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Abstract 

Background:  Non-coding variants have emerged as important contributors to the 

pathogenesis of human diseases, not only as common susceptibility alleles but also as rare 

high-impact variants. Despite recent advances in the study of regulatory elements and the 

availability of specialized data collections, the systematic annotation of non-coding variants 

from genome sequencing remains challenging.  

Results: We integrated 24 data sources to develop a standardized collection of 2.4 million 

regulatory elements in the human genome, transcription factor binding sites, DNase peaks, 

ultra-conserved non-coding elements, and super-enhancers. Information on controlled 

gene(s), tissue(s) and associated phenotype(s) are provided for regulatory elements when 

possible. We also calculated a variation constraint metric for regulatory regions and showed 

that genes controlled by constrained regions are more likely to be disease-associated genes 

and essential genes from mouse knock-out screenings. Finally, we evaluated 16 non-coding 

impact prediction scores providing suggestions for variant prioritization. The companion tool 

allows for annotation of VCF files with information about the regulatory regions as well as 

non-coding prediction scores to inform variant prioritization. The proposed annotation 

framework was able to capture previously published disease-associated non-coding variants 

and its integration in a routine prioritization pipeline increased the number of candidate 

genes, including genes potentially correlated with patient phenotype, and established 

clinically relevant genes. 

Conclusion: We have developed a resource for the annotation and prioritization of regulatory 

variants in WGS analysis to support the discovery of candidate disease-associated variants in 

the non-coding genome. 
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Background 

The precise spatiotemporal control of gene expression plays a fundamental role in 

developmental processes and cellular functions and consequently, is essential in determining 

human phenotypes [1–3] . Gene expression is controlled by the interaction of distal regulatory 

elements, such as enhancers and silencers, with gene promoters mediated by complex 

networks of transcription factors (TF) binding to these genomic regions [4–7] . Thus sequence 

variants within these regulatory regions can alter TF binding and/or enhancer-promoter 

interactions, resulting in gene expression dysregulation and eventually disease [8–13] . The 

contribution of regulatory regions in human diseases is also supported by a myriad of 

genome-wide association studies (GWAS), showing that most disease-risk variants lie in 

non-coding regions [14–16] . In recent years, our knowledge about regulatory elements across 

the human genome, their tissue-specific activities, and the set of genes they control has 

substantially improved due to a large number of conducted genomic, epigenomic, and 

transcriptomics studies. Main functional elements in the human genome, such as enhancers, 

promoters, and TF binding sites, have been extensively mapped by large international 

collaborations like ENCODE [17,18]  and FANTOM5 [19,20] . Several dedicated resources 

have subsequently been developed, integrating and extending these datasets to generate a 

more detailed picture of regulatory elements [21–26] . Meanwhile, the application of novel 

computational [26–29]  and high-throughput screening methods [30–33]  has substantially 

improved our understanding of how regulatory elements control their respective target genes 

while several in-silico methods have been developed to better predict the impact of 

non-coding regulatory variants [34–40] . 
The increasing adoption of whole-genome (WGS) over whole-exome (WES) sequencing now 

allows for the comprehensive investigation of human variants in disease studies, including 
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variants affecting these regulatory regions. The accurate identification, interpretation, and 

prioritization of disease-relevant variants from WGS studies requires standardized resources 

for their annotation in routine bioinformatics pipelines. Whilst there is a large variety of 

annotation methods and databases available for coding variants [41,42] , resources for 

programmatic annotation of regulatory variants and their respective target gene(s) are still 

lacking. Ideally, such resources would include a catalog of regulatory regions and functional 

elements together with a set of impact prediction scores [40,43] . However, the resources and 

databases currently available in this field are often presented in a format not suitable to this 

task, and information about controlled gene(s) and tissue(s) of activity is difficult to access 

programmatically.  

Here, we present a unified framework that can be used to process standard variant call format 

(VCF) files to generate a comprehensive annotation of non-coding variants. For this aim, we 

have created a comprehensive resource, entitled GREEN-DB (Genomic Regulatory Elements 

ENcyclopedia Database), integrating a collection of ~2.4M regulatory elements, additional 

functional elements (TFBS, DNase peaks, ultra-conserved non-coding elements (UCNE), and 

super-enhancers), and 7 non-coding impact prediction scores. Information on the controlled 

gene(s), tissue(s), and associated phenotype(s) are provided in GREEN-DB when possible 

and information is compiled in standard BED and SQLite (https://www.sqlite.org/) file 

formats.  
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Results 

The GREEN-DB  database 

We have created a comprehensive collection of potential regulatory regions in the human 

genome including ~2.4M regions from 16 data sources covering ~1.5Gb evenly distributed 

across chromosomes (Figure 1A, B, and Supplementary Figure 1). A summary of the 

information represented in GREEN-DB is given in Table 1 while detailed region counts are 

summarized in Supplementary Table 1. As expected, these regions are mostly constituted by 

intronic and intergenic bases (Supplementary Figure 2) and overall they cover ~60% of 

introns and ~40% of intergenic space. However, a smaller but significant overlap was 

observed also with UTR and other exonic regions (Figure 1B, detailed in Supplementary 

Tables 2, 3). We have grouped regulatory regions into the following five categories 5 

categories: bivalent (regions showing both activation and repression activity), enhancer, 

insulator, promoter, silencer; with enhancer and promoters representing the majority of 

regions (Figure 1C). Each region is described by its genomic location, region type, method(s) 

of detection, data source and closest gene; ~35% of regions are annotated with controlled 

gene(s), ~40% with tissue(s) of activity, and ~14% have associated phenotype(s) (Figure 1E). 

