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ABSTRACT Optimization of sensor selection has been studied to monitor complex and large-scale systems
with data-driven linear reduced-order modeling. An algorithm for greedy sensor selection is presented under
the assumption of correlated noise in the sensor signals. A noise model is given using truncated modes
in reduced-order modeling, and sensor positions that are optimal for generalized least squares estimation
are selected. The determinant of the covariance matrix of the estimation error is minimized by efficient
one-rank computations in both underdetermined and overdetermined problems. The present study also
reveals that the objective function with correlated noise is neither submodular nor supermodular. Several
numerical experiments are conducted using randomly generated data and real-world data. The results
show the effectiveness of the selection algorithm in terms of accuracy in the estimation of the states of
large-dimensional measurement data.

INDEX TERMS Greedy algorithm, optimization, sensor selection, correlated measurement noise.

I. INTRODUCTION
Observation is the primal step toward understanding real-
world phenomena. When monitoring quantities that cannot
be observed directly, system representations are constructed
for describing the dynamical behavior of the phenomena of
interest as the state space of physical equations including
unknown parameters. Therefore, parameter estimation using
sensor measurements has long attracted attention in many
engineering and scientific applications [1]–[6]. A reduction
in the number of measurements is concurrently demanded for
more practical use, especially under resource constraints on
sensors and communication energy, or for processing mea-
surements in real time. Optimization problems are presented
here using metrics defined for sensor locations. The Fisher
information matrix is a well-used metric for the assessment
of uncertainty in parameter estimation, as this optimization
task is closely related to the experimental designs [7]–[9].
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The theory of information and statistics are also informative
criteria for the optimization task [10]–[14].

Sensor placement based on the physical equations has
been adopted in the reconstruction of physical fields, such
as sound or seismic wave distribution [15]–[17]. With a
similar formulation of the placement, sensor selection has
been conducted by choosing the best subset of sensor nodes
in the context of network monitoring and target tracking
[18], [19]. Recently, advances in data-driven techniques
enable us to obtain a system representation from astonish-
ingly high dimensional monitoring data for complex phenom-
ena, with sensor nodes defined by each sampling point in
the data [20]–[26]. Spatiotemporal correlations betweenmea-
surements at sensor nodes are here represented as a superposi-
tion of a limited number of bases, sometimeswith impositions
of a physical structure or robustness to the system [27]–[30].
The use of optimized measurement has been accelerating
the applications of data-driven modeling in several engi-
neering fields such as face recognition [31], inbetweening
of non-time-resoloved data [32], noise reduction [33], state
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estimation for air flow [34], wind orientation detection for
vehicles [35], and source localization [36].

The main challenge of such optimization problems is
intractability, where the problems are often classified as being
nondeterministic polynomial-time hard. Therefore, heuristics
to find suboptimal solutions have been intensely discussed.
For example, the selection problem is solved by the linear
convex relaxation methods [37]–[39] or by using proximal
gradient methods [40], [41]. The submodularity property
in these optimization problems also encourages the use of
greedy algorithms [42]–[48]. Some recent studies attempt to
improve the performance of greedy algorithms by grouping
and multiobejective strategies, which considers multiple sen-
sor subsets simultaneously [49]–[51].

Despite these established methodologies, considering the
complex structure of measurement noise still remains a great
challenge for the sensor selection problem, as treated in recent
studies [52]–[55]. The discrepancy between measurements
and the model should be surely considered as spatially cor-
related measurement noise, for example, due to numerical
computation of equations and assumptions in the model-
ing [56], [57], or due to truncation in the model order reduc-
tion [58], [59]. These errors cause correlated effects on the
estimation adversely, thus the evaluation of the measurement
noise should be included in the sensor selection objective.
As previously illustrated by Ucinski [60], a sensor selection
problem with continuous relaxation loses convexity when
the noise covariance term is introduced. Liu it et al. [61] put
forward a semidefinite programming for the sensor selection
problem with spatially correlated noise, but the calculation
becomes prohibitive due to the large problem size. The greedy
algorithm introduced in this study smoothly integrates the
noise covariance into the formulation in Saito it et al. [47],
although the loss of submodularity is also confirmed. Another
advantage of greedy methods is to circumvent the rounding
procedures for obtaining sensor positions from a relaxed
solution, which are still an arguable process especially under
the nonconvexity of the optimized objective function.

