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ABSTRACT
The greedy sequential algorithm for maximal independent set (MIS)
loops over the vertices in an arbitrary order adding a vertex to the
resulting set if and only if no previous neighboring vertex has been
added. In this loop, as in many sequential loops, each iterate will
only depend on a subset of the previous iterates (i.e. knowing that
any one of a vertex’s previous neighbors is in the MIS, or know-
ing that it has no previous neighbors, is sufficient to decide its fate
one way or the other). This leads to a dependence structure among
the iterates. If this structure is shallow then running the iterates in
parallel while respecting the dependencies can lead to an efficient
parallel implementation mimicking the sequential algorithm.

In this paper, we show that for any graph, and for a random order-
ing of the vertices, the dependence length of the sequential greedy
MIS algorithm is polylogarithmic (O(log2 n) with high probabil-
ity). Our results extend previous results that show polylogarithmic
bounds only for random graphs. We show similar results for greedy
maximal matching (MM). For both problems we describe simple
linear-work parallel algorithms based on the approach. The algo-
rithms allow for a smooth tradeoff between more parallelism and
reduced work, but always return the same result as the sequential
greedy algorithms. We present experimental results that demon-
strate efficiency and the tradeoff between work and parallelism.

Categories and Subject Descriptors: F.2 [Analysis of Algorithms
and Problem Complexity]: General

Keywords: Parallel algorithms, maximal independent set, maximal
matching

1. INTRODUCTION
The maximal independent set (MIS) problem is given an undi-
rected graph G = (V,E) to return a subset U ⊆ V such that
no vertices in U are neighbors of each other (independent set), and
all vertices in V \ U have a neighbor in U (maximal). The MIS
is a fundamental problem in parallel algorithms with many appli-
cations [17]. For example if the vertices represent tasks and each

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

edge represents the constraint that two tasks cannot run in parallel,
the MIS finds a maximal set of tasks to run in parallel. Parallel al-
gorithms for the problem have been well studied [16, 17, 1, 12, 9,
11, 10, 7, 4]. Luby’s randomized algorithm [17], for example, runs
in O(log |V |) time on O(|E|) processors of a CRCW PRAM and
can be converted to run in linear work. The problem, however, is
that on a modest number of processors it is very hard for these par-
allel algorithms to outperform the very simple and fast sequential
greedy algorithm. Furthermore the parallel algorithms give differ-
ent results than the sequential algorithm. This can be undesirable in
a context where one wants to choose between the algorithms based
on platform but wants deterministic answers.

In this paper we show that, perhaps surprisingly, a trivial paral-
lelization of the sequential greedy algorithm is in fact highly par-
allel (polylogarithmic depth) when the order of vertices is random-
ized. In particular, removing a vertex as soon as an earlier neighbor
is added to the MIS, or adding it to the MIS as soon as no earlier
neighbors remain gives a parallel linear-work algorithm. The MIS
returned by the sequential greedy algorithm, and hence also its par-
allelization, is referred to as the lexicographically first MIS [6].
In a general undirected graph and an arbitrary ordering, the prob-
lem of finding a lexicographically first MIS is P-complete [6, 13],
meaning that it is unlikely that any efficient low-depth parallel al-
gorithm exists for this problem.1 Moreover, it is even P-complete
to approximate the size of the lexicographically first MIS [13]. Our
results show that for any graph and for the vast majority of order-
ings the lexicographically first MIS has polylogarithmic depth.

Beyond theoretical interest the result has important practical im-
plications. Firstly it allows for a very simple and efficient parallel
implementation of MIS that can trade off work with depth. Given
an ordering of the vertices each step of the implementation pro-
cesses a prefix of the vertices in parallel, instead of processing all
vertices. Using smaller prefixes reduces parallelism but also re-
duces redundant work. In the limit, a prefix of size one yields the
sequential algorithm with no redundant work. We show that for
appropriately sized prefixes the algorithm does linear work and has
polylogarithmic depth. The second implication is that once an or-
dering is fixed, the approach guarantees the same result whether
run in parallel or sequentially or, in fact, run using any schedule of
the iterations that respects the dependences. Such determinism can
be an important property of parallel algorithms [3, 2].

Our results generalize the work of Coppersmith et al. [7] (CRT)
and Calkin and Frieze [4] (CF). CRT provide a greedy parallel algo-
rithm for finding a lexicographically first MIS for a random graph
Gn,p, 0 ≤ p ≤ 1, where there are n vertices and the probabil-
1Cook [6] shows this for the problem of finding the lexicographically first
maximal clique, which is equivalent to finding the MIS on the complement
graph.



ity that an edge exists between any two vertices is p. It runs in
O(log2 n/ log logn) expected depth on a linear number of proces-
sors. CF give a tighter analysis showing that this algorithm runs in
O(logn) expected depth. They rely heavily on the fact that edges
in a random graph are uncorrelated, which is not the case for gen-
eral graphs, and hence their results do not extend to our context.
We however use a similar approach of analyzing prefixes of the
sequential ordering.

The maximal matching (MM) problem is given an undirected
graph G = (V,E) to return a subset E′ ⊆ E such that no edges
in E′ share an endpoint, and all edges in E \ E′ have a neigh-
boring edge in E′. The MM of G can be solved by finding an
MIS of its line graph (the graph representing adjacencies of edges
in G), but the line graph can be asymptotically larger than G. In-
stead, the efficient (linear time) sequential greedy algorithm goes
through the edges in an arbitrary order adding an edge if no ad-
jacent edge has already been added. As with MIS this algorithm
is naturally parallelized by adding in parallel all edges that have
no earlier neighboring edges. Our results for MIS directly imply
that this algorithm has polylogarithmic depth for random edge or-
derings with high probability. We also show that with appropriate
prefix sizes the algorithm does linear work. Previous results have
shown polylogarithmic depth and linear-work algorithms for the
MM problem [15, 14] but as with MIS, our approach returns the
same result as the sequential algorithm and leads to very efficient
code.

