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A

Distributed and Compact Routing Using Spatial Distributions in
Wireless Sensor Networks

RIK SARKAR, Free University of Berlin
XIANJIN ZHU, Microsoft Inc
JIE GAO, Stony Brook University

In traditional routing, the routing tables store shortest paths to all other destinations and have size linear
in the size of the network, which is not scalable for resource constrained networks such as wireless sensor
networks. In this paper we show that by storing selectively a much smaller set of routing paths in the routing
tables one can get low-stretch, compact routing schemes.

Our routing scheme includes an approximate distance oracle with which one can obtain approximate
shortest path length estimates to destinations. This distance oracle can be obtained, for example, by a
landmark based scheme, or in case of sensor networks, from the geographic distance between node locations.
With an approximate distance oracle one can attempt greedy routing by forwarding to the neighbor whose
estimate is closer to the destination. But there is no guarantee of delivery nor of the routing path length. We
augment the distance oracle by storing, for each node u, routing paths to O(log2 n) strategically selected
nodes that serve as intermediate destinations. These nodes are selected with probability proportional to
1/rρ where r is the distance to u and ρ is a suitable constant for the network. Then we derive a set of
sufficient conditions to select the next step at each stage of routing, such that these conditions can be
verified locally and guarantee 1 + ε stretch routing on any metric. These conditions serve as the ‘greedy
routing’ or local decision rule.

On graphs of bounded growth, our scheme guarantees 1 + ε stretch routing with high probability, with
an average routing table size of O(

√
n log2 n). This scheme is favorable for its simplicity, generality and

blindness to any global state. It demonstrates that global routing properties could emerge from purely
distributed and uncoordinated routing table design.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network protocols—Routing proto-
cols; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems—Geometrical
problems and computations

General Terms: Algorithms, Design, Theory

Additional Key Words and Phrases: Sensor Networks, Small Stretch Routing, Spatial Distribution

1. INTRODUCTION

Scalable routing is one of the most challenging problems in distributed network design — consid-
erations include compact storage, efficient propagation oftopology update, and most importantly,
distributed and uncoordinate decisions to enable globallyclose to optimal routing properties.
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A:2 Rik Sarkar et al.

Consider the most basic routing table approach. Each node keeps a routing table entry for each
possible destination. Following the routing table one can get shortest path routing. But the size of
the routing table is linear in the size of the network and the scheme is not scalable to large networks.

Internet routing adopts the basic routing table approach but achieves scalability through sub-
network partitioning hierarchy and address aggregation, with one routing table entry representing
routing information to many IP addresses in a subnetwork, and powerful switches to quickly classify
and deliver packets. For resource constrained wireless nodes used in sensor networks, scalable rout-
ing requires even more aggressive methods to produce compact routing information, and innovative
ways to exploit the special properties of such networks.

Large-scale wireless sensor networks have a lot of spatial structures — they are closely related
with the underlying geometric domain in which they are embedded, in terms of node distribution
and the strong correlation of graph connectivity and node proximity. Various properties of the ge-
ographical embedding of the nodes have been exploited for compact routing in a sensor network
— mostly in an explicit manner, as the geographical locations used in geographical routing fam-
ilies [Bose et al. 2001; Karp and Kung 2000; Kuhn et al. 2003],or as in many virtual coordinate
system design [Fang et al. 2005; Bruck et al. 2007] that abstracts the global geometric/topological
properties of the embedding.

1.1. Overview

In this paper we use some implicit geometric properties of a wireless sensor network for routing,
and store selective routing paths in the routing tables, such that the average routing table size is
small, the path stretch is close to optimal (the ratio to the shortest path is 1+ε for any givenε > 0),
and both the preprocessing and the routing can be achieved bythe nodes making decisions on their
own, blind to any global state.

Our solution has two components: anapproximate distance oracleand a set ofaugmented routing
paths. We describe the two components separately.
Approximate distance oracle. An approximate distance oracle gives an estimation of the shortest
path length (i.e., minimum hop count) between any two nodes.That is, for nodesp andq at a true
distance ofσ(p, q) in the metric, the estimated(p, q) supplied by the oracle satisfies the relation
δ1 · d(p, q) ≤ σ(p, q) ≤ δ2 · d(p, q) for some constantsδ1 andδ2.

First we remark that if we are given anaccuratedistance oracle that returns the hop distance of
any two nodes in the network, then greedily selecting the next hop as the neighbor with smallest
distance to the destination will guarantee delivery along ashortest path. Of course, the construction,
maintenance and compact representation of an accurate distance oracle is not easy in a distributed
setting. As shown in [Thorup and Zwick 2001a], accurate distance oracle would require aboutΩ(n)
storage per node. An approximate distance oracle is easier to obtain. In many cases, some approxi-
mate distance estimation is readily available. For example, the geographical distance is often a good
approximation to the minimum hop count distance in the network. We will show later that for a
sensor network with near uniform node distribution and whenthe network holes are ‘fat’1, the Eu-
clidean distance is a good approximate distance oracle. Note that this assumption makes no unit
disk graph requirement on the wireless radio communicationmodel and allows localization errors
as well. When node location information is not available, one can show that with randomly selected
nodes as landmarks and using merely triangle inequality on the hop count distances from source
and destination to these landmarks (as shown in [Kleinberg et al. 2004]) one can get a fairly good
approximate distance oracle as well. Both implementationsrequire only information of the source
node and the destination.

With only an approximate oracle we can still try a greedy routing method — forward the message
to the neighbor whose approximate distance to the destination from the oracle is smaller — but there
is no guarantee that such a neighbor can be found. Indeed, this is the major problem that geographi-

1We define a hole to befat if any two nodes on the boundary of a hole has its hop count distance to be at most a constant
factor of the Euclidean distance. For example, a square is fat, but an arbitrarily thin rectangle is not
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cal greedy forwarding can get stuck at a local minimum. Thus we need our second component in the
routing scheme that complements the approximate distance oracle, which is our main contribution.

Augmented routing paths. With an approximate distance oracle, the solution we propose is to
store routing paths between some pairs of nodes that are not immediate neighbors. We call these
pathslong links. In particular, for some selected pairu, v a routeP (u, v) betweenu, v, is recorded
implicitly in the routing table entries of nodes on the route. When a nodep wants to send a message
to a nodeq, it also considers the nodes to whichp has long links – these act as a generalization
of the neighbor set in the network. The routing information stored on the pathP (p, x) is used to
deliver the message tox. Nodex then repeats an identical procedure to advance the message.Now
the question is, what long links should each node build and what are the forwarding regions, such
that the routing table size is small, the path stretch is low,and delivery rate is high?

