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Abstract—Greedy routing is a novel routing paradigm where
messages are always forwarded to the neighbor that is closest to
the destination. Our main result is a polynomial-time algorithm
that embeds combinatorial unit disk graphs (CUDGs – a CUDG
is a UDG without any geometric information) into O(log2n)-
dimensional space, permitting greedy routing with constant
stretch. To the best of our knowledge, this is the first greedy
embedding with stretch guarantees for this class of networks.
Our main technical contribution involves extracting, in polyno-
mial time, a constant number of isometric and balanced tree
separators from a given CUDG. We do this by extending the
celebrated Lipton-Tarjan separator theorem for planar graphs
to CUDGs. Our techniques extend to other classes of graphs;
for example, for general graphs, we obtain an O(log n)-stretch
greedy embedding into O(log2n)-dimensional space. The greedy
embeddings constructed by our algorithm can also be viewed as
a constant-stretch compact routing scheme in which each node is
assigned an O(log3n)-bit label. To the best of our knowledge, this
result yields the best known stretch-space trade-off for compact
routing on CUDGs. Extensive simulations on random wireless
networks indicate that the average routing overhead is about
10%; only few routes have a stretch above 1.5.

I. INTRODUCTION

Internet routing has been a success story. So far, emerging
challenges such as address shortage have been taken care of in
a timely manner, e.g. by classless inter-domain routing, or by
proposing to increase the address space with IPv6. However,
the networking research community fears that the success story
is about to end. New threats are on the horizon, for instance
mobility, security, or selfishness.

To address these upcoming threats, routing is continu-
ously and controversially debated. The networking community
is not shy to propose new architectural paradigms (“clean
slate”), sometimes drastically deviating from classic link-state
or distance-vector routing algorithms. This debate is at the
fore-front in the community that studies infrastructure-less
networks, e.g. wireless sensor networks, mesh networks, or
mobile ad hoc networks, where many of these upcoming
Internet challenges need to be addressed right away. We
believe that a network architecture that works for wireless
networks may be a viable candidate for a future Internet
architecture.

One of the most promising and novel routing approach is
geo-routing, also known as geometric, geographic, position-
based, or location-based routing, or geo-casting. In geo-routing
each node is addressed by its geographic location rather than
a unique identifier. The idea is that messages are merely
forwarded “in the right direction”. The most basic form

of geo-routing is greedy routing, where each node simply
forwards a message to the neighbor closest to the destination.
Greedy routing has many advantages, in particular it com-
pletely abstains from the concept of routing tables (and may
be viewed as “routing without routers”), rendering routing
ultimately scalable! However, there are three problems with
greedy routing:

(i) The first problem is that the geographic location of a
mobile destination may not be known. One possible so-
lution to approach this problem may be through location
service protocols [1,15], which are essentially geometric
variants of a distributed hash table.

(ii) The second problem is due to the greediness itself: If
the network is not dense enough it may happen that a
message gets stuck in a local minimum, a node which
unfortunately does not have a neighbor closer to the
destination because of a node void. There is an ample
body of research that shows how to deal with the prob-
lem, e.g. [6,22], however, there is also work that shows
that in some models this problem is unsolvable [11].
Furthermore, forwarding a message greedily may be far
from optimal in many cases, resulting in routes much
longer than the optimal route.
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Fig. 1. Embeddings of networks need not be greedy by default. Here we have
two embeddings of the same network in the Euclidean plane. For instance,
there is no greedy path from vertex 2 to vertex 6 in the left embedding. As
the greedy algorithm forwards the message to the neighbor which is closest
(in the Euclidean L2-norm) to the destination, it gets stuck at vertex 1. We
solve this problem by constructing a greedy embedding for which the greedy
forwarding scheme always succeeds. The right figure shows such a greedy
embedding which ensures a greedy path between any two vertices. In our
example, the greedy algorithm finds the path 2− 3− 9− 8− 7− 6 using 5
hops. The optimal path, however, is 2 − 3 − 4 − 5 − 6 using only 4 hops.
We capture this routing overhead with the ratio of the greedy path-length to
the optimal path-length and call this value stretch. E.g. in our example, the
path from 2 to 6 has stretch 5/4. The fact that a greedy embedding may use
long routes is a problem of critical importance that is solved in this work; we
show that our greedy embedding introduces only a constant stretch.
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(iii) The third problem is often a show stopper: If nodes are
not equipped with a GPS, how can they work out their
position? Several heuristics [28] and algorithms [24]
have been proposed, however, their results are less than
exciting. In general, inferring geometric information
(e.g. coordinates) by indirect means, when technological
solutions such as GPS are unavailable, is a fundamen-
tally intractable problem [7,21].

In this paper we follow a radically different approach that
essentially solves problems (ii) and (iii). We do not address
mobility (i) – that needs to be subject of future work.

In a nutshell, our approach is as follows: Given the con-
nectivity information of a wireless network, modeled as a
combinatorial unit disk graph (CUDG) we assign each node
a polylog-dimensional virtual coordinate such that greedy
routing is always provably successful, between any source-
destination pair, e.g. see Figure 1. In contrast to previous
work our greedy routing provides a bounded stretch (see
Figure 10 for experimental results supporting this claim).
Previous work on greedy routing was done for geometric
UDGs where an embedding of the network is known (i.e.
each vertex knows its coordinates). In this work, we consider
the more intricate problem of greedy routing on CUDGs,
which are UDGs without any position information. We believe
that our approach is valuable for real world networks where
position information is not readily available. Our result can be
adapted to a compact routing scheme with routing tables of
size O

(
log3 n

)
. Furthermore, the proposed approach extends

to general graphs as well, with a slightly higher overhead. We
support our results by extensive simulations and show that the
constant overhead is on average only about 10%. For a detailed
comparison of our contributions we refer to the related work
section.