We implemented versions of our algorithms as well as Luby’s
algorithm and ran experiments on a parallel shared-memory ma-
chine with 32 cores. Our experiments show that achieving work-
efficiency is indeed important for good performance, and more specif-
ically show how the choice of prefix size affects total work per-
formed, parallelism, and overall running time. With a careful choice
of prefix size, our algorithms achieve good speed-up (9–23x on 32
cores) and require only a modest number of processors to outper-
form optimized sequential implementations. Our efficient imple-
mentation of Luby’s algorithm requires many more processors to
outperform its sequential counterpart. On large input graphs, our
prefix-based MIS algorithm is 3–8 times faster than our optimized
implementation of Luby’s algorithm, since our prefix-based algo-
rithm performs less work in practice.

2. NOTATION AND PRELIMINARIES
Throughout the paper, we use n and m to refer to the number of
vertices and edges, respectively, in the graph. For a graph G =
(V,E) we use N(V ) to denote the set of all neighbors of vertices
in V , and N(E) to denote the neighboring edges of E (ones that
share a vertex). A maximal independent set U ⊂ V is thus one
that satisfies N(U) ∩ U = ∅ and N(U) ∪ U = V , and a maximal
matching E′ is one that satisfies N(E′) ∩ E′ = ∅ and N(E′) ∪
E′ = E. We use N(v) as a shorthand for N({v}) when v is a
single vertex. We useG[U ] to denote the vertex-induced subgraph
of G by vertex set U , i.e., G[U ] contains all vertices in U along
with edges of G with both endpoints in U . We use G[E′] to denote
the edge-induced subgraph of G, i.e., G[E′] contains all edges E′

along with the incident vertices of G.
In this paper, we use the concurrent-read concurrent-write (CRCW)

parallel random access machine (PRAM) model for analyzing al-
gorithms. We assume both the arbitrary and priority write versions,
where a priority write here means that the minimum (or maximum)
value written concurrently is recorded. Our results are stated in the
work-depth model where work is equal to the number of operations
(equivalently the product of the time and processors) and depth is
equal to the number of time steps.

3. MAXIMAL INDEPENDENT SET
The sequential algorithm for computing the MIS of a graph is a sim-
ple greedy algorithm, shown in Algorithm 1. In addition to a graph
G the algorithm takes an arbitrary total ordering on the vertices π.
We also refer to π as priorities on the vertices. The algorithm adds
the first remaining vertex v according to π to the MIS and then re-
moves v and all of v’s neighbors from the graph, repeating until the
graph is empty. The MIS returned by this sequential algorithm is
defined as the lexicographically first MIS for G according to π.

Algorithm 1 Sequential greedy algorithm for MIS
1: procedure SEQUENTIALGREEDYMIS(G = (V,E), π)
2: if |V | = 0 then return ∅
3: else
4: let v be the first vertex in V by the ordering π
5: V ′ = V \ (v ∪N(v))
6: return v ∪ SEQUENTIALGREEDYMIS(G[V ′], π)

Algorithm 2 Parallel greedy algorithm for MIS
1: procedure PARALLELGREEDYMIS(G = (V,E), π)
2: if |V | = 0 then return ∅
3: else
4: let W be the set of vertices in V with no earlier
5: neighbors (based on π)
6: V ′ = V \ (W ∪N(W ))
7: return W ∪ PARALLELGREEDYMIS(G[V ′], π)

By allowing vertices to be added to the MIS as soon as they have
no higher-priority neighbor, we get the parallel Algorithm 2. It
is not difficult to see that this algorithm returns the same MIS as
the sequential algorithm. A simple proof proceeds by induction on
vertices in order. (A vertex v may only be resolved when all of its
earlier neighbors have been classified. If its earlier neighbors match
the sequential algorithm, then it does too.) Naturally, the parallel
algorithm may (and should, if there is to be any speedup) accept
some vertices into the MIS at an earlier time than the sequential
algorithm, but the final set produced is the same.

We also note that if Algorithm 2 regenerates the ordering π ran-
domly on each recursive call then the algorithm is effectively the
same as Luby’s Algorithm A [17]. It is the fact that we use a single
permutation throughout that makes Algorithm 2 more difficult to
analyze.

The priority DAG

A perhaps more intuitive way to view this algorithm is in terms of
a directed acyclic graph (DAG) over the input vertices where edges
are directed from higher priority to lower priority endpoints based
on π. We call this DAG the priority DAG. We refer to each re-
cursive call of Algorithm 2 as a step. Each step adds the roots2 of
the priority DAG to the MIS and removes them and their children
from the priority DAG. This process continues until no vertices re-
main. We define the number of iterations to remove all vertices
from the priority DAG (equivalently, the number of recursive calls
in Algorithm 2) as its dependence length. The dependence length
is upper bounded by the longest directed path in the priority DAG,
but in general could be significantly less. Indeed for a complete
graph the longest directed path in the priority DAG is Ω(n), but the
dependence length is O(1).
2We use the term “root” to refer to those nodes in a DAG with no incoming
edges.



The main goal of this section is to show that the dependence
length is polylogarithmic for most orderings π. Instead of arguing
this fact directly, we consider priority DAGs induced by subsets of
vertices and show that these have small longest paths and hence
small dependence length. Aggregating across all sub-DAGs gives
an upper bound on the total dependence length.

Analysis via a modified parallel algorithm

Analyzing the depth of Algorithm 2 directly seems difficult as once
some vertices are removed, the ordering among the set of remaining
vertices may not be uniformly random. Rather than analyzing the
algorithm directly, we preserve sufficient independence over prior-
ities by adopting an analysis framework similar to [7, 4]. Specif-
ically, for the purpose of analysis, we consider a more restricted,
less parallel algorithm given by Algorithm 3.