These data are organized in 6 distinct tables in an SQLite database allowing for rapid 

querying based on genomic interval(s) and/or gene(s) of interest (the database structure is 

described in Supplementary Results and depicted in Supplementary Figure 3). GREEN-DB 

regions are also provided as an extended bed file for easy integration into existing analysis 

pipelines.  

We tested these regions for enrichment with genomic features associated with transcriptional 

activity using Fisher's exact test and found that several of them were significantly enriched, 

including transcription factors binding sites (TFBS, OR 9.67) and DNase hypersensitivity 

6 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301960doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.301960
http://creativecommons.org/licenses/by-nc/4.0/


 

peaks (OR 13.13) from ENCODE, GTeX significant eQTLs (OR 2.93) and ultra-conserved 

non-coding elements (UCNE, OR 8.35); while they are depleted for difficult-to-address 

regions such as segmental duplication (SegDup, OR 0.45) and low-complexity regions (LCR, 

OR 0.22). Finally, GREEN-DB regions are also enriched for a curated set of non-coding 

disease-causing mutations (OR 2.05) (Figure 2A and Supplementary Table 4). We 

furthermore examined the distribution of PhyloP100 conservation values and ReMM 

prediction scores across GREEN-DB regions, compared to random regions with comparable 

size and distribution across the genome. GREEN-DB regions appeared more conserved than 

random regions, showing a larger proportion of bases with PhyloP100 scores above 1, 1.5, 

and 2 (p-value < 2.2E-16 for all comparisons, Mann–Whitney U test) (Figure 2B and 

Supplementary Figure 4, 5). Similarly, both per-region median and maximum values of the 

ReMM score are significantly higher for GREEN-DB regions compared to random regions 

(Figure 2C, D). The median value of per-region median ReMM score is 0.568 in GREEN-DB 

regions and 0.363 in random regions (p-value < 2.2E-16, Mann–Whitney U test), while the 

median value of per-region maximum ReMM score is 0.919 in GREEN-DB regions and 

0.803 in random regions (p-value < 2.2E-16). 

 

Gene regulatory space 

Overall, ~58% of GREEN-DB regions have a putative association to one or multiple genes, 

either because these associations were determined experimentally (~35%), or because of a 

gene in close proximity (distance ≤ 10kb, ~23%), that can be suggested as a controlled gene 

(Figure 3A). Considering the 839,807 regions with a validated region-gene association, they 

interact with a total of 48,246 different genes, covering 67% of all genes and 97% of 

protein-coding genes from ENCODE v33 basic set. Controlled genes also cover 97, 98, and 
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100% of clinically relevant genes from PanelApp [44] , ClinVar (pathogenic genes only), and 

ACMG actionable genes list, respectively (Supplementary Table 5). Distal control elements 

(silencers, enhancers, bivalent) are mostly located outside the controlled gene, balanced 

between up- or downstream locations, while most of the promoter regions are located inside 

genes or upstream of them (Figure 3B). As expected, the distance between a region and its 

controlled gene(s) is larger for enhancers and silencers, which appear to be mostly located 

from about 10kb up to several Mb away from their controlled gene (Figure 3C). When we 

analyzed the relationship between GREEN-DB regions and their controlled genes (taking 

only experimentally associated genes into account), we saw that the closest gene is among 

annotated controlled genes only for ~40% of enhancers and ~12% of silencers, while this 

proportion is much higher (~70%) for promoters. Even when the closest gene is controlled, it 

is the only associated gene in just 24% and 5% of cases for enhancers and silencers, 

respectively. Interestingly, even when considering only GREEN-DB regions located within a 

gene, this gene is among the controlled ones in less than 50% of cases for enhancers, silencer, 

and bivalent regions (Figure 3D).  

The region-to-gene relationship showed a high degree of specificity, with most regions 

controlling less than 5 genes, while several genes are controlled by multiple regions 

(Supplementary Figure 6). Regions active in multiple tissues usually control more genes, 

suggesting a tissue-specific region-to-gene relationship (Supplementary Figure 7). 

Finally, gene-set enrichment analysis performed on the 491 genes with an extremely large 

regulatory-space showed that these genes are strongly enriched for essential genes derived 

from mouse studies (p-value 7.88E-97, FDR 1.11E-91) as well as genes involved in 

developmental processes, cell differentiation and other essential biological functions 

(Supplementary Table 6). 
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Regions constrained against sequence variation 

Based on data from gnomAD v3, we calculated a constraint metric for GREEN-DB regions 

ranging from 0 to 1, so that regions with higher values have lower than expected numbers of 

variants. We ranked GREEN-DB regions based on this metric and defined as constrained the 

23,102 regions above the 99th percentile of the distribution (mostly enhancers and promoters, 

Supplementary Figure 8). Comparison with other regions in GREEN-DB showed that 

constrained regions are more conserved (Supplementary Figure 8C) and are significantly 

enriched for tissue- and gene-specific regions, namely regions active in a single tissue or 

controlling a single gene (p < 2.2E-16, Supplementary Figure 9). When comparing the 

maximum constraint value of associated GREEN-DB regions, genes in the ClinVar 

pathogenic and essential groups are controlled by regions with higher constraint value 

compared to other genes (p < 2.2E-16, Matt-Withney U test, Figure 4). The 89.2% of ClinVar 

pathogenic genes and 93.6% of essential genes from knock-out screenings are associated with 

a region above the 90th percentile of constraint (Figure 4C, D). Overall, constrained regions 

control 5,154 genes based on GREEN-DB annotations and these genes are strongly enriched 

for essential genes and genes bearing pathogenic variants in ClinVar (FDR 1.89E-222 and 

1.22E-153, respectively). The complete results of our enrichment analysis are reported in 

Supplementary Table 7.  