II. RELATED WORK

There is a huge body of research on routing schemes of
which we overview only the most relevant subset.

One of the most classical greedy routing protocols is geo-
graphic routing, where all vertices of a network know their
own position and the positions of their neighbors. Given the
position of the destination vertex, a message can be delivered
by repeatedly forwarding it to the neighbor which is geograph-
ically closest to the destination. To circumvent voids in the
network, several versions of face routing have been proposed
[6,13,23]. Whereas a geographic routing scheme with guaran-
teed delivery is possible for 2-dimensional networks, Durocher
et al. [11] have shown that there is no deterministic geographic
routing algorithm for 3-dimensional networks. With this paper,
we overcome this fundamental limit of geographic routing by
embedding the network into a O

(
log2 n

)
-dimensional space,

enabling purely greedy forwarding.
Papadimitriou and Ratajczak conjectured that any planar

3-connected network has a greedy 2-dimensional embed-
ding [28]. They also showed that any planar 3-connected
newtork has a greedy embedding in 3 dimensions, for
which an embedding algorithm was described in [10]. The

Papadimitriou-Ratajczak conjecture was very recently, settled
by Moitra and Leighton [27] who present a polynomial-time
algorithm for constructing a greedy embedding of a given 3-
connected planar graph. In this paper, we study the embedding
of a combinatorial UDG where only the connectivity infor-
mation but no position information of the vertices is given.
The absence of such geometrical information eliminates the
possibility of planarizing the network and using a triangulation
technique. The embedding of a UDG in combination with
routing has been studied widely [8,18,31,33], but none of these
approaches guarantees a greedy embedding. In fact, finding an
exact embedding is NP-hard [7] and cannot be approximated
arbitrarily well [21]: If non-neighboring vertices must have
a distance larger than 1, it can be shown that there may be
neighbors with distance

√
3/2. The best known approximation

algorithm for this problem is described in [30] and may induce
distances in O

(
log2.5 n

)
. Even if each vertex knows the exact

distance to any of its neighbors or the exact angles at which
the neighbors are located, the problem of finding an exact
embedding remains NP-hard [4,8].

As a way avoiding these difficulties and finding embed-
dings for CUDGs, anchor based routing was introduced,
e.g. [14,16,35]. The main idea of these routing schemes is
that a few vertices are elected as anchor nodes and each vertex
stores the length of its shortest path to all anchor nodes. The
set of these distances can be seen as a virtual coordinate
on which greedy routing can be applied. To ensure a greedy
embedding, however, Θ(n) anchors need to be chosen in the
worst case [35], which renders this approach unattractive.

Kleinberg proposed a greedy embedding of arbitrary net-
works into the hyperbolic plane [20], which was improved
by Eppstein et al. such that coordinates of the embedding
only need O(log n) bits [12]. As of this writing, such greedy
embeddings into hyperbolic space are only known for trees,
i.e. given a general network, only a spanning tree thereof is
embedded. The reduced connectivity information of a span-
ning tree has severe consequences for the routing performance:
Close-by vertices in the network may be far away on the tree
on which the routing takes place, introducing a linear worst-
case stretch. To the best of our knowledge, our paper proposes
the first greedy embedding with guaranteed sublinear stretch.
For CUDGs, a generalization of planar graphs, our embedding
guarantees a constant stretch and for general graphs, the stretch
is in O(log n).

Compact routing is one of the most prominent routing
paradigms. Compact routing studies the tradeoff between the
efficiency of a routing algorithm (i.e. the stretch) and its
space requirements for the routing tables. For general graphs,
there is a stretch-k routing algorithm with an average routing
table size of O

(
k3n1/k log n

)
and O(log n) bit labels [29].

Renaming (labeling) of the vertices is a widely used technique
to reduce the routing table size. In fact, any routing algorithm
that does not rename the vertices and requires a stretch below
3 may need routing tables of Ω(n) bits [17]. Many impressive
compact routing results have been developed for constant
doubling metrics with doubling dimension α. These networks
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Fig. 2. Most compact routing results are analyzed for the general class
of doubling metrics and provide excellent results if the metric has a small
constant doubling dimension. Unfortunately, many reasonable metric spaces
induced by even common network models do not have a constant doubling
dimension. For example, consider the hop-metric induced by the UDG shown
in this figure: A ball of radius 2r around v covers all vertices, whereas

√
n

balls of radius r are needed. Note that the if we take the nodes in the network
to be embedded in the plane as shown, then the induced Euclidean metric has
constant doubling dimension. But, for network routing the hop-metric may be
more relevant.

have the property that the set of vertices in any ball of radius
2r can be covered by at most 2α balls of radius r. We refer
the interested reader to [2] for an overview of the results in
this area. Note that many graph classes, including UDGs, do
not have a constant doubling dimension (see Figure 2).