Algorithm 3 Modified parallel greedy algorithm for MIS
1: procedure MODIFIEDPARALLELMIS(G = (V,E), π)
2: if |V | = 0 then return ∅
3: else
4: choose prefix-size parameter δ
5: let P = P (V, π, δ) be the vertices in the prefix
6: W = PARALLELGREEDYMIS(G[P ], π)
7: V ′ = V \ (P ∪N(W ))
8: return W ∪ MODIFIEDPARALLELMIS(G[V ′], π)

Algorithm 3 differs from Algorithm 2 in that it considers only
a prefix of the remaining vertices rather than considering all ver-
tices in parallel. This modification may cause some vertices to be
processed later than they would in Algorithm 2, which can only
increase the total number of steps of the algorithm when the steps
are summed across all calls to Algorithm 2. We will show that
Algorithm 3 has a polylogarithmic number of steps, and hence Al-
gorithm 2 also does.

We refer to each iteration (recursive call) of Algorithm 3 as a
round. For an ordered set V of vertices and fraction 0 < δ ≤ 1,
we define the δ-prefix of V , denoted by P (V, π, δ), to be the subset
of vertices corresponding to the δ |V | earliest in the ordering π.
During each round, the algorithm selects the δ-prefix of remaining
vertices for some value of δ to be discussed later. An MIS is then
computed on the vertices in the prefix using Algorithm 2, ignoring
the rest of the graph. When the call to Algorithm 2 finishes, all
vertices in the prefix have been processed and either belong to the
MIS or have a neighbor in the MIS. All neighbors of these newly
discovered MIS vertices and their incident edges are removed from
the graph to complete the round.

The advantage of analyzing Algorithm 3 instead of Algorithm 2
is that at the beginning of each round, the ordering among remain-
ing vertices is still uniform, as the removal of a vertex outside of
the prefix is independent of its position (priority) among vertices
outside of the prefix. The goal of the analysis is then to argue that
a) the number of steps in each parallel round is small, and b) the
number of rounds is small. The latter can be accomplished directly
by selecting prefixes that are “large enough,” and constructively us-
ing a small number of rounds. Larger prefixes increase the number
of steps within each round, however, so some care must be taken in
tuning the prefix sizes.

Our analysis assumes that the graph is arbitrary (i.e., adversar-
ial), but that the ordering on vertices is random. In contrast, the
previous analysis in this style [7, 4] assume that the underlying
graph is random, a fact that is exploited to show that the number of
steps within each round is small. Our analysis, on the other hand,

must cope with nonuniformity on the permutations of (sub)prefixes
as the prefix is processed with Algorithm 2.

Reducing vertex degrees

A significant difficulty in analyzing the number of steps of a single
round of Algorithm 3 (i.e., the execution of Algorithm 2 on a prefix)
is that the steps of Algorithm 2 are not independent given a single
random permutation that is not regenerated after each iteration. The
dependence, however, arises partly due to vertices of drastically
different degree, and can be bounded by considering only vertices
of nearly the same degree during each round.

Let ∆ be the a priori maximum degree in the graph. We will
select prefix sizes so that after the ith round, all remaining vertices
have degree at most ∆/2i with high probability3. After log ∆ <
logn rounds, all vertices have degree 0, and thus can be removed
in a single step. Bounding the number of steps in each round to
O(logn) then implies that Algorithm 3 has O(log2 n) total steps,
and hence so does Algorithm 2.

The following lemma and corollary state that after processing the
first Ω(n log(n)/d) vertices, all remaining vertices have degree at
most d.

LEMMA 3.1. Suppose that the ordering on vertices is uniformly
random, and consider the (`/d)-prefix for any positive ` and d ≤
n. If a lexicographically first MIS of the prefix and all of its neigh-
bors are removed from G, then all remaining vertices have degree
at most d with probability at least 1− n/e`.

PROOF. Consider the following sequential process, equivalent
to the sequential Algorithm 1 (in this proof we will refer to a recur-
sive call of Algorithm 1 as a step). The process consists of n`/d
steps. Initially, all vertices are live. Vertices become dead either
when they are added to the MIS or when a neighbor is added to
the MIS. During each step, randomly select a vertex v, without re-
placement. The selected vertex may be live or dead. If v is live, it
has no earlier neighbors in the MIS. Add v to the MIS, after which
v and all of its neighbors become dead. If v is already dead, do
nothing. Since vertices are selected in a random order, this pro-
cess is equivalent to choosing a permutation first then processing
the prefix.

Consider any vertex u not in the prefix. We will show that by the
end of this sequential process, u is unlikely to have more than d live
neighbors. (Specifically, during each step that it has d neighbors,
it is likely to become dead; thus, if it remains live, it is unlikely
to have many neighbors.) Consider the ith step of the sequential
process. If either u is dead or u has fewer than d live neighbors,
then u alone cannot violate the property stated in the lemma. Sup-
pose instead that u has at least d live neighbors. Then the prob-
ability that the ith step selects one of these neighbors is at least
d/(n − i) > d/n. If the live neighbor is selected, that neigh-
bor is added to the MIS and u becomes dead. The probability that
u remains live during this step is thus at most 1 − d/n. Since
each step selects the next vertex uniformly at random, the proba-
bility that no step selects any of the d neighbors of u is at most
(1 − d/n)δn, where δ = `/d. This failure probability is at most
((1− d/n)n/d)` < (1/e)`. Taking a union bound over all vertices
completes the proof.

COROLLARY 3.2. Setting δ = Ω(2i log(n)/∆) for the ith round
of Algorithm 3, all remaining vertices after the ith round have de-
gree at most ∆/2i, with high probability.
3We use “with high probability” (w.h.p.) to mean probability at least 1 −
1/nc for any constant c, affecting the constants in order notation.



PROOF. This follows from Lemma 3.1 with ` = Ω(logn) and
d = ∆/2i.

Bounding the number of steps in each round

To bound the dependence length of each prefix in Algorithm 3, we
compute an upper bound on the length of the longest path in the
priority DAG induced by the prefix, as this path length provides an
upper bound on the dependence length.