 

Evaluation of non-coding impact prediction scores 

We considered 29 previously published prediction scores that can be applied to evaluate the 

impact of non-coding variants. Of these, 13 do not provide pre-computed values or were 

developed for somatic variants only and were thus removed from further analyses. Using the 
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curated set of disease-causing, non-coding variants from [36] , we evaluated the performance 

of the remaining 16 scores in classifying disease-causing variants. The GWAVA algorithm 

obtained the best results according to the OPM metric with values of 0.58 and 0.57 for 2 of 

the 3 GWAVA scores (Supplementary Table 8). However, available GWAVA pre-computed 

scores only cover 1.6 % of the genome, limiting its application in WGS annotation. NCBoost, 

FATHMM-MKL / -XF and ReMM also showed good classification performances (OPM 

values 0.449, 0.434, 0.427, 0.422 respectively). Finally, to maximize classification 

performance, genomic coverage of annotations and the diversity of computational 

approaches, we selected NCBoost, FATHMM-MKL and ReMM as the best scores 

combination. However, no single scores seemed able to robustly remove false-positive calls 

while maintaining high sensitivity (Supplementary Figure 10 and Supplementary Table 8). 

Indeed, when TPR is set to 0.9, the FDR is above 0.8 for all scores, while controlling the 

FDR ≤ 0.5 results in TPR values below 0.5 for all scores except NCBoost (0.53) and 

GWAVA version 1 (0.56). To assist the use of these scores in variant analyses, we also 

computed the score thresholds corresponding to TPR ≥ 0.9, FDR ≤ 0.5, and maximum ACC 

(detailed metrics for each threshold are shown in Supplementary Figure 11 and 

Supplementary Table 9).  

 

Validation using non-coding, disease-associated variants 

We applied GREEN-DB annotations to a set of 61 variants with previously demonstrated 

regulatory effects on disease genes (40 promoter and 21 enhancer variants associated with 17 

different genes). Our annotations were able to capture all tested variants, linking all of them 

to the expected gene. When considering the 7 non-coding impact prediction scores evaluated 

in this paper, 97% (59/61) of tested variants were classified as “deleterious” by at least 1 
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score, and 51% (31/61) by at least 3 different scores when applying the calculated FDR50 

thresholds. When applying the less stringent TPR90 threshold, almost all variants (97%) were 

classified as “deleterious” by at least 3 scores (Table 2). Details on each variant are reported 

in Supplementary Table 10. 

 

A framework for annotation and prioritization of non-coding variants from WGS 

We created a tool (GREEN-VARAN: Genomic Regulatory Elements ENcyclopedia VARiant 

ANnotation) for the annotation and prioritization of non-coding variants which integrates all 

the collected information: regulatory elements from GREEN-DB, non-coding impact 

prediction scores, and additional genomic features relevant to gene regulation (TFBS, UCNE, 

DNase peaks, super-enhancers and enhancer loss of function (LoF) predictions). The tool is 

written in Python 3 and processes the output of vcfanno [45]  to produce variant annotations 

containing: regulatory region type and IDs, controlled gene(s), closest gene(s) with their 

distance, overlap with any of the additional genomic features. Pre-computed values from the 

tested non-coding prediction scores are distributed together with GREEN-DB and can be 

annotated using the tool. Finally, the tool allows the user to tag/filter variants based on genes 

of interest as well as select/tag non-coding variants only if they are associated with a gene 

already affected by a coding variant of a given impact (based on snpEff impact ranking). 

Given an annotated VCF or a list of region IDs, GREEN-VARAN allows querying 

GREEN-DB to retrieve additional details such as tissue of activity and data source. More 

details on the annotations generated by the tool are given in Supplementary Results. 

 

Impact on WGS variant prioritization 
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We added our annotation framework to a standard pipeline applied to prioritize small variants 

from 90 WGS pedigrees to evaluate the impact of adding non-coding annotations to the 

number of possible candidate variants and genes. Considering variants identified in each 

individual, we found a median of ~2.29M variants in GREEN-DB regions, including a 

median of 44,837 rare (population AF < 0.01) and 8,472 rare deleterious variants (based on 

impact prediction scores) (Supplementary Figure 12). When looking at rare variants that 

segregate with the phenotype in each pedigree, adding GREEN-DB annotations increases the 

median number of candidate variants from 1,764 (exonic variants only) to 77,725 (filter step1 

in Figure 5A). Filtering based on prediction scores reduces the median number of variants to 

4,941 (4,792 considering only non-coding variants, filter step2 in Figure 5A). A significant 

proportion of prioritized non-coding variants affected genes with a potential role for the 

family phenotype, based on HPO-profile gene ranking (filter step3 in Figure 5A). The newly 

annotated non-coding variants have a particular impact on identifying compound 

heterozygote candidate variants and interestingly they also create new combinations with 

prioritized coding variants. Indeed, the median number of compound heterozygotes involving 

one protein-altering and one non-coding variant is 835, 27, and 2 in filtering steps 1, 2, and 3 

respectively (Figure 5B). Adding non-coding annotations resulted in a larger number of 

candidate genes including genes likely relevant for the disease phenotype based on HPO 

profiles. The median number of candidate genes selected was 16 when considering coding 

variants only and 302 when including the new annotations (step3, Figure 5C). Similarly, 

when considering only a subset of clinically relevant genes from PanelApp or Clinvar, the 

median number of selected candidates increased from 7 and 7 (exonic variants only) to 107 

and 115 (including GREEN-DB variants), respectively (Supplementary Figure 13). Ranges of 

selected candidate variants for each filtering step are reported in Supplementary Table 11.  
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Discussion 

Non-coding regions of the genome have clearly been implicated in disease risk from a 

plethora of GWAS studies [14–16]  and, more recently, various WGS studies have also 

highlighted the role of pathogenic rare variants in the non-coding space [8,10–12] . Whilst 

information about the types and locations of regulatory regions has been described previously 

in the literature [17,19–25] , the systematic interrogation of these in clinical whole-genome 

sequencing data from patients with rare diseases remain challenging and limited by the lack 

of systematic resources easy to access programmatically [46–48] . To fill this gap, we have 

developed a framework for the systematic annotation of non-coding variants including an 

extensive catalog of regulatory regions and a set of tools and resources that can be integrated 

into routine bioinformatics pipelines to annotate non-coding variants and improve their 

interpretation and prioritization in disease studies.  