Our main theoretical results are the following. Given an approximate oracle for a general metric
space, we come up with a simple local rule such that the sourcenodep can decide which long link
neighbor is good for forwarding the message. All such nodes are conveniently characterized by the
forwarding region(see Fig. 1), from whichp selects the long link neighbor in the path toq. Next
we show a randomized method for building the long links and the resultant routing tables. This will
guarantee that long links satisfying the required conditions, for any potential destination, exist with
a high probability. In particular, each node selects its long links with a spatial distribution. A node
p would select a long link partnerq with probability proportional to1/d(p, q)ρ, whered(p, q) is the
approximate distance betweenp, q returned by the oracle. The number of long links for each node
is O(log2 n) with the constant depending on the stretch requirement1 + ε and the distance oracle
error boundsδ1, δ2.

This distribution guarantees that on a graph of bounded growth rate, we will have long links sat-
isfying the required conditions to perform low stretch routing with high probability. A graph has
bounded growth rateρ if the number of nodes withinr hops from any nodep in the network is
bounded byc1rρ andc2rρ from below and above respectively, with two constantsc1 ≤ c2. This
model has been used to capture any physical constraints thatdisallow too many nodes ‘packed’
within certain distance and the graph has a bounded polynomial growth pattern instead of an ex-
ponential growth pattern (e.g., a balanced binary tree). This kind of geometric growth has been
observed in many different scenarios such as VLSI design, the delay metric on the Internet overlay
networks, and in our setting, wireless sensor networks. When sensor nodes are roughly uniformly
deployed in a geometric region with bounded density per unitarea2 and when the network is not
too much fragmented by deployment holes, the graph growth rate is typically 2. It is this packing
property that allows us to aggressively compress the routing table entries by a simple routing table
neighbor selection rule dominated by a spatial distribution.

We also report simulation evaluations of this approach in a sensor network setting, to comple-
ment the theoretical analysis. For a connectivity network in which geographical greedy routing only
achieves a delivery rate of 50% or so, with about 7 long links per node, we are able to achieve a
delivery rate of 99% or higher. The routing table construction can be implemented in a completely
distributed manner. Each node simply chooses its respective long links by sampling geographical
locations under the spatial distribution, rounded to the nodes closest to the sampled locations, as
in [Sarkar et al. 2007]. The routing table information for these long links is constructed in a boot-
strapping manner, with the routes for nearby pairs constructed first and the routes for far away pairs
constructed by using the routing tables already constructed so far, in the same manner as regular
routing requests.

We have a second implementation using landmark-based routing to show the power of the spatial
distribution in routing table design. In particular, we selectO(log2 n) landmarks that flood the en-
tire network and each node records the landmark distance vector. The approximate distance oracle

2If the density in a region becomes too high, it is easy to cluster neighboring nodes and operate on clusterheads so that the
density of clusterheads is bounded by a constant.
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A:4 Rik Sarkar et al.

is implemented by the centered virtual distance as proposedin [Fang et al. 2005], which only re-
quires the landmark distance vector of two nodes. We select on the paths to the landmarks long link
neighbors to help improve the delivery rate. This implementation will involve some preprocessing
of flooding the network from the landmarks but the routing paths of the long links are implicitly
contained in the landmark distances. Thus the routing tablesize is improved toO(log4 n), com-
pared withO(n1/ρ log2 n) when the routes have to be explicitly stored on the nodes of the paths (ρ
is the growth rate – a constant similar to dimension of the network).

In summary, the augmentation of long links with spatial distribution to get1 + ε stretch routing
on an approximate distance oracle is favorable for its simplicity, generality and ‘blindness’ to any
global state. Global routing properties emerge from purelydistributed and uncoordinated routing
table design.

2. RELATED WORK

In this section we survey related work in compact routing andestablish their connection to our
results.

Spatial distribution in routing. The spatial distribution in selecting the long links in our paper
coincides with the small-world model and decentralized search proposed by Kleinberg [Kleinberg
2000b; 2000a] to model Stanley Milgram’s famous experiment[Milgram 1967; Travers and Mil-
gram 1969] on the small-world phenomena in social networks.The setup in the small world model
is the following. Given a 2D grid (possibly of infinite size),each node chooses a long link with
probability1/r2 wherer is the length of the long link. Together with the four neighbors per node on
the grid, a greedy routing with the location of the destination can be achieved withO(log2 n) jumps
(on either short links between neighbors on the grid or the long links constructed) with high proba-
bility. Notice that in this setting an accurate distance oracle is actually available and greedy routing
on the original grid suffices to deliver the message along theshortest paths on the grid. In the small
world literature people care most about adding extra long links to create short paths between any
two nodes. In our setting the long links are realized as pathsin the original network. Nevertheless,
our results show that if each node choosesO(log n) long links, a slightly more sophisticated but
distributed routing scheme with long links hasO(log n) jumps, and also a total travel distance at
most1 + ε of the distance between source and destination on the grid.

The spatial distribution has been explored in a number of other data delivery and information
dissemination scenarios in sensor networks, e.g., for adding long communication wires to reduce
power consumption [Sharma and Mazumdar 2005], for gossip and locality-sensitive information
exchange [Kempe et al. 2001; Sarkar et al. 2007], for data delivery using mobile nodes [Wu and
Yang 2008].

Small state routing in sensor networks. To deal with the problem of local minimum in geograph-
ical forwarding, various techniques have been proposed to solve the problem of ‘routing around
holes’. Earlier proposals assume unit disk graph model on the communication network and propose
to planarize the network and apply face routing [Bose et al. 2001; Karp and Kung 2000; Kuhn et al.
2003]. Such planarization unfortunately fails badly in practice due to complex radio characteris-
tics [Kim et al. 2005]. Improvement of the planarization process may selectively remove crossing
edges [Govindan et al. 2006], or use a generalized face routing on graphs with crossing edges [Zhang
et al. 2007], or planarize an abstracted graph to filter out the local connectivity irregularity [Funke
and Milosavljević 2007]. Alternatively, one may also develop virtual coordinates to support greedy
routing [Rao et al. 2003; Newsome and Song 2003; Fonesca et al. 2005; Nguyen et al. 2007; Fang
et al. 2005; Bruck et al. 2007]. Most of them do not guarantee small stretch routing and often require
preprocessing to first discover and understand the network topologies.