The following lemma implies that as long as the prefix is not too
large with respect to the maximum degree in the graph, then the
longest path in the priority DAG of the prefix has length O(logn).

LEMMA 3.3. Suppose that all vertices in a graph have degree
at most d, and consider a randomly ordered δ-prefix. For any ` and
r with ` ≥ r ≥ 1, if δ < r/d, then the longest path in the priority
DAG has length O(`) with probability at least 1− n(r/`)`.

PROOF. Consider an arbitrary set of k positions in the prefix—
there are

(
δn
k

)
of these, where n is the number of vertices in the

graph.4 Label these positions from lowest to highest (x1, . . . , xk).
To have a directed path in these positions, there must be an edge
between xi and xi+1 for 1 ≤ i < k. Having the prefix be ran-
domly ordered is equivalent to first selecting a random vertex for
position x1, then x2, then x3, and so on. The probability of an edge
existing between x1 and x2 is at most d/(n− 1), as x1 has at most
d neighbors and there are n− 1 other vertices remaining to sample
from. The probability of an edge between x2 and x3 then becomes
at most d/(n − 2). (In fact, the numerator should be d − 1 as x2
already has an edge to x1, but rounding up here only weakens the
bound.) In general, the probability of an edge existing between xi
and xi+1 is at most d/(n − i), as xi may have d other neighbors
and n − i nodes remain in the graph. The probability increases
with each edge in the path since once x1, . . . , xi have been fixed,
we may know, for example, that xi has no edges to x1, . . . , xi−2.
Multiplying the k probabilities together gives us the probability of a
directed path from x1 to xk, which we round up to (d/(n−k))k−1.

Taking a union bound over all
(
δn
k

)
sets of k positions (i.e., over

all length-k paths through the prefix) gives us probability at most

(
δn

k

)(
d

n− k

)k−1

≤ n
(
eδn

k

)k (
d

n− k

)k
= n

(
eδnd

k(n− k)

)k
≤ n

(
2eδd

k

)k
Where the last step holds for k ≤ n/2. Setting k = 4e` and
δ < r/d gives a probability of at most n(r/`)` of having a path
of length 4e` or longer. Note that if we have 4e` > n/2, violating
the assumption that k ≤ n/2, then n = O(`), and hence the claim
holds trivially.

COROLLARY 3.4. Suppose that all vertices in a graph have
degree at most d, and consider a randomly ordered prefix. For
an O(log(n)/d)-prefix or smaller, the longest path in the priority
DAG has length O(logn) w.h.p. For a (1/d)-prefix or smaller, the
longest path has length O(logn/ log logn) w.h.p.

PROOF. For the first claim, apply Lemma 3.3 with r = logn
and ` = 4 logn. For the second claim, use r = 1 and ` =
6 logn/ log logn.
4The number of vertices n here refers to those that have not been processed
yet. The bound holds whether or not this number accounts for the fact that
some vertices may be “removed” from the graph out of order, as the n will
cancel with another term that also has the same dependence.

Note that we want our bounds to hold with high probability with
respect to the original graph, so the logn in this corollary should
be treated as a constant across the execution of the algorithm.

Parallel greedy MIS has low dependence length

We now combine the number logn of rounds with the O(logn)
steps per round to prove the following theorem on the number of
steps in Algorithm 2.

THEOREM 3.5. For a random ordering on vertices, where ∆ is
the maximum vertex degree, the dependence length of the priority
DAG is O(log ∆ logn) = O(log2 n) w.h.p. Equivalently, Algo-
rithm 2 requires O(log2 n) iterations w.h.p.

PROOF. We first bound the number of rounds of Algorithm 3,
choosing δ = c2i log(n)/∆ in the ith round, for some constant c
and constant logn (i.e., n here means the original number of ver-
tices). Corollary 3.2 says that with high probability, vertex degrees
decrease in each round. Assuming this event occurs (i.e., vertex
degree is d < ∆/2i), Corollary 3.4 says that with high probabil-
ity, the number of steps per round is O(logn). Taking a union
bound across any of these events failing says that every round de-
creases the degree sufficiently and thus the number of rounds re-
quired is O(logn) w.h.p. We then multiply the number of steps
in each round by the number of rounds to get the theorem bound.
Since Algorithm 3 only delays processing vertices as compared to
Algorithm 2, it follows that this bound on steps also applies to Al-
gorithm 2.

4. LINEAR WORK MIS ALGORITHMS
While Algorithm 2 has low depth a naïve implementation will re-
quire O(m) work on each step to process all edges and vertices
and therefore a total O(m log2 n) work. Here we describe two
linear-work versions. The first is a smarter implementation of Al-
gorithm 2 that directly traverses the priority DAG only doing work
on the roots and their neighbors on each step—and therefore every
edge is only processed once. The algorithm therefore does linear
work and has computation depth that is proportional to the depen-
dence length. The second follows the form of Algorithm 3, only
processing prefixes of appropriate size. It has the advantage that it
is particularly easy to implement. We use this second algorithm for
our experiments.

Linear work through maintaining root sets

The idea of the linear-work implementation of Algorithm 2 is to
explicitly keep on each step of the algorithm the set of roots of the
remaining priority DAG, e.g., as an array. With this set it is easy to
identify the neighbors in parallel and remove them, but it is trickier
to identify the new root set for the next step. One way to iden-
tify them would be to keep a count for each vertex of the number
of neighbors with higher priorities (parents in the priority DAG),
decrement the counts whenever a parent is removed, and add a ver-
tex to the root set when its count goes to zero. The decrement,
however, needs to be done in parallel since many parents might be
removed simultaneously. Such decrementing is hard to do work-
efficiently when only some vertices are being decremented. Instead
we note that the algorithm only needs to identify which vertices
have at least one edge removed on the step and then check each of
these to see if all their edges have been removed. We refer to a mis-
Check on a vertex as the operation of checking if it has any higher
priority neighbors remaining. We assume the neighbors of a vertex
have been pre-partitioned into their parents (higher priorities) and



children (lower priorities), and that edges are deleted lazily—i.e.
deleting a vertex just marks it as deleted without removing it from
the adjacency lists of its neighbors.

