 collects
the results of tests on a representative subset of random and
geometric graphs. For each graph, the average cut size fmin

obtained by initializing the assignment through MIN-MAX-
GREEDY and running 100n iterations of FIXED-TS is shown
as a function of the fractional prohibition Tf . Only values
less than 1=4 are considered. Because of the problem
structure, an assignment and its complement (0 being
substituted by 1 and vice versa) denote the same solution,
with the two sets of the partitions interchanged. Therefore,
a value of Tf > 1=2 would imply that, after starting from an
assignment, one would reach after �T � 1� iterations an
assignment closer to the complement than to the original
one. The chosen threshold of 1=4 completely eliminates
these oscillations between an assignment and its comple-
ment. One hundred runs are executed for each data point.

The conclusion derived from these preliminary tests is
that the prohibition T does indeed have a crucial effect on
the performance. For example, let us consider the G500:2:5

graph (the leftmost one at the top of Fig. 11). The average
cut size starts at 72 for Tf � 0:01, rapidly decreases to 54.7
for Tf � 0:18, and then gradually increases. The average cut
size is greatly decreased with an appropriate prohibition,

especially considering that the heuristically best cut value
for the graph is 49. Qualitatively similar performance
improvements have been observed for all other graphs.

Determining the appropriate prohibition for a given
graph is not a trivial task. Fig. 12, derived from Fig. 11,
shows the optimal Tf as a function of the average vertex
degree for the four sets of graphs (G500, G1000, U500,
U1000). It can be observed that denser random graphs tend
to prefer smaller prohibitions, while denser geometric
graphs tend to prefer larger prohibitions.

Finally, Table 4 compares the average cut sizes obtained
by running FIXED-TS�Tf ; 100n� with the optimal Tf with
the results of [14]. The reported CPU times are average
values for a single run. The CPU times of BFS-GBA are for a
Sun SPARC IPX, those for FIXED-TS are for a Digital
AlphaServer 2100. To allow an easier comparison, the
original CPU time of BFS-GBA has been normalized to
discount the different speed of the two machines for integer
operations, see column CPUn, where the times have been
divided by 12.7.

While the results of Table 4 are roughly comparable
(FIXED-TS is better for the denser graphs, BFS-GBA wins for
the sparsest ones, but for larger CPU times), let us note that
the comparison assumes the a priori knowledge of the
proper prohibition: Very poor values can be obtained with
the ªwrongº Tf .

The following study aims at obtaining a more robust
algorithm that obtains competitive results without assum-
ing the knowledge of the proper Tf value.

6 RANDOMIZED PROHIBITION

A first sensible hypothesis to consider in order to avoid a
preliminary selection of the prohibition value is to use a

BATTITI AND BERTOSSI: GREEDY, PROHIBITION, AND REACTIVE HEURISTICS FOR GRAPH PARTITIONING 375

Fig. 10. FIXED-TS and BEST-MOVE routines. Cut sizes are recorded only for legal assignments. See text for details.

random one, for example, such that Tf is chosen with equal

probability in the range �0; 1=4�. Unfortunately, the low

average cut values obtained (see the column labeled ªAve(all

runs)º in Table 4) discourage this simple hypothesis.

376 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

Fig. 11. FIXED-TS(100 n steps): average fmin (cut size) as a function of the fractional prohibition Tf . The graphs are (a)-(d) G500 and (e)-(h) U500.

In order to avoid having a poor Tf value chosen and
used for the entire run, an immediate strategy is to continue
picking random Tf values, each one being used for a short
phase. The option is called RANDOMIZED-TS, see Fig. 13,
and it is characterized by two parameters: the total number
of iterations (iterations) and the duration of a single phase
(individual) after starting from a new initial assignment by
MIN-MAX-GREEDY. By setting individual equal to
iterations one eliminates the multiple restarts. Every n
iterations, a new Tf value is picked (lines 6-7) so that its
value is distributed randomly among the same values
considered in the previous experiments with FIXED-TS (i.e.,
f0:01; 0:02; . . . ; 0:25g).

Table 5 reports the average cut size obtained by different
randomized options. As usual, 100 runs are executed for
each graph and algorithm. The ªAve(rand-1)º column lists
the results of RANDOMIZED-TS�100n; 100n�: Only one

greedy construction is executed. The ªAve(rand-10)º
column lists the results of RANDOMIZED-TS�100n; 10n�:
An individual phase lasts 10n iterations so that 10 greedy
restarts are executed. CPU times are not reported because
they are very similar to the times listed in Table 4. A value is
in boldface if it is lower than the value obtained by FIXED-
TS with the best possible Tf .

A first conclusion is that the two randomized algorithms
reach results that are comparable to the best results of the
FIXED-TS algorithm, reported again in the first column, and
certainly much better than the average results with a
random and fixed Tf , see the ªAve(all runs)º column in
Table 4. Randomization therefore appears as a viable option
if the optimal Tf is not known.

