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GREEN FUNCTION ESTIMATES FOR SUBORDINATE

BROWNIAN MOTIONS: STABLE AND BEYOND

PANKI KIM AND ANTE MIMICA

Abstract. A subordinate Brownian motion X is a Lévy process which can
be obtained by replacing the time of the Brownian motion by an independent
subordinator. In this paper, when the Laplace exponent φ of the corresponding
subordinator satisfies some mild conditions, we first prove the scale invariant
boundary Harnack inequality for X on arbitrary open sets. Then we give an
explicit form of sharp two-sided estimates of the Green functions of these sub-
ordinate Brownian motions in any bounded C1,1 open set. As a consequence,
we prove the boundary Harnack inequality for X on any C1,1 open set with
explicit decay rate. Unlike previous work of Kim, Song and Vondraček, our re-
sults cover geometric stable processes and relativistic geometric stable process,
i.e. the cases when the subordinator has the Laplace exponent

φ(λ) = log(1 + λα/2) (0 < α ≤ 2, d > α)

and

φ(λ) = log(1 + (λ+m2/α)α/2 −m) (0 < α < 2, m > 0, d > 2) .

1. Introduction

Let d be a positive integer, let W = (Wt,Px) be a Brownian motion in R
d

starting at x and let S = (St : t ≥ 0) be a subordinator independent of W , i.e. a
Lévy process taking values in [0,∞) and starting at 0.

The Laplace exponent of a subordinator is a Bernstein function and hence has
the representation

(1.1) φ(λ) = bλ+

∫
(0,∞)

(1− e−λt)μ(dt) ,

where b ≥ 0 and μ is a measure on (0,∞) satisfying
∫

(0,∞)

(1∧ t)μ(dt) < ∞, usually

called the Lévy measure of φ. If the measure μ has a completely monotone density,
the Laplace exponent φ is called a complete Bernstein function.

We define the subordinate Brownian motion X = (Xt,Px) by Xt = WSt
.
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The aim of this paper is to obtain the following two-sided estimates of the Green
function GD(x, y) of X in a bounded C1,1 open set D ⊂ R

d in terms of the Laplace
exponent φ of the subordinator:

GD(x, y) �
(
1 ∧ φ(|x− y|−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2
,

where δD(x) denotes the distance of the point x to Dc and a∧ b := min{a, b}. Here

and in the sequel, f � g means that the quotient f
g stays bounded between two

positive numbers on their common domain of definition.
The process X is, in particular, a rotationally symmetric Lévy process. Recently

there has been huge interest in studying the potential theory of such processes. See,
for example, [KMR,KSV12a,KSV12b,KSV12c,RSV06] and the references therein.
The purpose of this paper is to extend recent results in [KSV12b, KSV12c] by
covering geometric stable processes and much more.

Estimates of the Green function for discontinuous Markov processes were first
studied for rotationally symmetric α-stable processes in [CS98] and in [Kul97] inde-
pendently. These results were later extended to relativistic α-stable processes and
to sums of two independent stable processes in [Ryz02] and [CKS10] respectively.
Recently, the first named author with R. Song and Z. Vondraček succeeded to ob-
tain such estimates for a large class of subordinate Brownian motions in [KSV12b].

Still, the class considered in [KSV12b] does not include some interesting cases
like geometric stable processes or, more generally, the class of subordinate Brownian
motions with a Laplace exponent that varies slowly at infinity. Our approach covers
a large class of such processes.

Another feature of our approach is that it is unifying in the following sense:
the sharp estimates of the Green function are given only in terms of the Laplace
exponent φ and its derivative.

Let us give a few examples of transient processes that are covered by our ap-
proach.

Example 1 (Geometric stable processes).

φ(λ) = log(1 + λβ/2) (0 < β ≤ 2, d > β).

Example 2 (Iterated geometric stable processes).

φ1(λ) = log(1 + λβ/2) (0 < β ≤ 2),

φn+1 = φ1 ◦ φn n ∈ N,

with an additional condition d > 21−nβn.

Example 3 (Relativistic geometric stable processes).

φ(λ) = log

(
1 +

(
λ+mβ/2

)2/β

−m

)
(m > 0, 0 < β < 2, d > 2).

In order to obtain the sharp Green function estimates we first obtain the uniform
boundary Harnack principle, with its constant not depending on the open set itself.
Such a uniform boundary Harnack principle was first proved in [BKK08] and very
recently generalized to a larger class of rotationally symmetric Lévy processes in
[KSV12c]. We adapt the approach in the latter paper in order to cover the class
of subordinate Brownian motions with slowly varying Laplace exponents. Unlike
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the approach in [KSV12c], instead of the use of the Harnack inequality, we use
estimates of the Green function of balls near boundary obtained in [KM12].

Further, our uniform boundary Harnack principle can be used to prove sharp
Green function estimates for bounded C1,1 open sets by adapting the method in
[KSV12b]. Even though we follow the roadmap in [KSV12b], we needed to make
significant changes due to the fact that now we do not have necessarily regularly
varying Laplace exponents.