We have collected and curated data from published, experimental, and computational sources 

to create a catalog providing a standardized representation for ~2.4 million regulatory 

elements in the human genome (GREEN-DB). To support the interpretation of the impact of 

genetic variants, each regulatory region is annotated with a rich set of information: 1) 

genomic location; 2) a standardized definition of its role (promoter, enhancer, silencer, 

bivalent, insulator); 3) its known controlled gene(s) and tissue(s) of activity; 4) its closest 

gene; 5) its potential phenotype association(s) based on GWAS datasets and Human 

Phenotype Ontology; 6) a constraint metric representing the tolerance of the region to genetic 

variation. An actual role of these regions as regulatory elements is supported by their 

significant overlap with motifs of recognized regulatory importance (like TFBS and DNAse 

hypersensitivity sites), as well as variants involved in gene expression regulation (GTeX 

eQTLs) and non-coding variants involved in human diseases. Moreover, they also score 
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highly when compared to random regions of similar length considering ReMM prediction 

scores and PhyloP100 conservation values, suggesting that they are capturing a functionally 

relevant portion of the genome.  

To interpret the biological role of a regulatory region, it is essential to know the genes it 

controls and in which tissues it is active. In GREEN-DB we collected and curated 

experimentally validated region-gene links and tissue information for ~35% and ~40% of the 

regions, respectively. Overall, GREEN-DB provides regulatory information for 48,246 genes, 

including most of the clinically relevant genes from PanelApp, ClinVar and ACMG, 

supporting its usefulness in human disease research. Although it has long been recognized 

that there is some degree of spatial relationship between regulatory regions such as promoters 

and enhancers and the genes they control, with promoter elements being closer and silencers 

more distal to their dependent genes [18,19,49], our analysis confirms the complexity of the 

relationship between regulatory regions and controlled genes that can not easily be explained 

by spatial proximity in the (linear) genome as previously demonstrated, e.g., by 

high-throughput studies of chromatin interactions [32,50–52] . 

Indeed for silencer and enhancer elements, the controlled gene was the closest gene in only 

5% and 24% of cases respectively, whilst regulatory regions within a gene only exert 

regulatory control on that specific gene in less than half of the cases. Even if we cannot 

exclude that these observations may be influenced by incomplete annotation of controlled 

genes, this has considerable implications especially for GWAS studies, where the search for 

disease-associated genes often starts with proximity to the most significantly associated SNPs 

[53,54] . Overall, we observed a high degree of specificity in the region-gene relationship, 

with a large fraction of regions controlling less than 5 genes, even if this result may be 

affected by incomplete annotations of the controlled genes. On the other hand, most genes are 
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controlled by multiple regulatory regions which in consequence means that very different, 

spatially distant genomic regions may have a similar phenotypic impact. This makes the 

comprehensive annotation of all regions that influence/regulate the normal activity of a gene 

so important for understanding the consequences of genomic variants of the respective gene 

function. A correlation emerged between the number of controlled genes and the number of 

active tissues for each region, confirming the tissue-specific nature of gene regulation and 

supporting the idea that alterations in a regulatory region can have different impacts in 

different tissues [12] . Consistent with other studies [55] , we found that essential, ubiquitously 

expressed housekeeping genes and genes involved in human diseases had a larger regulatory 

space, namely a higher number of associated regulatory regions, that can contribute to 

fine-tune their expression and increase their tolerance to single disruptive mutations in one of 

the associated regions.  

We also integrated information from GWAS studies and HPO databases to provide a possible 

associated phenotype for ~15% of the regions. This resource will be useful for the 

interpretation of new variants found in the regulatory regions, providing hypotheses on their 

potential biological impact. The fact that only a limited number of regions has an associated 

phenotype, despite a large number of GWAS hits available [56–58] , can be explained by 

several reasons. In some cases, the phenotypic effect of alterations in a single regulatory 

region may be small due to the redundancy of these control regions and their tissue-specific 

effect, resulting in weak associations and thus reduced the significance of SNPs from GWAS 

studies. On the other hand, this also underlines how the impact of rare disrupting variants in 

the non-coding space is largely unexplored and how resources like GREEN-DB can inform 

our understanding of human diseases. 
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Using data from gnomAD v3 [59]  we calculated a constraint metric that reflects the tolerance 

of each region to sequence variations. The maximum constraint value for regions controlling 

essential genes and genes involved in human diseases is significantly higher compared to 

other genes, suggesting that this metric can be used effectively to prioritize regions more 

relevant in disease studies. This idea is further supported by the analysis of regions under 

strong constraint (constraint value ≥ 0.99) that were more conserved than other regions in the 

database and associated with genes strongly enriched for essential genes and genes involved 

in human diseases. 