LEMMA 4.1. For a graph with m edges and n vertices where
vertices are marked as deleted over time, any set of l misCheck
operations can be done in O(l + m) total work, and any set of
misCheck operations in O(logn) depth.

PROOF. The pointers to parents are kept as an array (with a
pointer to the start of the array). A vertex can be checked by ex-
amining the parents in order. If a parent is marked as deleted we
remove the edge by incrementing the pointer to the array start and
charging the cost to that edge. If it is not, the misCheck completes
and we charge the cost to the check. Therefore the total we charge
across all operations is l + m, each of which does constant work.
Processing the parents in order would require linear depth, so we
instead use a doubling scheme: first examine one parent, then the
next two, then the next four, etc. This completes once we find one
that is not deleted and we charge all work to the previous ones that
were deleted, and the work can be at most twice the number of
deleted edges thus guaranteeing linear work. The doubling scheme
requires O(logn) steps each step requires O(1) depth, hence the
overall depth is O(logn).

LEMMA 4.2. Algorithm 2 can be implemented on a CRCW PRAM
in O(m) total work and O(log3 n) depth w.h.p.

PROOF. The implementation works by keeping the roots in an
array, and on each step marking the roots and its neighbors as
deleted, and then using misCheck on the neighbors’ neighbors to
determine which ones belong in the root array for the next step.
The total number of checks is at most m, so the total work spent
on checks is O(m). After the misCheck’s all vertices with no pre-
vious vertex remaining are added to the root set for the next step.
Some care needs to be taken to avoid duplicates in the root array
since multiple neighbors might check the same vertex. Duplicates
can be avoided, however, by having the neighbor write its identi-
fier into the checked vertex using an arbitrary concurrent write, and
whichever write succeeds is responsible for adding the vertex to
the new root array. Each iteration can be implemented in O(logn)
depth, required for the checks and for packing the successful checks
into a new root set. Multiplying by the O(log2 n) iterations gives
an overall depth ofO(log3 n) w.h.p. Every vertex and its edges are
visited once when removing them, and the total work on checks is
O(m), so the overall work is O(m).

Linear work through smaller prefixes

The naïve algorithm has high work because it processes every ver-
tex and edge in every iteration. Intuitively, if we process small-
enough prefixes (as in Algorithm 3) instead of the entire graph,
there should be less wasted work. Indeed, a prefix of size 1 yields
the sequential algorithm withO(m) work but Ω(n) depth. There is
some tradeoff here—increasing the prefix size increases the work
but also increases the parallelism. This section formalizes this intu-
ition and describes a highly parallel algorithm that has linear work.

To bound the work, we bound the number of edges operated on
while considering a prefix. For any prefix P ⊆ V with respect to
permutation π, we define internal edges of P to be the edges in
the sub-DAG induced by P , i.e., those edges that connect vertices
in P . We call all other edges incident on P external edges. The
internal edges may be processed multiple times, but external edges
are processed only once.

The following lemma states that small prefixes have few internal
edges. We will use this lemma to bound the work incurred by pro-
cessing edges. The important feature to note is that for very small
prefixes, i.e., δ < k/d with k = o(1) and d denoting the maximum
degree in the graph, the number of internal edges in the prefix is
sublinear in the size of the prefix, so we can afford to process those
edges multiple times.

LEMMA 4.3. Suppose that all vertices in a graph have degree
at most d, and consider a randomly ordered δ-prefix P . If δ < k/d,
then the expected number of internal edges in the prefix is at most
O(k |P |).

PROOF. Consider a vertex in P . Each of its neighbors joins the
prefix with probability< k/d, so the expected number of neighbors
is at most k. Summing over all vertices in P gives the bound.

The following related lemma states that for small prefixes, most
vertices have no incoming edges and can be removed immediately.
We will use this lemma to bound the work incurred by processing
vertices, even those that may have already been added to the MIS
or implicitly removed from the graph.

LEMMA 4.4. Suppose that all vertices in a graph have degree
at most d, and consider a randomly ordered δ-prefix P . If δ ≤ k/d,
then the expected number of vertices in P with at least 1 internal
edge is at most O(k |P |).

PROOF. Let XE be the random variable denoting the number
of internal edges in the prefix, and let XV be the random variable
denoting the number of vertices in the prefix with at least 1 internal
edge. Since an edge touches (only) two vertices, we have XV ≤
2XE . It follows that E[XV ] ≤ 2E[XE ], and hence E[XV ] =
O(k |P |) from Lemma 4.3.

The preceding lemmas indicate that small-enough prefixes are
very sparse. Choosing k = 1/ logn, for example, the expected
size of the subgraph induced by a prefix P is O(|P | / logn)), and
hence it can be processed O(logn) times without exceeding linear
work. This fact suggests the following theorem. The implementa-
tion given in the theorem is relatively simple. The prefix sizes can
be determined a priori, and the status of vertices can be updated
lazily (i.e., when the vertex is processed). Moreover, each vertex
and edge is only densely packed into a new array once, with other
operations being done in place on the original vertex list.

THEOREM 4.5. Algorithm 3 can be implemented to run in ex-
pected O(n+m) work and O(log4 n) depth on a common CRCW
PRAM. The depth bound holds w.h.p.

PROOF. This implementation updates vertex status (entering the
MIS or removed due to a neighbor) only when that vertex is part of
a prefix.