To overcome such difficulties we use new types of estimates (not only in terms
of the Laplace exponent itself, but also in terms of its derivative) of the jumping
kernel and the potential kernel of the subordinate Brownian motions, which were
obtained for the first time in [KM12]. This type of estimate is essential in our
approach.

Let us be more precise now. In this paper we will always assume the following
three conditions on the Laplace exponent φ of the subordinator S:

(A-1) φ is a complete Bernstein function;
(A-2) the Lévy density μ of φ is infinite, i.e. μ(0,∞) = ∞;
(A-3) there exist constants σ > 0, λ0 > 0 and δ ∈ (0, 1] such that

(1.2)
φ′(λx)

φ′(λ)
≤ σ x−δ for all x ≥ 1 and λ ≥ λ0 .

Either in the case d ≤ 2 and δ > 1− d/2 or in the case d ≥ 2 and 0 < δ ≤ 1
2 we

will sometimes further assume two technical conditions below. Note that (A-4),
related to transience of the corresponding subordinate Brownian motion, is used in
[KM12] to obtain the asymptotic of the jumping kernel and the Green function of
the subordinate Brownian motion. Unlike [KM12] we state (A-4) for d = 2 and
d = 1 separately to make it clear.

(A-4) If d = 2, we assume that there are σ0 > 0 and δ0 ∈ (0, 2) such that

(1.3)
φ′(λx)

φ′(λ)
≥ σ0 x

−δ0 for all x ≥ 1 and λ ≥ λ0.

If d = 1, we assume that the constant δ in (A-3) satisfies δ > 1
2 and that there are

σ0 > 0 and δ0 ∈ ( 12 , 2δ −
1
2 ) such that (1.3) holds.

(A-5) If d ≥ 2 and the constant δ in (A-3) satisfies 0 < δ ≤ 1
2 , then we assume

that there exist constants σ1 > 0 and δ1 ∈ [δ, 1) such that

(1.4)
φ(λx)

φ(λ)
≥ σ1 x

1−δ1 for all x ≥ 1 and λ ≥ λ0 .

Remark 1.1. (a) Note that (A-3) implies b = 0 in (1.1), by letting λ → ∞.
(b) The condition (A-3) is implied by the following stronger condition:

(1.5) ∀x > 0 lim
λ→∞

φ′(λx)

φ′(λ)
= x

α
2 −1 (0 ≤ α < 2) .

In other words, (1.5) says that φ′ varies regularly at infinity with index
α
2 − 1. A novelty here is the case α = 0.

(c) The condition (A-4) is used only to obtain Green function estimates.

Now we state the main result of this paper. By diam(D) we denote the diameter
of D.
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Theorem 1.2. Suppose that X = (Xt,Px : t ≥ 0, x ∈ R
d) is a transient subordinate

Brownian motion whose characteristic exponent is given by Φ(θ) = φ(|θ|2), θ ∈ R
d,

with φ satisfying (A-1)–(A-5).
Then for every bounded C1,1 open set D (see Definition 3.4) in R

d with char-
acteristics (R,Λ), there exists c = c(diam(D), R,Λ, φ, d) > 1 such that the Green
function GD(x, y) of X in D satisfies

c−1gD(x, y) ≤ GD(x, y) ≤ cgD(x, y)(1.6)

with

gD(x, y) =

(
1 ∧ φ(|x− y|−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2
.(1.7)

Before we discuss a corollary of Theorem 1.2, we record a simple fact.

Lemma 1.3. If δ∗ ∈ (0, 1) and ψ is a Bernstein function satisfying

(1.8)
ψ(λx)

ψ(λ)
≥ σ∗ x

1−δ∗ for all x ≥ 1 and λ ≥ λ∗ ,

for some σ∗, λ∗ > 0, then there exists a constant c > 0 such that ψ(λ) ≤ cλψ′(λ)
for all λ ≥ λ∗.

Proof. Let a1 = 2 ∨ ( 2
σ∗
)

1
1−δ∗ . Since ψ′ is decreasing,

(1.9) (a1 − 1)λψ′(λ) ≥
a1λ∫
λ

ψ′(t)dt = ψ(a1λ)− ψ(λ).

Let λ ≥ λ∗. Since ψ(a1λ) ≥ σ∗ a
1−δ∗
1 ψ(λ) by (1.8), we get from (1.9)

(a1 − 1)λψ′(λ) ≥ (σ∗a
1−δ∗
1 − 1)ψ(λ) ≥ ψ(λ).

�

Now we consider the following upper and lower scaling conditions on the Laplace
exponent φ with exponents in the range (0, 1): there exist constants c1, c2, λ1 > 0,
α, β ∈ (0, 2) and α ≤ β such that

(1.10) c1 x
α/2 ≤ φ(λx)

φ(λ)
≤ c2 x

β/2 for all x ≥ 1 and λ ≥ λ1 .

Define

(1.11) ĝD(x, y) =

(
1 ∧ φ(|x− y|−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
1

|x− y|d φ(|x− y|−2)
.

If φ is a complete Bernstein function such that (1.10) holds, then

lim inf
x→∞

φ(x) ≥ c1λ
−α/2
1 φ(λ1) lim inf

x→∞
xα/2 = ∞.