What is surprising is that, for some graphs with the
larger densities (e.g., G1000.20, U500.20, U500.40, U1000.40),
the randomized options achieves results that are better than
the best FIXED-TS results. In these cases, a randomized Tf

value is better than an optimal fixed Tf value. The power of
randomized TS strategies is also testified to by results in
different contexts, for example in the robust-TS algorithm of
[58] for the Quadratic Assignment Problem.

A relative comparison of the ªone startº versus ªten
startsº choice indicates that long runs from a single starting
point are preferable for the random graphs, while shorter
runs with restarts tend to be preferable for the geometric
graphs. In these graphs, an unlucky starting assignment
may compromise an entire run and having multiple restarts
increases the algorithm robustness.

In the following section, we will show how the
combination of randomization and reaction achieves results
that are substantially better for the geometric graphs and for
the denser random graphs. This final combination achieves
better results than BFS-GBA, apart from the G500.2.5 graph.
The columns listing the results for the same number of
iterations are labeled ªRRTS, 100 n iter.º in Table 6.

BATTITI AND BERTOSSI: GREEDY, PROHIBITION, AND REACTIVE HEURISTICS FOR GRAPH PARTITIONING 377

Fig. 12. FIXED-TS(100 n steps): Best fractional prohibition as a function
of the average degree for the random geometrix graphs.

TABLE 4
FIXED-TS with Optimal Tf

Comparison with BFS-GBA. For BFS-GBA, CPUn is the original CPU time normalized to discount the different speed of the two machines.

7 RRTS: RANDOMIZED AND REACTIVE

PROHIBITION

The purpose of this final section is to investigate how a
simple reactive scheme can ameliorate the results of the
previously described randomized algorithm. Furthermore,
while the previous investigation considered very short runs
whose CPU times on current machines is always less than
about a couple of seconds, the allotted number of iterations
of the final runs will be multiplied by 10 in order to
investigate the trade-off between number of iterations and
solution quality.

Reactive Search heuristics are based on simple self-tuning
schemes, acting while the algorithm runs, so that the
method becomes history-sensitive [8]. In particular, instance
properties and local properties of the configuration space
can be used for the appropriate tuning of the algorithm
parameters, like the prohibition T , without the explicit
intervention of the user. This ªon-lineº automated tuning is
to be contrasted with the standard ªoff-lineº tuning, where

the parameters are optimized, depending only on the
statistical characteristics of a problem and not of a specific
instance or of a certain localized region of the configuration
space. Reactive Search schemes have already been used
with success in different contexts [6], [7].

In our algorithm, the bias acts so that a successful value of
T is chosen with a higher probability and kept for a longer
phase. The successfulness of a given Tf is determined in two
ways: during a preliminary ªscoringº phase, by measuring
the ªspeed of improvementº in short runs with the given
prohibition and, during the later phases, by observing
whether the current value led to a new best assignment in
the just elapsed part of the search.

The complete REACTIVE-RANDOMIZED-TS (RRTS) algo-
rithm is illustrated in Fig. 14. A preliminary SCORING

routine evaluates the possible Tf values through a number
of trials consisting of short runs using FIXED-TS and
LOCAL-SEARCH (lines 3-13). At the end of the ªscoringº, the
smallest value of the fractional prohibition that achieves the
maximum vote is returned (Tf best determined at line 17). In
addition, vote�Tf� will contain a score for each Tf value to
be used in the later phase of the algorithm to bias the
probability that a given Tf is chosen and the set elite will
contain the best assignments found during the individual
tests.

Let us now describe how a single Tf is evaluated: After
initializing vote�Tf� in line 3, a given number of trials is
executed. In each trial, the assignment is initialized by
calling MIN-MAX-GREEDY followed by LOCAL-SEARCH,
see lines 5-6. The starting f value and iteration are recorded
(fstart and tstart in line 7). Then, a series composed of short
runs of FIXED-TS followed by LOCAL-SEARCH is executed
until a total of n=2 iterations are accumulated (lines 8-11).
FIXED-TS reaches a Hamming distance of T � 1 in the first
T � 1 iterations, then the same number of iterations is
executed to allow for a possible reduction of the Hamming

378 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

Fig. 13. The RANDOMIZED-TS algorithm. RANDOM (1,25) returns a
random integer value in the given range. t is a global variable visible by
all subroutines.