The work by Abraham et al. on growth bounded net-
works [3] is probably closest in spirit to our result. The
authors obtain a compact routing scheme with stretch ε

and O
(

1
ε

O(Δ) log5 n
)

bit routing tables without renaming
the vertices, where Δ is the growth factor of the network.
Greedy routing schemes, such as the one presented in this
paper, are close relatives to compact routing schemes: as the
greedy routing decision is based solely on the coordinates of
the neighbors, this neighborhood information could be stored
locally, which is equivalent to the routing table in compact
routing. Using this transformation, we show that our greedy
routing for CUDGs can be transformed to a compact routing
scheme with O

(
log3 n

)
bit routing tables, beating any known

compact routing scheme for this class of networks.

III. BACKGROUND, RESULTS, AND APPROACH

The focus of this paper is on combinatorial unit disk graphs.
For points p and q in Euclidean space we use |pq| to denote
the Euclidean distance in L2 norm between p and q. A
graph G = (V,E) is a unit disk graph (UDG) if there is
an embedding φ : V → R

2 of the vertices of G into the
Euclidean plane such that {u, v} ∈ E iff |φ(u)φ(v)| ≤ 1.
The embedding φ is called a realization of G. UDGs are
widely used as models of wireless networks and this is what
motivates our focus on this class of graphs. A UDG may be
specified by its realization and in such a setting coordinates of
all vertices are known. Alternately, a UDG may be specified
as a combinatorial object, e.g., a collection of vertices and a
collection of edges. In such a setting the neighbors of each
node are known, but no geometric information such as node

coordinates, pairwise Euclidean distances, etc. are known.
These two specifications are fundamentally different from a
computational point of view. Given a realization of a UDG,
it is trivial to construct a combinatorial representation of it;
on the other hand given a combinatorial representation of a
UDG, it is impossible (unless P = NP) [7] to compute its
realization. We work in the latter setting, in which we are given
a UDG merely as a combinatorial object, with no recourse
to any geometric information. To emphasize this we refer to
these graphs as combinatorial UDGs. This makes our approach
robust to situations in which geometric information is missing
or is only partially available or is erroneous.

Let f : R
d × R

d → R be a function that assigns to each
pair of points in R

d a non-negative real. For any vertex v, let
N(v) denote the set of neighbors of v. A greedy embedding
of an undirected graph G = (V,E) into the space (Rd, f) is a
mapping φ : V → R

d such that for any pair s, t ∈ V of distinct
vertices, there exists a vertex u ∈ N(s) such that f(u, t) <
f(s, t). Greedy embeddings formally characterize embeddings
for which the greedy routing algorithm will guarantee message
delivery and were first defined in this manner by Papadimitriou
and Ratajczak [28]. These authors were concerned with greedy
embeddings into R

2 and the function f was taken to be the
Euclidean distance between pairs of points. In this paper, d
will typically be poly-logarithmic in n, the number of vertices
of G, and f will be the “min-max” function defined as follows.
Let c be a factor of d and let s = (s1, s2, . . . , sd) and t =
(t1, t2, . . . , td) be points in R

d. For each j, 0 ≤ j < d/c let

Dj = max
c·j+1≤i≤c·(j+1)

|si − ti|.

Then the function min-maxc is defined as

min-maxc(s, t) = min
0≤j<d/c

Dj .

The min-maxc function essentially views the space R
d as

composed of d
c c-dimensional spaces, takes the L∞ norm of

the projections of s and t into those spaces, and finally takes
the smallest of those L∞ distances as the “distance” between
s and t. Often c will either be irrelevant or be understood
from the context and we will usually write min-maxc as
min-max. The min-max function turns out to be a natural
“distance” measure for us because the space R

d into which
we embed G is obtained by “gluing” together a bunch of
lower dimensional subspaces. Note that even though using the
min-max function is not as natural as using the L1, L2 or
the L∞ norm, it is computationally as easy to deal with as
any of these norms.

Let φ be a greedy embedding of G into (Rd, f). An st-path
P = (s = v1, v2, . . . , vk = t) in G is called a greedy st-path
(or just a greedy path, if s and t are clear from the context)
if for each i, 1 ≤ i < k, vi+1 = argminu∈N(vi)

f(u, t). In
other words, among all neighbors of vi, the vertex vi+1 is
the neighbor that is closest to the destination t. A greedy
embedding φ of G into (Rd, f) is said to have stretch ρ
if for all distinct s, t ∈ V and for all greedy st-paths P ,
|P | ≤ ρ·dG(s, t). Here |P | denotes the number of hops in path
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Fig. 3. We consider the network on the left. In a first step, we find a
separator which ensures that any connected component after removing the
separator has size at most 2/3 of the total network size (middle figure). Note
that this separator is a shortest path connecting u and v along with the 1-hop
neighborhood of this path. From this separator, we grow a tree by repeatedly
adding adjacent vertices not already contained in the tree, which finally gives
the first tree of the desired tree cover (right figure). On this top level, we
only ensure good routing paths from one side of the separator to the other.
For instance, the vertices x and y in the right bottom corner are 5 hops apart
on the tree even though their graph distance is 2. To fix this issue, additional
trees are built on the components.

Fig. 4. After removing the first separator, we obtain several connected
components (left figure), for each of which we find a separator (middle figure).
In this case, the separator already covers all vertices of the components s.t.
the tree of the components is equal to the separator. In the final step, all trees
constructed in this step are connected by reinserting the removed separator and
connecting the 3 trees. This gives the second tree of the tree cover. Note that
for larger networks, the recursion would continue for the components created
by the separators found in this step. Also notice that this tree connects the
two vertices x and y much better.