Thus (A-1)–(A-2) hold. Moreover, applying Lemma 1.3 and (2.3) below, (1.10)
implies that λφ′(λ) ≤ φ(λ) ≤ cλφ′(λ) for all λ ≥ λ0, and so (A-3) and (A-5) hold
and (1.6) is equivalent to (1.12). Furthermore, (A-4) holds when d = 2. Therefore
Theorem 1.2 gives the following extension of the main result in [KSV12b].
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Corollary 1.4. Suppose that X = (Xt : t ≥ 0) is a transient subordinate Brownian
motion whose characteristic exponent is given by Φ(θ) = φ(|θ|2), θ ∈ R

d, where
φ : (0,∞) → [0,∞) is a complete Bernstein function such that (1.10) holds. We
further assume that (A-4) holds with δ0 = 1− β/2 when d = 1.

Then for every bounded C1,1 open set D in R
d with characteristics (R,Λ), there

exists c = c(diam(D), R,Λ, φ, d) > 1 such that the Green function GD(x, y) of X
in D satisfies the following estimates:

(1.12) c−1ĝD(x, y) ≤ GD(x, y) ≤ cĝD(x, y) ,

where ĝD(x, y) is defined in (1.11).

In [KSV12b], the above result is proved when, instead of (1.10), φ satisfies

φ(λ) � λα/2
(λ), λ → ∞ (0 < α < 2) ,(1.13)

where 
 varies slowly at infinity, i.e.

∀x > 0 lim
λ→∞


(λx)


(λ)
= 1 .

By Potter’s theorem (see [BGT87, Theorem 1.5.6(i)]), (1.13) clearly implies (1.10).
Using Green function estimates in Theorem 1.2 for d ≥ 3 and a dimension

reduction argument (see the proof of Theorem 5.6), we prove the boundary Harnack
principle for subordinate Brownian motions satisfying (A-1), (A-2), (A-3) and
(A-5) in a C1,1 open set. We emphasize that in the next theorem we do not assume
either the transience or (A-4).

Theorem 1.5. Suppose that X = (Xt,Px : t ≥ 0, x ∈ R
d) is a (not necessarily

transient) subordinate Brownian motion satisfying (A-1), (A-2), (A-3) and (A-
5) and that D is a (possibly unbounded) C1,1 open set in R

d with characteristics
(R,Λ). Then there exists c = c(R,Λ, φ) > 0 such that for every r ∈ (0, R∧1

4 ],

z ∈ ∂D and any nonnegative function u in R
d that is harmonic in D∩B(z, r) with

respect to X and vanishes continuously on Dc ∩B(z, r), we have

(1.14)
u(x)

u(y)
≤ c

√
φ(δD(y)−2)

φ(δD(x)−2)
for every x, y ∈ D ∩B(z, r

2 ).

We remark that Theorem 1.5 covers the processes in Examples 1-3 without the
assumptions on transience.

By the same argument used to obtain Corollary 1.4 from Theorem 1.2, Theorem
1.5 gives the following extension of the boundary Harnack principle in [KSV12b].

Corollary 1.6. Suppose that X = (Xt,Px : t ≥ 0, x ∈ R
d) is a subordinate

Brownian motion whose characteristic exponent is given by Φ(θ) = φ(|θ|2), θ ∈ R
d,

where φ : (0,∞) → [0,∞) is a complete Bernstein function such that (1.10) holds,
and that D is a C1,1 open set in R

d with characteristics (R,Λ). Then there exists
c = c(R,Λ, φ) > 0 such that for every r ∈ (0, R∧1

4 ], z ∈ ∂D and any nonnegative

function u in R
d that is harmonic in D ∩ B(z, r) with respect to X and vanishes

continuously on Dc ∩B(z, r), we have (1.14).

Our paper is organized as follows. In Section 2 we record some preliminary results
concerning subordinate Brownian motions obtained in [KM12]. We start Section
3 by analyzing special harmonic functions in half-space and use these results to
obtain key probabilistic estimates on C1,1 open sets. Section 4 contains estimates
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of a Poisson kernel on balls which are used in Section 5 to obtain the uniform
boundary Harnack principle on arbitrary open sets. After proving sharp Green
function estimates in Lipschitz domains in Section 6, we finally obtain in Section 7
the boundary Harnack principle and sharp Green function estimates in C1,1 open
sets.

Notation. Throughout the paper we use the notation f(r) � g(r), r → a to denote

that f(r)
g(r) stays between two positive constants as r → a. We say that f : R → R is

increasing if s ≤ t implies f(s) ≤ f(t), and analogously for a decreasing function.
For a, b ∈ R, we set a∧ b := min{a, b}, a ∨ b := max{a, b}. For a Borel set A ⊂ R

d,
we also use |A| to denote its Lebesgue measure. We will use “:=” to denote a
definition, which is read as “is defined to be”.

We will use the following conventions in this paper. The values of the constants
C1, C2, C3, C4 and ε1 will remain the same throughout this paper, while c, c1, c2, . . .
stand for constants whose values are unimportant and which may change from one
appearance to another. All constants are positive finite numbers. The labeling of
the constants c1, c2, . . . starts anew in the proof of each result. The dependence of
the constants c, c1, c2, . . . on the dimension d will not be mentioned explicitly.