The objective functions for the greedy selection are derived
in both of the overdetermined and underdetermined settings,
which generalize the previous D-optimality-based formula-
tion [47]. The Fisher information matrix is defined in this
work to evaluate the uncertainty of linear least squares esti-
mation for a static system. The algorithm leverages one-rank
computation for both a sensitivity term for each sensor and a
weighting term for measurement noise. Some of the recent
studies introduced prior distribution for Bayesian estima-
tion [58], [61], maximum a posteriori estimation [62], and
Kalman filtering [63]. Virtually, the hyper parameters in those
distributions must be optimized using some information cri-
teria or cross-validation techniques. The formulation in the
present study excludes a prior distribution, because the opti-
mization for hyperparameters is difficult for high dimensional
data treated in Section III-B. In summary, we herein 1) pro-
pose an optimization problem for greedy sensor selection
generalized for correlated measurement noise, which is easily

extended to various optimality criteria, 2) confirm that the
objective function is neither submodular nor supermodular,
and 3) formulate a fast greedy algorithm that selects sen-
sors optimized for both underdetermined and overdetermined
cases in the weighted linear least squares estimation.

II. FORMULATION AND ALGORITHM
This section describes problem settings for sensor selection
tailored for weighted least squares estimation. Then, algo-
rithms for greedy selection are discussed.

A. SPARSE SENSING
A linear measurement equation for p sensors y ∈ Rp and a
state vector of r components z ∈ Rr is corrupted by Gaussian
noise w ∼ N (0|R) ∈ Rp, which is independent of z,

y = Cz+ w. (1)

We assume that the sensor characteristic C ∈ Rp×r is known
in advance and nonsingular, and the covariance of the mea-
surement noise R ∈ Rp×p is positive definite and symmetric.
An parameter vector z̃ is estimated from Eq. (1):

z̃ =


C>

(
CC>

)−1
y (p ≤ r) (2a)(

C>R−1C
)−1

C>R−1y (p > r), (2b)

Note that Eq. (2a) corresponds to the minimal norm solution
in which the measurement noise is not considered, though
Eq. (2a) is derived from the formulation including mea-
surement noise. On the other hand, Eq. (2b) is a minimum
variance unbiased estimation considering measurement noise
as the generalized least squares estimation [64, Sec. 4.5]. The
present study focuses on the formulation above, excluding
any prior distribution of the state variables.

We also assume a large number of possible measurement
points, e.g., x ∈ Rn (n� r). The linear coefficients and noise
covariance for all of the measurement points are expressed as
U ∈ Rn×r and R ∈ Rn×n, respectively. Actual calculations
for these terms are introduced later herein at Section II-B.
With these notations, the measurement is expressed by substi-
tuting (y, C, R)← (x, U, R). Here, the estimation Eq. (2a)
is redundant if r is small, and thus the reduced measurement
p � n is sufficient in terms of both estimation quality and
calculation efficiency. A sensor indication matrix H(Sp) ∈
Rp×n is defined for a set Sp of p sensor indices selected from
n candidates. The position of unity in the i-th row of H(Sp)
is associated with the i-th component of Sp, whereas the rest
of the row is zero. Measurements and linear coefficients for
the selected sensors are denoted as y(Sp) = H(Sp)x and
C(Sp) = H(Sp)U, respectively. In addition, the covariance
matrix for measurement noise is expressed by R(Sp) =
H(Sp)RH(Sp)>. The argument (Sp) will be denoted as sub-
script ◦Sp for brevity hereinafter.

