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Abstract: A novel series of biodegradable polylactide-based triblock polyurethane (TBPU) copoly-
mers covering a wide range of molecular weights and compositions were synthesized for potential
use in biomedical applications. This new class of copolymers showed tailored mechanical properties,
improved degradation rates, and enhanced cell attachment potential compared to polylactide ho-
mopolymer. Triblock copolymers, (TB) PL-PEG-PL, of different compositions were first synthesized
from lactide and polyethylene glycol (PEG) via ring-opening polymerization in the presence of tin
octoate as the catalyst. After which, polycaprolactone diol (PCL-diol) reacted with TB copolymers
using 1,4-butane diisocyanate (BDI) as a nontoxic chain extender to form the final TBPUs. The final
composition, molecular weight, thermal properties, hydrophilicity, and biodegradation rates of the
obtained TB copolymers, and the corresponding TBPUs were characterized using 1H-NMR, GPC,
FTIR, DSC, and SEM, and contact angle measurements. Results obtained from the lower molecular
weight series of TBPUs demonstrated potential use in drug delivery and imaging contrast agents
due to their high hydrophilicity and degradation rates. On the other hand, the higher molecu-
lar weight series of TBPUs exhibited improved hydrophilicity and degradation rates compared to
PL-homopolymer. Moreover, they displayed improved tailored mechanical properties suitable for
utilization as bone cement, or in regeneration medicinal applications of cartilage, trabecular, and
cancellous bone implants. Furthermore, the polymer nanocomposites obtained by reinforcing the
TBPU3 matrix with 7% (w/w) bacterial cellulose nanowhiskers (BCNW) displayed a ~16% increase in
tensile strength, and 330% in % elongation compared with PL-homo polymer.

Keywords: biodegradable polyurethane; polylactide; drug delivery; tissue engineering scaffolds;
polymer nanocomposites; triblock polyurethanes; bacterial cellulose nanowhiskers

1. Introduction

Biodegradable polymers are increasingly used in different biomedical applications.
This includes drug-releasing implants, bioresorbable surgical sutures, biodegradable vascu-
lar grafts, and in sustained drug delivery applications [1]. These polymers are chosen based
on their native biocompatibility and biodegradation, but some often lack total biocompati-
bility, which has forced researchers to look for new polymers with improved properties.
Polymers, such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and poly(lactic-co-
glycolide) (PLGA), are the most widely utilized since these are degradable by the ester
bonds’ hydrolysis that leads to the formation of resorbable nontoxic degradation prod-
ucts [2]. However, their confronting drawbacks are some biocompatibility concerns due
to the formation of acidic degradation by-products [3], small particles released during
degradation that might trigger an inflammatory response [4], and the lack of cell attach-
ment due to their high hydrophobicity [5]. With the current development in the biomedical
field, there is a necessity to design and synthesize new polymers that are nontoxic and
biodegradable with the ability to overcome the aforementioned drawbacks to expand their
uses in regenerative medicine.
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Segmented polyurethanes (SPU) are some of the best emerging solutions as they can
easily be tailored to meet specific requirements, such as obtaining materials of specific
physicochemical properties, improved mechanical strength, and controlled degradation
rates [6]. However, these materials release toxic and carcinogenic byproducts as a con-
sequence of harmful diisocyanates, which are often used as chain linkers. Accordingly,
researchers replaced harmful chain linkers with safer products that do not produce toxic
degradation byproducts [7]. Skarja and Woodhouse (2000 and 2001) have developed a class
of novel biodegradable SPU that can be used in soft tissue applications. The hard segments
of SPU are composed of L-lysine derived diisocyanate (LDI) and a phenylalanine diester
as chain extender, whereas the soft segments are compiled poly(caprolactone) (PCL) or
poly(ethylene oxide) (PEO) [8,9]. Hilborn et al. (2007) synthesized polyurethanes using LDI
and biodegradable macrodiols (copolymers of trimethylene carbonate, 3-caprolactone, and
D, L-lactic acid). These PUs are highly elastic with low degradation rates that makes them
suitable for applications as long-term scaffolds [10]. Current studies on these biodegrad-
able polyurethanes were not focusing solely on their utilization for long-term degradation
applications, such as tissue engineering scaffolds, but also on their clinical significance
for short-term application as rapid drug delivery system and magnetic resonance contrast
agent in biomedical imaging (MRI) [11,12]. Amphiphilic polyurethanes block copolymer is
a special class of biodegradable materials that can form core–shell micelles structure, which
in turn could encapsulate a variety of drug molecules or magnetic nanoparticles inside
their core cavities to enhance their biostability in vivo.

Polymer nanocomposites based on polyurethane and green nanofibers have attracted
tremendous attention as a result of added nanofibers, and their substantial ability to en-
hance polymer properties, even at relatively low nanofiber loading [13]. Among natural
nanofibers, Bacterial cellulose (BC) is considered one of the most abundant natural biocom-
patible nanofibers that is synthesized in the interior of the bacterial cells. BC nanofibers
exhibited non-toxic effects on endothelial cells and minor effects on the blood profile. They
have been approved by the FDA and extensively used as a starting material for many
biomedical applications, such as wound dressings, biomimetic scaffolds, and drug delivery
devices [14]. In the current study, bacterial cellulose nanowhiskers (BCNW), obtained by
controlled acidic hydrolysis of BC nanofibers, are used as green and natural reinforcing
nanofibers. Due to its high aspect ratio, (length/diameter) of 30 to 150, hydrophilicity,
high crystallinity, and excellent mechanical properties, BCNW are considered an excellent
candidate for reinforcing polyurethane matrix, even at low loading [15].

This project is an attempt to overcome the prevailing limitations confronting the use
of biodegradable homopolymers by focusing on the synthesis of nontoxic biodegradable
triblock polyurethanes (TBPUs) of different segments and molecular weights. The structure
of these designated polyurethanes is based on triblock copolymers (TB) that are composed
of polylactide and polyethylene glycol (PL-PEG-PL) as hard segments and polycaprolactone
(PCL) as soft segments. The newly synthesized TBPUs are expected to have improved
hydrophilicity, biodegradation rate, and cell attachment abilities over their corresponding
pure homopolymers, i.e., PLA and PCL. During the synthesis of the triblock copolymer,
PEG was introduced in different ratios during polymerization reaction to enhance the
hydrophilicity and degradability of PL segments [16], whereas PCL segments are used
to improve flexibility and elongation. In addition, the nontoxic 1,4-butane diisocyanate
(BDI) was used as a chain linker to avoid the release of toxic and carcinogenic byproduct
after degradation. The use of BDI was of special interest since, upon degradation, it
yields 1,4-butane diamine “known as putrescine”, which is already present in mammalian
cells [17]. This is highly beneficial when considering the biocompatibility of the prepared
poly(ester-urethanes) for biomedical applications. Moreover, the envisioned BCNW/TBPUs
nanocomposites scaffolds are expected from one side to have an improved interfacial
adhesion with the newly generated cells due to the presence of either hydrophilic BCNW
or PEG segments in the hydrophobic polymer matrix. On the other side, they will improve
the mechanical strength and biodegradation rate of polymer nanocomposites. This project
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is a multifaceted challenge, since obtaining a new group of materials with a given set of
mechanical and physical properties to be utilized in biomedical applications is conditional
upon being biocompatible and biodegradable.