2. Preliminaries

By concavity, we see that every Bernstein function ψ satisfies

(2.1) ψ(tλ) ≤ λψ(t) for all λ ≥ 1, t > 0.

Thus

(2.2) λ �→ ψ(λ)

λ
is decreasing,

which implies

(2.3) λψ′(λ) ≤ ψ(λ) for all λ > 0.

We first recall the following results from [KM12].

Lemma 2.1 ([KM12, Lemma 4.1]). Suppose that ψ is a special Bernstein function,
i.e., λ �→ λ

ψ(λ) is also a Bernstein function. Then the functions η1, η2 : (0,∞) →
(0,∞) given by

η1(λ) = λ2ψ′(λ) and η2(λ) = λ2 ψ
′(λ)

ψ(λ)2

are increasing .

The next result is a simple consequence of Lemma 2.1 and we will use it several
times in this paper.

Corollary 2.2. Suppose that ψ is a special Bernstein function. For every d ≥ 1,
a > 1, λ > 0 and b ∈ (0, 1) we have

ba−d−3λ−d−2 ψ′(λ−2)
ψ(λ−2)2 ≤ t−d−2 ψ′(t−2)

ψ(t−2)2 ≤ ab−d−3λ−d−2 ψ′(λ−2)
ψ(λ−2)2 ∀t ∈ [bλ, aλ].

Proof. We use the fact that t → t−4 ψ′(t−2)
ψ(t−2)2 is decreasing (by Lemma 2.1) and

t → ψ′(t−2)
ψ(t−2)2 is increasing. When d ≥ 2 for all 0 < bλ ≤ t ≤ aλ,

a−d−2λ−d−2 ψ′(λ−2)
ψ(λ−2)2 ≤ t−d−2 ψ′(t−2)

ψ(t−2)2 ≤ b−d−2λ−d−2 ψ′(λ−2)
ψ(λ−2)2 .
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If d = 1, then for every 0 < bλ ≤ t ≤ aλ,

t−3 ψ′(t−2)
ψ(t−2)2 = t

(
t−4 ψ′(t−2)

ψ(t−2)2

)
≤ aλ

(
b−4λ−4 ψ′((bλ)−2)

ψ((bλ)−2)2

)
≤ ab−4λ−3 ψ′((bλ)−2)

ψ((bλ)−2)2 ≤ ab−4λ−3 ψ′(λ−2)
ψ(λ−2)2 ,

and similarly

t−3 ψ′(t−2)
ψ(t−2)2 ≥ ba−4λ−3 ψ′(λ−2)

ψ(λ−2)2 .

�

Recall that we will always assume that the Laplace exponent φ of S satisfies
(A-1)–(A-3). We also recall the following elementary fact from [KM12] which
says that (A-3) controls the growth of φ.

Lemma 2.3 ([KM12, Lemma 3.2 (ii)]). For every ε > 0 there exists c(ε, σ) > 1
such that

(2.4)
φ(λx)

φ(λ)
≤ c x1−δ+ε for all x ≥ 1 and λ ≥ λ0 .

The analysis of one-dimensional subordinate Brownian motions will be crucial
in our approach in this paper. Therefore we now consider a one-dimensional sub-
ordinate Brownian motion (Zt,Px) with the characteristic exponent φ(θ2), θ ∈ R.

Let

Zt := sup{0 ∨ Zs : 0 ≤ s ≤ t}
be the supremum process of Z and let L = (Lt : t ≥ 0) be a local time of Z − Z
at 0. The right continuous inverse L−1

t of L is a subordinator and it is called the
ladder time process of Z. The process ZL−1

t
is also a subordinator, called the ladder

height process of Z. (For the basic properties of the ladder time and ladder height
processes, we refer the reader to [Ber96, Chapter 6].)

Let κ be the Laplace exponent of the ladder height process of Z. It follows from
[Fri74, Corollary 9.7] that

(2.5) κ(λ) = exp

⎧⎨⎩ 1

π

∞∫
0

log(φ(λ2θ2))

1 + θ2
dθ

⎫⎬⎭ , ∀λ > 0.

By our assumptions and [KSV12a, Proposition 13.3.7] or [KMR, Proposition
2.1] we see that the ladder height process of Z has no drift and is not compound
Poisson, and so the process Z does not creep upwards. Since Z is symmetric, we
know that Z also does not creep downwards.

Denote by V the potential measure of the ladder height process of Z. We will
slightly abuse notation and use the same letter V to denote the renewal function
of the ladder height process of Z, that is, V (t) = V ((0, t)). V is a smooth function
by [KSV12a, Corollary 13.3.8].

Combining [KSV12a, Proposition 13.3.7] and [Ber96, Proposition III.1] the fol-
lowing result holds.