B. DATA-DRIVEN MODELING
In our implementation, the matrices U and R are generated
by modal decomposition of the collected data matrix, in a
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process known as principal component analysis, or proper
orthogonal decomposition [23], [31]. The collected data X =
[x1, . . . , xm] are assumed to consist of n-point measure-
ments in rows by m instances in columns, where n � m.
X is decomposed by singular value decomposition into m
orthonormal spatial modes UX and temporal modes VX , and
a diagonal matrix of singular values 6X . The approximation
mode number r is chosen to retain the covariance matrix for
the original data matrix at a high rate:

X = UX6XV>X = U6V> + UN6NV>N , (3)

where X,UX ∈ Rn×m and 6X ,VX ∈ Rm×m, and U ∈ Rn×r ,
6 ∈ Rr×r andV ∈ Rm×r , respectively. Here, the second term
with the subscript ◦N on the right-hand side is the portion that
is excluded from r rank representation and thus is regarded as
the measurement noise. The i-th column of 6V> and HSpX
are the variable vector and the measurement in Eq. (1) for the
i-th instance, respectively. Thus, one can immediately recover
the low rank representation of the large-scale measurement as
x̃ = Uz̃ by obtaining an estimation z̃ [31]. With respect toR,
several approaches are capable of expressing the statistical
behavior of the residual between the measurement and the
reduced order model, X − U6V>, which are exemplified
by kernel functions used in signal processing or data-driven
modeling in Ref. [58, Sec. 2]. By taking the expectation
R = E

[
ww>

]
, the model of noise in the latter manner is

denoted as R = UN6
2
NV
>
N of Eq. (3), which is used in

Section III. Section I shows how the data-driven design of the
measurement noise covariance is affected in the standpoint of
the correlation and amount of training data.

C. OBJECTIVE FUNCTION FOR SENSOR SELECTION
Several criteria for sensor selection are available for scalar
evaluation of the measurement design, like D-, E- or
A-optimality mentioned in [65]. The performances for D-,
E- and A-optimality criteria were previously compared for
sensor sets obtained by greedy sensor selection methods
suited for these criteria [66]. Sensor selection based on the
D-optimality criterion performed well in both of the com-
putational time and the values of other criteria, thus being
adopted in the present study. Note that the efficient imple-
mentation shown in Section II-D can easily be extended to the
A-optimality settings.

Geometrically, this optimization corresponds to the mini-
mization of the volume of an ellipsoid, which represents the
expected estimation error variance [37]:

argminSp det
(
E
[(
z− z̃

) (
z− z̃

)>])
, (4)

where the operator E [◦] means taking the expected value
of the argument. Furthermore, this matrix is known to cor-
respond to the inverse of the Fisher information matrix.
This equality is easily confirmed under the assumption of
Gaussian measurement noise, by differentiating by z a log
likelihood, L = −(y − CSp z̃)R

−1(y − CSp z̃) + const., then
substituting estimation given by Eq.(2b). The optimization

returns the set of measurement point Sp from all the possible
locations, although this is normally an intractable process.
Instead, a greedy algorithm is employed with objective func-
tions for both p ≤ r and p > r . They are derived by
generalizing the formulation in Ref. [66] for the correlated
measurement noise hereafter. The set of sensors are evalu-
ated only in the observable subspace of R−1/2Sp CSp , since the
measurement system Eq. (1) is underdetermined when p < r .
From Eq. (4), the subspace is separated by the projection z→
ξ = V̂>Cz after singular value decomposition of R−1/2Sp CSp :

E
[(
ξ − ξ̃

) (
ξ − ξ̃

)>]

=

σ
2
n Û
>

C

(
R−1/2Sp CSpC

>

SpR
−1/2
Sp

)−1
ÛC (p ≤ r)

σ 2
n V̂
>

C

(
C>SpR

−1
SpCSp

)−1
V̂C (p > r)

(5)

with some matrices of appropriate dimensions,

R−1/2Sp CSp =


ÛC

[
6̂C 0

] [ V̂1>
C

V̂2>
C

]
(p ≤ r)

[
Û1
C Û2

C

] [ 6̂C

0

]
V̂>C (p > r) .