We explain two protocols in more details as they are more relevant and compare with our scheme.
In virtual ring routing (VRR) [Caesar et al. 2006], proposedby Caesaret al., the nodes are ordered
by their node IDs (or any other identifiers) on a ring and the paths for nearby nodes on the ring are
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stored in the routing tables of the nodes on these paths. Notice that nearby nodes on the ring may be
far away in the communication network. When a packet is routed to a destination, it is delivered by
using the local routing table to the next hop on the pre-constructed path leading to a node closest to
the destination in the ID space. VRR can be understood as building long links connecting nodes with
adjacent IDs, which can be arbitrarily far apart in the network. The routing table size is roughly in
the order ofO(

√
n) in a uniform and dense network. And there is no guarantee on the path stretch.

The small state and small stretch (S4) routing by Maoet al. [Mao et al. 2007] adopted the idea of
compact routing schemes by Thorup and Zwick [Thorup and Zwick 2001a; 2001b]. The basic idea
is to select aboutO(

√
n) landmarks. These landmarks flood the network and other nodesrecord

the hop count distance to these landmarks. In addition, a node p also maintains routing table en-
tries to the nodes that are closer top than their closest landmarks. The routing table size is about
O(

√
n) and a greedy routing scheme is guaranteed to deliver the message to the destination with

maximum stretch of3. By exploiting the geometric properties of the sensor network deployment,
we are able to get1 + ε stretch and reduce both the number of landmarks and the routing table size
to polylogarithmic in the network size.

Compact routing in general. From a theoretical aspect, compact routing that minimizes the routing
table size while achieving low stretch routing has been studied extensively [Peleg 2000]. There
are two popular models in the literature, thelabeled routing modelandname-independent routing.
In the labeled routing model [Cowen 1999; Eilam et al. 2003; Thorup and Zwick 2001b], one is
allowed to produce for each node a label (typically of polylogarithmic size) such that routing is
done with the labels of the source and destination. In the name-independent model [Abraham and
Malkhi 2005; Konjevod et al. 2006], the nodes are given generic IDs that are independent of the
routing scheme. Thus routing is inherently more difficult asthe routing scheme needs to also find
out where the node is. To understand this in the case of sensornetwork routing, name-independent
routing works directly on the node IDs (such as in the virtualring routing scheme). If we use
geographical locations or any other virtual coordinates, such coordinates are the ‘labels’ and to
complete the solution one needs to also employ a location service (as in [Li et al. 2000]) that maps
node IDs to their geographical locations or virtual coordinates. Put in this perspective, our scheme
stays in between the labeled model and the name-independentrouting model. We have a label of
the nodes (such as the geographical locations) naturally, but the labels only give imperfect distance
information and do not guarantee delivery.

Generally speaking, the theoretical results in compact routing in a graph whose shortest path met-
ric has a constant doubling dimension are able to obtain, with polylogarithmic routing table size,
1+ε stretch routing in the labeled routing scheme (see [Chan et al. 2005] and many others in the ref-
erence therein), and constant stretch factor routing in thename-independent routing scheme [Kon-
jevod et al. 2006; Abraham et al. 2006] (getting a stretch factor of 3 − ε will require linear routing
table size [Abraham et al. 2006]). The results here are all centralized constructions and aim to get
the best asymptotic bounds. Our focus in this paper is on a principle for distributed implementation
at each node and its practical implementation in the scenario of ad-hoc sensor network routing.

There has been a lot of work on constructing overlay graphs onnodes staying in a metric space
(to name a few, as in [Plaxton et al. 1997; Abraham et al. 2004]). We do not survey those work in
detail as in our case we are not given the perfect knowledge ofthe metric and we can not construct
communication links between any nodes.

3. SMALL STRETCH ROUTING WITH APPROXIMATE DISTANCES

In this section we describe the idea of routing with1 + ε stretch in a suitable metric spaceM. We
used(p, q) to represent the estimate of distance betweenp andq supplied by the approximate oracle
O, andσ(p, q) to denote the true but possibly unknown graph distance (hop count distance) inM.
We assume that a node is able to get the approximate distanced(p, q) from just the names ofp, q.
The implementation of this distance oracle is elaborated ina later section. Here we show that when
the long links are carefully chosen the routing stretch is low.
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A:6 Rik Sarkar et al.

Routing with accurate distance oracle. To demonstrate the basic concept, we first consider the
case in which the oracle is in fact accurate, that is,d = σ. The objective is to recursively build a
route froms to t with the help of the long links. Supposes takes a long link to nodep, then we want
σ(s, p) + σ(p, t) to be not very large compared toσ(s, t):

σ(s, p) + σ(p, t) ≤ γ · σ(s, t), (1)

Whereγ ≥ 1 is a parameter depending onε. Observe that inequality (1) defines an ellipse inR
2

with s andt at foci. Now we impose an additional restriction that movingfrom s to p implies a
certain progress in direction oft. In particular,p is closer tot by a factor of at least0 ≤ β ≤ 1:

σ(p, t) ≤ β · σ(s, t). (2)

This describes a disk centered att.
Next, we selectγ andβ such that the selection procedure enforced by inequalities(1) and (2)

when applied recursively, produces a path of stretch at most1 + ε:

R(s, t) ≤ (1 + ε) · σ(s, t), (3)

whereR gives the length of the path created recursively.
A forwarding regionFε(s, t) is a set of pointsp in M from whichs can selectp satisfying the

above relations. The following lemma gives a detailed description:

LEMMA 3.1. Values ofγ andβ satisfyingγ + εβ ≤ 1 + ε constitute the forwarding region,
with the equality corresponding to the region boundary.

PROOF. Given that in the route fromq to t, the first long link is to a nodep, the total length of
the recursive pathR(q, t) = σ(q, p) + R(p, t). Let us assume that routes have already been built
such thatR(p, t) ≤ (1 + ε)σ(p, t). Then we have:

R(q, t) ≤ σ(q, p) +R(p, t)
≤ σ(q, p) + (1 + ε) · σ(p, t)
≤ σ(q, p) + σ(p, t) + εσ(p, t)
≤ γσ(q, t) + εβσ(q, t).

Whenγ+εβ ≤ 1+ε, the right hand side is no greater than(1+ε) ·σ(q, t). An inductive application
of this argument shows a(1 + ε) stretch for any routeR(s, t).

It is easy to see thatγ must lie in the interval[1, 2+3ε
2+ε ] for a givenε. For each value ofγ, we have

a regionHγ,ε(s, t) ⊆ M which is the intersection of the ellipse bounded region and the disk. Thus,
formally, the forwarding region is the union:Fε(s, t) = ∪γHγ,ε(s, t). See Figure 1.