TABLE 5
FIXED-TS with Randomized Tf

distance. Finally, the prohibitions are switched off to see
whether, after the TS diversification phase, better solutions
can be found by considering all possible moves. Better
average values were obtained through this combination
than through FIXED-TS alone. As usual, the global variable
fmin records the best value found during all steps executed,
while the global variable tmin records the iteration at which
the best value has been found. The best assignment found in
the last try is added to set elite (line 12) and vote is updated
so that its final value will be proportional to the average
ªderivativeº �fstart ÿ fmin�=�tÿ tstart�. Because we are mini-
mizing, the last quantity will be nonnegative. At the end of
the scoring phase, the vote is normalized so that the
minimum vote is 0.1 and the maximum 1. Because
vote�Tf� will be proportional to the probability that a given
Tf is picked, a nonzero minimum value guarantees that all
prohibition values will have a nonzero probability of being
selected.

The complete RRTS algorithm, see the bottom part of
Fig. 14, calls the just described SCORING routine (line 1, a
number of 3 trials is sufficient for a robust scoring: larger
numbers do not increase the performance in a significant
way). Then, a number of diterations=individuale individual
runs are executed after starting from the best assignment
left in the elite set or from the assignment obtained by MIN-
MAX-GREEDY if all assignments in elite have already been
used (lines 3-4). The prohibition is initialized with the best
one (line 5), and the starting iteration of the individual run
is registered (line 6). Each individual run is composed of a
sequence of short runs of the FIXED-TS and LOCAL-SEARCH

combination (lines 10-11), each short run ending after n
iterations (line 12). If a new best solution has been found in
the last short run (and, therefore, tmin has been changed
since the beginning of the last run), the same successful Tf

value is kept, otherwise a new random Tf is picked with a
probability proportional to the ªvoteº obtained in the

scoring phase (lines 13-14). Each individual run ends when

at least individual iterations have been executed (line 15).
Table 6 summarizes the comparison between RRTS and

BFS-GBA. The first three columns report the average cut

size and CPU times of [14]. The next three columns report

the results of RRTS for a total of 100n iterations with

individual runs of 10n iterations (average with standard

deviation and CPU time). Then, the optimal heuristic value

for the graphs is reported from [14] (Best). Finally, the

results for RRTS for a total of 1; 000n iterations with

individual runs of 100n iterations are listed (minimum,

average with standard deviation, and CPU time). To ease

the comparison, the average cut sizes are in boldface when

lower than the values of [14].
When 100n iterations are allowed, the CPU times of

RRTS are significantly lower than the CPU times allowed

for BFS-GBA, even after taking into account the different

speed of the two target machines. In fact, after scaling to

take the different machine speed into account, see the

column marked ªCPUn,º RRTS time is less by a factor of 3-4

for most graphs. Nonetheless, RRTS obtains a significantly

better performance on the geometric U graphs (the average

values are already very close to the Best values) and a better

performance on all random graphs apart from the lowest-

density one.
When 1; 000n iterations are allowed, all average values

are significantly lower than the values obtained by BFS-

GBA. Furthermore, the average values are already very

close to the Best values and, in particular, the average

values are almost completely coincident with the Best

values for the geometric graphs.

BATTITI AND BERTOSSI: GREEDY, PROHIBITION, AND REACTIVE HEURISTICS FOR GRAPH PARTITIONING 379

TABLE 6
REACTIVE-RANDOMIZED-TS

Averages and minimum values of 1,000 runs (1,000 n iterations each). For BFS-GBA, CPUn is the original CPU time normalized to discount the
different speed of the two machines.

8 COMPARISON WITH STATE-OF-THE-ART

SOFTWARE LIBRARIES

The number of existing partitioning tools, in the form of

software libraries, has increased in recent years. These

libraries include Chaco [30] by Hendrickson and Leland,

MeTis [34] by Karypis and Kumar, Scotch [44] by Pellegrini

and Roman, and Party [47] by Preis and Diekmann. It is of

interest to compare the results obtained by RRTS with those

obtained from the above tools. Of course, the comparison is

difficult because all tools have a large number of parameters

(we followed the instructions in the manuals to set them in

the recommended way) and most libraries consist of highly

efficient implementations, in many cases with multilevel

strategies tuned for very large and sparse graphs, like many

graphs that arise when mapping data or tasks on parallel

computers (for example, to compute hydrodynamic beha-
vior around a plane). On the contrary, our implementation

of RRTS must be considered a research tool where the

priority is on flexibility and reuse of existing components in

the form of C++ classes. Drawing conclusion by comparing

CPU times is widely recognized as very difficult in a

scientific setting [42], but the topic is certainly of interest for

the applications and we decided that even a limited

380 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

Fig. 14. The REACTIVE-RANDOMIZED-TS algorithm with the preliminary SCORING routine.

comparison would convey some information to the readers
who would like to use the algorithms for their applications.