The evaluation of the error covariance in the observable sub-
space was recently introduced by Nakai et al. [66], and it is
extended to the correlated noise case in the present study for
the first time (to the best of our knowledge). One can use var-
ious metrics for the projected covariance matrix Eq. (5) like
its determinant, trace or minimum eigenvalue, as in Ref. [37]
and [66]. The determinant of the inverse matrices in Eq. (5)
is maximized in the present manuscript: argmaxSp det

(
R−1SpCSpC

>

Sp

)
(p ≤ r) (6a)

argmaxSp det
(
C>SpR

−1
SpCSp

)
(p > r). (6b)

Note that whitening all candidates with R−1 before sensor
selection is based on the assumption of weakly correlated
noise, because R contains noise covariance over sensors
that are not selected as pointed out in [61]. In Section II-D,
an algorithm is presented for achieving Eq. (6a) in a greedy
manner.

D. EFFICIENT GREEDY ALGORITHM
Algorithm 1 shows the procedure implemented in the compu-
tation conducted in Section III, which implicitly exploits the
one-rank determinant lemma as [47], [58], [61]. It is worth
mentioning that the previously presented noise-ignoring algo-
rithm in [47], Algorithm 2, is easily obtained by substituting
an identity matrix intoR.
The equations are converted by the lemma shown later

herein. First, consider an objective function when there are
fewer sensors deployed than the number of state variables
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Algorithm 1 Determinant-Based Greedy Algorithm With
Noise Covariance Matrix (DG/NC)
Input: U ∈ Rn×r , R ∈ Rn×n, p > 0
Output: Indices of chosen p sensor positions Sp
Sn← {1, . . . , n} , S0← ∅

for k = 1, . . . , p do
if k ≤ r then
ik = argmax

i∈Sn \Sk−1
det(R−1Sk−1∪ iCSk−1∪ iC

>

Sk−1∪ i)

. . . [Eq. (8)]
else
ik = argmax

i∈Sn \Sk−1
det(C>Sk−1∪ iR

−1
Sk−1∪ iCSk−1∪ i)

. . . [Eq. (9)]
end if
Sk ← Sk−1 ∪ ik

end for

Algorithm 2 Determinant-Based Greedy Algorithm
(DG) [47]
Input: U ∈ Rn×r , p > 0
Output: Indices of chosen p sensor positions Sp
Sn← {1, . . . , n} , S0← ∅

for k = 1, . . . , p do
if k ≤ r then
ik = argmax

i∈Sn \Sk−1
det(CSk−1∪ iC

>

Sk−1∪ i)

else
ik = argmax

i∈Sn \Sk−1
det(C>Sk−1∪ iCSk−1∪ i)

end if
Sk ← Sk−1 ∪ ik

end for

(p ≤ r):

det
(
R−1Sk−1∪ iCSk−1∪ iC

>

Sk−1∪ i

)
= det

(
R−1Sk−1∪ i

)
det

(
CSk−1∪ iC

>

Sk−1∪ i

)

=

(
uiuTi − uiCT

Sk−1

(
CSk−1C

T
Sk−1

)−1
CSk−1u

T
i

)
(
ti − sk(i)R−1Sk−1s

T
k(i)

)
det

[(
R−1Sk−1CSk−1C

T
Sk−1

)−1] ,
(7)

where the subscript k(i) represents the component produced
by the i-th sensor candidate in the k-th step:

CSk−1∪ i =

(
CSk−1
ui

)
,

RSk−1∪ i =

RSk−1 s>k(i)

sk(i) ti

 .
Here, ui is the i-th row of U, and sk(i) and ti are the noise
covariance between the selected sensors given by the pre-
vious steps and the i-th candidate and noise variance for

TABLE 1. Sensor selection algorithms using various optimization metrics.