Routing with approximate distance oracle. Now we look at the case in which the oracle supplies
an approximate measure of the distance, withδ1 andδ2 as the lower and upper bounds:∀p, q ∈ M,
δ1d(p, q) ≤ σ(p, q) ≤ δ2d(p, q). Then, allowing for approximation error, it would be sufficient to
guarantee the following inequalities (corresponding to relations (1)-(2) respectively,):

δ2d(s, p) + δ2d(p, t) ≤ γδ1d(s, t)
δ2d(p, t) ≤ βδ1d(s, t)

(4)

It can be verified that a sufficient relation betweenγ, β andε is again given by the same inequality
as lemma 3.1. And we can obtain again thatR(s, t) ≤ (1 + ε)σ(s, t).

As long as a node has a long linkp in the forwarding region, the routing idea described above
guarantees low stretch for any metric.

Routing Mechanism. The analysis above suggests a natural routing scheme. Each node selects long
links such that it has either an immediate neighbor or a long link to the forwarding region of any
destination, and keeps corresponding routing table entries. The routes to the long link neighbors are
stored on the routing table of the nodes on the path. When a nodes has a message to be delivered to a
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destinationt, s will check its routing table to find a nodep (eithers’s 1-hop neighbor ors’s long link
neighbor,) such thatp lies in the forwarding regionFε(s, t). Nodep on receiving the message will
execute an identical procedure to forward the message intoFε(p, t) and so on. Efficient randomized
construction of the routing table is shown in next section.

3.1. (1 + ε)-stretch forwarding region

Geometric setting. We first discuss the case of the Euclidean planeR
2, which provides intuition

about the metric properties of the method. W.l.o.g. the coordinates ofs andt, separated by a distance
r, are(−r/2, 0) and(r/2, 0) respectively. We examine the forwarding region to select the long link
neighborp to realize a1 + ε stretch path tot.

With an accurate distance oracle, the relation (1) defines inR
2 a region whose boundary is given

by an ellipse:

4x2

γ2r2
+

4y2

r2(γ2 − 1)
= 1.

And (2) defines a disk whose boundary is given by a circle:
(

x− r

2

)2

+ y2 =
(1 + ε− γ)2

ε2
r2.

As gamma is varied, the locus of intersection of these two curves traces out the boundary of the
forwarding regionFε(s, t) (see Fig. 1 (i)).

Fig. 1. (i) Boundary ofFε as intersection of ellipses and circles. (ii) Forwarding regions for different values
of ε from 0.2 to 2. (iii) Forwarding regions for different values ofε from 0.2 to 2 for approximate oracle.

For any pointq on the boundary ofFε(s, t), the angles∠qst and∠qts are functions ofγ andε
only, and are independent ofr. This implies that the shape of the forwarding region is scale invariant,
i.e., it does not depend on the distance between source and destination. Figure 1 (ii) shows the shapes
of forwarding regions for different values ofε. Smaller values ofε create smaller and narrower
forwarding regions.

With an approximate distance oracle, the corresponding ellipse and circle equations are given by:

δ22
δ21

· 4x2

γ2r2
+

4y2

r2
(

δ2
1

δ2
2

γ2 − 1
) = 1

(

x− δ2
r

2

)2

+ y2 =

(

δ1
δ2

· 1 + ε− γ

ε
· r
)2

The corresponding forwarding regions are shown in Fig. 1 (iii). Observe that in this case the for-
warding regions are smaller and sources is not in the forwarding region. This is due inaccurate
distance estimates and necessitates the use oflong links- without whichs cannot access the for-
warding region.
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A:8 Rik Sarkar et al.

The graph setting. The geometric intuition needs to be realized in an ad hoc sensor network
setting. In the literature, there have been a number of models for graphs that have some geometric
growth features. In the following description we focus on anundirected unweighted graphG and
we denote byNr(p) the set of nodes withinr hops fromp. A graph is said to have∆-expansion
rate if |N2r(p)| ≤ ∆|Nr(p)|, for anyp, r [Karger and Ruhl 2002; Abraham and Malkhi 2005]. A
graph is said to havedoubling dimension∆ if any ball of radius2r can be covered by at most2∆

balls of radiusr [Gupta et al. 2003]. A graph is said to havebounded growth rate∆ if |Nr(p)| =
O(r∆) [Linial et al. 1995]. All three models try to capture that themetric growth is restrictive. For
example, a binary tree does not satisfy any of the definitionsabove.

In this section, we use the concept of a finite graph and a continuous metric space interchangeably
for ease of description, but the results hold for any metric space that fits the model. A graph metric
refers to the shortest path metric.

In a sensor network setting, we use the (upper and lower) bounded growth rate model, as it follows
immediately from a bounded density deployment. For example, if we place at most a constant
number of sensor nodes inside any unit disk and the holes in the sensor networks are not very
fragmenting, the number of nodes atk hops from a nodep will be aroundΘ(k).

Formally, we consider a graph such that the number of nodes ata distance exactlyr from p,
represented by|∂Nr(p)| is bounded by|∂Nr(p)| = Θ(ρrρ−1). This is equivalent to|Nr(p)| =
Θ(rρ). Note that the diameterD of such a graph is bounded byΘ(n1/ρ). We have the following
quick observation.

LEMMA 3.2. Given an unweighted graphG with |Nr(p)| = Θ(rρ), the graph has a doubling
dimensionη = O(ρ).

PROOF. Consider a ballB2r(p), we use a greedy algorithm to select balls of radiusr to cover
it. In particular, we select a nodeq in B2r(p) that is not yet covered, and cover all nodes inBr(q).
Iterate until all nodes are covered. Now we bound how many balls are selected (denote this set
asQ). To see that, we take the selected nodesq ∈ Q and the ballsBr/2(q). First they do not
overlap as any two nodes inQ are of distance at leastr away. Thus by a volume argument we have
|Q| ≤ |N2r(p)|/min(|Nr/2(q)|) = O( (2r)ρ

(r/2)ρ ) = O(4ρ).

LEMMA 3.3. In a metric space with doubling dimensionη, a ball of radiusR can be covered
with O(cη) balls of radiusR/c.

PROOF. A ball of radiusR can be covered with2η balls of radiusR/2. We recursively cover
each such ball with balls of half the radius, until the size ofballs used falls belowR/c. The resultant
number of balls is2ηk, wherek = ⌈log c⌉. This is equivalent toO(cη).