2. Experimental
2.1. Materials

All chemicals were purchased from Sigma-Aldrich and were used as received unless
stated otherwise. Lactide [Mn = 144.13 g/mol], polyethylene glycol as a linker [PEG;
Mn = 4000 g/mol], and Sn(Oct)2 as a catalyst were used to synthesize triblock copolymer. A
total 1,4 Butane diisocyanate [BDI; Mn = 140.14 g/mol] and polycaprolactone diol [PCL-diol;
Mn = 2000 g/mol] soft segments were used in chain extending reactions, and the formation
of final polyurethane matrix. Diethyl ether, dimethylformamide (DMF), dichloromethane
(DCM, 99.5%), N,N-dimethylacetamide (DMAc), acetone, and methanol of ACS grade
were used in the present work as common solvents during synthesis, purification, and film
casting of polyurethane. Deuterated chloroform (CDCl3, 99.8%) was used for NMR analysis.
Phosphate buffered saline (PBS, pH 7.4), sodium azide NaN3, and porcine pancreas lipase
type II were obtained from Sigma-Aldrich Canada, (lipase activity: 100–500 units/mg
protein (using olive oil (30 min incubation)), 30–90 units/mg protein (using triacetin)).
Sulfuric acid (98%) was used for the hydrolysis of bacterial cellulose nanofibers to obtain
the nanowhiskers.

2.2. Experimental Procedure
2.2.1. Production of BC Nanofibers

The production of bacterial cellulose nanofibers was carried out under shaking condi-
tions in 500 mL flasks containing 200 mL of the fermentation medium [18,19]. The media
composition was as follows: 40 g/L Fructose (carbon source), 5 mL of corn steep liquor
(CSL; nitrogen source), 0.25 g/L of MgSO4.7H2O, 1 g/L of KH2PO4, 2.42 mg/L of Sodium
molybdate (NaMoO4.2H2O), 3.6 mg/L of FeSO4.7H2O, 3.3 g/L of (NH4)2SO4, 14.7 mg/L
of CaCl2.2H2O, 1.73 mg/L of ZnSO4.7H2O, 0.05 mg/L of CuSO4.5H2O, 1.39 mg/L of
MnSO4.5H2O, 2 mg/L of Inositol, 0.4 mg/L of Nicotinic Acid, 0.2 mg/L of D-Pantothenic
Acid 0.2 mg/L of Riboflavin, 0.2 µg/L of D-Biotin, 0.4 g/L of Thiamine Hydrochloride,
0.4 mg/L of Pyridoxine Hydrochloride, and 0.2 g/L of Folic Acid. All glassware was
sterilized in an autoclave (Sanyo MLS 3780; Thermo Scientific, Toronto, ON, Canada) at
121 ◦C for 20 min prior to use. Carbohydrate solution and its additives were adjusted at
initial pH 5.0. Then, the mixture was sterilized separately from CSL at 121 ◦C for 20 min to
avoid Maillard reaction. CSL was added to the growth medium under aseptic conditions
and, if necessary, sterilized distilled water was added to compensate for evaporated water
during autoclaving. Each flask was aseptically inoculated using 2 mL of the inoculums
after being allowed to cool down to room temperature. Then, the flask was incubated at
29 ◦C for 7 days with shaking speed of 250 rpm (MaxQ 2000; Thermo Scientific, Toronto,
Canada). The pH of each flask was checked after 7 days, and cell lyses of solutions was
performed with excess 2 M NaOH at 100 ◦C for 15 min in the autoclave. BC nanofibers were
extracted and repeatedly washed with distilled water. Production of BC was quantified
gravimetrically based on the dry weight of the BC obtained. A production of 46 g/L on a
wet basis was achieved from the stirred culture.

2.2.2. Preparation of BCNW

BC pellicles were ground in a blender and the gel-like material was then squeezed in
order to remove most of the absorbed water. The preparation procedure of BCNW was
similar to that reported earlier [20]. Accordingly, hydrolysis of the dried BC was performed
with 60 wt% sulfuric acid under stirring for 2–3 h at 50 ◦C until a homogeneous solution
was obtained. The acid/BC ratio was kept constant at approximately 70 mL/g. After that,
the cellulose nanowhiskers were obtained by centrifugation as a white precipitate, then
neutralized with sodium hydroxide until a neutral pH was obtained. Subsequently, BCNW
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was re-suspended and washed by deionized water using several centrifugation cycles, and
finally obtained as a partially hydrated precipitate. BCNW was solvent exchanged into
N,N-dimethylacetamide (DMAc), where water in the partially hydrated precipitate was
replaced by DMAc by applying several centrifugation cycles in which the supernatant was
removed and replaced with fresh DMAc several times. After that, dichloromethane (DCM)
was added to DMAc–whiskers solution and refluxed for 2 h at 80 ◦C with contentious
stirring until BCNW became well dispersed in DMAc/DCM mixture. A 2.2 wt% of BCNW
was obtained after partially evaporating the solvent.

2.2.3. Synthesis of PL-PEG-PL Triblock Copolymer (TB)

The bulk polymerization of lactide was initiated by the hydroxyl moiety of PEG
according to Leenslag and Pennings’ method with minor modifications [21]. Prescribed
amounts of an initiator PEG and lactide were uniformly mixed as the preplanned feed
weight ratio shown in Table 1. The reaction mixture was placed in a three-necked reactor
flask equipped with an overhead mechanical stirring shaft, a reflux condenser, and a
nitrogen gas inlet. The mixture was directly evacuated, then dehydrated for 1 h under
reduced pressure at 120 ◦C. After LA and PEG have been melted, the system was purged
with N2 gas and the catalyst in chloroform solution was added according to the prescribed
weight percent ratio of dehydrated reactants. The polymerization reaction was continued
for 24 h, where the temperature of the oil bath in which the reactor was immersed was kept
at 140 ◦C. As the polymerization reaction precedes, the reactants’ mixture becomes less
transparent and more viscous. At the end of the reaction the product was annealed at 135 ◦C
for about 180 min to make sure no residual monomer was left over. The reaction vessel was
partially cooled down, and a small amount of chloroform solution was added to extract the
product from the reaction vessel before solidification. Six different TB copolymers were
synthesized by varying the initial feed ratios of LA to PEG. As a comparison reference,
homo-PLs were also synthesized under similar conditions as previously mentioned without
adding PEG.

Table 1. Initial composition used for preparing PL-PEG-PL triblock copolymer.