Proposition 2.4. There exists a constant c > 1 such that for all r > 0,

c−1√
φ(r−2)

≤ V (r) ≤ c√
φ(r−2)

.
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We next consider multi-dimensional subordinate Brownian motions. Let W =
(Wt = (W 1

t , . . . ,W
d
t ) : t ≥ 0) be a Brownian motion in R

d with

E

[
eiθ·(Wt−W0)

]
= e−t|θ|2 , ∀ θ ∈ R

d, t > 0 ,

and let S be a subordinator independent of W with Laplace exponent φ. In the
remainder of this paper, we always assume that X = (Xt,Px) is a subordinate
process defined by Xt = WSt

. This process is a pure-jump symmetric Lévy process
with the characteristic exponent Φ(ξ) = φ(|ξ|2), i.e.

E0

[
eiξ·Xt

]
= e−tΦ(ξ) = e−tφ(|ξ|2) .

Moreover, Φ has the representation

Φ(ξ) =

∫
Rd

(1− cos(ξ · y))j(|x|) dx

with the Lévy measure of the form Π(dx) = j(|x|) dx, where

j(r) =

∫
(0,∞)

(4πt)−d/2 exp
(
− r2

4t

)
μ(dt), r > 0.

For any open set D, let us denote by τD the first exit time of D, i.e.

τD = inf{t > 0 : Xt /∈ D} .
Using Proposition 2.4, the proof of the next result is the same as the one of [KSV12c,
Proposition 3.2]. So we skip the proof.

Lemma 2.5. There exists c > 0 such that for any r ∈ (0,∞) and x0 ∈ R
d,

Ex[τB(x0,r)] ≤ c V (r)V (r − |x− x0|) � 1√
φ(r−2)φ((r−|x−x0|)−2)

for x ∈ B(x0, r).

The process X has a transition density p(t, x, y) given by

(2.6) p(t, x, y) =

∞∫
0

(4πt)−d/2 exp
(
− |x−y|2

4t

)
P(St ∈ ds) .

When X is transient, we can define the Green function (potential) by

G(x, y) = g(|y − x|) =
∞∫
0

p(t, x, y) dt .

Note that g and j are decreasing.
The following result is proved in [KM12]. Note that there is an error in the state-

ment in [KM12, Proposition 4.2]. It is clear from the proof of [KM12, Proposition
4.2] that [KM12, Proposition 4.2] holds under the conditions (A-1), (A-3) and (B)
in [KM12].

Proposition 2.6. Suppose φ satisfies (A-1)–(A-4). Then we have

j(r) � r−d−2φ′(r−2), r → 0 + .(2.7)

If X is transient, then

g(r) � r−d−2 φ
′(r−2)

φ(r−2)2
, r → 0 + .(2.8)

�
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As a consequence of (2.7) it follows that if φ satisfies (A-1)–(A-4), then for any
K > 0, there exists c = c(K) > 1 such that

(2.9) j(r) ≤ c j(2r), ∀r ∈ (0,K).

Since φ is a complete Bernstein function, there exists a constant c > 0 such that
μ(t) ≤ c μ(t + 1) for all t ≥ 1 (see [KSV12b, Lemma 2.1]). Thus, using this and
[KM12, Proposition 3.3], by the proof of [KSV12a, Proposition 13.3.5] we see that
the function j also enjoys the following property: if φ satisfies (A-1)–(A-4), then
there is a constant c > 0 such that

(2.10) j(r + 1) ≤ j(r) ≤ cj(r + 1) for all r ≥ 1 .

Let D ⊂ R
d be an open subset. The killed process XD is defined by

XD
t = Xt if t < τD and XD

t = Δ otherwise,

where Δ is an extra point adjoined to D (usually called a cemetery).
The transition density of XD is given by

pD(t, x, y) = p(t, x, y)− Ex [p(t− τD, XτD , y); τD < t] .

A subset D of Rd is said to be Greenian (for X) if XD is transient. When d ≥ 3,
any nonempty open set D ⊂ R

d is Greenian. An open set D ⊂ R
d is Greenian if

and only if Dc is nonpolar for X (or equivalently, has positive capacity with respect

to X). For any Greenian open set D in R
d let GD(x, y) =

∞∫
0

pD(t, x, y) dt be the

Green function of XD. GD(x, y) is symmetric and, for fixed y ∈ D, GD(·, y) is
harmonic (with respect to X) in D \ {y}.

The next two results are the key estimates in [KM12].

Proposition 2.7. Suppose X is transient and φ satisfies (A-1)–(A-4). There
exist constants c1, c2 > 0 and b1, b2 ∈ (0, 1

2 ), 2b1 < b2 such that for all x0 ∈ R
d and

r ∈ (0, 1) we have

(2.11) c1
r−d−2φ′(r−2)

φ(r−2) EyτB(x0,r) ≤ GB(x0,r)(x, y) ≤ c2
r−d−2φ′(r−2)

φ(r−2) EyτB(x0,r)

for all x ∈ B(x0, b1r) and y ∈ B(x0, r) \B(x0, b2r).

Proposition 2.8. Suppose X is transient and φ satisfies (A-1)–(A-4). There
exist constants c1 > 0 and a ∈ (0, 13 ) so that for x0 ∈ R

d and r ∈ (0, 1) we have

Ex[τB(x0,r)] ≥ c1
φ(r−2) for any x ∈ B(x0, ar) .

Before we state the Harnack inequality, we recall the definition of harmonic
functions.