We now show the presence of a sizeable forwarding region for such a graph, when one routes
from s to t:

LEMMA 3.4. There is a ball of radiusδ1δ2
(

γ−1
2

)

r that lies insideFε(s, t).

PROOF. Consider a pointq on the shortest path betweens andt separated byd(s, t) = r. Now,
we take a ball of radiush = δ1

δ2

(

γ−1
2

)

r centered atq. One can verify that all the points inside the ball
Nh(q) are insideFε(s, t), as they satisfy the inequalities (4). In particular, for any pointp ∈ Nh(q),
d(s, p) ≤ d(s, q) + h, d(p, t) ≤ d(q, t) + h. Now we can verify thatδ2(d(s, p) + d(p, t)) ≤
δ2(r + 2h) ≤ δ1γr. Also δ2d(p, t) ≤ δ2(d(q, t) + h) ≤ δ1βr ≤ δ1

(

1+ε−γ
ε

)

r.
This ball is inside a neighborhood ofδ2r− δ1

δ2

(

1+ε−γ
ε − (γ − 1)

)

r from s. The number of nodes

inside this ball is at leastΩ
((

δ1
δ2

(

γ−1
2

)

r
)ρ)

.
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This lower bound on the size of forwarding region suggests that among long links chosen ran-
domly according to a spatial distribution, at least one is likely to lie in the forwarding region with
high probability. The next subsection shows that this is indeed the case.

4. ROUTING TABLE CONSTRUCTION BY SPATIAL DISTRIBUTION

To build the routing table, we use a spatial distribution of directed links. In particular, for nodesp
andq separated by a distancer, the probability of a directed linkpq being built is proportional to
1/rρ. The rest of this section analyzes random selection of long links to make sure there is a long
link in the forwarding region for every possible destination. Combined with the recursive routing in
the beginning of this section, the existence of such links guarantee1 + ε stretch routing.

The analysis below uses essentially balls and bins probabilistic analysis. When a long link is
picked randomly with the spatial distribution, we have the following lemma.

LEMMA 4.1. For anyµ > 1, a link fromp lies in the annulusNr(p)−Nr/µ(p) with probability

Θ
(

lnµ
lnn

)

.

PROOF. SupposeC is the normalizing factor of the probability distribution for the given net-

work. This means:C
∫ D

1
1
rρ |∂Nr(p)| dr = 1. Integrating,C = Θ

(

1
ρ lnn

)

.

The probability that a given link lies in an annulusNr(p)−Nr/µ(p) is given by

Pr(r/µ, r) = C

∫ r

r/µ

1

ξρ
|∂Nξ(p)| dξ = Θ

(

lnµ

lnn

)

.

Note that this probability is independent ofr.

THEOREM 4.2. From each node it is sufficient to selectk = O
(

(

2
ε

)O(ρ)
ln2 n

)

links, to guar-

antee a link in the forwarding region for any destination with probability at least1− 1/n2.

PROOF. Consider the forwarding regionFε(s, t), with d(s, t) = ℓ. We choose a valid value
γ. By lemma 3.4, there is a ballBh of radiush′ = δ1

δ2

γ−1
2 ℓ within a distance ofr = δ2ℓ −

δ1
δ2

(

1+ε−γ
ε − (γ − 1)

)

ℓ from s.
Chooseµ′ such thatBh′ lies in the annulusNr(s) − Nr/µ′(s). This implies thatµ′ = r

r−2h′
.

Substituting, and simplifying, we haveµ′ = Ω(1+ε). To show that a link lies inBh′ , it is sufficient
to show that it lies in a smaller ballBh ⊆ Bh′ , which is defined below. Ifh ≥ r/4 we assign
Bh = Br/4, andµ = 2, whereBr/4 ⊆ Bh, andBr/4 ⊆ Nr(s) −Nr/2(s). If h < r/4, we assign:
Bh = Bh′ andµ = µ′. Thus, the width of the annulusNr(s)−Nr/µ(s) is at mostr/2, andµ ≤ 2.

Now we show that withk = O
(

(

2
ε

)O(ρ)
ln2 n

)

links, there is a link toBh (and hence toBh′ )

with high probability. The basic idea is the following. The annulusNr(s)−Nr/µ(s) can be covered
by a small number of balls, by the constant doubling dimension property. Thus with randomly
selected links, at least one will fall insideBh.

By Lemma 3.3, the ballNr(s) can be covered by at mostA = a
(

2µ
µ−1

)η

balls of radiush for

some constanta. Restricting attention only to links froms to insideNr(s) − Nr/µ(s), consider a
covering of the annulus with balls of radiush. The ballBh belongs to this set, and each node inBh

is selected bys with probability at leastC 1
rρ , whereC = Θ(1/(ρ lnn)) is the normalizing factor.

Similarly, every node in the otherA− 1 balls is selected with a probability at mostC µρ

rρ .
Thus, given that a link is in the annulusNr(s)−Nr/µ(s) the probability that it is inBh is:

Pr(Bh|(Nr(s)−Nr/µ(s))) ≥
(µ− 1)η

a(2µ)ηµρ + (µ− 1)η
.
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Combining with the result of lemma 4.1 of the link being in theannulus, we get that the probability

of a random link toBh isPr(Bh) ≥
(

1
K lnn

)

, whereK = O
(

(

2
ε

)O(ρ)
)

.

If 2K ln2 n links are chosen froms, then the probability that none of them lie inBh is
(

1− 1
K lnn

)(K lnn)2 lnn
. Therefore, the probability that at least one link lies inBh is

(

1− 1/n2
)

.

Therefore,O(
(

2
ε

)O(ρ)
ln2 n) links per node suffice to obtain the given probability.

The theorem above describes a guarantee for a suitable link to a forwarding region to exist. In
fact, the detailed proof says that a link exists to a ballBh′ of a radiush′ inside the forwarding region.
However, we still need to prove the existence of a path of(1+ ε) stretch for a given routing request,
that will take us to within a small constant distance of the destination. This is done by showing
the existence of a short sequence of forwarding links. Firstwe show, that if the path exists, it only
involves a few long links.

LEMMA 4.3. If a path obtained by appending the long links in the ballsBh′ exists then it
consists ofO(log n) long links and has a stretch of(1 + ε).

PROOF. As in the proof of theorem 4.2, there is a ballBh′ of radiush′ = δ1
δ2

γ′
−1
2 l which by

lemma 3.4 lies within a distanceδ1δ2
1+ε−γ′

ε l = δ1
δ2
β′l of t.