Lot Feed (%w/w) of
LA: PEG4000

Yield (%) Extraction and Purification
Solvents Color after Purification

TB1 98:2 72% CH3Cl//MeOH Colorless very viscous liquid

TB2 97:3 75% CH3Cl//MeOH Yellowish viscous liquid

TB3 95:5 87% CH3Cl//MeOH Brown-semitransparent liquid

TB4 * 90:10 90% CH3Cl//ether Brownish powder

TB5 * 80:20 92% CH3Cl//ether Yellowish powder

TB6 * 70:25 96% CH3Cl//ether White powder

* Partial water-soluble.

2.2.4. Purification and Recovery of TB Copolymers

The higher molecular weight members of TB copolymer samples were purified. Each
sample was initially dissolved in chloroform, then methanol is slowly added to the solution
with continuous stirring at 30 ◦C until the solution became turbid. The solution was aged
for about 2 h at this temperature for complete precipitation where the viscous polymer
was separated by decantation. Whereas the lower molecular weight members of TB
were precipitated as white powder from chloroform solution into ether, then separated
by vacuum filtration. The products were dried in desiccators for at least 24 h at room
temperature prior to further use.
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2.2.5. Synthesis of TB-BDI Pre-Polymer

The TB-BDI pre-polymer was synthesized by mixing the prescribed amount of TB
copolymer with a stannous octoate catalyst in a three-necked reaction flask equipped
with overhead mechanical stirring under nitrogen atmosphere. The BDI linker dissolved
in the least amount of chloroform, which was added to TB in a 2:1 molar ratio. The
reaction mixture was heated in an oil bath for 2 h at 70 ◦C. After the reaction, the product
was precipitated in excess methanol, decanted, and dried in a desiccator for 24 h at
room temperature.

2.2.6. Synthesis of Triblock Polyurethane Polymers (TBPUs)

Six different TBPU polymers were obtained with varying compositions. A chain-
extension was carried out to produce high molecular weight TBPU polymers as follows:
PCL diol was used as a soft segment. The PCL content is based on balancing the isocyanate
and PCL diol concentration to a 1:1 mole ratio. The reaction vessel was kept under nitrogen
blanket at 70 ◦C for 4 h. Higher molecular weight members were precipitated in methanol,
whereas the members of lower Mn were precipitated in diethyl ether. The precipitated
product was filtered, rinsed with methanol, then dried overnight in a vacuum oven at
40 ◦C.

2.2.7. Preparation of Polymer Films

Polymers solutions, 15 wt% in DMAc, were prepared by stirring the polymer/solvent
mixture in an oil bath at 80 ◦C. Polymer films of dimensions (1 mm thickness × 1 cm
width × 10 cm length) were fabricated by casting into handmade stainless-steel molds.
Initially, solvent evaporation was performed at room temperature. Films were removed
from the mold and dried under vacuum condition at 40 ◦C for 24 h to ensure complete
solvent evaporation.

2.2.8. Preparation of TBPU/BCNW Nanocomposites

The TBPU/BCNW polymer nanocomposites were prepared by the solvent casting
method as reported earlier in the literature, but with different solvents [22]. First, TBPU
polymer solution was prepared by dissolving the polymer in DMAc/DCM mixture at 70◦C.
Polymer solution was gradually added with continuous stirring into the suspension of
cellulose nanowhiskers dispersed in DMAc/DCM with amounts ratio of (1, 3, 5, 7, and
8 w% based on polymer content, respectively). After which, the polymer nanocomposites
mixture was poured into a mold, then flashed frozen in liquid nitrogen. The mold was then
transferred to a freezer set at −50 ◦C and kept for 24 h. After that, final nanocomposites were
kept at 40 ◦C, and under vacuum condition for 48 h to ensure complete solvent evaporation.

2.3. Characterization Techniques
2.3.1. Fourier Transform Infra-Red Spectroscopy (FTIR/ATR)

Structural changes during the stepwise formation of TBPU polymers were investigated
by FTIR spectroscopy using Perkin Elmer Spectrum-1 instrument (Waltham, MA, USA) in
attenuated total reflectance mode (ATR). The ATR spectra of all samples were recorded as
transmittance in the range of 4000–500 cm−1. The ATR-crystal used was ZnSe, and each
spectrum was recorded with resolution of 4 cm−1 and consisted of 20 scans.

2.3.2. H-NMR Spectra

The chemical compositions of polyurethanes and their TB copolymers precursors
were characterized by recording 1H-NMR spectra using Bruker 400 MHz Spectrometer
Biospin (Rheinstetten, Germany) located at Ryerson University Analytical Centre (RUAC).
The polymers were dissolved in CDCl3-d1 at a concentration level of 10 mg/mL, and
tetramethylsilane was used as an internal reference at 25 ◦C. The degree of polymerization
(DP) of PL in all copolymer samples was calculated from 1H-NMR spectra [23,24].
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2.3.3. Gel Permeation Chromatography (GPC)

The number-average molecular weights (Mn) of PL-PEG-PL TB copolymer were
determined using a Viscotek GPC/SEC system (Westborough, MA, USA). The system
was equipped with a Triple detector array (TDA 302) that can give very accurate dn/dc
determinations and, subsequently, molecular weight. This consists of Right-Angle Light
Scattering (RALS), a high sensitivity Viscometer (for DP and IP), and a Refractive index
detector (RI). Spectra analysis and data collection was conducted using the OmniSec 5.1
software. Tetrahydrofuran solvent (HPLC grade) was used as Eluent with a flow rate
of 1.0 mL min−l at 32 ◦C through the Shodex GPC KF-802 series column (Tokyo, Japan).
Polymer samples were dissolved in THF at a concentration level of 10 mg/mL, then filtered
through a 0.45µm filter. The GPC/SEC was calibrated using polystyrene reference samples
having narrow molecular weight distributions ranging from 1260 g/mol to 184,900 g/mol.

2.3.4. Differential Scanning Calorimetry (DSC)

A differential scanning calorimeter (DSC) was used to measure the thermal prop-
erties of the polymers. The Perkin Elmer Diamond Differential Scanning Calorimeter
controlled with PYRIS 7 software was used. The thermograms covered a temperature range
−20–200 ◦C under the nitrogen atmosphere at a flow rate of 20 mL/min and heating rate of
10 ◦C min−1. Approximately 5 mg polymer samples were placed and sealed in aluminum
pan (20 µL). The first scan measured the melting endotherm, and the second measured
Tg values.

2.3.5. Water Content Measurements

Water contents of the polymer samples were determined by soaking the samples in
deionized water at 25 ◦C. Samples were collected for weighing after being gently blotted
until equilibrium was achieved. Water content is expressed as a percentage of dry polymer
samples and calculated using Equation (1). The recorded water contents were taken as an
average of at least two determinations.

% Water content = (Wswollen − Wdried)/Wdried × 100% (1)

where Wswollen and Wdried are the weights of the swollen and dried polymer, respectively.

2.3.6. Contact Angle Measurements

Water in air contact angle measurements were performed on different TBPUs films on
an Optical-Bench Contact Angle Goniometer (Hamburg, Germany). Each reported value
was taken as an average of at least three measurements. A droplet of distilled water was
deposited on the samples and the contact angle was measured at different times.