Table 7 shows the results obtained by MeTis, Chaco,
Scotch, and Party on the benchmark set of [14] used in the
previous part of this paper. Because some tools did not allow
for a convenient way to repeat runs in a randomized
framework, we list the result obtained in a single run with a
ªbest effortº parameter setting. In detail, pmetis has been
used in MeTis because it is suggested for bipartitioning.
Multilevel KL has been used inChaco (ªnumber of vertices to
coarsen down toº equal to 50, as suggested). The multilevel
schemewith the default penalty for unbalance has been used
for Scotch, with a subsequent execution of the ªexactifierº to

get the correct balance. Party generates initial partitions
through the Linear, Scattered, Random, and Farhat techni-
ques, each generated partition is then locally refined with
Helpful Sets, and the best value obtained is returned.

From Table 7, it is apparent that there is no single
winner. On the regular, caterpillar, and grid graphs, MeTis
misses seven of the ªBestº values, Chaco misses 12, Scotch
six, and Party seven. On the random and geometric graphs,
the ªBestº value is reached only in rare occasions, while the
obtained value is significantly worse in most cases.

When the results are compared with the average values
obtained by RRTS (with 1; 000 n iterations) listed in Table 6,
on the G500.2.5 graphs, the values are approximately 13

BATTITI AND BERTOSSI: GREEDY, PROHIBITION, AND REACTIVE HEURISTICS FOR GRAPH PARTITIONING 381

TABLE 7
A Comparison of State-of-the-Art Software Libraries on the Benchmark Graphs of [14]

Heuristically optimal values (column ªBestº) from [14].

percentworse forMeTis, 2 percent better for Chaco, 9 percent
worse for Scotch andParty,while the results are onlybetween
1 percent and 3 percentworse for the densest G500.20 graphs.
On the largerG1000.2.5 graphs, the techniques areworse by 8
percent, 10 percent, 18 percent, and 23 percent, in the same
order as above. Again, the results are only between 4 percent
and 0.1 percent worse for the densest G1000.20 graphs. These
findings contradict the expectation that compaction should
be more effective on sparse graphs [52]. Qualitatively similar
results are obtained on the geometric graphs, with much
larger deviations in certain cases.

On the other hand, as expected, the CPU times are very
short, ranging from less than 10 millisec to a fraction of a
second. RRTS already beats the above results at 100 n
iterations, but the required CPU time is up to 10 times larger.
Of course, the above results are only indicative. A conclusion
that can bedrawn is that the highly tuned implementations in
the above packages run the risk of obtaining results that are
significantly worse than those obtainable by a longer run of
RRTS.Astudyof adifferent clusteringmethodon the random
andgeometric graphs is present also in [52], but the partitions
obtained in that paper are not always balanced so that the
results cannot be directly compared.

In order to test the limits of applicability of RRTS, a
second comparison has been executed on the larger graphs
described in Section 2, with up to 262,144 vertices and
1,059,331 edges. Table 8 (top part) is derived from [43],
where a recent comparison has been executed on the same
graphs (times are on a SUN SuperSPARC61, Jostle [59]
results are not shown because they are dominated by Party,
Scotch results are added). A value is in boldface if it is equal
to the best value found by all techniques. For Chaco, one
shows the results of the Multilevel KL (ML+CKL), the
Multilevel Spectral with additional KL (SPM+CKL), and KL
alone (CKL). Party includes KL and Helpful Sets (HS),
together with simple global partitioning methods like

Farhat's technique [20], see [43]. The best results obtained
by all techniques are shown in the column labeled ªBestº.
When a technique obtains the best result, the corresponding
value is shown in boldface.

Table 8 (bottom part) shows the results obtained by Min-
Max Greedy and RRTS on the same graphs, for 100n
iterations, with the same setting used in Section 7, and for
10n iterations, with individual runs of n iterations (see
Fig. 14 for the meaning of individual runs) and n=20 steps
used in the SCORING routine (line 11 of Fig. 14 (top) is
substituted with ªwhile�t < tstart � n=20�º). Minimum and
average results are reported for 100 runs of Min-Max
Greedy and 10 runs of RRTS. CPU times are averages for a
single run on our machine, see Section 2. A value is in
boldface if it is equal to or lower than the ªBestº value
found by the previous techniques.

When one considers the cut values, one observes a
significant improvement with respect to the best values
obtained by all competing techniques. The last column shows
the ratio of theMin value obtained by 10 runs of RRTS (100 n
iterations) over the Best values. In order to compare the CPU
times, Party was run on our machine that appears to be 11
times faster on the given graphs on average. As was the case
on theprevious seriesof tests, after themachine speed is taken
into account, the CPU times of RRTS are much larger (by one
or two orders of magnitude).