Thus, by selecting the long link to the ballBh′ , we take the message to be within a constant
fraction β′ of the remaining distance to the destination at every step. Since the diameter of the
network isn1/ρ, this recursive forwarding will reach a constant neighborhood of t usingO(log n)
hops. Given thatBh′ is selected to be inside the forwarding region for each step,this path will have
a stretch1 + ε.

Now we combine the number of links with the probability of each link to get the final result:

THEOREM 4.4. Given a source-destination pair, a path of stretch1 + ε exists with probability

at least1− 1/n if O
(

(

2
ε

)O(ρ)
ln2 n

)

long links have been created per node.

PROOF. Observe that by lemma 4.3 the path consists ofO(log n) long links, each of which exists
with probability at least1 − 1/n2, by theorem 4.2. Combining the two, we get that the path exists

with probability
(

1− 1/n2
)O(logn)

, which is at least1− 1/n.

And the routing table size is not too large.

THEOREM 4.5. The average routing table size of the scheme is bounded by

O
(

(

2
ε

)O(ρ)
n1/ρ ln2 n

)

.

PROOF. The length of a long link is at most the diameter of the network, which isO(n1/ρ).
Thus a link can contribute at mostO(n1/ρ) number of routing tables entries. By theorem 4.2, each

node ofn nodes can addO
(

(

2
ε

)O(ρ)
ln2 n

)

such links to the network. Thus, the average number of

entries, when divided amongn nodes, isO
(

(

2
ε

)O(ρ)
n1/ρ ln2 n

)

.

In the case of sensor networks in a plane (ρ ≈ 2), for a given stretchε, this amounts to a table size
of O

(√
n ln2 n

)

per node. In the next section we describe an implementation that implicitly stores
the long links with substantially smaller routing table sizes ofO(ln4 n).

5. IMPLEMENTATION IN SENSOR NETWORKS

Here we describe the implementation of the routing table design in a distributed setting. In particular,
how to implement the approximate distance oracle, how to choose the long links with the spatial
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distribution and how to build routes representing the long links. We give two different approaches
to implement the distributed routing table, one with the geographical locations, one with landmarks
and landmark-based distances.

Note that the implementation of approximate distance oracle is really independent of our routing
table design and the implementations can be entirely decoupled. Any method that provides reason-
ably good distance estimate can be used as a distance oracle.

5.1. Geographic routing table design

In this part we describe using the spatial distribution principle to augment standard geographical
forwarding with additional routing information to increase the delivery rate.

Approximate distance oracles. As mentioned in the introduction, the geographical locations
often serve as a good approximate distance oracle to the minimum hop count distance metric
on the communication network. To formulate this notion rigorously, we assume that the sensor
field is deployed in an environment withfat (not necessarily convex) obstacles. That is, for any
two pointsp, q on the boundary of a hole, the geodesic distance3 g(p, q) is at mostτ times the
Euclidean distanced(p, q) for a constantτ > 1, as shown in Figure 2. Given this, we can show

b2

p

q
g(p, q)

d(p, q)a1

b1 a2

Fig. 2. The geodesic distanceg(p, q) is at mostτ · d(p, q) with fat holes.

that for any two pointsp, q in the underlying geometric domain, we haveg(p, q) ≤ τd(p, q).
In addition, we assume that the sensor nodes are deployed in the environment approximately
uniformly such that the minimum hop count distance is at mostτ ′ the geodesic distance. Thus we
haved(p, q) ≤ σ(p, q) ≤ δ · d(p, q), for a constantδ = τ · τ ′ > 1.

Geographic spatial sampling. We include the routing paths between pairs of nodes chosen with
a spatial distribution. With geographical locations, we will implement the spatial sampling of a
partnerq of p by choosing with probability proportional to1/r2 a geographical locationq∗ and
round it to the nearest nodeq. That is, the nodeq whose Voronoi cell contains the sampled location
q∗ is taken as the long link partner ofp. If the nodes are not uniformly distributed, the Voronoi
cells have different areas and the nodes are selected with a biased probability. Thus we use von
Neumann’s rejection sampling to ‘smooth out’ the non-uniformity introduced by the variation of
Voronoi cell area. This idea is originally proposed and usedin taking a uniform random sampling
of sensor nodes [Bash et al. 2004; Dimakis et al. 2006] and later adapted to get a similar spatial
sampling [Sarkar et al. 2007].

Incremental routing table construction. The last implementation problem is to discover and store
the routes of the long links selected by the spatial distribution for each node. Notice that here we
have a seemingly chicken-and-egg problem, as route discovery requires a routing algorithm, while

3The geodesic distance between two points in a geometric domain is defined as the Euclidean length of the shortest path
connecting the two points in the domain, avoiding obstacles.
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the routing table construction is to supply such a routing scheme. Here we suggest a heuristic that
finds the routes with bootstrapping and incrementally construct the routes for the long links with
increasing lengths.

Every node first selects their long link partners (in fact, the geographical locations). The routes
for the pairs with shorter distances are constructed first, and the routes for the pairs with lengthk
are discovered with the current routing table information,that is, with the help of the long links with
lengths smaller thank.

The route for a long linkpq is stored on the routing table of the nodes on this path. Specifically,
each routing table entry is a tuple(p, q,Nq), whereNq is the next hop neighbor leading toq. Thus
a node maintains the routes to its long link partners as well as the routes that pass through it.

The simplicity of this scheme also suggests an ‘on-demand’ implementation to improve the basic
routing. That is, when a packet is stuck at a local minimum we will select long links according to
the spatial distribution. Thus routing delivery rate mightbe low or the delay can be long initially
but as the routes for the long links are constructed and recorded the network gradually ‘learns’
and ‘repairs’ the imperfect distance oracle. This heuristic can be used to circumvent the issue of
finding paths without a routing table, but unfortunately in this case, no proofs are known that would
guarantee the stretch bounds shown in the previous sections.

5.2. Landmark-based routing table design

When the location information is not available or when the sensor field is deployed in an envi-
ronment so that the Euclidean distance does not provide a good approximate distance oracle, we
propose a second scheme with landmark-based distances. Specifically, we selectm = O(log2 n)
landmarksℓi uniformly randomly in the sensor network. For example, eachnode proposes to be a
landmark with probabilitylog2 n/n. The landmarks then flood the network and every other node
records the hop count distance to these landmarks. The communication cost for the preprocessing
isO(n log2 n).