Fig. 5. Given the tree cover, each tree is embedded in a O(log n)-
dimensional space. Note that each coordinate uses at most log n bits, resulting
in coordinates of size O

(
log2 n

)
bits. In our example, 6 dimensions per tree

are enough.

Fig. 6. Finally, the coordinates assigned for the trees are combined to
a single coordinate for each vertex. Using at most O(log n) trees, the
size of the coordinates is bounded by O

(
log3 n

)
bits. To send a message

from x to y, x compares the label of y to its neighbors n1 and n2 and
forwards to the closer neighbor. The comparison is done tree by tree, e.g.
for n1 we have L∞(10 7 7 2 8 1, 10 7 7 6 8 2) = 4 for the first tree and
L∞(1 11 8 4 1 1, 0 12 9 3 2 1) = 1 for the second tree, giving an estimated
distance of 1 from n1 to y. Similarly, the estimated distance from n2 to y is
1 as well. Therefore, x forwards the message to either of its neighbors.

P and dG(s, t) denotes the shortest path hop-distance between
s and t in G. We will use the latter notation widely throughout
the paper with different graphs serving as the subscript of “d”
to denote the shortest hop-distance between pairs of vertices
in that graph.

A. Results

The main result in this paper is a polynomial-time algorithm
for constructing a low-dimensional greedy embedding with
constant stretch of a given CUDG. Our algorithm constructs,
for any given n-vertex CUDG, a greedy embedding into
(Rd,min-max), where d = O

(
log2 n

)
. Furthermore, each

coordinate of each vertex has size O(log n) bits, implying a
total of O

(
log3 n

)
bits for each vertex-label. Therefore our

solution can be easily transformed into a constant-stretch,
labeled, compact routing scheme for UDG hop-metrics that
uses labels of size O

(
log3 n

)
per vertex1.

The main ingredient of our approach is the construction of
small-size constant-stretch tree covers. Given a graph G =
(V,E), a tree cover of size k and stretch ρ is a family T =
{T1, T2, . . . , Tk} of spanning subtrees of G such that for every
u, v ∈ V , there is a tree Ti such that dG(u, v) ≤ ρ · dTi

(u, v).

1To obtain the compact routing scheme, each node locally stores the labels
of its neighbors in a routing table. By only embedding an MIS of the network
and by routing on this virtual topology, only O(1) neighbors need to be stored.

A tree cover T with stretch 1 is called an exact tree cover2.
The main technical contributions of our paper are as follows.

• We show that every CUDG has an O(log n)-size tree
cover with constant stretch and that such a tree cover
can be computed in polynomial time even for CUDGs.
This is comparable to the result of Gupta et al. [19] who
show how to construct a constant-stretch O(log n)-size
tree cover for planar graphs.

• The above tree cover result is obtained via an extension
to CUDGs of the celebrated Lipton-Tarjan Separator
theorem for planar graphs [26]. The algorithm implied by
the Lipton-Tarjan Theorem makes explicit use of a planar
embedding of the given planar graph. Similarly, recent
work by Chen et al. [9] constructs separators for UDGs,
but again with explicit use of a given UDG realization.
As mentioned in Section II, recovering a realization of a
CUDG is intractable and our result is the first to show
that Lipton-Tarjan type separators can be constructed for
UDGs even without any geometric information.

2In literature on tree covers, see e.g., Awerbuch and Peleg [5], the trees in
the tree cover are not required to be spanning. Furthermore, the size of a tree
cover is defined as the maximum number of trees that a vertex participates in.
For the purposes of greedy routing, it is more convenient to require all trees
to be spanning and therefore the size of a tree cover can simply be defined
as the number of trees in the collection.
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Algorithm 1: GREEDY-EMBED(G)

Step 1
Construct a tree cover T = {T1, T2, . . . , Tk} of G with
stretch ρ (Figures 3 and 4).

Step 2
Embed each tree Ti isometrically into R

b, where
b = c · log n for some constant c. For this we use a simple
and well-known algorithm due to Linial et al. [25],
Theorem 5.3. We note that using this algorithm guarantees
that every coordinate of every vertex uses at most log n
bits. Let φi(v) denote the coordinates of vertex v obtained
by constructing the embedding of Ti (Figure 5).

Step 3
Output φ := φ1 · φ2 · · ·φk, the “concatenation” of the
mappings φi. In other words, φ(v) consists of k · c log n
coordinates, obtained by writing the coordinates in φ1(v),
followed by the coordinates in φ2(v), followed by the
coordinates in φ3(v), and so on (Figure 6).

Our approach works for any class of graphs for which
small-size, small-stretch tree covers can be constructed. For
example, via the result of Awerbuch and Peleg (Lemma 6.8 in
[5]) we can compute an O(log n)-stretch greedy embedding of
arbitrary graphs into (Rd,min-max), where d = O

(
log3 n

)
.

B. Overall Approach

At a high level, our algorithm, which we call
GREEDY-EMBED, consist of the three steps of Algorithm 1,
which are depicted in the Figures 3,4,5, and 6. The following
theorem about algorithm GREEDY-EMBED drives the rest of
the paper.