2.3.7. Biodegradation

In this study, hydrolytic and enzymatic degradation were employed for all the syn-
thesized polyurethane samples. Hydrolytic degradation was carried out in PBS solution.
This solution was composed of 0.1 M PBS with 0.9% NaCl, 0.02% NaN3, and pH 7.4. Enzy-
matic degradation was conducted in the same PBS solution of the same pH but containing
0.1 mg mL−1 Lipase from porcine pancreas. Each sample was placed into an individual vial
containing 10 mL PBS/enzyme mixture, then incubated with shaking at 37 ◦C to simulate
in vivo dynamic tissue environment. The samples were taken out after 5 h, 15 h, 30 h, 60 h,
and 120 h, rinsed by deionized water, vacuum dried at 60 ◦C for 24 h, and reweighed for
weight loss determination. The reported weight loss was calculated using Equation (2) and
taken as an average from three samples.

Weight loss (%) = (W0 − Wt)/W0 × 100% (2)

where W0 and Wt are the dry weight of the sample before and after degradation, respectively.
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The pH measurements were collected for the degradation solutions. Scanning electron
microscope (SEM) model JSM-6380 LV (Oxford, UK) with a monochromator (Al X-ray
source) operated between 5–20 kV was then used to examine the surface morphology of
polymer samples after were gold coated.

2.3.8. Field Emission Scanning Electron Microscopy (FE-SEM)

The surface morphology of PUs samples before and after degradation was examined
using FE-SEM, FEI Quanta 200 F microscope (Hillsboro, OR, USA) with an accelerating
voltage of 15–20 kV. Gold surface layer was sprayed on the polymer samples by an ion
sputter coater with a low deposition rate prior to being examined.

2.3.9. Mechanical Testing

The mechanical properties of the TB, TBPU, and TBPU/BCNW nanocomposites were
evaluated by measuring tensile strength, tensile modulus, and elongation at break. Lab-
think’s Param XLW (PC) Auto Tensile Tester (Jinan, China) was used for mechanical testing.
It was equipped with a 500 N load cell, and operating at room temperature and a crosshead
speed of 100 mm/min. Most of the measurements were conducted in triplicates within an
average total error not exceeding 5%.

3. Results and Discussion
3.1. Synthesis of Triblock (PL-PEG-PL) and PUs

A series of triblock polyurethane consisting of PL, PEG, and PCL were prepared via
three-step polymerization reactions (Scheme 1). In the first reaction, the triblock copolymers
PL-PEG-PL were synthesized through the ring opening polymerization of lactide (LA) in
the presence of bifunctional macro-monomer dihydroxy PEG as initiator and stannous
octoate as the catalyst. The molecular weights of the triblock PL-PEG-PL were controlled
by changing the feed ratio of lactide and PEG. The %w/w feed ratios of LA/PEG, reaction
yield, and reaction conditions along with observations are summarized in Table 1. For
convenience, six triblock polymer samples were prepared and named from TB1 to TB6. The
TB copolymers of lower molecular weight and with higher PEG content showed noticeable
solubility in water.

In the second step, TB-BDI pre-polymer was synthesized through the condensation
reaction between the previously synthesized TB and BDI in 1:2 molar ratio in the presence
of Sn(Oct)2. Following the second step, the chain-extension reaction was carried out by
reacting PCL-diol (the flexible segment) with TB-BDI in a 2:1 molar ratio to form the final
triblock polyurethane polymers TBPUs. To control the final molecular weight, and to
examine the effect of PL/PEG segment ratio on the final physical properties of the TBPUs
polymers, the initial molar ratios of TB: PCL diol: BDI were kept consistent at 1:2:2. For
convenience, the obtained polyurethane samples are labeled from TBPU-1 to TBPU-6.

3.2. Characterization of PL-PEG-PL and PUs

Figure 1 shows the stepwise formation of the triblock copolymers (PL-PEG-PL) from
LA and PEG precursors as confirmed by FTIR in ATR mode. As shown in the figure,
the lactide ester carbonyl band appeared at around 1750 cm−1, and the C–H stretching
band of CH2 group in PEG appeared at 2880 cm−1 [25]. In comparison with LA and PEG
homopolymers absorption bands, the following band assignments arose in the triblock
copolymer spectrum: the band at 2995 cm−1 belonged to C-H stretching of -CH3 of LA
units; the bands at 2865 cm−1 are a result of C-H stretching of -CH2 groups of PEG; the
band at 1750 cm−1 is a result of C=O stretching of the LA units and the bands at 1095 cm−1

are a result of C-O stretching of LA and the ether bond of PEG. Hence, the appearance of
all the characteristic absorption bands that belong to LA and PEG in the spectrum of the
triblock copolymer confirms the formation of the triblock copolymer PL-PEG-PL.
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conjugated with BDI.
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The FTIR spectra of TBPU-1 in Figure 2 displays the formation of polyurethanes
from TB-BDI and PCL-diol. In addition to the characteristic peaks that are present in TB
copolymer, FTIR spectra of TBPU-1 revealed new characteristic absorption bands at 2945,
1182, and 1485 cm−1, which ascribed to C-H, C-O, and C–N stretching [26], respectively.
In addition, the characteristic broad peak due to hydroxyl group stretching in the TB
copolymer disappeared due to urethane condensation reaction of TB copolymer with BDI,
while new peaks arose at 3473 cm−1 due to –C=O–NH– stretching in secondary amide,
and –N=C=O stretching at 2287 cm−1 due to isocyanate [27]. After the addition of the
chain extender PCL-diol, the isocyanate peaks disappeared, while the peak due to –C=O–
NH– stretching at 3473 cm−1 was retained, which implies the successful preparation of
TBPU polymers.
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Figure 2. ATR-FTIR spectra of PCL-diol, triblock copolymer conjugated with BDI (TB-BDI), and
triblock copolymer polyurethane (TBPU-1).

The chemical shifts of the various hydrogen atoms in the copolymer were determined
by 1H-NMR spectra as shown in Figure 3. As a common fixture in all 1H-NMR of the
prepared TB copolymers (i.e., from TB1 to TB6), the signals at 5.1 ppm and 1.55 belong to
the protons of (-CH-O-) and (CH3) groups of PL blocks. Whereas the signal at 3.64 ppm is
characteristic for the main chain methylene units -(CH2)- in the PEG blocks. Additionally,
a small but highly significant signal of the methylene protons of PL-connecting ethylene
glycol units (-CH-COO-CH2-) also appeared at 4.25 ppm. The obtained 1H-NMR signals
were a good match with the reported literature values for PEG/PL copolymers of dif-
ferent blocks [28,29]. In all spectra, the “extra peaks” determined at the chemical shifts
(δ = 1.85 ppm,m) and (δ = 2.175 ppm,s) were solvent residual peaks due to the interaction of
CH2 of tetrahydrofuran and CH3 of acetone with CDCl3 [30]. Considering all the previous
findings, it was concluded that covalently bonded block copolymers that are comprised of
PEG and PL sequences were successfully synthesized.
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In addition, the molecular weights, average segmental length of both LA and PEG
components, and the composition of the copolymers were also estimated from 1H-NMR
spectra. This was accomplished by comparing the protons peaks in the methylene groups
of PEG segments (b) with the lactoyl methane protons peaks of the PL segments (d), which
are centered at 3.64 ppm and 5.2 ppm, respectively; see Figure 3. As evidenced from the
obtained 1H-NMR spectra of the prepared polymers, the relative area of proton peaks at (b)
and (d) has varied according to the initial amount of feed ratio of LA/PEG monomers. The
peak area ratio that was obtained from integration values of CH2 peaks for EG and CH for
PL was used to determine % content and block ratio of EG in the copolymers according to
Equations (3) and (4).