Definition 2.9. Let D be an open subset of Rd. A function u defined on R
d is

said to be
(i) harmonic in D with respect to X if

Ex [|u(XτB )|] < ∞ and u(x) = Ex [u(XτB )] , x ∈ B ,

for every open set B whose closure is a compact subset of D;
(ii) regular harmonic in D with respect to X if it is harmonic in D with respect

to X and
u(x) = Ex [u(XτD)] for any x ∈ D .

The following Harnack inequality is the main result of [KM12].
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Theorem 2.10 (Harnack inequality). Suppose that φ satisfies (A-1)–(A-3). There
exists a constant c > 0 such that for all x0 ∈ R

d and r ∈ (0, 1) we have

h(x1) ≤ c h(x2) for all x1, x2 ∈ B(x0, r/2)

and for every nonnegative function h : Rd → [0,∞) which is harmonic in B(x0, r).

Using Theorem 2.10 and the standard chain argument to (2.11), we have

Corollary 2.11. Under the assumptions of Proposition 2.7 there exist constants
c1, c2 > 0 so that for any r ∈ (0, 1) and x0 ∈ R

d,

c1
r−d−2φ′(r−2)

φ(r−2) EyτB(x0,r) ≤ GB(x0,r)(x, y) ≤ c2
r−d−2φ′(r−2)

φ(r−2) EyτB(x0,r)

for all x ∈ B(x0, r/2) and y ∈ B(x0, r) \B(x0, 3r/4).

By the result of Ikeda and Watanabe (see [IW62, Theorem 1]) the following
formula is true:

(2.12) Px(XτD ∈ F ) =

∫
F

∫
D

GD(x, y)j(|z − y|) dy dz

for any F ⊂ D
c
. We define the Poisson kernel of the set D by

(2.13) KD(x, z) =

∫
D

GD(x, y)j(|z − y|) dy,

so that Px(XτD ∈ F ) =
∫
F

KD(x, z) dz for any F ⊂ D
c
.

Proposition 2.12. Suppose X is transient and φ satisfies (A-1)–(A-4). There
exists c1 = c1(φ) > 0 and c2 = c2(φ) > 0 such that for every r ∈ (0, 1) and x0 ∈ R

d,

KB(x0,r)(x, y) ≤ c1
j(|y−x0|−r)√

φ(r−2)φ((r−|x−x0|)−2)
(2.14)

≤ c1
j(|y−x0|−r)

φ(r−2)(2.15)

for all (x, y) ∈ B(x0, r)×B(x0, r)
c
and

(2.16) KB(x0,r)(x0, y) ≥ c2
j(|y−x0|)
φ(r−2) for all y ∈ B(x0, r)

c
.

Proof. First using (2.9) and (2.10) to (2.13), then applying Lemma 2.5 and Propo-
sition 2.8, (2.14) and (2.16) follow easily (see the proof of [KSV12a, Proposition
13.4.10] for the details). (2.15) follows from (2.14) and the fact that φ is increas-
ing. �

3. Analysis on half-space and C1,1
open sets

In this section we establish key estimates which will be used in sections later in
this paper.

Recall that X = (Xt : t ≥ 0) is the d-dimensional subordinate Brownian motion
defined by Xt = WSt

where W = (W 1, . . . ,W d) is a (not necessarily transient)
d-dimensional Brownian motion and S = (St : t ≥ 0) an independent subordinator
with the Laplace exponent φ satisfying (A-1)-(A-3). In this section, we further
assume that (A-4) holds.

Let Z = (Zt : t ≥ 0) be the one-dimensional subordinate Brownian motion
defined by Zt := W d

St
.
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Recall that V denotes the renewal function of the ladder height process of Z.
We use the notation

R
d
+ := {x = (x1, . . . , xd−1, xd) := (x̃, xd) ∈ R

d : xd > 0}
for the half-space.

Set w(x) := V ((xd)
+). Since Zt = W d

St
has a transition density, by using [Sil80,

Theorem 2], the proof of the next result is the same as the one of [KSV12b, Theorem
4.1]. We omit the proof.

Theorem 3.1. The function w is harmonic in R
d
+ with respect to X and, for any

r > 0, regular harmonic in R
d−1 × (0, r) for X.

Using Theorem 3.1, (2.9) and (2.10), the proof of the next result is the same as
the one of [KSV, Proposition 3.3].

Proposition 3.2. For all positive constants r0 and L, we have

sup
x∈Rd: 0<xd<L

∫
B(x,r0)c∩R

d
+

w(y)j(|x− y|) dy < ∞ .

Define an operator (A, D(A)) by

Af(x) := p.v.

∫
Rd

(f(y)− f(x)) j(|y − x|) dy

:= lim
ε↓0

∫
{y∈Rd:|x−y|>ε}

(f(y)− f(x)) j(|y − x|) dy

D(A) :=

⎧⎪⎨⎪⎩f : Rd → R : lim
ε↓0

∫
{y∈Rd:|x−y|>ε}

(f(y)− f(x)) j(|y − x|) dy

exists and it is finite

⎫⎪⎬⎪⎭ .(3.1)

Let C2
0 be the collection of C2 functions in R

d vanishing at infinity. It is well
known that C2

0 ⊂ D(A) and that by the rotational symmetry of X, A restricted to
C2

0 coincides with the infinitesimal generator L of the process X (see e.g. [Sat99,
Theorem 31.5]).