Let us note that a sizable fraction of the total CPU time is
spent in the SCORING routine, because of the MIN-MAX-
GREEDY, FIXED-TS, and LOCAL-SEARCH calls. As an
example, for the wave graph, 514 sec are used for the
greedy constructions, 2,559 sec for the entire SCORING

routine, for the DEBR18 graph, 12,720 sec are used for the
greedy constructions, 32,032 for the entire SCORING. In a
series of tests, the number of trial in Fig. 14 was reduced
from three to one, but the obtained average results are
significantly worse (by approximately 5 percent): A suitable

382 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

TABLE 8
A Comparison on ªReal-Worldº Graphs from [43]

Results of existing techniques (top), results of Min-Max Greedy and RRTS (bottom). See text for details.

scoring of the different prohibition factors is crucial to the

effectiveness of the algorithm.
On the other hand, when one considers the cut sizes, the

final results are significantly better than the best results

obtained by all seven competing techniques. The choice of

the method to apply depends, therefore, on the trade-off

between solution quality and CPU time.

9 CONCLUSIONS

Motivated by a recent work [14] that presents a competitive

algorithm for graph partitioning, a new MIN-MAX-GREEDY

algorithm based on a tie-breaking rule and an effective

randomized and reactive Tabu Search scheme have been

proposed. Through a careful implementation, the MIN-

MAX-GREEDY algorithm is very fast and roughly compar-

able in speed with a trivial random initialization and it

reaches results that are significantly better than previous

greedy approaches, without requiring detailed problem-

specific knowledge beyond the connectivity structure of the

graph. Independent repetitions of MIN-MAX-GREEDY reach

cut sizes that are very close to and, in many cases,

coincident with the ªbestº values, either globally optimal

for certain ad hoc constructed graphs or heuristically best in

BATTITI AND BERTOSSI: GREEDY, PROHIBITION, AND REACTIVE HEURISTICS FOR GRAPH PARTITIONING 383

TABLE 9
Comparison of CPU Times of the Min-Max Greedy Algorithm

ªfirst-maxº and ªfirst-min,º see text for details.

other cases. In particular, all regular, caterpillar, and grid
graphs of [14] are easily solved.

Because, for the randomand geometric graphs introduced
in [33], the obtained cut sizes are not always competitivewith
those obtained by the BSF-GBA algorithm of [14], the
adoption of a prohibition-based strategy to continue the search
beyond the greedy solution is considered. A randomized
choice of the prohibition with a bias toward previous
successful prohibition values is sufficient to reach results that
are comparable with and, in some cases, better than those of
[14] and, therefore, at the state-of-the-art for the given graph
types. The resultingCPUtimes for a realization in ahigh-level
object-oriented language are reduced, even after the different
machine speed is discounted.

The experimental results obtained on the larger and ªreal-
worldº tasks demonstrate significant improvements in
comparison with the values obtained by competitive state-
of-the-art techniques, in particular by techniques based on
multilevel placement. On the other hand, the computational
effort required by RRTS is much larger, often by one or two
orders ofmagnitude. A promising avenue for future research
is, therefore, to incorporate multilevel techniques into RRTS
to assess whether cut sizes of comparable quality can be
obtained with the greatly reduced computational effort
characteristic of the multilevel schemes.

For a limited time, the code corresponding to the
algorithms described in this paper and the benchmark
graphs will be available from the authors for research
purposes at: http://rtm.science.unitn.it/intertools/.

APPENDIX

Table 9 collects the timing results of the different
implementations of the MIN-MAX-GREEDY algorithm dis-
cussed in Section 3.

Toease the comparison, a relativemeasureof theCPUtime
with respect to the time used by the ªrandomassignment and
function evaluationº algorithm is also reported. It is to be
noted that the CPU time required by the ªfirst-maxº
implementation of the MIN-MAX-GREEDY algorithm is not
much larger than that for a random assignment (the factor is
between about 2 and 11) and the factor does not increase
rapidlywhen the size of the randomand geometric (G andU)
graphs is doubled. In fact, the factor remains approximately
constant for the low-density graphs (d � 2:5; 5). This result is
consistentwith an approximate average complexity ofO�jEj�
for low-density graphs.

The main observation is that a notable speedup is
obtained by passing from immediate implementations of
the MIN-MAX-GREEDY algorithm to the ªfirst-maxº im-
plementation. As expected, the speedup is larger for the
lower density graphs. For example, the random graphs
show a speedup between 3.8 and 4.8 for n � 500; 1; 000 and
d � 2:5, while the implementations require similar CPU
times for an average degree larger than 10, and the ªnaiveº
and ªfirst-minº implementations are actually faster for
d � 20. The speedup is always notably larger than one for
the other graphs. As a function of the problem dimension
the speedup tends to increase, for example, it approxi-
mately doubles when the size of the geometric U graphs
doubles, it reaches values close to two orders of magnitude

for the larger regular, caterpillar, and grid graphs, see, for

example, Cat.5252, Grid5000.50, W-grid5000.100.

ACKNOWLEDGMENTS

We would like to thank T.N. Bui, B. Monien, and R.

Diekmann for providing us with benchmark graphs and,

indirectly, D.S. Johnson and the other researchers for

making the original graphs available. F. Pellegrini and R.