% content of EG in triblock copolymer = {(Y/4)/[(Y/4) + (X/2)] × 100} (3)

Block ratio = the number of EG blocks/the number of LA blocks = [(Y/(2 × DPPL)/X/(4 × DPPEG)] (4)

where Y is the integration value for the EG ethylene units’ peak, and X is that of LA’s CH
peak. Moreover, the degree of polymerization of PL and the segment length of the PL in the
block copolymer were also estimated from the 1H-NMR spectra based on the peak intensity
ratio of the methylene protons of EG (i.e., OCH2CH2: δ = 3.64 ppm) and the methine proton
of the LA unit (i.e., COCH(CH3): δ = 5.2 ppm). For instance, considering the Mn of PEG
4000 g/mole, the degree of polymerization of PL can be calculated from the relation; DPPL
= DPPEG × (2XLA/YEG). Ultimately, the Mn of the PL segments determined was found in
the range of 6256−66,682 g/mole. Hence, the molecular weight of the triblock copolymer
can then be estimated from the relation Mn(TB) = 144[DPPL] + [Mn(PEG) − 18]. The obtained
Mn values of the triblock PL-PEG-PL were found in the range of (16,494–137,343 g/mole).
These values were a good match with the calculated value based on GPC measurements;
see Table 2.

As presented in Table 2, within the given range of the molar ratio of PEG added, the
molecular weights of the triblock copolymers were found to be inversely proportional to
the amount of added PEG in the feed. This may be a result of the decrease in DP of PL as
PEG content increased. Therefore, it is apparent that adjusting the block length of the PL
in the triblock PL-PEG-PL by changing the amount of PEG macro-monomer in the feed
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is possible, and may lead to further control over the final physicochemical properties of
the TBPUs.

Table 2. PLx/PEGy/PLx triblock copolymers obtained from the polymerization of different feed ratio
of lactide and PEG.

Lot Copolymer
Feed (%w/w) of

LA: PEG4000

Molar Ratio of LA/EG
DPPL Mn PL b

Mn of TB
(PLx/PEGy/PLx) (%) d

Content of
PEG

% Conversion
of LA to PL

In Feed In Product a (1H-NMR) b (GPC) c

TB1
PL866-
PEG91-
PL866

98:2 14.95 9.52 866 66,682 137,346 128,700 9.9 64

TB2
PL551-
PEG91-
PL551

97:3 9.80 6.06 551 42,466 88,915 84,115 14.2 62

TB3
PL414-
PEG91-
PL414

95:5 5.79 4.55 414 31,881 67,445 62,110 18.0 78

TB4 PL99-
PEG91-PL99

90:10 1.74 1.10 99 7657 19,297 19,100 47.8 63

TB5 PL86-
PEG91-PL86

80:20 1.20 0.95 86 6673 17,328 16,170 51.5 74

TB6 PL81-
PEG91-PL81

70:25 0.92 0.89 81 6256 16,494 15,715 52.8 97

a Calculated from 1H-NMR spectra with end-group intensities using the following equation: DPPL = DPPEG ×
(2XLA/YPEG), where DPPEG = 4000–18/44. b Calculated from 1H-NMR spectra with end group intensities with
the following equation: Mn (TB) = 144[DPPL] + [Mn(PEG) − 18], where Mn(PEG) = 4000. c Calculated by GPC with
polystyrene calibration. d EG content in triblock copolymer (%) was calculated according to Equation (3).

The structures of the final TBPUs polymer that were produced as a result of the
interaction of PCL with triblock PL-PEG-PL were further confirmed using 1H-NMR spectra.
In this regard, besides the predetermined characteristic signals of the triblock PL-PEG-PL,
new chemical shift signals emerged due to the presence of PCL segments; see Figure 4.
As shown in the figure, the urethane bond signals are not seen as well as they partly
overlapped with the solvent peak at 7.23 ppm. However, the formation of the urethane
bond peak in this region was further confirmed with the use of deuterated acetone as a
solvent, and was previously confirmed by FTIR.

J. Funct. Biomater. 2023, 14, x FOR PEER REVIEW 12 of 23 
 

 

Table 2. PLx/PEGy/PLx triblock copolymers obtained from the polymerization of different feed 

ratio of lactide and PEG. 

Lot  Copolymer 

Feed (%w/w) 

of  

LA: PEG4000 

Molar Ratio of LA/EG 
DPPL Mn PL b 

Mn of TB 

(PLx/PEGy/PLx) 
(%) d Content 

of PEG  

% Conversion  

of LA to PL 
In Feed In Product a (1H-NMR) b (GPC) c 

TB1 PL866-PEG91-PL866 98:2 14.95 9.52 866 66,682 137,346 128,700 9.9 64 

TB2 PL551-PEG91-PL551 97:3 9.80 6.06 551 42,466 88,915 84,115 14.2 62 

TB3 PL414-PEG91-PL414 95:5 5.79 4.55 414 31,881 67,445 62,110 18.0 78 

TB4 PL99-PEG91-PL99 90:10 1.74 1.10 99 7657 19,297 19,100 47.8 63 

TB5 PL86-PEG91-PL86 80:20 1.20 0.95 86 6673 17,328 16,170 51.5 74 

TB6 PL81-PEG91-PL81 70:25 0.92 0.89 81 6256 16,494 15,715 52.8 97 
a Calculated from 1H-NMR spectra with end-group intensities using the following equation: DPPL = 

DPPEG × (2XLA/YPEG), where DPPEG = 4000–18/44. b Calculated from 1H-NMR spectra with end group 

intensities with the following equation: Mn (TB) = 144[DPPL] + [Mn(PEG) − 18], where Mn(PEG) = 4000. c 

Calculated by GPC with polystyrene calibration. d EG content in triblock copolymer (%) was 

calculated according to Equation (3). 

As presented in Table 2, within the given range of the molar ratio of PEG added, the 

molecular weights of the triblock copolymers were found to be inversely proportional to 

the amount of added PEG in the feed. This may be a result of the decrease in DP of PL as 

PEG content increased. Therefore, it is apparent that adjusting the block length of the PL 

in the triblock PL-PEG-PL by changing the amount of PEG macro-monomer in the feed is 

possible, and may lead to further control over the final physicochemical properties of the 

TBPUs. 