To further assist the interpretation of variants located in regulatory regions, we collected 

pre-computed values from 16 different impact prediction algorithms and compared their 

ability to classify a curated set of established disease-causing non-coding variants. Overall, 

we must take into account that such comparisons are (i) limited by the nature of the known 

variants collected so far, which are mostly variants near to the affected gene and poorly 

captured distant regulatory elements [48] ; and (ii) by the potential overlap of the test variants 

with the training sets used by each algorithm, which are often unknown. Based on OPM 

value (a metric developed to better summarize classification performances [60] ), GWAVA 

[61] , NCBoost [36] , FATHMM [62,63]  and ReMM [38]  algorithms emerged as the best 

performing scores (OPM values: GWAVA_1 0.584, GWAVA_2 0.576, NCBoost 0.449, 

FATHMM-MKL 0.434, FATHMM-XF 0.427, ReMM 0.422; Supplementary Table 8), 

probably reflecting their specific training on disease-associated variants and the integration of 

functional region annotations. On the other hand, the poor performance of FIRE (OPM: 

0.175) can be explained considering that this prediction model has been trained on eQTLs 

[37] , which represent a completely different type of regulatory variants. Based on ROC curve 

analysis, we also provided suggested thresholds for variant classification, based on the 
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desired level of sensitivity and FDR, which can be useful in prioritizing high-impact 

non-coding variants.  

The combination of the information present in GREEN-DB with these prediction scores can 

effectively capture variants involved in human diseases, as shown by our ability to 

recapitulate known disease-associated variants from the literature. Indeed, considering a 

collection of 61 variants from 3 different publications [64–66] , representing both close and 

distant regulatory variants, our annotations allowed us to associate them with the correct 

controlled gene and classify them as “deleterious” considering a stringent threshold for one 

(52/61) or multiple (46/61) of the 10 best-performing prediction scores. Specifically, the 

proposed combination of NCBoost, FATHMM-MKL and ReMM was able to correctly 

classify as “deleterious” 42 (69%) and 60 (98%) variants using the stringent FDR50 and the 

more relaxed TPR90 thresholds, respectively. 

When it comes to the analysis of non-coding variants, the large number of such variants 

present in each person’s genome and the infancy of any robust clinical annotation means the 

application of WGS for rare disease patients diagnosis still presents a considerable challenge 

[40,67,68]. Therefore, whilst most clinical diagnostic labs now utilise whole exome 

sequencing, few have yet transitioned to whole genome sequencing [69,70] . Nonetheless, the 

diagnostic yield for such WES tests still rarely attains the 50% mark [71–73]  indicating that 

the non-coding genome is likely to harbor many variants of clinical diagnostic significance. 

Even dedicated clinical WGS programmes such as the UK's 100,000 Genomes Project [74] 

do not routinely interrogate non-coding regulatory regions in their patient genomes, while 

others only take into account large variants (i.e. deletions) associated to a limited list of 

diagnostic-grade genes [75] . 
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Our companion tool (GREEN-VARAN) brings together in a single annotation framework 

information from GREEN-DB, non-coding impact prediction scores and population AF 

annotations, creating a system suitable for systematic WGS variants annotation. The potential 

of the tool in prioritizing relevant variants in rare-diseases is shown by the results obtained 

when applied to an internal dataset of 90 WGS family cases. The median number of rare 

variants segregating with the phenotype per case increased from 1,764 when considering 

exome variants alone to 77,725 when including genome-wide variants overlapping 

GREEN-DB regions. Using prediction scores as a filter reduced this number to ~5000 and 

applying an HPO-based prioritization strategy based on the family phenotype further reduced 

the candidate genes to a median of 302 per case (compared to 16 when considering exonic 

variants only) and this number can be further reduced by selecting only compound 

heterozygous involving at least one exonic variant. The same trend applies when this pipeline 

is applied considering only clinical relevant genes from PanelApp or ClinVar suggesting that 

inclusion of our non-coding annotation can reveal previously ignored candidate genes likely 

to have an impact on patient phenotype. Whilst this number of candidate genes is still too 

many for a diagnostic lab to consider, this is certainly in the realms of the possible for 

research-based inspection, especially in otherwise difficult to solve cases. The application of 

GREEN-VARAN annotations can have a particular impact on the analysis of compound 

heterozygous variants and be useful in identifying second non-coding hits in biallelic 

candidate genes where only a single coding variant has been identified, an approach that 

already resulted in increased diagnosis in a recent large clinical WGS study [75] . In summary 

therefore, we have compiled an extensive and highly curated dataset of regulatory regions 

(GREEN-DB) and a tool for readily annotating regulatory variants from whole genome 

sequencing data (GREEN-VARAN). We expect that these resources will be of particular 
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value for clinical scientists and researchers working with WGS data, supporting the 

identification of pathogenic rare disease variants in the non-coding space. Information 

collected in GREEN-DB provides a valuable resource to understand the complex spatial 

relationships between regulatory elements and their controlled genes, which will be useful for 

rare disease diagnosis as well as for the interpretation of common disease variants from 

GWAS. 

 

Conclusion 

We have developed a framework for the annotation and prioritization of regulatory variants 

in WGS analysis supporting the discovery of candidate disease-associated variants in the 

non-coding regions. This includes an extensive collection of regulatory regions, information 

on the controlled genes and a companion tool that easily integrates into existing bioinformatic 

pipelines to readily annotate non-coding variants from WGS data. The resources presented 

here therefore represents a significant advance for clinical diagnostics labs and researchers 

engaged in analyzing patient genomes. 
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Methods 

Data collection 

To compile an up-to-date, standardized collection of regulatory elements in the human 

genome (GREEN-DB) we collected and aggregated information from 16 different sources, 

including 7 previously published curated databases, 6 experimental datasets from recently 

published articles, and predicted regulatory regions from 3 different algorithms. Four 

additional datasets were included to integrate region to gene/phenotype relationships. The full 

list of data sources and references is reported in Supplementary Table 12. We also collected 

additional data useful in evaluating the regulatory role of genomic regions, including TFBS 

and DNase peaks, ultraconserved non-coding elements (UCNE), super-enhancer definitions, 

and enhancer LoF tolerance (Supplementary Table 13) as well as 9 scores developed to 

predict the regulatory impact of non-coding variants (Supplementary Table 14). 