Since V is smooth by [KSV12a, Corollary 13.3.8], using our Theorem 3.1, (2.9)
and (2.10), the proof of the next result is the same as [KSV, Proposition 3.3] or
[KSV12b, Proposition 4.2], so we skip the proof.

Theorem 3.3. Aw(x) is well defined and Aw(x) = 0 for all x ∈ R
d
+.

In the rest of this section we aim to prove two key estimates of the exit probability
and the exit time for C1,1 open sets. Let us recall the definition of a C1,1 open set.

Definition 3.4. An open set D in R
d (d ≥ 2) is said to be a C1,1 open set if

there exist a localization radius R > 0 and a constant Λ > 0 such that for every
z ∈ ∂D, there exist a C1,1-function ψ = ψz : R

d−1 → R satisfying ψ(0) = 0,
∇ψ(0) = (0, . . . , 0),

‖∇ψ‖∞ ≤ Λ, |∇ψ(x)−∇ψ(w)| ≤ Λ|x− w|, x, w ∈ R
d−1
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and an orthonormal coordinate system CSz: y = (y1, . . . , yd−1, yd) := (ỹ, yd) with
origin at z such that

B(z,R) ∩D = {y = (ỹ, yd) ∈ B(0, R) in CSz : yd > ψ(ỹ)}.

The pair (R,Λ) is called the characteristic of the C1,1 open set D. By a C1,1 open
set in R we mean an open set which can be expressed as the union of disjoint
intervals so that the minimum of the lengths of all these intervals is positive and
the minimum of the distances between these intervals is positive.

Remark 3.5. In some literature, the C1,1 open set defined above is called a uniform
C1,1 open set since (R,Λ) is universal for all z ∈ ∂D.

For x ∈ R
d, let δ∂D(x) denote the Euclidean distance between x and ∂D. Recall

that for any x ∈ R
d, δD(x) is the Euclidean distance between x and Dc. It is well

known that any C1,1 open set D with characteristics (R,Λ) there exists r1 > 0 so
that the following holds true:

(i) uniform interior ball condition, i.e. for every x ∈ D with δD(x) < r1 there
exists zx ∈ ∂D so that

|x− zx| = δ∂D(x) and B(x0, r1) ⊂ D,

for x0 = zx + r1
x−zx
|x−zx| ;

(ii) uniform exterior ball condition, i.e. for every y ∈ R
d \D with δ∂D(y) < r1

there exists zy ∈ ∂D so that

|y − zy| = δ∂D(y) and B(y0, r1) ⊂ R
d \D,

for y0 = zy + r1
y−zy
|y−zy | .

Assume for the rest of this section that D is a C1,1 open set with characteristics
(R,Λ) satisfying the uniform interior ball condition and the uniform exterior ball
condition with the radius R ≤ 1 (by choosing R smaller if necessary).

Before we prove our technical Lemma 3.7 below, we need some preparation.

Lemma 3.6. Suppose that d ≥ 2 and the constant δ in (A-3) satisfies 0 < δ ≤ 1
2 .

If (A-5) holds, then for every M > 0,

sup
x∈[0,M/4]

M∫
0

v(s/6)

⎛⎜⎝φ(|s− x|−2)|s− x|+
M∫

|s−x|

φ(r−2)dr

⎞⎟⎠ ds = c(M,φ) < ∞.

Proof. For x ∈ [0,M/4], let

I :=

x/2∫
0

v(s/6)

⎛⎜⎝φ(|s− x|−2)|s− x|+
M∫

|s−x|

φ(r−2)dr

⎞⎟⎠ ds,

II :=

2x∫
x/2

v(s/6)

⎛⎜⎝φ(|s− x|−2)|s− x|+
M∫

|s−x|

φ(r−2)dr

⎞⎟⎠ ds,
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and

III :=

M∫
2x

v(s/6)

⎛⎜⎝φ(|s− x|−2)|s− x|+
M∫

|s−x|

φ(r−2)dr

⎞⎟⎠ ds.

We consider these three parts separately.
First, for s ∈ (0, x/2), we have x ≥ x− s = |x− s| ≥ x/2. Thus using (2.1) and

Proposition 2.4,

I ≤xφ(4x−2)

x/2∫
0

v(s/6)ds+

x/2∫
0

v(s/6)ds

M∫
x/2

φ(r−2)dr

≤6

⎛⎜⎝4xφ(x−2) +

M∫
x/2

φ(r−2)dr

⎞⎟⎠V (x/12) ≤ c1xφ(x
−2)1/2 + c1

M∫
x/2

φ(r−2)
φ(x−2)1/2

dr.

By (2.2), the first term is uniformly bounded by c1(M/4)φ((M/4)−2)1/2 for x ∈
[0,M/4]. On the other hand, by Lemma 2.3 with ε = δ/2,

M∫
x/2

φ(r−2)
φ(x−2)1/2

dr ≤ c2

M∫
x/2

φ(r−2)1/2 ≤ c3

M∫
x/2

r−(1−δ+ε)dr ≤ c4M
δ−ε < ∞.