The structures of the final TBPUs polymer that were produced as a result of the 

interaction of PCL with triblock PL-PEG-PL were further confirmed using 1H-NMR 

spectra. In this regard, besides the predetermined characteristic signals of the triblock PL-

PEG-PL, new chemical shift signals emerged due to the presence of PCL segments; see 

Figure 4. As shown in the figure, the urethane bond signals are not seen as well as they 

partly overlapped with the solvent peak at 7.23 ppm. However, the formation of the 

urethane bond peak in this region was further confirmed with the use of deuterated 

acetone as a solvent, and was previously confirmed by FTIR. 

 

Figure 4. 1H-NMR spectrum of TBPU copolymer in CDCl3. The explanations for different letters 

are in Appendix A. 
Figure 4. 1H-NMR spectrum of TBPU copolymer in CDCl3. The explanations for different letters are
in Appendix A.



J. Funct. Biomater. 2023, 14, 118 12 of 22

After the coupling reaction between TB copolymer and BDI molecules, 1H-NMR spec-
tra for all samples revealed neither remarkable change happened in the PL/PEG segment
ratio or an increase in the molecular weight of the polymer. This result evidenced that BDI
molecules interact only with the terminal OH groups without causing any crosslinking
reactions between TB copolymer chains. Therefore, based on the controlled molar ratio
of the terminal OH groups of PCL-diol, and the molar ratio of added BDI, (i.e., 1:2:2;
TB/PCL-diol/BDI), the number average molecular weight of TBPUs can be estimated
using the equation:

Mn (TBPU) = Mn (TB) + [2 × MWBDI] + [(2 × Mn PCL-diol)] (5)

The Mn values of TBPUs were found in the range of (18,779–139,769 g/mol), see
Table 3.

Table 3. Estimated number average molecular weights of the prepared TBPUs polymers along with
their water in air contact angles and weight loss up on degradation.

Sample Mn * Contact
Angle, (θ◦) t30 ** (min) % Weight

Loss (Buffer)
% Weight Loss

(Enzyme)

homo-PL 67,500 77.7 - 3 10

TBPU-1 139,763 65.3 48 5 21

TBPU-2 91,195 57.8 35 7 23

TBPU-3 69,725 52.2 27 12 27

TBPU-4 21,577 - - 47 75

TBPU-5 19,608 - - 52 82

TBPU-6 18,774 - - 56 91
* Calculated from Equation (5), MwBDI = 140.14 and Mn PCL-diol = 2000. ** Time for the contact angle to decrease
from initial value to reach 30◦.

3.3. Water Absorption and Contact Angle Testing of TBPUs

The surface and bulk hydrophilicity of the various TBPU copolymers was determined
by water uptake and contact angle measurements. The preliminary lab observations
revealed that when the specimens made of homo-PL and TBPU copolymers were immersed
in water, the homo-PL specimen floated on the water due to its hydrophobic nature, whereas
the TBPU specimens absorbed water rapidly and sank. These observations elucidated
that synthesized TBPU copolymers hold more hydrophobic characters than the PL homo
polymer. As can be seen in Figure 5, the water uptake of homo-PL did not exceed 3%, while
those of the TBPU copolymers were above 16%. As shown in the figure, increasing the PEG
content of the TBPU copolymers would enhance the water uptake and consequently lead
to an improvement of their biodegradation. This observation explains why the degradation
of hydrophobic PL is extremely slow with more than 80% of the original mass of implant
remaining at the implantation site even after 6 months [31].

Water contact angle testing reports that better hydrophilicity results in a smaller contact
angle [32]. The variations in hydrophilicity as a function of composition were assessed
by observing the water contact angle, see Figure 6. The figure reveals that the observed
contact angle decreases with increasing PEG molar ratio of TBPUs. Compared with homo
polylactide, the trend of hydrophilicity improvement increases from TBPU-1 to TBPU-3 due
to the increased content of the hydrophilic PEG segments. The contact angle measurements
reveal that TBPUs copolymer exhibited markedly enhanced hydrophilicity when compared
to polylactide homopolymer. For instance, TBPU-3 attained substantially larger equilibrium
water contents around 31% compared to 3% for homo-PL. The increasing of PEG content
from TBPU-1 to TBPU-3 readily explains the behavior encountered in Figure 6. Therefore,
as it was the aim of this study, the hydrophilic modification of PL by introducing PEG
during ring opening polymerization of LA showed success in providing control over
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hydrophobicity of homo polylactide. This improvement in the hydrophilicity of the high
molecular weight TBPUs might find a good application for improving the cell attachment
abilities of TBPU scaffolds. Moreover, it also enhances the degradation behavior of the
low molecular weight TBPUs when used for drug delivery applications. Therefore, the
synthesized TBPUs can be considered as promising biodegradable future candidate for
utilization in a biological environment.
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Figure 5. Water content taken as % of dry polymer samples weight vs. time at room temperature.
Error bars represent standard errors for three trials (σ ≤ 5%), and the means for each group show a
difference statistically significant with p < 0.005.

It is worth mentioning that the contact angle measurements of TBPU samples with
higher PEG contents (i.e., TBPU-4 to TBPU-6) could not be tested. Their higher hydrophilic-
ity and partial solubility in water caused instant spreading of the water drop and sometimes
local distortion on the polymer surface.

The variations in hydrophilicity as a function of composition and time were further
assessed by observing the variation of the water contact angle with time as presented in
Figure 6. The variation of the contact angles with time was observed for each polymer until
[θ] = 30◦ was attained, which implies good surface wetting. Results summarized in Table 3
show that both initial contact angle and t30 increase with increased hydrophobicity, i.e.,
for the lower PEG content or the longer PL segments in TBPU copolymers. Figure 6 also
demonstrates that, not only is the initial contact angle is much higher for homo-PL than
the TBPU copolymers, but also the rate of change is higher, which is indicated from the
significant decrease in the slope of the curves.
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Figure 6. Comparison between the variation of water contact angles with composition and time for
TBPU samples and polylactide homo polymer at room temperature. Error bars represent standard
errors for three trials (σ≤ 5%), and the means for each group show a difference statistically significant
with p < 0.005.