 

Data processing 

Data collected from the various data sources were processed to generate a standardized 

collection of regulatory regions, their controlled gene(s), method(s) of detection,  tissue(s) of 

activity, and associated phenotype(s). In the standardized tables, each region is represented 

by its genomic coordinates and annotated with a standard region type (bivalent, insulator, 

promoter, enhancer, silencer), closest gene(s) information, and a unique ID, used to link the 

region with additional annotations. Standardized regions and annotations from each data 

source were integrated into an SQLite database with 6 global tables (GRCh37 / GRCh38 

regions, genes, tissues, methods, phenotypes), with the region table converted to GRCh38 

coordinates using UCSC LiftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). 

Regions provided in the additional datasets of TFBS, DNase clusters, super-enhancer, UCNE, 
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and enhancer LoF tolerance were processed similarly and the overlaps between these 

additional regions and GREEN-DB regions were pre-computed and stored in ID-to-ID link 

tables. The detailed description of data processing steps is provided in the Supplementary 

Methods.  

 

Evaluation of collected regulatory regions 

To evaluate the ability of GREEN-DB to capture regions relevant for expression regulation, 

we evaluated the overlap between the collected regions and 5 established sets of regions 

associated with functional genome elements: ENCODE TFBS, ENCODE DNase 

hyper-sensitivity clusters, UCNE regions, and a curated set of non-coding disease-associated 

variants (from [36] ). We used Fisher’s exact test to assess the enrichment/depletion of each of 

these classes among the GREEN-DB regions. Since most of the GREEN-DB regions are 

located in the intergenic space, we verified the overlap with potentially uninformative 

repetitive regions performing the same test also for genome low-complexity regions (as 

defined in [76] ) and segmental duplications. Finally, we evaluated the degree of conservation 

and the ReMM score distribution for GREEN-DB regions compared to random regions 

across the genome. We used the ReMM score, which has emerged as the best performing 

non-coding impact prediction score with genome-wide coverage from our analysis, to assess 

the actual ability of GREEN-DB to capture disease-relevant genomic regions. First, we 

generated a set of control regions by randomly picking from each chromosome (excluding 

centromeric and telomeric regions) the same number of regions seen in GREEN-DB, with 

comparable size distribution (Supplementary Figure 14). For each region in the random and 

GREEN-DB sets, we calculated the fraction of bases having a PhyloP100 score above 1, 1.5, 

and 2 (higher values indicate more conservation) and the median and maximum ReMM 

21 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2020. ; https://doi.org/10.1101/2020.09.17.301960doi: bioRxiv preprint 

https://paperpile.com/c/mW70RF/rxDH
https://paperpile.com/c/mW70RF/CXFA
https://doi.org/10.1101/2020.09.17.301960
http://creativecommons.org/licenses/by-nc/4.0/


 

values. We compared the distributions of these values between control and GREEN-DB 

regions using the Mann–Whitney U test. 

 

Analysis of gene regulatory space 

We evaluated the relationship between regions and associated genes for the 839,807 regions 

for which we have collected validated associations. Based on gene definitions from the 

GENCODE v33 basic set, we investigated where each region was located with respect to 

each of its associated genes (upstream, downstream, or inside the gene) and the region-gene 

distances for each of 4 main region types having associated genes (bivalent, enhancer, 

promoter, silencer). Finally, we evaluated the proportion of regions for which the closest gene 

was among the associated genes or was the only controlled gene, and the proportion of 

regions located within a gene, but controlling other distant ones. For the 48,246 genes 

captured in the GREEN-DB, we calculated the number of associated genes per region (GxR) 

and the number of associated regions per gene (RxG). We correlated GxR value with the 

number of tissues per region to assess if regions controlling multiple genes are more likely to 

do so in a tissue-specific manner. Correlation significance was tested using Spearman’s 

correlation test. We then selected 491 genes with an extremely large regulatory-space, 

defined as those in the 99th percentile of RxG distribution (genes with at least 182 associated 

regions), and used the hypergeometric test to assess their enrichment across Gene Ontology 

groups and canonical pathways from MSigDB v7.1 as well as essential genes derived from 

cell-culture (283) or mouse knock-outs (2,454) and genes bearing any pathogenic/likely 

pathogenic mutation in ClinVar (4,588). Essential genes lists were obtained from 

https://github.com/macarthur-lab/gene_lists  (core_essential and mgi_essential lists). FDR of 

the 13,960 performed tests was controlled using the Benjamini–Yekutieli method [77].  
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Identification of regions under variation constraint 

Variants from gnomAD v3 WGS dataset were used to assess regions under variation 

constraint. For each region in GREEN-DB, we first calculated the number of gnomAD PASS 

variants. To prevent the detection of false-positive constrained regions due to partial 

inaccessibility, we filtered regulatory regions that overlap more than 50% with known 

segmental duplications (segdup) or low-complexity regions (LCR). We furthermore removed 

regions on chrY and chrM leaving us with 100,768 annotated regulatory regions. For all 

remaining regions, we computed the region’s GC density (GC) as a proxy for the region’s 

mutability owing to the spontaneous deamination of methylated cytosines. We then created a 

linear regression model with the number of variants as the dependent variable:  

length GC segdup LCRN var =  +  +  +   

N var, GC density, and sequence length variables were transformed to approximate normality 

using Blom's transformation [78] . In the case of LCR and segdup, the majority of values were 

equal to 0 making the above transformation ineffective. Instead, we treated these two 

variables as binary by setting all non-zero values equal to 1. Each region’s degree of 

constraint was measured on the basis of its distance from the resulting regression line. The 

residuals from the model were ranked from lowest to higher, and assigned a percentile such 

that regions with the lowest residual value are assigned the highest percentile, reflecting the 

highest predicted constraint (regions with fewer than expected variants). Regions above the 

99th percentiles were considered as constrained regions. We used Fisher’s exact test to assess 

if these regions were enriched for regions controlling a single gene or active in a single tissue 

(tissue- and gene-specific regions) compared to all regions present in GREEN-DB. For each 

gene present in GREEN-DB, we selected the highest constraint value across associated 
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regions and used the Mann–Whitney U test to compare value distributions between genes 

belonging to the ClinVar pathogenic or essential genes groups and all the other genes 

reported in GREEN-DB. For genes controlled by constrained regions, we performed gene-set 

enrichment analysis (GSEA) across Gene Ontology groups, canonical pathways, essential 

genes, and ClinVar pathogenic genes as described above. 