Theorem 1: Algorithm GREEDY-EMBED takes as input an
n-vertex graph G and returns a greedy embedding with stretch
ρ of G into (Rd,min-maxb), where d = k · c log n and each
coordinate of each vertex uses log n bits.

Proof: Let s and t be an arbitrary pair of vertices in G
and let Ti ∈ T be a tree containing a shortest st-path, among
all trees in T . Then dTi

(s, t) ≤ ρ · dG(s, t). Let u be the
neighbor of s along the unique, simple st-path in Ti. Then
the L∞ distance between φi(u) and φi(t) is smallest over all
neighbors of s and over all trees. The min-maxb function will
therefore lead the message to vertex u. Now the message is at
a node that is at most ρ ·dG(s, t)−1 hops from the destination
t. Continuing this argument we see that the message will be
greedily routed to t in at most ρ · dG(s, t) hops.

For arbitrary graphs we utilize the above theorem as follows.
Awerbuch and Peleg [5] have shown that every graph has a
tree cover of stretch O(log n) and size O

(
log2 n

)
and such a

tree cover can be computed in polynomial time. This yields
ρ = O(log n) and k = O

(
log2 n

)
and leads to the following

corollary.
Corollary 2: There is a polynomial time algorithm that can

compute for any n-vertex graph an O(log n)-stretch greedy
embedding into (Rd,min-max) where d = O

(
log3 n

)
. Each

coordinate of each vertex uses O(log n) bits.

In the next section we show our main technical result: for
any CUDG we can compute in polynomial time a constant-
stretch O(log n)-size tree cover.

IV. GREEDY EMBEDDINGS OF CUDGS

We now show how to construct a constant-stretch tree cover
T = {T1, T2, . . . , Tk} with k = O(log n) of any given
CUDG G = (V,E). Before we describe the algorithm, we
point out that it is not possible to reduce the stretch down
to (1 + ε) for arbitrarily small ε, while keeping the number
of trees in the tree cover polylogarithmic in n. To see this
suppose that G is an n-vertex clique. If we want the tree
cover T = {T1, T2, . . . , Tk} to have stretch smaller than 2
then every edge {u, v} in G needs to appear in some tree Ti.
Since G has n(n − 1)/2 edges and each tree Ti has n − 1
edges, the tree cover has size k ≥ n/2.

To obtain a tree cover of G we use a recursive algorithm
inspired by the approach of Gupta et al. [19], based on
isometric separators; Gupta’s algorithm yields a constant-
stretch O(log n)-size tree cover for any planar graph. For any
graph G = (V,E) a vertex-subset V ′ ⊆ V is called a 1/3-2/3
separator of G if a largest connected component in G \ V ′

has size at most 2
3 · |V |. Such “balanced” separators have

played a fundamental role in algorithm design for a variety of
problems [32]. Given a graph G = (V,E), a k-part, isometric
separator of G is a family S = {S1, S2, . . . , Sk} of subtrees
(not necessarily spanning) of G such that

1) S = ∪iV (Si) is a 1/3-2/3 separator for G. Here V (Si)
is the vertex set of the tree Si.

2) For each i and each pair of vertices u, v ∈ V (Si),
dSi

(u, v) = dG(u, v). In other words, each of the
subtrees Si contain the shortest paths between their con-
stituent vertices and hence are isometric to the restriction
of G to V (Si).

This definition is due to Gupta et al. [19]. For a CUDG G
we obtain a 2-part tree separator that is not quite isometric,
but preserves distances approximately. Specifically, we show
that for some constant ρ ≥ 1, dSi

(u, v) ≤ ρ · dG(u, v) for all
u, v ∈ V . We will call such a family of separators a 2-part
stretch-ρ separator. In the following subsection we extend the
Lipton-Tarjan Separator Theorem for planar graphs to prove
the following result. This is the main technical contribution of
the paper.

Theorem 3: Every CUDG has a 2-part, stretch-3 separator
and such a separator can be computed in polynomial time.

The proof of the above theorem implies Algorithm 2,
which we call CUDG-SEPARATOR, for computing a 2-part,
stretch-3 separator of G. In a sense the proof of the above
theorem should be thought of as a “proof of correctness” for
Algorithm 2 and it shows that Step 2 of CUDG-SEPARATOR
will always terminate successfully.

The reason Algorithm 2 returns T ′(u) and T ′(v) rather than
just T (u) and T (v), is worth mentioning here. For planar
graphs, the edge {u, v} (assuming it exists) along with paths
T (u) and T (v) forms a cycle C that separates its interior
from its exterior. Since a UDG is not planar, it is possible
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Algorithm 2: CUDG-SEPARATOR(G)

Step 1
Pick an arbitrary vertex r of G and construct a breadth-first
search tree T rooted at r.

Step 2
For any u ∈ V , let T (u) denote the (unique) path in T from
r to u and let N(T (u)) denote the set of vertices in the
closed neighborhood of T (u). In other words, N(T (u))
contains all vertices in T (u) along with vertices that have a
neighbor on T (u). For every pair of vertices u, v ∈ V
construct Guv by deleting from G the vertices in
N(T (u)) ∪ N(T (v)). Terminate this step successfully on
finding a Guv such that every connected component in Guv

has size at most 2|V |/3.

Step 3
From T (u) construct a tree T ′(u) by taking each vertex v in
N(T (u)) that is not in T (u) and connecting v to an arbitrary
neighbor in T (u). Similarly construct T ′(v) and return T ′(u)
and T ′(v).

to “escape” the cycle C by just crossing it. However, UDGs
have the nice and well-known property (stated precisely in the
following lemma) that if a pair of edges cross then at least one
pair of end points of the crossing edges are neighbors.