3.4. Degradation and Associated Morphological Changes

Many contributing factors are affecting the biodegradation of polyurethane polymers,
such as hydrophilicity of polymer segments, the molecular weight of polymers, degree
of microphase separation, and enzyme function. In this study, Lipase from the porcine
pancreas was employed in the enzymatic degradation testing due to its proven ability to
degrade PLA [33]. Enzymatic degradation data summarized in Table 3 showed that weight
loss of 75%, 82%, and 91% were observed for TBPU-4, TBPU-5, and TBPU-6, respectively,
which are rich in PEG segments. The degradation profiles displayed rapid enzymatic
degradations for TBPU samples within 120 h. The initial weight loss increased rapidly in
the first 15 h, then slowed down when degradation time of 60 h was reached. This high
rate of degradation is probably attributed to the hydrolysis of the low molecular weight
PL segments of polyurethane polymeric chains, which simultaneously is supported by
the high content of the hydrophilic PEG segments (~47–52%). These together resulted
in a low polymeric chain-chain interaction and facilitated water and enzyme attack to
the polyurethane chains causing them to swell and dissolve easily in aqueous solution.
The dissolution of water-soluble PEG segments is also a contributing factor in the weight
loss of TBPUs along with enzymatic degradation. Moreover, the higher solubility of the
leftover fragments that formed after polymer hydrolysis can also be considered as a good
indication for reduced inflammatory response in the vicinity of the implanted tissues. This
will prioritize the utilization of these materials in drug delivery systems.

In contrast, weight loss values of 21%, 23%, and 27%, respectively, were achieved after
5 days for the high molecular weight polyurethanes (i.e., TBPU-1, TBPU-2, and, TBPU-3);
see Table 3. Both high phase separation and higher Mn lead to low degradation rate for
polyurethane due to enhanced interaction force among the polymer chains that in turn
resists water and enzyme attack [34]. This explains the slower enzymatic degradation rate
of the synthesized high molecular weight polyurethanes than the other samples in the
series. The high content and large molecular weight of hydrophobic PL segments that are
present in those polymer chains also contribute to a slower enzymatic degradation rate.
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Comparing the enzymatic degradation rate of TBPU-3 to and the homo polylactide
polymer of comparable molecular weight (Mn = 67,500 g/mol; enzymatic degradation rate
~10%), one can conclude that the enzymatic degradation rate of TBPUs was approximately
two times faster than homo-PL. This implies that the complete degradation of TBPU
sample needs half the degradation time required for a homo-PL sample of comparable
molecular weight.

To further investigate the effect of enzymatic action on degradation rate, a comparative
hydrolytic degradation test was carried out for TBPU samples in PBS at pH 7.4 and 37 ◦C.
Degradation data summarized in Table 3 shows that the hydrolytic degradation rates for
all TBPU samples are much less than the corresponding values obtained from enzymatic
degradation. This in turn verifies that the major cause for accelerated hydrolysis for
polyurethanes is the attack on ester linkages of PL hard segments by the enzyme rather
than the dissolution of the soft PEG segments.

Among the promising TBPU samples, TBPU-3, which had a relatively high Mn and
good degradation rate, was selected as a scaffold representative and tested for full degra-
dation. The lab observation showed that the full degradation of TBPU-3 in PBS solution
(pH 7.4) needs approximately 1.5 months compared to 6.5 months required for the homo-PL
sample. Nevertheless, a slight decrease of 0.5 pH units was observed at the end of depreda-
tion due to the release of some acidic byproducts from PL segments upon degradation. The
non-significant change in pH associated with the weight loss of TBPUs suggests a reduced
inflammatory response in vivo and supports the suitability of these materials for utilization
as internal implants [35].

Moreover, the effect of changing pH value on hydrolytic degradation of TBPU-3 was
also examined by studying the degradation profiles of TBPU-3 in PBS at different pH
values; 7.4, 6.0, and 5.0. The degradation rate was found to be faster in PBS solution of
pH 7.4 than the other acidic pHs. One probable reason is that pH 7.4 is a mildly basic
medium, which promotes the hydrolysis of ester linkage by providing OH− anions that act
as strong nucleophiles [36]. The other reason is that the degradation of TBPUs produces
acidic byproducts containing COOH groups, which are more soluble in basic medium and
enhance the hydrolysis by shifting the equilibrium reaction to the forward direction.

The surface morphology changes associated with the degradation process of TBPU-3
films were monitored using SEM; see Figure 7. The surface topography of the polymer
film before enzymatic or hydrolytic degradation showed smooth morphology (Figure 7A).
After soaking the polymer film for 120 h in the Lipase enzyme, the surface becomes
markedly eroded and holes and cracks appeared (Figure 7B). However, for non-enzymatic
degradation in PBS at pH7.4, a similar pattern is observed, but is less harsh and slower
than the enzymatic degradation (Figure 7C). The morphological changes observed by SEM
suggest that TBPU can be slowly degraded without enzymatic action. This observation is
in good agreement with the results obtained from weight loss experiments.
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3.5. Thermal Properties of TBPUs Copolymers

The DSC thermograms of TBPU copolymers, neat PEG, and PL homopolymers are
shown in Figure 8. As displayed in the figure, neat PEG and PL homo polymer showed
Tm peaks at 64 ◦C and 186 ◦C, respectively. The thermograms of TBPUs copolymers of
lower PEG content 10–18% (i.e., TBPU1–TBPU3) showed Tm peaks for PL segments only at
slightly lower values than the homo-PL. More specifically, Tm values due to PL segments
decreased further as PEG content increased. The absence of melting endotherm peaks of
the PEG segment in those three TBPUs might be related to the lake of highly ordered and
long crystalline domains for PEG soft segments compared to the long enough PL hard
segments. However, the thermograms of TBPUs that have higher PEG contents 48–53%
(i.e., TBPU4–TBPU6) showed broad Tm peaks at temperatures slightly higher than neat
PEG, see Figure 8. The increase in the Tm values of PEG might be related to the partial
obstruction of polymer chain mobility in the crystallization domain of PEG by the long PL
segments. Since the Tm of both neat PEG and PL segments had altered one another, it can
be used as an indication for a successful copolymerization. Nevertheless, no Tg peaks were
observed in DSC curves of TBPUs related to hard or soft segments. A probable explanation
is that copolymerization reaction may have caused a decrease in the structure symmetry,
which significantly inhibited the chain packing [37]. Furthermore, in the second cooling
run of TBPU-5, the Tm peaks corresponding to PEG segments disappeared whereas the Tm
peaks for PL segments remained, see Figure 8. These observations showed that PL blocks
readily crystallize with greater tendencies than PEG blocks. In turn, this limits the mobility
of the PEG segments, and severely hinders the crystallization of the PEG by the already
solidified PL segments.
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Figure 8. DSC thermograms of PEG4000, homo polylactide, and TBPUs.

Moreover, Tm of the soft PCL segments was not clearly observed in TBPUs isotherms.
This might be related to the low Mn PCL used, which did not allow the formation of enough
crystalline domains or because of the overlap of its endotherm in the melting range of
PEG segments.
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3.6. Mechanical Properties of TB and TBPUs copolymers

The mechanical properties of TB copolymers and their corresponding TBPUs were
tested in this study by evaluating elongation at break (εb), tensile strength at break (σb),
and tensile modulus (E), see Table 4. For the intended use of biodegradable PL in tissue
engineering applications, a typical goal is to increase elongation at break and tensile
toughness without adversely affecting the tensile strength and tensile modulus. Although
it was possible to cast the TB copolymers and their corresponding TBPUs that have high
PEG content and shorter PL segments into films, their mechanical strength was not high
enough to be tested. Therefore, in this study, it was very challenging to obtain TBPU
copolymer of both high mechanical strength and hydrophilicity.