the i-th candidate, respectively. The algorithm avoids expen-
sive computations involving the determinant by separating
the components of the obtained sensors from the objective
function in the current selection step of Eq. (7):

ik = argmax
i∈Sn \Sk−1

det
(
R−1Sk−1∪ i

)
det

(
CSk−1∪ iC

>

Sk−1∪ i

)

= argmax
i∈Sn \Sk−1

ui

(
I− CT

Sk−1

(
CSk−1C

T
Sk−1

)−1
CSk−1

)
uTi

ti − sk(i)R−1Sk−1s
T
k(i)

,(8)

and then a unit vector eik ∈ R1×n, of which only the ik -th
entry is unity, is added to the k-th row ofH. Note that Eq. (8)
corresponds to maximization of the difference when an arbi-
trary sensor is added to the sensor set of the previous step.
The numerator of Eq. (8) is the `2 norm of the vector, and the
denominator is positive, because the covariance matrixRSk−1
is assumed to be positive definite. Subsequently, the objective
function is modified for the case in which more sensors than
the number of state variables have already been determined:

ik = argmax
i∈Sn \Sk−1

det
(
C>Sk−1∪ iR

−1
Sk−1∪ iCSk−1∪ i

)

= argmax
i∈Sn \Sk−1

φ(i)

(
C>Sk−1R

−1
Sk−1CSk−1

)−1
φ>(i)

ti − sk(i)R−1Sk−1s
>

k(i)

, (9)

where φ(i) = sk(i)R−1Sk−1CSk−1−ui. Eq. (9) is positive, and the
objective function, Eq. (6b), increases monotonically. Details
of the expansion are found in Ref. [58].

The computational cost of algorithms are listed in Table 1:
The objective function loses submodularity if the measure-

ment noises at different sensor positions are strongly corre-
latedwith each other (or when the off-diagonal components in
R are no smaller than the diagonal components.) The follow-
ing example provides a nonsubmodular and nonsupermodular
case for Eq. (6b). For simplicity, the spatial modes U ∈ R3

and the noise covariance R ∈ R3×3 are set as follows.
Here, the noise components i = 2, 3 are strongly correlated,
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FIGURE 1. Estimation error comparison of two selection algorithms and
two estimation methods, averaging 2,000 tests. (Labels: DG and DG/NC
are the previously presented and the proposed algorithm for sensor
selection, LS and GLS are normal linear least squares estimation and
generalized estimation by considering noise correlation, respectively).

whereas those for i = 1 are relatively independent.

U =

 0.1
1
1

 , R =

 1 −0.1 0.1
−0.1 0.8 0.7
0.1 0.7 2


With these matrices, the values of the determinant function
Eq. (6b) are

f{1,2} − f{1} = 1.2913 > f{1,2,3} − f{1,3} = 0.8038

f{1,3} − f{3} = 0.0025 < f{1,2,3} − f{2,3} = 0.0450,

where fS (S ∈ 2{1,2,3}) refers to the value of the deter-
minant Eq. (6b) for the power sets of selected sensors.
This example immediately shows that the objective func-
tion Eq. (6b) has neither submodularity nor supermodular-
ity, whereas submodularity exists for the case with equally
distributed uncorrelated measurement noise [47]. Thus, the
sensor selection problem Eq. (6) with a greedy method gen-
erally has no performance guarantee based on submodularity
or supermodularity.

III. RESULTS
This section describes some experiments that validate the
algorithm. First, data matrices are constructed from randomly
generated orthonormal bases. The NOAA-SST dataset [67]
shows the results of a practical application.