Lemma 4.1: Consider an arbitrary realization of a UDG
G = (V,E). Suppose that {u, v} and {x, y} cross in the
realization. Then at least one of the edges {u, x}, {x, v},
{v, y} or {u, y} is an edge in G.
This lemma implies that if the cycle C is crossed by an edge
{u, v} then either u or v is a neighbor of a vertex in C.

Algorithm CUDG-SEPARATOR for finding a 2-part, stretch-
3 separator of G can be recursively applied to obtain a tree
cover of G as follows. Let T1 := T ′(u) and T2 := T ′(v) be the
trees returned by the above algorithm. For each i = 1, 2, con-
tract the vertices of Ti into a “super” vertex ri and construct
a BFS tree T ∗

i rooted at ri. Expand ri back to Ti in T ∗
i to

obtain a tree called Si. S1 and S2 are the first two trees in the
tree cover being constructed. For an illustration of this step see
Figure 7. Now recurse on the connected components in Guv .
More specifically, suppose that the connected components in
Guv are C1, C2, . . . , Ct and suppose that for each Ci we find
{T i

1, T
i
2}, a 2-part, stretch-3 separator promised by Theorem 3

and obtain the corresponding trees {Si
1, S

i
2}. The collection

{S1
1 , S2

1 , . . . , St
1} is a forest and we arbitrarily add vertices

and edges to this forest to obtain a spanning tree of G. We
similarly extend the forest {S1

2 , S2
2 , . . . , St

2} to a spanning tree
of G, thus obtaining two more spanning trees at the second
level of recursion.

Assuming Theorem 3, the above recursive algorithm yields
a tree cover whose properties are proved in the following
theorem.

Theorem 4: Given an n-vertex CUDG G, there is a
polynomial-time algorithm that computes a constant-stretch
tree cover {T1, T2, . . . , Tk} of G with k = O(log n).

Proof: Consider an arbitrary non-neighboring pair s, t of
vertices in G. There are two cases depending on whether s and

u

r

C

C

v

1

T(v)

r

u

T(u)

r

u

T(u)’

r
1

2

Fig. 7. The top left figure shows shortest paths T (u) and T (v). The removal
of the vertex set N(T (u))∪N(T (v)) separates the graph into components C1

and C2. The top right figure shows the “caterpillar” tree T ′(u) constructed
from T (u) and its neighborhood. This tree has stretch 3. The bottom left
figure shows a BFS tree T ∗

1 rooted at the “super vertex” r1 obtained by
contracting tree T ′(u) into a single vertex. Finally, the bottom right figure
shows the tree S1 obtained from T ∗

1 be expanding r1 back to T ′(u).

t are separated by any of the trees constructed by Algorithm
CUDG-SEPARATOR.

1) Vertices s and t are not separated by any tree (in any
level of the recursion). In this case s and t together lie
on some tree T . Since T is a shortest path along with
nodes in the neighborhood of this path, it is easy to see
that dT (s, t) ≤ 3 · dG(s, t).

2) Suppose that s and t are separated by some tree (in
some level of recursion). The shortest path in G between
s and t intersects some tree T . In this case also,
using arguments such as those used by Gupta et al.
(Theorem 5.1, [19]) we obtain that there is a tree T
in the tree cover such that dT (s, t) ≤ 3 · dG(s, t).

Theorem 5: There is a polynomial time algorithm that can
compute for any n-vertex CUDG an O(1)-stretch greedy
embedding into (Rd,min-max) where d = O

(
log2 n

)
. Each

coordinate of each vertex uses O(log n) bits.

A. Constructing Isometric Separators

This subsection is devoted to the proof of Theorem 3. Start
by fixing a realization of G; note that this is only for the
purposes of the proof and in general the problem of obtaining
a realization of a given CUDG is NP-hard [7]. From this
realization we extract a graph H as follows. Replace each
edge crossing in the realization of G by a vertex, to obtain a
planar embedding of a graph. Add edges to this embedding so
that every face becomes a 3-cycle. We call this graph H (see
Figure 8 for an illustration). In the rest of this section, when
we refer to H , we will sometimes refer to the combinatorial
object H and sometimes to the particular planar embedding of
H extracted from the realization of G. The vertex set V (H)
of H can be partitioned in two sets:
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(i) virtual vertices: which are vertices that replaced edge
crossings in the realization of G.

(ii) G-vertices: which are vertices that H inherited from G.
There is a natural connection between edges in H and edges
in G, which we now make precise. Let {u, v} be an edge in G.
Walk along the straight line segment from u to v and suppose
that we encounter edge crossings c1, c2, . . . , ct, in that order.
Note that the ci’s are all virtual vertices in H . The edges
{u, c1}, {c1, c2}, . . . , {ct, v} of H are called pieces of edge
{u, v}. If an edge {x, y} (of H) is a piece of edge {u, v}
(of G) then edge {u, v} is said to be the parent of {x, y}.
Note that edge {u, v} may not be crossed by any edge in the
realization of G; in this case {u, v} appears as itself in H .
Of course, there are edges in H , namely the ones that were
added in order to triangulate the embedding, that do not have
any parents in G. Refer to Figure 8 for an illustration.

y

x

a

b

c

d

e

d

e

b

a

c

Fig. 8. A realization of a UDG G is shown on the left. The planar,
triangulated graph H , obtained from G, is shown on the right. Vertices x
and y in H are virtual vertices; the remaining vertices are G-vertices. Edges
{a, x}, {x, y}, and {y, c} are pieces of edge {a, c} and edge {a, c} is the
parent of these.