Diekmann helped us to use their libraries in an optimal

way. R. Rizzi helped with some computational tests.

Finally, we thank the anonymous referees for their

comments and for suggesting additional references.
This research was partially supported by MURST 40%

Progetto ªEfficienza di Algoritmi e Progetto di Strutture

Informativeº, and by the UniversitaÁ di Trento ªProgetto

Speciale Algoritmica Sperimentale.º

REFERENCES

[1] E.H.L. Aarts, J.H.M. Korst, and P.J. Zwietering, ªDeterministic
and Randomized Local Search,º Mathematical Perspectives on
Neural Networks, M. Mozer, P. Smolensky, and D. Rumelhart,
eds. Hillsdale, N.J.: Lawrence Erlbaum, to appear.

[2] C.J. Alpert and A.B. Kahng, ªRecent Directions in Netlist
Partitioning: A Survey,º Integration: The VLSI J., vol. 19, nos. 1-2,
pp. 1-81, 1995.

[3] F. Barahona, M. GroÈtschel, M. JuÈnger, and G. Reinelt, ªAn
Application of Combinatorial Optimization to Statistical Physics
and Circuit Layout Design,º Operations Research, vol. 36, pp. 493-
513 1988.

[4] S.T. Barnard and H.D. Simon, ªFast Multilevel Implementation of
Recursive Spectral Bisection for Partitioning Unstructured Pro-
blems,º Concurrency: Practice and Experience vol. 6, no. 2, pp. 101-
117 1994.

[5] R. Battiti and A.A. Bertossi, ªDifferential Greedy for the 0-1
Equicut Problem,º Network Design: Connectivity and Facilities
Location, D.Z. Du and P.M. Pardalos, eds., pp. 3-22, 1997.

[6] R. Battiti and M. Protasi, ªReactive Local Search for the Maximum
Clique Problem,º Algorithmica, to appear.

[7] R. Battiti and G. Tecchiolli, ªThe Reactive Tabu Search,º ORSA J.
Computing, vol. 6, no. 2, pp. 126-140, 1994.

[8] R. Battiti, ªReactive Search: Toward Self-tuning Heuristics,º
Modern Heuristic Search Methods, V.J. Rayward-Smith, ed., chapter
4, pp. 61-83. John Wiley and Sons Ltd., 1996.

[9] R.B. Boppana, ªEigenvalues and Graph Bisection: An Average-
Case Analysis,º Proc. 28th Symp. Foundations of Computer Science,
pp. 280-285, 1987.

[10] T.N. Bui, S. Chaudhuri, F.T. Leighton, and M. Sipser, ªGraph
Bisection Algorithms with Good Average Case Behavior,º
Combinatorica, vol. 7, no. 2, pp. 171-191, 1987.

[11] T.N. Bui and C. Jones, ªFinding Good Approximate Vertex and
Edge Partitions Is NP-Hard,º Information Processing Letters, vol. 42,
pp. 153-159, 1992.

[12] T.N. Bui and C. Jones, ªA Heuristic for Reducing Fill in Sparse
Matrix Factorization,º Proc. Sixth SIAM Conf. Parallel Processing for
Scientific Computing, pp. 445-452, 1993.

[13] T.N. Bui and A. Peck, ªPartitioning Planar Graphs,º SIAM J.
Computing, vol. 21, no. 2, pp. 203-215, 1992.

[14] T.N. Bui and B.R. Moon, ªGenetic Algorithm and Graph Partition-
ing,º IEEE Trans. Computers, vol. 45, no. 7, pp. 841-855, July 1996.

[15] T.-S. Chiang and Y. Chow, ªOn the Convergence Rate of
Annealing Processes,º SIAM J. Control and Optimization, vol. 26,
no. 6, pp. 1,455-1,470, 1988.

[16] M. Dell'Amico and F. Maffioli, ªA New Tabu Search Approach to
the 0-1 Equicut Problem. ºMeta-Heuristics 1995: The State of the Art,
pp. 361-377. Kluwer Academic, 1996.

[17] R. Diekmann, B. Monien, and R. Preis, ªUsing Helpful Sets to
Improve Graph Bisections,º Interconnection Networks and Mapping
and Scheduling Parallel Computations, D.F. Hsu, A.L. Rosenberg,
and D. Sotteau, eds., pp. 57-73, 1995.

384 IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 4, APRIL 1999

[18] I.S. Duff, R.G. Grimes, and J.G. Lewis, ªSparse Matrix Test
Problems,ºACMTrans. Math. Software, vol. 15, no. 1, pp. 1-14, 1989.

[19] A. Dunlop and B. Kernighan, ªA Procedure for Placement of
Standard-Cell VLSI Circuits,º IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 1, pp. 92-98, 1985.

[20] C. Farhat, ªA Simple and Efficient Automatic FEM Domain
Decomposer,º Computers and Structures, vol. 28, no. 5, pp. 579-602,
1988.