Landmark-based distance oracles. Each nodep is given a landmark-based distance vec-
tor, represented by the vector of minimum hop count distanceto all m landmarks,
(σ(p, ℓ1), σ(p, ℓ2), · · · , σ(p, ℓm)). We would like to use the landmark distances to estimate the
hop count distance of any two nodes. In the simulations we used the centered distance measure
proposed in [Fang et al. 2005], which is aℓ2 norm of the centered landmark-based distance vector
(σ(p, ℓ1)

2 −M,σ(p, ℓ2)
2 −M, · · · , σ(p, ℓm)2 −M), whereM =

∑

i σ(p, ℓi)
2/m.

Landmark-based sampling. To build the long links for a nodep, we will use the landmarks to
help with sampling. In particular, we select first randomlyk out of them landmarks. For each
landmarkℓi, we select from the distribution1/(r lnD) (D is the network diameter) a distanceξ. If
ξ ≤ σ(p, ℓi), we take the nodeq along the path fromp to ℓi with distanceξ from p as the long link
partner. Otherwise we drop landmarkℓi. Intuitively, we select along the path fromp to ℓi a nodeq
with the spatial distribution restricted on this path. Since the landmarks are randomly selected, the
probability that a landmarkℓi is at distancer from p is proportional tor. Now the probability that
for each landmarkℓi we can obtain a valid long link is

Prob{ξ < σ(p, ℓi)} =

∫ D

0

∫ ζ

1

1

ξ lnD
dξ

2ζ

D2
dζ = 1− 1

2 lnD
.

Thus in expectation we obtaink(1 − 1
2 lnD ) long links for each node. This means that choosing

m = O(log2 n) landmarks suffices to get enough long links for each node. At last we remark that
although different nodes use the same set of landmarks to create their long links, the theoretical
analysis in the previous section still holds – as the only requirement is that we have a sufficient
number of independent long links for each individual node.

Landmark-based routing tables. With the long links constructed by the landmarks, the routing
table size can be further reduced. In fact, a nodep remembers in its routing table the long link
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partners and their landmark-based addresses. Different from the geographical case, the routes for
the long links are implicitly implied by the landmark distances. The size of the routing table is
thereforeO(log4 n), for O(log2 n) landmarks/long link neighbors, and a storage ofO(log2 n) for
storing the address of each long link neighbor.

5.3. Routing Scheme Implementation

We implemented our routing algorithm for simulations, using both the Euclidean distance oracle and
the landmark based oracle. Each node keeps the routing tableentries for its immediate neighbors, as
well as the long link neighbors it has selected. The routes tothe long link neighbors are stored on the
routing tables of the nodes on the path. When a nodes has a message to be delivered to a destination
t, s will check its routing table to find a next hop nodep. The nodep was selected randomly from
the set of feasible nodes in the forwarding region. Other than this stretch guaranteed strategy, we
also simulated the effects of selecting a long link greedilyfrom the routing table, where thep is the
node in the routing table that is nearest tot according to the oracle. The message may not travel the
entire long link if on a node in the the middle the message findsa closer neighbor to the destination.

The simulations (Figure 4) show that the greedy heuristic performs well in practice. Both schemes
achieve high delivery rate and low stretch. The greedy routing may sometimes have lower delivery
rate, but has better stretch. These results are understandable in the light of the fact that the forwarding
region contains the destination, and a large region in between the source and the destination. Thus,
the link in routing table that reaches closest to the destination is likely to be one in the forwarding
region. Which means, in many cases, this heuristic satisfiesthe conditions of the algorithm, and
because greedy choice is more likely to be nearer the destination than a random choice, it results
in a low stretch. Thus, in simulations, we consider the greedy strategy to be comparable to the
theoretical strategy. This also suggests further study andanalysis of the spatial distribution and
routing table constructions along these lines.

In a real network, there exists the additional problem of howto decide the correct number of long
links or landmarks to create. In a situation where no prior knowledge of the network is available, this
can be done adaptively. For example we start with a small number of landmarks, and monitor the
failure rates of routing requests over a period again. If a certain fraction (say 1% or more) of requests
have failed, we add a few more random landmarks. We do this check after every time period, and
add landmarks unless the failure rate is lower than desired.

6. SIMULATIONS

In this section, we present simulation results to show the performance of the proposed schemes
in practice. We mainly focus on geographic routing table to show the tradeoff of the routing table
size v.s. routing stretch. We also evaluate the performanceof landmark-based scheme on a network
of complex topology, for which landmark-based approximatedistance oracle captures the underly-
ing network connectivity more accurately. We compare our approach with two recently proposed
routing protocols, S4 [Mao et al. 2007] and VRR [Caesar et al.2006], on three important criteria,
i.e., delivery rate, the size of routing table and routing stretch. We also discuss the preprocessing
cost of each scheme. In summary, our approach achieves high delivery rate (above99%) and small
stretch (about1.03) with only a small number of long links, and a small routing table with modest
preprocessing.
Simulation setup. We focus on evaluating the performance of all approaches at the routing layer,
and assume the underlying details (i.e., packet loss and interference) have been handled at MAC
and link layers. This is sufficient for our purpose of verifying the validity of the proposed ideas.
Respecting reality, we adopt a lossy radio model used in the standard simulator TOSSIM [Levis et al.
2003] to determine direct communication links between nodes. The lossy radio model is generated
based on empirical data and specifies the loss rate on the linkbetween a pair of nodes. We only
consider links with sufficient low loss rate and the resultednetwork is not necessarily unit disk
graph, and could have directional links. We run simulationson three topologies. The first is a sparse

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 Rik Sarkar et al.

network with 1000 random distributed nodes – this is representative of a large region monitored by
a few inexpensive sensors. Second, a network with a large hole in the center and third network with
multiple holes (see Figure 3) – these two are representativeof certain urban or sensing environments
that are closely monitored, but contain regions where sensors cannot be deployed. Each simulation
run is repeated 10 times. In each round, we randomly selected10000 pairs of source and destination.
All results are averaged on all pairs.

Fig. 3. Network topologies used in simulations. (i) Topology 1. Random network: 1000 nodes, avg. degree
7.2; (ii) Topology 2. Network with one hole: 2400 nodes, avg.degree 9.5; (iii) Topology 3. Network with
multiple holes: 2000 nodes, avg. degree 10.6.
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Fig. 4. (i) Delivery rate for Topology 2. (ii) Stretch for Topology 2.

6.1. Geographic routing table

We evaluate the performance of our approach with geographicrouting table, as explained in Sec-
tion 5.1.