Let r be an arbitrary vertex in G and let T be a breadth
first search (BFS) tree of G rooted at r. Let u be a vertex in
G. Recall the notation T (u) (i.e., the unique path from r to u
in T ) and N(T (u)) (i.e., closed neighborhood of T (u)) from
the previous section. Any edge in T is called a tree edge; the
remaining edges in G are called non-tree edges. Furthermore,
if an edge {x, y} in H is a piece of a tree edge in G, then
{x, y} is called a tree edge of H . Any edge of H that is not
a tree edge is called a non-tree edge.

The overall approach of the Lipton-Tarjan construction [26]
is to consider a non-tree edge {u, v} of G, add it to T , and
consider the separating cycle C induced by {u, v} and the
tree edges in T (u) and T (v). Since G is planar, the cycle C
separates the vertex set of G into two sets: the set of vertices
that lie in the interior of C and the set of vertices that lie in
the exterior of C. The removal of C disconnects these two
sets and Lipton and Tarjan [26] show that for some non-tree
edge {u, v} the cardinalities of the interior and the exterior
are “balanced,” i.e., neither set exceeds 2

3 · |V | in size. We
follow this overall approach, but our construction and proof
are technically more intricate for two reasons: (i) the graph G
is not planar and (ii) we do not have access to a realization
of G and therefore we do not have access to H .

With some amount of work, we extend the Lipton-Tarjan
notion of separating cycles as follows. Consider a non-tree
edge {x, y} of H . Depending on the “types” of the vertices x
and y there are three cases to consider:

1) Both x and y are G-vertices. In this case, the separating
cycle induced by edge {x, y} is simply the concatenation
of T (x), T (y), and {x, y}. The corresponding separator
is the set of vertices N(T (x)) ∪ N(T (y)).

u

b

x y

a

r

T(a)

T(y)

T(a  )x

u

b

x

r

x

ay

by

x

y

v

yT(b  )

a

Fig. 9. This figure shows the separating cycle induced by a non-tree edge
{x, y} of H . On the left, we show the case in which x is a virtual vertex,
but y is not. On the right we show the case in which both x and y are virtual
vertices. In this example, x∗ = ax and y∗ = by

2) Exactly one of x or y, say x, is a virtual vertex of H . Let
{u, y} be the parent of edge {x, y}. Let {a, b} be the
edge in G that crosses {u, y} to result in the virtual
vertex x. Refer to Figure 9 (left) for an illustration.
Pick a vertex from among a and b, whichever is farther
from the root r, breaking ties arbitrarily. Suppose this
vertex is a. The separating cycle induced by edge {x, y}
is obtained by concatenating T (a), T (y), a � x, and
{x, y}. Here we use a� x to denote the simple path in
H from a to x composed of pieces of edge {a, b}. The
corresponding separator we pick is the set of vertices
N(T (a)) ∪ N(T (y)).

3) Both vertices x and y are virtual vertices of H . Let
{u, v} be the parent edge of {x, y} and let {ax, bx} and
{ay, by} be the edges in G that cross {u, v} respectively
to yield virtual vertices x and y. See Figure 9 (right) for
an illustration. Let x∗ be the one of the two vertices,
ax and bx, whichever is farther from r. Similarly, let
y∗ be one of the two vertices, ay and by , whichever is
farther from r. The separating cycle induced by {x, y}
is obtained by concatenating T (x∗), T (y∗), x∗ � x,
y∗ � y, and {x, y}. The corresponding separator is the
set of vertices N(T (x∗)) ∪ N(T (y∗)).

As in the case of the Lipton-Tarjan approach [26], we would
like to identify an “interior” and an “exterior” of the separating
cycle induced by each non-tree edge. However, the notion of
interior and exterior of the separating cycle are not as clear as
in the planar graph case since a path T (u) may itself be self-
intersecting in the fixed realization of G. We now make these
notions precise. Consider a separating cycle C induced by a
non-tree edge {x, y} of H . A point p in the plane is in the
interior of C if every ray originating at p intersects some point
in C; otherwise p is said to be in the exterior of C. A vertex
v of G is said to be in the interior (respectively, exterior) of
C if in the realization of G, v lies in the interior (respectively,
exterior) of C. Based on this definition of interior and exterior
of C, we prove the following lemma.

Lemma 4.2: Let {x, y} be a non-tree edge of H , let C
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Fig. 10. Average stretch as a function of the average vertex degree and the
length of the optimal path. Note that our greedy embedding guarantees an
upper bound on the stretch for any UDG. In practice, the stretch is always
below this bound and depends not only on the network topology, but also on
the length of the optimal route.

be the separating cycle induced by {x, y} and let S be the
separator corresponding to {x, y}. Then there is no path in
G \ S between any vertex in V \ S in the interior of C and
any vertex in V \ S in the exterior of C.