Table 4. Tensile properties of the different polymer films and their nanocomposites with BCNW, the
results reported in table are the means for each group show a difference statistically significant with
p < 0.005.

Polymer Lot Name Tensile
Strength (MPa)

% Elongation at
Break

Young Modulus
(MPa)

Homopolymer PL 35.58 ± 0.78 3.50 ± 0.12 3100 ± 36

Triblock (TB) TB1 33.66 ± 1.67 4.19 ± 0.20 4555 ± 56

TB2 31.75 ± 1.86 5.18 ± 0.11 5223 ± 36

TB3 30.00 ± 1.27 7.12 ± 0.41 6055 ± 46

Triblock-
Polyurethane

(TBPU)
TBPU-1 30.05 ± 0.77 5.34 ± 0.12 4100 ± 66

TBPU-2 29.22 ± 1.13 7.22 ± 0.25 4531 ± 61

TBPU-3 27.00 ± 1.00 9.54 ± 0.38 5518 ± 69

Nanocomposite
TBPU-3/BCNW 1%w BCNW 27.55 11 5323

3%w BCNW 29.00 13 5014

5%w BCNW 30.03 14 4525

7%w BCNW 31.50 15 3372

8%w BCNW 25.12 12 2315

Table 4 reveals that for the three highest molecular weight TB copolymers and their
corresponding TBPUs, all mechanical properties (i.e., εb, σb, and E) were increased as
the chain length of PL increased, and PEG content decreased. Due to the impressive
mechanical properties, hydrophilicity, and good degradation behavior, TBPU-3 was chosen
among the three highest molecular weight TBPUs as a pilot for comparison and fabrication
of nanocomposite.

The tensile strength and elongation of PL, TB3, and TBPU-3 were examined at room
temperature, and depicted in Figure 9. As shown in the figure, the stress–strain curve
of the polylactide homo polymer demonstrates a typical rigidity and brittleness because
of its high tensile modulus and tensile strength, but it’s very limited elongation at break.
Compared with homo-PL, the presence of PEG segments in TB3 copolymer chains made it
less brittle because it caused a decrease in tensile strength; however, both tensile modulus
and elongation at break were interestingly increased. TBPU-3 showed similar behavior
to TB3 except for a significant increase in elongation at the break that was observed and
might be related to the presence of soft PCL segments that were added after the urethane
reaction. As presented in Table 4, TBPU-3 exhibited a remarkable tensile strength of about
27.0 MPa and with a considerable elongation of 273% over the homo-PL. These mechanical
properties are comparable to those of cartilage, trabecular, and cancellous bones and made
TBPU-3 a promising candidate for utilization in tissue engineering scaffolds [38].
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Figure 9. Stress–strain curves of PL, TB3, and TBPU-3.

Figure 10 examines the effect of changing BCNW loading on both tensile strength and
elongation at break for TBPU-3 nanocomposite. As displayed in the figure, an improvement
in mechanical properties was obtained upon increasing BCNW loading. Both tensile
strength and elongation at break reached their maximum when the loading percent of
BCNW reached 7 wt%. Any further increase in nanowhiskers loading caused a decline
in mechanical properties. The enhancement of tensile strength and elastic modulus at
the expense of elongation at break up by adding small quantities of cellulose nanofibers
(0.5−5 w%) was previously reported by Dufresne et al. (2014) and Dahman et al. (2014,
2016 and 2017). However, higher loading amounts of cellulose nanofibers over 5 w% could
lead to miscibility and agglomeration problems that deteriorate the mechanical properties
of the nanocomposites [39–42].

Figure 11 compares the effect of adding 7 wt% of BCNW to the matrices of homo-PL,
TB3, and TBPU-3. As revealed in the figure, upon adding BCNW to the homo-PL matrix,
both tensile strength and elongation of the obtained nanocomposite were reduced to 20
MPa and 2.0%, respectively, compared to pure homo-PL. However, adding BCNW to TB3
and TBPU-3 surprisingly resulted in significant improvements for both tensile strength
and % elongation than in the free polymers. For instance, adding 7 wt% of BCNW to
TBPU-3 leads to an increase of 16.5% and 58% in tensile strength and percent elongation,
respectively. This is equivalent to an increase of 330% in % elongation when compared
with homo-PL. These observations attributed to the poor interfacial adhesion between the
hydrophilic BCNW and the hydrophobic PL matrix, where the existence of the BCNW
causes an obstruction, separates the molecular chains of PL, and weaken the force of
interaction among them. This in turn resulted in very weak load transfer between BCNW
and PL matrix. On the contrary, the presence of PEG segments in TB copolymers and
TBPUs chains helped improve the mechanical properties of the composites, where PEG
segments acted as a compatibilizer. This in turn successfully improved the interaction
between the polymer chains and the hydrophilic BCNW. Moreover, the hydrophilicity of
PEG segments aided in the formation of strong network structure by reinforcing TBPU-3
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by preventing the aggregation of BCNW and enhancing its homogeneous spreading within
the entire polymer matrix in a large quantity reaching 7 wt%.
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Figure 10. Effect of the different BCNW content on mechanical properties of the TBPU-3 nanocomposite.
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4. Conclusions

In this study, a total of six green and biodegradable TBPUs samples composed of PL,
PEG, and PCL segments, and BDI as a nontoxic chain linker were successfully obtained
and differentiated into two extremes. The low molecular weight polyurethanes with higher
PEG content and shorter PL segments showed low mechanical strength and increased
hydrophilicity, giving them an advantage for utilization in drug delivery and MRI imaging
applications, whereas the other group that had longer PL segments and lower PEG con-
tent showed high mechanical strength and improved hydrophilicity, making them a great
candidate for utilization in soft bone tissue regeneration. A promising member from the
latter group (i.e., TBPU-3) was chosen as a pilot for developing five different TBPU/BCNW
nanocomposites. The maximum enhancement of tensile strength and percent elongation
for the nanocomposites was achieved at 7 wt% nanowhiskers loading. Introducing PEG
segments in TBPUs chains demonstrated high potential for improving the interaction be-
tween the polymer chains and BCNW, keeping the polymer integrity intact and supporting
a strong network structure.
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gation, validation, data curation, writing, and original draft preparation; Y.D.: methodology and
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Appendix A. 1H-NMR (CDCl3) Chemical Shifts in Figures 3 and 4

Code Name of the Hydrogen Chemical Shift δ (ppm) Kind of Hydrogen

f 1.41–1.52 γ -(CH2)- of PCL

a 1.57 -CH3 of PL

e + g 1.58–1.65 β and δ -(CH2)- of PCL

d 2.3 α -(CH2)- of PCL

b 3.65 -(CH2)- of PEG

c + h 4.35–4.4 ω-(CH2)- of PCL

d 5.1–5.25 -CH-O- of PL
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