A. RANDOMLY GENERATED DATA MATRIX
Generalized results are shown in this subsection. The problem
considered here is as follows: a data matrix X is constructed
as X = UX6XV>X , where UX and VX are 5, 000 × 100 and
100 × 100 orthonormal matrices, respectively, generated
from appropriately sized matrices containing numbers from
a standard normal distribution, and 6X is a diagonal matrix
with diag (6X ) =

(
1 0.99 . . . (101− j)/100 . . . 0.01

)
. The

TABLE 2. Description of SST data.

algorithms for the sensor selection treat these matrices after
dividing the first 10 columns as U and V and the remain-
ing columns as UN and VN . Then, the first 10 diagonal
components and the remaining are labeled as 6 and 6N ,
respectively. Note that the measure e in terms of ‘‘recon-
struction error’’ is expressed as e = ‖X− UZ̃‖F/‖X‖F.
Here, the series for the estimation z̃ of Eq. (2a) is con-
catenated as Z̃, and ‖ ◦ ‖F represents the Frobenius norm
of ◦. Figure 1 shows the result of the reconstruction with the
estimate with p sensors and the r dimensional reduced-order
model Eq. (3). Here, DG and DG/NC in the legend refer
to ‘‘determinant-based greedy algorithm’’ in Ref. [47] and
Algorithm 1 considering ‘‘noise covariance’’ in the measure-
ment, respectively, and LS and GLS refer to ‘‘linear least
squares estimation’’ and ‘‘generalized linear least squares
estimation’’ using noise covariance, respectively. Note that
the plots for p ≤ r are calculated by the same estimator
Eq. (2a), and, therefore, the estimations with a small num-
ber of sensors for both GLS and LS are identical for each
selected sensor set. First, the GLS estimation reduces the
reconstruction error in oversampling cases for sensors for
both algorithms. The measurement noise is quite excessive,
and thus, sensors of both selection methods exhibit compa-
rable results for the LS estimation. Second, the more sensors
are deployed, the lower the reduction becomes thanks to the
GLS estimation. This is partly because measurement using
a large number of sensors suppresses outliers resulting from
the correlated measurement noise. If a much larger number
of sensors is available than the number of estimated variables,
the importance of correlation in the measurement noise might
diminish.

B. NOAA-SST
Here, we apply this strategy to pursue sensor selection using
large-dimensional climate data. A brief description of the
NOAA-SST data is given in Table 2.

Similar to Section III-A, orthonormal modes are prepared
by conducting SVD on the data matrix with the average being
subtracted, then the first 10 of the 520 modes are used to
build the reduced-order model of the temperature distribution
(r = 10). The remaining modes are used for the noise
covariance matrix. Several sensor positions for which the
noise amplitude is extremely low (smaller than 1% of the
maximum RMS of noise in this comparison) are eliminated
from candidate set Sn beforehand, as conducted in [58].
The results in this section can be compared with those in
Ref. [31], [58], or [47]. In Fig. 2, the positions of sensors
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FIGURE 2. Fifteen sensors for global distribution of sea surface
temperature selected by the greedy algorithms, on color maps of the root
mean square of the estimation error U6V> − Uz̃ using each sensor set.
The sensors of the presented algorithm are distributed and show better
performance.

are represented by open circles on the colored maps, which
illustrate the fluctuation of estimation error using those
sensors, namely U6V> − Uz̃. The difference in the sen-
sor positions is remarkable, since the proposed algorithm
spreads sensors and avoids neighboring sensors that might
be affected by correlated measurement noise. The reduction
in the estimation error is also recognizable by comparing the
backgrounds.

Figure 3 compares the results of estimation using the noise
covariance information. Note that cross-validation is not con-
ducted for this comparison, since it is hard to quantify the
estimation error because of the dynamics in SST which is
partly extracted by the reduced order modeling. In Section I,
the covariance matrix of measurement noise is characterized
by the number of snapshots to form the noise covariance
matrix. A horizontal broken line in Fig. 3 shows the modeling
error due to the low-rank representation of Eq. (3). The red
plots show better performance for sensors using the proposed
algorithm than those using the previous DG algorithm [47]
owing to the noise covariance matrix in the sensor selection
procedure. There are several differences in the trend of plots
compared to Fig. 1, e.g. the contribution from sensors of the
proposed algorithm is more significant than that for the GLS
estimation. This is perhaps because of the weak amplitude
of higher ordered modes in addition to the similarity in the
location where the reduced-order phenomena and the mea-
surement noise fluctuates greatly. The proposed algorithm