Proof: Let u ∈ V \S be a vertex in the interior of C and
let v ∈ V \ S be a vertex in the exterior of C. Now suppose
there is a path P in G \ S between u and v. Then some edge
{a, b} of P crosses some edge {c, d} of C. Lemma 4.1 tells
us that at least one of {a, c}, {c, b}, {b, d}, or {a, d} is an
edge in G, implying that either a or b is in the neighborhood
of C. Since the separator S contains the neighborhood of C,
either a or b does not exist in G \ S.

Now we would like to show that for some non-tree edge
{x, y}, the separating cycle induced by {x, y} partitions the
vertex set in a “balanced” manner. It is worth emphasizing here
that showing this does not mean that our algorithm needs to
know x and y in order to find a “balanced” cycle separator. In
each of the three cases enumerated above, the separator has
the form N(T (u)) ∪ N(T (v)) for some vertices u and v in G.
Thus considering N(T (u)) ∪ N(T (v)) for all pairs of vertices
u and v of G, will lead to a “balanced” separator and this is
what is done in Algorithm CUDG-SEPARATOR. We conclude
with the following lemma whose proof (skipped due to space
constraints) is similar to the proof of Lemma 2 in Lipton and
Tarjan [26].

Lemma 4.3: For a non-tree edge {x, y} of H let C(x, y)
and S(x, y) respectively denote the separating cycle induced
by {x, y} and the corresponding separator. There exists a non-
tree edge {x, y} of H such that a largest component in G \
S(x, y) has size at most 2

3 |V |.

V. SIMULATION

Extensive simulations on large, randomly generated net-
works show that on average our embedding algorithms provide
extremely low stretch routes, the average stretch being much
smaller than the worst case guarantees proved in the previous
sections. We considered a range from very sparse to dense
networks for each of which we sampled random source and
destination vertex pairs. The average routing overhead is

around 10% and the worst stretch we ever encountered is
3. Of course, such a simulation is much weaker than our
formal proof (Theorem 5) on the maximum stretch. However,
it provides a good approximation for the average case and also
helps to validate the overall approach.

We used the sinalgo simulator [34] to construct the desired
network topologies which all live in an area of size 100×100
units. For each network, we deployed n vertices at random
positions, constructed the UDG with a transmission radius
of 1 unit, and kept the giant connected component for the
embedding. Varying n from 10,000 to 60,000 yields networks
in the desired density and size range. In the following, we
characterize the resulting networks by their average degree of
the vertices, which grows linearly with n. With over 2,000
networks and 50,000 random source and destination pairs, the
simulation analyzed over 108 routing paths with an average
length of 74 hops.

Figure 10 shows the average stretch as a function of the
network density (the average degree of the vertices) and the
length of the optimal path for which the samples were taken. It
is interesting to note that the average stretch partially depends
on the length of the chosen route: close vertex pairs tend
to have at least one tree connecting them nearly optimally,
yielding a low stretch for short routes. Longer routes, on the
other hand, have a higher chance that the greedy algorithm first
needs to travel along one or several trees which do not connect
optimally (or close to optimal) to the destination, resulting
in an increased stretch. While Figure 10 seems to indicate
that the average stretch falls as the length of optimal paths
increases, this decrease may be due to a sampling bias: in our
experiments distant s-t pairs show up relatively infrequently
and as a result our experiments may be encountering costly
situations rarely, as well.

The density of the network is another key parameter for the
average stretch of our greedy routing algorithm. For sparse
networks, the tree cover tends to include many optimal paths
resulting in a nearly optimal stretch. With increasing density,
the trees miss more and more shortcuts, the average stretch
grows. This growth, however, is stopped when an increased
connectivity only adds additional edges but no additional
shortcuts. Figure 10 shows that this critical density is reached
with an average vertex degree of approximately 10.

Figure 11 shows the maximum stretch we have encountered
for any of the 108 sampled routing paths. The highest peaks
stem from the shortest routes, for which even a short detour
may result in a high stretch factor. However, we know from
Figure 10 that on average, only very few routes suffer such a
high stretch.

A comparison of our simulation results with related work
is rather difficult. For instance in [20], Kleinberg illustrated
his work with a set of very small networks of 50 vertices,
not covering the challenging networks where the routing
stretch may be linear in the network size. Kuhn et al. [22]
compared several greedy routing algorithms for UDGs with
position information. Their simulation for varying network
sizes indicates that the average stretch for sparse networks
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Fig. 11. Maximum stretch found over all sampled routing paths.
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Fig. 12. When removing a separator, one or several connected components
remain in the network. This plot shows the relative size of these components,
compared to the network which was separated.

is well above 3 for small networks and increases linearly with
the size of the network.

For completeness, we also include some statistics on the
size of the connected components that we obtained during
the simulation. Figure 12 shows that indeed, after removing a
separator, none of the connected components had a size larger
than 2/3 of the original network. It is interesting to note that
the average size of the components increases with the density,
which shows that in sparse networks, we tend to obtain several
components and in the dense networks only 2 or 3.

VI. FUTURE WORK

Even though our embedding algorithm is fast, it is central-
ized and seems inherently “global” in nature (e.g., the use of
breadth-first search trees is quite important). Whether there are
local variants of this embedding algorithm that lend themselves
to lightweight distributed implementations, is a question that
interests us. Some aspects of our algorithm, for example, the
construction of isometric separators, depends explicitly on the
fact that UDGs have a 2-dimensional realization. As a result,
it seems that extending our approach to unit ball graphs in
3-dimensions might be a significant challenge.
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