[21] C. Farhat, S. Lanteri, and H.D. Simon, ªTOP/DOMDECÐA
Software Tool for Mesh Partitioning and Parallel Processing,º J.
Computing Systems in Eng., vol. 6, no. 1, pp. 13-26, 1995.

[22] A.G. Ferreira and J. Zerovnik, ªBounding the Probability of
Success of Stochastic Methods for Global Optimization,º Computer
Math. Applications, vol. 25, pp. 1-8, 1993.

[23] C. Fiduccia and R. Mattheyses, ªA Linear Time Heuristics for
Improving Network Partitions,º Proc. 19th ACM/IEEE Design
Automation Conf., Las Vegas, pp. 175-181, 1982.

[24] G.C. Fox, ªA Review of Automatic Load Balancing an Decom-
position Methods for the Hypercube,º Numerical Algorithms for
Modern Parallel Computer Architectures, M. Schultz, ed., pp. 63-76.
New York: Springer-Verlag, 1988.

[25] M. Garey and D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. San Francisco: Freeman, 1979.

[26] J.R. Gilbert, G.L. Miller, and S.-H. Teng, ªGeometric Mesh
Partitioning: Implementation and Experiments,º Proc. Int'l Parallel
Processing Symp. (IPPS '95), 1995.

[27] F. Glover, ªTabu SearchÐPart I,º ORSA J. Computing, vol. 1, no. 3,
pp. 190-260, 1989.

[28] S.W. Hammond, ªMapping Unstructured Grid Computations to
Massively Parallel Computers,º Technical Report 92.14, RIACS,
Nasa Ames, 1992.

[29] P. Hansen and B. Jaumard, ªAlgorithms for the Maximum
Satisfiability Problem,º Computing, vol. 44, pp. 279-303, 1990.

[30] B. Hendrickson and R. Leland, ªThe Chaco User's guide,º
Technical Report SAND94-2692, SANDIA Nat'l Laboratories,
Albuquerque, N.M., 1994.

[31] B. Hendrickson and R. Leland, ªA Multilevel Algorithm for
Partitioning Graphs,º Technical Report SAND93-1301, SANDIA
Nat'l Laboratory, 1993.

[32] B. Hendrickson and R. Leland, ªAn Improved Spectral Graph
Partitioning Algorithm for Mapping Parallel Computations,º
SIAM J. Scientific Computing, vol. 16, no. 2, pp. 452-469, 1995.

[33] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon,
ªOptimization by Simulated Annealing: An Experimental
Evaluation; Part I, Graph Partitioning,º Operations Research,
vol. 37, pp. 865-892, 1989.

[34] G. Karypis and V. Kumar, ªA Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs,º Technical Report 95-
035, Univ. of Minnesota, Dept. of Computer Science, 1995.

[35] B. Kernighan and S. Lin, ªAn Efficient Heuristic Procedure for
Partitioning Graphs,º Bell Systems Technical J., vol. 49, pp. 291-307,
Feb. 1970.

[36] S. Kirkpatrick, ªOptimization by Simulated Annealing: Quantita-
tive Studies,º J. Statistical Physics, vol. 34, pp. 975-986, 1984.

[37] S. Kirkpatrick, C. D. Gelatt Jr., and M.P. Vecchi, ªOptimization by
Simulated Annealing,º Science, vol. 220, no. 4,598, pp. 671-680,
May 1983.

[38] M. Laguna, T.A. Feo, and H.C. Elrod, ªA Greedy Randomized
Adaptive Search Procedure for the Two-Partition Problem,º
Operations Research, vol. 42, pp. 677-687, 1994.

[39] F.T. Leighton and S. Rao, ªAn Approximate Max-Flow Min-Cut
Theorem for Uniform Multicommodity Flow Problems with
Applications to Approximation Algorithms,º Proc. 29th Symp.
Foundations of Computer Science, pp. 422-431, 1988.

[40] S. Lin, ªComputer Solutions of the Traveling Salesman Problems,º
BSTJ, vol. 44, no. 10, pp. 2,245-2,269, 1965.

[41] O.C. Martin and S.W. Otto, ªPartitioning of Unstructured Meshes
for Load Balancing,º Technical Report CSE-94-017, Oregon
Graduate Inst. of Science and Technology, 1994. Concurrency:
Practice and Experience, to appear.

[42] C.C. McGeoch, ªToward an Experimental Method for Algorithm
Simulation,º INFORMS J. Computing, vol. 8, no. 1, pp. 1-28, 1996.

[43] B. Monien and R. Diekmann, ªA Local Graph Partitioning
Heuristic Meeting Bisection Bounds,º Proc. Eighth SIAM Conf.
Parallel Processing for Scientific Computing, 1997.