 

Evaluation of non-coding impact prediction scores 

With the aim of providing a framework useful for variant prioritization, we evaluated the 

usability of 26 non-coding variant impact prediction scores when applied to WGS data 

analysis for rare diseases. Among these, we excluded: 10 scores because they do not provide 

pre-computed values, making them difficult to apply programmatically; 2 scores that were 

developed specifically for somatic variants; 1 score that provide only disease-specific 

predictions for a limited set of phenotypes (see Supplementary Table 14). Of the remaining 

13 scores, GWAVA and EIGEN provide 3 and 2 different prediction values respectively, for 

a total of 16 predictors. We compared the performances of these 16 scores when applied to a 

set of known disease-causing non-coding variants. For this purpose, we used a set of curated 

disease-associated and neutral variants from [36] , including 725 true positive examples and 

7,250 negative examples.  

For each score the evaluation was limited to the subset of scored variants (see Supplementary 

Table 8). Classification performances were evaluated in R using the ROCR package [79]  and 

3 suggested thresholds for classification were computed: (i) max_ACC: score value achieving 

maximum accuracy; (ii) TPR90: filtering value corresponding to TPR ≥ 90%; (ii) FDR50: 

filtering value able to control FDR ≤ 50% with the maximum TPR. For a better 

representation of the overall classification performances of each score we also computed the 
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overall performance measure (OPM) as described in [60] , that better captures the 

performance of a score when used for filtering purposes. 

 

Application to known examples of disease-causing regulatory variants 

To test the potential of GREEN-DB and the proposed annotations to capture non-coding 

variants relevant in human diseases, we evaluated a set of 61 variants that have been 

described to have a regulatory effect on disease genes [64–66] . This set includes 40 promoter 

and 21 enhancer variants associated with 17 different genes. For each variant, we evaluated 

the overlap with GREEN-DB regions and other functional regions (TFBS, DNase, UCNE, 

dbSuper) and checked whether the affected gene from the original publication is among the 

ones reported in our database as controlled by the regions overlapping with the variant. 

Additionally, we assessed if these variants can be classified as “deleterious” based on the 

FDR50 thresholds we computed for the non-coding impact prediction scores.  

 

Preparation of the WGS test dataset 

To test the impact of our new annotations on the variant prioritization for rare diseases, we 

applied them to a set of 90 family cases from an internal WGS cohort (8 duos, 66 trios, 12 

quads, 4 quintets). For each case, a ranked list of genes potentially relevant for the family 

phenotype was calculated based on the respective HPO profile using GADO [80] . WGS was 

performed at a minimum 30X mean coverage, reads aligned to GRCh38 using bwa v0.7.15 

[81] , and duplicated reads marked using samblaster v0.1.24 [82] . Small variants were 

identified from single individual BAM files using deepvariant v0.9.0 [83]  and single 

individual gVCF were merged in a single cohort VCF using GLnexus v1.2.6 [84]  with 

deepvariantWGS optimized settings. Variants were filtered retaining only variants with 
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quality above 20 and at least 1 individual with GQ ≥ 20. The filtered VCF was annotated 

using SnpEFF v4.3 [85]  and then our tool was used to integrate non-coding annotations. First, 

we computed the number of variants located in GREEN-DB regions in each individual 

considering all variants, only rare variants (gnomAD / 1000G global population AF < 0.01) 

or rare variants classified as deleterious applying the FDR50 thresholds by at least one of 

ReMM, NCBoost and FATHMM-MKL. Then, we evaluated the number of candidate 

disease-related variants in each pedigree applying a 3 steps prioritization: (i) rare variants 

(population AF < 0.01 in 1000G / gnomAD populations and AF < 0.1 in the cohort) 

segregating with the disease phenotype, located within a exon/splice-site or a GREEN-DB 

region with associated gene; (ii) potentially deleterious variants based on prediction scores: 

LoF variants, missense variants with CADD ≥ 20, non-coding variants in GREEN-DB 

regions with ReMM, NCBoost or FATHMM-MKL ≥ FDR50 thresholds (see Supplementary 

Table 10); (iii) affecting genes in the 90th percentile of GADO Z-score (representing genes 

more relevant to the disease based on the respective HPO profile). At each step, we evaluated 

the total number of variants, the number of coding variants, and the number of variants in 

GREEN-DB regions. Additionally, we computed the number of compound heterozygotes 

combinations involving variants in GREEN-DB regions and a combination of a protein 

altering variant (LoF or missense with CADD ≥ 20) variant plus a GREEN-DB region 

variant. The same procedure was repeated considering only genes with pathogenic/likely 

pathogenic annotation in ClinVar and genes reported in PanelApp disease panels. 
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TNR: True negative rate (specificity) 

FDR: False discovery rate 

ACC: Accuracy 

HPO: Human Phenotype Ontology 

TFBS: Transcription factor binding site 

UCNE: Ultra-conserved non-coding element 

AUC: Area under the curve 

OPM: Overall Performance Measure 
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Tables 