Delivery rate. To show the effect of long links on the delivery rate, we vary the number of long links
each node maintains from 0 to 16. When the number of long linksis set to 0, the routing protocol
is essentially the geographical greedy routing based on thelocation information within one-hop
neighborhood. Figure 7 (i) shows that greedy routing performs very poorly without long links. The
delivery rate is only around50%, 65% and44% in Topology 1, 2 and 3 respectively. When the
number of long links increases, the delivery rate reaches99% with 6, 8, 7 long links per node in
three different topologies, respectively. The results confirm that a small number of long links are
sufficient and can significantly improve the delivery rate insome typical network topologies. The
delivery rates of S4 and VRR are both 100%. The 1% failed message rate is the cost we pay for the
substantially smaller routing table. Since our scheme behaves similarly in various topologies, in the
rest of this subsection, unless mentioned otherwise, we only present results on Topology 2 due to
space limitation.

We show the preprocessing cost of our scheme with varying number of long links in Figure 7 (iv).
More long links results in higher preprocessing cost and increased delivery rate.
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Routing table size. The size of routing table is measured by the number of entriesin the table.
We compare the average routing table size of our scheme with VRR and S4. For VRR, each node
maintains routes to a set of virtual neighbors on the ID ring.Those virtual neighbors can be viewed
as “long links”. Thus, we show the change of routing table size as the number of long links changes
for both our scheme and VRR in Figure 7(ii). It is easy to see that the size of routing table is
proportional to the number of long links. But our scheme usesmuch smaller routing table than
VRR when maintaining the same number of long links. Our scheme saves routing table size by
taking long links with probability1/r2 rather than the uniform distribution used in VRR. Thus, our
scheme favors relatively shorter links. Figure 6 shows the distribution of the lengths of the long
links in terms of hop counts. In our scheme there are fewer long links, while the distribution in VRR
is more uniform.

Size of routing table Our scheme S4 VRR
Topology 1 26.08 68.83 41.52
Topology 2 39.02 105.85 62.48
Topology 3 37.28 90.62 63.82

Fig. 5. Average size of routing table.

The table in Figure 5 shows the routing table size of three schemes with a set of fixed parameters.
For comparisons, we use 50 landmarks for S4 and each node maintains routes to 4 virtual neighbors
in VRR. We select those parameters since they give the best performance of S4 and VRR in terms
of both routing table size and stretch. For our scheme, we use6, 8, 7 long links in three topologies
respectively to get above99% delivery rate. We use the same set of parameters in other Tables. From
Table 5, S4 requires the largest routing table, since each node needs to maintain routes to roughly
O(

√
n) landmarks andO(

√
n) nodes within its local cluster. Our scheme has the smallest routing

table size, but achieves comparable delivery rate.

Fig. 6. The distribution of long links w.r.t their lengths in hops.

Stretch. Figure 7(iii) shows the average stretch of our scheme and VRRwith varying number of
long links. The stretch of our scheme is always below 1.1 and decreases when the number of long
links increases. With 6 long links, the stretch is only about1.03. With more long links, each node
has more choices when choosing the next hop and can switch to the best direction as soon as it finds
a neighbor or long link closer to the destination. Figure 9 compares the average stretch of three
schemes. It shows that our scheme achieves similar stretch as S4 (but with smaller routing table)
and is much better than VRR.

Diversity of inaccuracy. The inaccuracy of distance oracle is due to diverse disturbances of the
network, like low density of node distribution or holes and obstacles. Here, we study the impact of
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Fig. 7. (i) Delivery rate of geographical routing table with varying number of long links in different network
topologies. (ii)-(iv) Performance of our scheme and VRR in Topology 2. (ii) The average size of routing table.
(iii) Average stretch. (iv) Communication cost in preprocessing stage.
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Fig. 8. Delivery rate for different topologies. (i) Topology 1. (ii) Topology 2. (iii) Topology 3.

Average stretch Our scheme S4 VRR
Topology 1 1.03 1.03 1.73
Topology 2 1.03 1.03 1.80
Topology 3 1.04 1.02 1.75

Fig. 9. Average stretch.

different types of links (relatively short links and long links) on different types of network topolo-
gies. We compare spatial-distribution link selection scheme with other four schemes, i.e., schemes
that only select nodes within5 hops(< 5), within 10 hops(< 10), at least5 hops apart(> 5)
and at least10 hops apart(> 10). From all three figures (Figure 8), we can see that spatial distri-
bution with a mixture of short and long links (blue line) achieves the highest delivery rate for all
topologies. Relatively short links (< 5 hops) works best for Topology 1 compared to the other two
topologies, and the scheme with only links shorter than 10 hops even performs better than other
schemes with relatively longer links, because the local disturbance due to sparsity can be resolved
by short links to close nodes. Longer links (> 10 hops) performs significantly better than pure short
links in Topology 3, since global disturbance (big holes) requires longer links to compensate the
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inaccurate distance measure. Different network topologies may require different types of links, but
the spatial distribution with a mixed set of short and long links gives a generic solution and hides
the diversity of distance inaccuracy, with high delivery rate, small routing table size, low stretch and
cost.

6.2. Landmark-based routing table

We evaluate the performance of the landmark-based routing table (in 5.2) on three topologies, com-
pared with S4, as both use a set of landmarks. The benefits of our scheme are that it incurs much
cheaper preprocessing cost with smaller routing table sizethan S4. Our scheme needs fewer land-
marks (O(log2 n) rather thanO(

√
n) landmarks). Each node only needs to remember the next hop

to each landmark and the sample along the path to that landmark, and does not construct any addi-
tional local routing tables. So the size of the routing tableis exactly the number of landmarks. The
total preprocessing cost is just the message flooding from the landmarks. After that, routes to all
long links are built up automatically.

Simulation results show that 30 landmarks are sufficient to achieve good delivery rate (above
94%) and small stretch (about1.04) in our scheme. In S4, we use 50 landmarks with an average
routing table size of 90.62 to achieve the best stretch and routing table size tradeoff. The routing
table size in our scheme is 30, with the total preprocessing cost only about 1/3 that of S4 on Topology
3.

7. CONCLUSION

We presented in this paper a theory to build a small number of routing links in very general domains.
The method is distributed and uncoordinated, but guarantees global properties such as routing with
low stretch and compact routing tables. The use of spatial distribution ensures that the routing works
well at all scales and distances.

We have presented here implementation details and simulation results for sensor networks, but
we expect the core results to be useful in a wide variety of graphs such as overlays networks.
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