FIGURE 3. Estimation error comparison of two selection algorithms and
two estimation methods for NOAA-SST data:. (Labels: DG and DG/NC are
the previously presented and the proposed algorithm for sensor
selection, LS and GLS are normal linear least squares estimation and
generalized estimation by considering noise correlation, respectively.

that involves noise covariance evaluates the positions with
less measurement noise. Therefore, accurate estimation is
achieved even with linear least squares estimation, which
contrasts with the errors of sensors of DG algorithm staying
relatively high.

IV. CONCLUSION
A greedy algorithm for sensor selection for generalized least
squares estimation is presented. A covariance matrix gener-
ated by truncatedmodes in reduced-order modeling is applied
and a weighting matrix is built for the estimation. A special-
ized one-rank lemma involving the covariance matrix realizes
a simple transformation from the true optimization into a
series of a greedy scalar evaluation. In addition, the objective
function is shown to be neither submodular nor supermodular.
Numerical tests using two kinds of datasets are performed to
assess the proposed determinant-based optimization method.
The proposed algorithm gives less noisy sensors and
results in stable estimation in the presence of measure-
ment noise from truncated modes of the reduced-order
modeling.

APPENDIX I. DATA-DRIVEN NOISE CORRELATION IN
REAL-WORLD DATA
In this section, some numerical experiments are conducted
and the data dependency of the data-driven modeling
of the measurement noise are explored. Mainly impact
of the number of the used snapshots is investigated in
this section. Here, six-fold cross-validation is applied to
624 snapshots of the same NOAA-SST data used in
Section III-B.

The procedure is summarized as follows:
1) Save 624 snapshots in the memory of computer
2) Calculate reduced order representation U by Eq. (3)
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FIGURE 4. Comparison of estimation error for NOAA-SST data using
15 sensors determined: least squares estimation and generalized
estimation with noise considered sensors using different number of
snapshots. (Circle: average of cross-validation and 50 times resampling;
Error bars: maximum and minimum).

3) Randomize the order of the snapshots and divide into
six parts

4) Sample the predetermined number of snapshots ran-
domly from 520 snapshots labeled as ‘‘training’’ then
calculate R

5) Determine 15 sensor positions using U andR
6) Reconstruct all-points measurement of 104 snap-

shots labeled as ‘‘test’’ using determined sensors and
corresponding R

7) Store reconstruction error
8) Resample snapshots for calculatingR, then repeat from

item 4 to item 6 for 50 times
9) Change ‘‘training’’ and ‘‘test’’, then repeat from item 4

to item 8
Here, the low-rank representation is fixed for all of the sam-
pling cases, and the change in the reduced order represen-
tation U which reflects temperature dynamics is excluded.
An evaluation of the quality including the reduced order
model needs more profound discussion, and thus, this topic
remains to be solved. Calculation of noise correlation matrix
in item 4 above is carried out by taking R := XNX>N , where
XN =

(
I− UU>

)
X with some notations in Sections II-A

and II-B.
In Fig. 4, the result is summarized by the average, max-

imum, and minimum of the reconstruction error with the
abscissa of the number of snapshots used as training data.
Among the two horizontal broken lines, the top one cor-
responds to the average of the reconstruction error of six
divided snapshots by the previous approach that only uses U,
and the bottom to the modeling error by approximating origi-
nal snapshots by r = 10 modes. The lack of the training data
for calculating R influences the reconstruction at 20 snap-
shots, possibly since the weighting term using measurement
noise is not captured well. The presented method, however,

results in better performance than the previous approach as
the number of snapshots in the training data increases. For the
further reduction in the reconstruction error, it seems effective
to increase the number of sensors (as shown in Section III),
or consider the dynamics of the measured phenomena to the
estimation if the time-series snapshots are applied.
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