Table 1. Summary of GREEN-DB information 

GREEN-DB No. of Elements Mean size (bp) Bases covered 

Enhancer 1,832,830 1,111 1,449,153,178 

Promoter 565,323 580 234,315,553 

Silencer 4,302 208 11,210,309 

Bivalent 8,409 1,348 894,792 

Insulator 23 741 17,504 

All regions 2,410,887 988 1,502,180,018 

With controlled gene(s) 839,511   

With tissue information 941,874   

With phenotype 
information 349,008   

 

The table summarizes the main statistic about regions in GREEN-DB, reporting counts and 

number of genomic basis covered  

 

Table 2. Validation of GREEN-DB annotations using published non-coding 

disease-associated variants 

    Above FDR50 threshold Above TPR90 threshold 

Variant N In 
GREEN

-DB 

Expected 
gene 

≥ 1 
score 

≥ 2 
scores 

≥ 3 
scores 

≥ 1 
score 

≥ 2 
scores 

≥ 3 
scores 

All 61 61 61 52 (42) 46 (30) 24 (14) 61 (60) 61 (55) 60 (32) 

Enhancer 21 21 21 14 (13) 14 (11) 10 (6) 21 (20) 21 (19) 20 (9) 

Promoter 40 40 40 38 (29) 32 (19) 24 (8) 40 (40) 40 (36) 40 (23) 

 

The table reports results obtained applying GREEN-DB annotations and prediction scores to 

a set of known non-coding disease-associated variants collected from the literature. The 
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number of variants captured by GREEN-DB regions (In GREEN-DB) and with the expected 

genes among controlled genes from the database (Expected gene) is reported. Additionally, 

the table reports the number of variants above the FDR50/TPR90 threshold considering at 

least 1, 2, or 3 scores among the top 10 non-coding impact prediction scores or, in brackets, 

the 3 scores selected as the best combination (NCBoost, FATHMM-MKL, ReMM).  

 

Figure Legends 

Figure 1. Summary statistic of regions collected in the GREEN-DB 

(A) GREEN-DB collects human regulatory regions from 16 different sources including 

curated databases, experimental assays, and computational predictions. (B) Number of bases 

captured by these regions across different genomic locations and covered fraction of each 

genomic location (label on top of bars). (C) GREEN-DB contains bivalent, enhancer, 

insulator, promoter, and silencer regions with sizes mostly between 100 and 1000 bp (D). (E) 

Fraction of regions with associated gene, phenotype and tissue information. Phenotype 

information was derived from GWAS studies (via overlap of significant SNPs with 

GREEN-DB regions), HPO (via controlled genes), and DiseaseEnhancer dataset. 

 

Figure 2. Evaluation of the GREEN-DB regions 

(A) Using Fisher’s exact test, we assessed the presence of an enriched overlap between 

regions collected in the GREEN-DB and several genomic features involved in transcriptional 

activity: DNase HS peaks (Dnase) and transcription factors binding sites (TFBS) from 

ENCODE, ultraconserved non-coding elements (UCNE), and significant eQTLs from GTeX 

v8 (GteX eQTLs). We also tested if GREEN-DB regions were enriched for a curated set of 

disease-causing non-coding variants (TrueSet Vars) and a set of regions difficult to sequence 
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such as segmental duplications (SegDup) and low-complexity regions (LCR). (B) 

Considering the PhyloP100 conservation value distribution for each region, GREEN-DB 

regions have a higher proportion of highly conserved bases per region at either 1, 1.5, or 2 

thresholds compared to random regions. GREEN-DB regions also showed higher per region 

median (C) and maximum (D) ReMM score compared to a set of random regions with 

comparable size and distribution across the genome. Triple stars indicates p-value < 0.001 

 

Figure 3. Gene regulatory space 

(A) Overall 839,807 regions (~35%) in GREEN-DB are experimentally associated with a 

controlled gene, while another 23% have a gene in close proximity. Considering only 

experimental associations, distant control elements are mostly located up- or downstream of a 

gene, with a smaller proportion observed within genes (B). The distance between a region 

and its controlled gene(s) is larger for enhancers, silencers, and bivalent, with most regions 

located between 10kb and several Mb away from the controlled gene (C). Interestingly, a 

large proportion of these regions may not control their closest gene(s) even when they are 

located within a specific transcript (D).  

 

Figure 4. Constraint regions control diseases-associated and essential genes 

For each gene reported in GREEN-DB, we considered the maximum constraint value across 

the associated regions and compared the distribution of these values between general genes 

and genes in the ClinVar pathogenic (A) or essential genes groups (B). Both groups appear to 

be controlled by regions with higher constraint. For various constraint value tranches, we 

calculated the fraction of ClinVar (C) or essential (D) genes controlled by at least one region 
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in the corresponding tranche. Both groups show a large fraction of genes controlled by 

regions with constraint value ≥ 0.9. Triple stars indicates p-values < 0.001  

  

Figure 5. Impact of non-coding annotations on WGS variant prioritization 

The violin plots represent the number of candidate variants (A), compound heterozygotes (B), 

and genes (C) found in 90 WGS pedigrees following the 3 step variant prioritization pipeline 

described in the main text. (A) and (C) report counts considering all, all exonic and all 

non-coding GREEN-DB variants (NC regions vars). In (B) the number of possible compound 

heterozygotes is reported considering any combination (All comphet), combinations 

including a non-coding variant annotated with GREEN-DB (Include NC var) and 

combinations including one non-coding variant and one protein-altering variant (LoF or 

missense with CADD ≥ 20) (Coding var+NC var). 

 

Additional files 

Additional File 1. Supplementary Tables 1-14 (.xls) 

Additional File 2. Supplementary Methods and Results. Supplementary Figures 1-14. (.pdf) 
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