[44] F. Pellegrini and J. Roman, ªScotch: A Software Package for Static
Mapping by Dual Recursive Bipartitioning of Process and Archi-
tecture Graphs,º Proc. HPCN '96 Brussels, pp. 493-498, Apr. 1996.

[45] H.PirkulandE.Rolland,ªNewHeuristicSolutionProceduresforthe
Uniform Graph Partitioning Problem: Extensions and Evaluation,º
Computers and Operations Research, vol. 21, no. 8, pp. 895-907, 1994.

[46] A. Pothen, H.D. Simon, and K.P. Liu, ªPartitioning Sparse
Matrices with Eigenvectors of Graphs,º SIAM J. Matrix Analysis
and Applications, vol. 11, no. 3, pp. 430-452, 1990.

[47] R. Preis and R. Diekmann, ªThe Party Partitioning Library, User
Guide,º Technical Report TR-RSFB-96-024, Univ. of Paderborn,
Germany, 1996.

[48] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterlingº,
Numerical Recipes in C. Cambridge Univ. Press, 1988.

[49] E. Rolland and H. Pirkul, ªHeuristic Solution Procedures for the
Graph Partitioning Problem,º Computer Science and Operations
Research: New Developments in Their Interfaces, O. Balci, ed. Oxford:
Pergamon Press, 1992.

[50] E. Rolland, H. Pirkul, and F. Glover, ªA Tabu Search for Graph
Partitioning,º Annals of Operations Research, Metaheuristics in
Combinatorial Optimization, vol. 63, 1996.

[51] R. Rutenbar, ªSimulated Annealing Algorithms: An Overview,º
IEEE Circuit and Devices Magazine, pp. 19-26, 1989.

[52] Y.G. Saab, ªA Fast and Robust Network Bisection Algorithm,º
IEEE Trans. Computers, vol. 44, no. 7, pp. 903-913, 1995.

[53] L. Sanchis, ªMultiple-Way Network Partitioning,º IEEE Trans.
Computers, vol. 38, pp. 62-81, 1989.

[54] C. Sechen and A. Sangiovanni-Vincentelli, ªTimberwolf3. 2: A
New Standard Cell Placement and Global Routing Package,º Proc.
23rd ACM/IEEE Design Automation Conf., pp. 432-439, 1986.

[55] H.D. Simon, ªPartitioning of Unstructured Problems for Parallel
Processing,º Computing Systems in Eng., vol. 2, pp. 135-148, 1991.

[56] K. Steiglitz and P. Weiner, ªSome Improved Algorithms for
Computer Solution of the Traveling Salesman Problem,º Proc.
Sixth Allerton Conf. Circuit and System Theory, Urbana, Illinois,
pp. 814-821, 1968.

[57] W. Sun and C. Sechen, ªEfficient and Effective Placement for Very
Large Circuits,º IEEE Trans. Computer-Aided Design, vol. 14, no. 3,
pp. 349-359, 1995.

[58] E. Taillard, ªRobust Taboo Search for the Quadratic Assignment
Problem,º Parallel Computing, vol. 17, pp. 443-455, 1991.

[59] C. Walshaw and M. Berzins, ªDynamic Load-Balancing for PDE
Solvers on Adaptive Unstructured Meshes,º Concurrency: Practice
and Experience, vol. 7, no. 1, pp. 17-28, 1995.

[60] R. Williams, ªUnification of Spectral and Inertial Bisection,º
technical report, California Inst. of Technology, 1994. Available at:
http://www.cacr.caltech. edu/~roy/papers/.

Roberto Battiti received the Laurea degree in
physics from the University of Trento, Italy, in
1985, and was awarded a PhD in computation
and neural systems by the California Institute of
Technology (Caltech) in 1990. He has been a
consultant in the area of parallel computing and
pattern recognition and, since 1991, he has been
with the Department of Mathematics of the
University of Trento, Italy. His main research
interests are heuristic algorithms for combinator-

ial problems, in particular, reactive algorithms for maximum-clique,
satisfiability, coloring, code assignment in wireless networks, and
algorithms for massively parallel architectures that can be realized as
special purpose VLSI circuits. Dr. Battiti is a member of the IEEE
Computer Society.

Alan Albert Bertossi received the Laurea
degree in computer science from the University
of Pisa, Italy, in 1979. Afterward, he worked as a
system programmer and designer. From 1983
through 1994, he was with the Department of
Computer Science, University of Pisa, first as a
research associate and, later, as an associate
professor. Since 1995, he has been with the
Department of Mathematics, University of Trento,
as a professor of computer science. His main

research interests are the design and analysis of algorithms for
combinatorial problems, as well as the computational aspects of parallel,
VLSI, distributed, real-time, and fault-tolerant systems.

BATTITI AND BERTOSSI: GREEDY, PROHIBITION, AND REACTIVE HEURISTICS FOR GRAPH PARTITIONING 385