Let ∆ be the a priori maximum vertex degree of the graph.
Group the rounds into O(logn) superrounds, with superround i
corresponding to an O(log(n)/d)-prefix where d = ∆/2i. Corol-
lary 3.2 states that all superrounds reduce the maximum degree
sufficiently, w.h.p. This prefix, however, may be too dense, so
we divide each superround into log2 n rounds, each operating on
a O(1/d logn)-prefix P . To implement a round, first process all
external edges of P to remove those vertices with higher-priority
MIS neighbors. Then accept any remaining vertices with no inter-
nal edges into the MIS. These preceding steps are performed on
the original vertex/edge lists, processing edges incident on the pre-
fix a constant number of times. Let P ′ ⊆ P be the set of pre-
fix vertices that remain at this point. Use prefix sums to count



the number of internal edges for each vertex (which can be de-
termined by comparing priorities), and densely pack G[P ′] into
new arrays. This packing has O(logn) depth and linear work. Fi-
nally, process the induced subgraphG[P ′] using a naïve implemen-
tation of Algorithm 2, which has depth O(D) and work equal to
O(|G[P ′]| · D), where D is the dependence length of P ′. From
Corollary 3.4, D = O(logn) with high probability. Combin-
ing this with expected prefix size of E[|G[P ′]|] = O(|P | / logn)
from Lemmas 4.3 and 4.4 yields expected O(|P |) work for pro-
cessing the prefix. Summing across all prefixes implies a total of
O(n) expected work for Algorithm 2 calls plus O(m) work in the
worst case for processing external edges. Multiplying theO(logn)
prefix depth across all O(log3 n) rounds completes the proof for
depth.

5. MAXIMAL MATCHING
One way to implement maximal matching (MM) is to reduce it to
MIS by replacing each edge with a vertex, and creating an edge be-
tween all adjacent edges in the original graph. This reduction, how-
ever, can significantly increase the number of edges in the graph
and therefore may not take work that is linear in the size of the orig-
inal graph. Instead a standard greedy sequential algorithm is used
to process the edges in an arbitrary order and include the edge in the
MM if and only if no neighboring edge on either side has already
been added. As with the vertices in the greedy MIS algorithms,
edges can be processed out of order when they don’t have any ear-
lier neighboring edges. This idea leads to Algorithm 4 where π is
now an ordering of the edges.

Algorithm 4 Parallel greedy algorithm for MM
1: procedure PARALLELGREEDYMM(G = (V,E), π)
2: if |E| = 0 then return ∅
3: else
4: let W be the set of edges in E with no adjacent
5: edges with higher priority by π
6: E′ = E \ (W ∪N(W ))
7: return W ∪ PARALLELGREEDYMM(G[E′], π)

LEMMA 5.1. For a random ordering on edges, the number of
rounds of Algorithm 4 is O(log2m) w.h.p.

PROOF. This follows directly from the reduction to MIS de-
scribed above. In particular an edge is added or deleted in Algo-
rithm 4 exactly on the same step it would be for the corresponding
MIS graph in Algorithm 2. Therefore Lemma 3.5 applies.

As we did for MIS in the previous section, we now describe two
linear-work algorithms for maximal matching, the first of which
maintains the set of roots in the priority DAG and the second of
which processes prefixes of the vertices in priority order. The sec-
ond algorithm is easier to implement and is the version we used for
our experiments.

Linear work through maintaining root sets

As with the algorithm used in Lemma 4.2 we can maintain on each
round an array of roots (edges that have no neighboring edges with
higher priority) and use them to both delete edges and generate the
root set for the next round. However, we cannot afford to look at all
the neighbors’ neighbors. Instead we maintain for each vertex an
array of its incident edges sorted by priority. This list is maintained
lazily such that deleting an edge only marks it as deleted and does

not immediately remove it from its two incident vertices. We say an
edge is ready if it has no remaining neighboring edges with higher
priority. We use an mmCheck procedure on a vertex to determine
if any incident edge is ready and identify the edge if so—a vertex
can have at most one ready incident edge. The mmChecks do not
happen in parallel with edge deletions.

LEMMA 5.2. For a graph with m edges and n vertices where
edges are marked as deleted over time, any set of l mmCheck oper-
ations can be done inO(l+m) total work, and any set of mmCheck
operations in O(logm) depth.

PROOF. The mmCheck is partitioned into two phases. The first
identifies the highest priority incident edge that remains, and the
second checks if that edge is also the highest priority on its other
endpoint and returns it if so. The first phase can be done by scan-
ning the edges in priority order removing those that have been
deleted and stopping when the first non-deleted edge is found. As in
Lemma 4.1 this can be done in parallel using doubling inO(logm)
depth, and the work can be charged either to a deleted edge, which
is removed, or the check itself. The total work is therefore O(l +
m). The second phase can similarly use doubling to see if the high-
est priority edge is also the highest priority on the other side.

LEMMA 5.3. For a random ordering on the edges, Algorithm 4
can be implemented on a CRCW PRAM in O(m) total work and
O(log3m) depth with high probability.

PROOF. Since the edge priorities are selected at random, the ini-
tial sort to order the edges incident on each vertex can be done in
O(m) work and within our depth bounds w.h.p. using bucket sort-
ing [8]. Initially the set of ready edges are selected by using an
mmCheck on all edges. On each step of Algorithm 4 we delete the
set of ready edges and their neighbors (by marking them), and then
check all vertices incident on the far end of each of the deleted
neighboring edges. This returns the new set of ready edges in
O(logm) depth. Redundant edges can easily be removed. Thus
the depth per step is O(logm) and by Lemma 5.1 the total depth
is O(log3m). Every edge is deleted once and the total number of
checks is O(m), so the total work is O(m).

Linear work through prefixes

Algorithm 5 is the prefix-based algorithm for maximal matching
(the analogue of Algorithm 3). To obtain a linear-work maximal
matching algorithm, we use Algorithm 5 with a prefix-size param-
eter δ = 1/de, where de is the maximum number of neighboring
edges any edge in G has. Each call to Algorithm 4 in line 6 of Al-
gorithm 5 proceeds in steps. We assume the edges are pre-sorted
by priority (for random priorities they can be sorted in linear work
and within our depth bounds with bucket sorting [8]).

Algorithm 5 Modified parallel greedy algorithm for MM
1: procedure MODIFIEDPARALLELMM(G = (V,E), π)
2: if |V | = 0 then return ∅
3: else
4: choose prefix-size parameter δ
5: let P = P (E, π, δ) be the edges in the prefix
6: W = PARALLELGREEDYMM(G[P ], π)
7: E′ = E \ (P ∪N(W ))
8: return W ∪ MODIFIEDPARALLELMM(G[E′], π)

In each step, first every edge in the prefix does a priority write
to its two endpoints (attempting to record its rank in the permuta-
tion), and after all writes are performed, every edge checks whether



0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

Prefix size ( x 10
7
 )

T
o

ta
l 
w

o
rk

 (
 x

 1
07

 )

(a) Total work done vs. prefix size on rg

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Prefix size

N
u

m
b

e
r 

o
f 

ro
u

n
d

s

(b) Number of rounds vs. prefix size on rg in log-
log scale

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

Prefix size

R
u

n
n

in
g

 t
im

e
 (

s
e

c
o

n
d

s
)

(c) Running time (32 processors) vs. prefix size
on rg in log-log scale
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(f) Running time (32 processors) vs. prefix size on
rMat in log-log scale

Figure 1. Plots showing the tradeoff between various properties and the prefix size in maximal independent set.

it won on (its value was written to) both endpoints. Since edges are
sorted by priority the highest priority edge incident on each vertex
wins. If an edge wins on both sides, then it adds itself to the maxi-
mal matching and deletes all of its neighboring edges (by packing).
Each edge does constant work per step for writing and checking.
The packing takes work proportional to the remaining size of the
prefix. It remains to show that the expected number of times an
edge in the prefix is processed is constant.

Consider the priority DAG on the δ-prefix off E, where a node
in the priority DAG corresponds to an edge in G, and a directed
edge exists in the priority DAG from Ei to Ej if and only if Ei is
adjacent to Ej inG and Ei has a higher priority than Ej . Note that
this priority DAG is not explicitly constructed. Define the height
of a node ve in the priority DAG to be the length of the longest
incoming path to ve. The height of ve is an upper bound on the
number of iterations of processing the priority DAG required until
ve is either added to the MM or deleted.

THEOREM 5.4. For a (1/de)-prefix, the expected height of any
node (corresponding to an edge in G) in the priority DAG is O(1).

PROOF. For a given node ve, we compute the expected length
of a directed path ending at ve. For there to be a length k path to ve,
there must be k positions p1, . . . , pk (listed in priority order) before
ve’s position, pe, in the prefix such that there exists a directed edge
from pk to pe and for all 1 < i < k, a directed edge from pi
to pi+1. Using an argument similar to the one used in the proof
of Lemma 3.3, the probability of this particular path existing is at
most (de/(m−k))k. The number of positions appearing before pe

in the prefix is at most the size of the prefix itself. So summing over
all possible choices of k positions, we have that the probability of
a directed path from the root to some node being length k is(

δm

k

)
(de/(m− k))k ≤ (me/kde)

k(de/(m− k))k

≤ (me/k(m− k))k

Now we compute the expected length of a path from the root
node by summing over all possible lengths. This expectation is
upper bounded by

δm∑
k=1

k(me/k(m− k))k

≤

m/2∑
k=0

k(me/k(m−m/2))k

+mPr(k > m/2)

≤

[
∞∑
k=0

k(2e/k)k
]

+ o(1)

= O(1)

To obtain the last inequality we apply Lemma 3.3, givingPr(k >
m/2) = O(1/mc) for c > 1. We then obtain the desired bound
by using the formula

∑∞
k=0 k(xk)/k! = xex.

LEMMA 5.5. Given a graph with m edges, n vertices, and a
random permutation on the edges π, Algorithm 5 can be imple-
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Figure 2. Plots showing the tradeoff between various properties and the prefix size in maximal matching.

mented on a CRCW PRAM using a priority write in O(m) total
work in expectation and O(log4m/ log logm) depth w.h.p.

PROOF. As in the proof of Theorem 4.5, group the rounds into
O(logm) superrounds. Here we divide each superround into just
logm rounds, each operating on a O(1/de)-prefix. It follows from
Lemma 3.1 that the algorithm has O(log2m) rounds w.h.p, as de
decreases by a constant factor in each superround. In each round,
each step of Algorithm 4 processes the top level (root nodes) of the
priority DAG. Once an edge gets processed as a root of the priority
DAG or gets deleted by another edge, it will not be processed again
in the algorithm. Since the expected height of an edge in the prior-
ity DAG is O(1), it will be processed a constant number of times
in expectation (each time doing a constant amount of work), and
contributes a constant amount of work to the packing cost. Hence
the total work is linear in expectation.

For a given round, the packing per step requiresO(log |P |) depth
where |P | is the remaining size of the prefix. By Corollary 3.4,
there are at mostO(logm/ log logm) steps w.h.p. Therefore, each
round requires O(log2m/ log logm) depth and the algorithm has
an overall depth of O(log4m/ log logm) w.h.p.

6. EXPERIMENTS
We performed experiments of our algorithms using varying prefix
sizes, and show how prefix size affects work, parallelism, and over-
all running time. We also compare the performance of our prefix-
based algorithms with sequential implementations and additionally
for MIS we compare with our implementation of Luby’s algorithm.

Setup. We ran our experiments on a 32-core (hyperthreaded)
machine with 4 × 2.26GHZ Intel 8-core X7560 Nehalem Proces-
sors, a 1066MHz bus, and 64GB of main memory. The parallel
programs were compiled using the cilk++ compiler (build 8503)
with the -O2 flag. The sequential programs were compiled using
g++ 4.4.1 with the -O2 flag. For each prefix size, thread count and
input, the reported time is the median time over three trials.

Input Graph Size
Random local graph (rg) n = 107, m = 5× 107

rMat graph (rMat) n = 224, m = 5× 107

3D grid (3D) n = 107, m = 2× 107

Table 1. Input Graphs

Inputs. Our input graphs and their sizes are listed in Table 1.
The random local graph was generated such that probability of an
edge existing between two vertices is inversely proportional to their
distance in the vertex array. The rMat graph has a power-law dis-
tribution of degrees and was generated according to the procedure
described in [5], with parameters a = 0.5, b = 0.1, c = 0.1 and
d = 0.3. The 3D grid graph consists of vertices on a grid in a
3-dimensional space, where each vertex has edges to its 6 nearest
neighbors (2 in each dimension).

Implementation. Our implementation of the prefix-based MIS
and MM algorithms differ slightly from the ones with good theo-
retical guarantees described in the previous sections, but we found
that these implementations work better in practice. Firstly, our pre-
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Figure 3. Plots showing the running time vs. number of threads for the different MIS algorithms on a 32-core machine (with hyper-threading).
For the prefix-based algorithm, we used a prefix size of n/50.

fix size is fixed throughout the algorithm. Secondly, we do not
process each prefix to completion but instead process each partic-
ular prefix only once, and move the iterates which still need to be
processed into the next prefix (the number of new iterates in the
next prefix is equal to the difference between the prefix size and the
number of iterates which still need to be processed from the cur-
rent prefix). For MIS, each time we process a prefix, there are 3
possible outcomes for each vertex in the prefix: 1) the vertex joins
the MIS and is deleted because it has the highest priority among all
of its neighbors; 2) the vertex is deleted because at least one of its
neighbors is already in the MIS; or 3) the vertex is undecided and
is moved to the next prefix. For MM, each time we process a prefix
we proceed in 2 phases: In the first phase, each edge in the prefix
checks whether or not either of its endpoints have been matched,
and if not, the edge does a priority-write to each of its two end-
points; in the second phase, each edge checks whether its priority-
writes were successful on both of its endpoints, and if so joins the
MM and marks its endpoints as matched. Successful edges from
the second phase and edges which discovered during the first phase
that it had an endpoint already matched are deleted. Our prefix-
based implementations are based on a more general concept of de-
terministic reservations, introduced in [2]. Pseudocode for the MIS
implementation can be found in [2], and actual code can be found
at http://www.cs.cmu.edu/~pbbs.

Input Serial Prefix- Prefix- Luby Luby
Graph MIS based based (1) (32h)

MIS (1) MIS (32h)
rg 0.455 0.57 0.059 6.49 0.245

rMat 0.677 0.939 0.073 8.33 0.313
3D 0.393 0.519 0.051 4.18 0.161

Table 2. Running times (in seconds) of the various MIS algorithms
on different input graphs on a 32-core machine with hyperthreading
using one thread (1) and all threads (32h).

Results. For both MIS and MM, we observe that, as expected,
increasing the prefix size increases both the total work performed
(Figures 1(a), 1(d), 2(a) and 2(d)) and the parallelism, which is esti-

Input Serial Prefix-based Prefix-based
Graph MM MM (1) MM (32h)

rg 1.04 2.24 0.135
rMat 1.41 3.51 0.155
3D 0.792 1.8 0.11

Table 3. Running times (in seconds) of the various MM algorithms
on different input graphs on a 32-core machine with hyperthreading
using one thread (1) and all threads (32h).

mated by the number of rounds of the outer loop (selecting prefixes)
the algorithm takes to complete (Figures 1(b), 1(e), 2(b) and 2(e)).
As expected, the total work performed and the number of rounds
taken by a sequential implementation are both equal to the input
size. By examining the graphs of running time vs. prefix size (Fig-
ures 1(c), 1(f), 2(c) and 2(f)) we see that there is some optimal
prefix size between 1 (fully sequential) and the input size (fully
parallel). In the running time vs. prefix size graphs, there is a small
bump when the prefix-to-input size ratio is between 10−6 and 10−4

corresponding to the point when the for-loop in our implementation
transitions from sequential to parallel (we used a grain size of 256).

We also compare our prefix-based algorithms to optimized se-
quential implementations, and additionally for MIS we compare
with our optimized implementation of Luby’s algorithm. We im-
plemented several versions of Luby’s algorithm and report the times
for the fastest one. Our prefix-based MIS implementation, using
the optimal prefix size obtained from experiments (see Figures 1(c)
and 1(f)), is 3–8 times faster than Luby’s algorithm (shown in Fig-
ures 3(a) and 3(b)) which processes the entire remaining graph
(and generates new priorities) in each round. This improvement
demonstrates that our prefix-based approach, although sacrificing
some parallelism, leads to less overall work and lower running
time. When using more than 2 processors, our prefix-based im-
plementation of MIS outperforms the serial version, while our im-
plementation of Luby’s algorithm requires 16 or more processors to
outperform the serial version. The prefix-based algorithm achieves
9–13x speedup on 32 processors. For MM, our prefix-based algo-
rithm outperforms the corresponding serial implementation with 4
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Figure 4. Plots showing the running time vs. number of threads for the different MM algorithms on a 32-core machine (with hyper-threading).
For the prefix-based algorithm, we used a prefix size of m/50.

or more processors and achieves 16–23x speedup on 32 processors
(Figures 4(a) and 4(b)). We note that since the serial MIS and MM
algorithms are so simple, it is not easy for a parallel implementation
to outperform the corresponding serial implementation.

7. CONCLUSION
We have shown that the “sequential” greedy algorithms for MIS
and MM have polylogarithmic depth, for randomly ordered inputs
(vertices for MIS and edges for MM). This gives random lexico-
graphically first solutions for both of these problems, and in ad-
dition has important practical implications such as giving faster
implementations and guaranteeing determinism. Our prefix-based
approach leads to a smooth tradeoff between parallelism and total
work and by selecting a good prefix size, we show experimentally
that our algorithms achieve good speedup and outperform their se-
rial counterparts using only a modest number of processors.

Open questions include whether the dependence length of our
algorithms can be improved to O(logn) and whether our approach
can be applied to sequential greedy algorithms for other problems.
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