Applying Proposition 2.4, we deduce

(3.2) v(s/6) ≤ 6

s

s/6∫
0

v(t)dt =
6

s
V (s/6) ≤ c5

1

s
φ(s−2)−1/2, for all s > 0.

By (2.1) and (3.2),

II ≤c5x
−1φ(x−2)−1/2

2x∫
x/2

φ(|s− x|−2)|s− x|ds

+ c5x
−1φ(x−2)−1/2

2x∫
x/2

M∫
|s−x|

φ(r−2)drds

≤c6x
−1φ(x−2)1/2

x∫
0

t φ(t
−2)

φ(x−2)dt

+ c5x
−1

2x∫
x/2

φ(|s−x|−2)1/2

φ(x−2)1/2

M∫
|s−x|

φ(r−2)1/2

φ(|s−x|−2)1/2
φ(r−2)1/2drds.
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Applying Lemma 2.3 twice with ε = δ/2 to φ(t−2)
φ(x−2) and φ(x−2)1/2, we get

x−1φ(x−2)1/2
x∫

0

t φ(t
−2)

φ(x−2)dt ≤ c7x
−1xδ−ε−1

x∫
0

t
(
t
x

)−2+2(δ−ε)
dt

= c7x
−(δ−ε)

x∫
0

t−1+2(δ−ε)dt ≤ c8x
δ−ε ≤ c8M

δ−ε < ∞.

On the other hand, since |s − x| ≤ 3x for s ≤ 2x, (2.1), Lemma 2.3 with ε = δ/2
and (A-5) imply

x−1

2x∫
x/2

φ(|s−x|−2)1/2

φ(x−2)1/2

⎛⎜⎝ M∫
|s−x|

φ(r−2)1/2

φ(|s−x|−2)1/2
φ(r−2)1/2dr

⎞⎟⎠ ds

≤ c9x
−1

2x∫
x/2

x1−δ+ε

|s−x|1−δ+ε

⎛⎜⎝ M∫
|s−x|

( |s−x|
r )1−δ1r−(1−δ+ε)dr

⎞⎟⎠ ds

= c9x
−δ+ε

2x∫
x/2

|s− x|−δ1+δ−ε

⎛⎜⎝ M∫
|s−x|

r−2+δ1+δ−εdr

⎞⎟⎠ ds

≤ c10x
−δ+ε

x∫
0

t−δ1+δ−ε

⎛⎝ M∫
t

r−2+δ1+δ−εdr

⎞⎠ dt =: A.

If 2− δ1 − δ + ε > 1,

A ≤ c11x
−δ+ε

x∫
0

t−1+2(δ−ε)ds ≤ c12x
δ−ε ≤ c12M

δ−ε < ∞.

If 2− δ1 − δ + ε = 1, integration by parts yields

A ≤ c13x
−δ+ε

x∫
0

t−δ1+δ−ε ln(M/t)dt ≤ c14x
−δ+εx1−δ1+δ−ε ln(M/x)

≤ c14 sup
x∈[0,M/4]

x1−δ1 ln(M/x) < ∞.

If 2− δ1 − δ + ε < 1,

A ≤ c10x
−δ+ε

x∫
0

t−δ1+δ−ε

⎛⎝ M∫
0

r−2+δ1+δ−εdr

⎞⎠ dt ≤ c15x
1−δ1 ≤ c15M

1−δ1 < ∞.

Thus II < ∞.
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For III, we note that s ≥ s − x = |s − x| ≥ s/2 for s ≥ 2x. Using this, (2.1),
(3.2), Lemma 2.3 with ε = δ/2 and (A-5), we get

III ≤
M∫

2x

v(s/6)sφ(4s−2)ds+

M∫
2x

v(s/6)

M∫
s/2

φ(r−2)drds

≤ c16

M∫
2x

φ(s−2)1/2ds+ c16

M∫
2x

s−1

M∫
s/2

φ(r−2)1/2

φ(s−2)1/2
φ(r−2)1/2drds

≤ c17

M∫
0

s−1+(δ−ε)ds+ c17

M∫
2x

s−1

M∫
s/2

(s/r)1−δ1φ(r−2)1/2drds.

Clearly the first term is finite. Using Lemma 2.3 with ε = δ/2, the second term is
bounded by

B := c18

M∫
2x

s−δ1

M∫
s/2

r−2+δ1+δ−εdrds.

Thus if 2− δ1 − δ + ε > 1,

B ≤ c19

M∫
2x

s−(1−δ+ε)ds ≤ c19

M∫
0

s−(1−δ+ε)ds < ∞.

If 2− δ1 − δ + ε = 1, using integration by parts we obtain

B ≤ c20

M∫
2x

s−δ1 ln(M/s)ds ≤ c21x
1−δ1 ln(M/x) ≤ c21 sup

x∈[0,M/4]

x1−δ1 ln(M/x) < ∞.

Finally, If 2− δ1 − δ + ε < 1,

B ≤ c18

M∫
2x

s−δ1

M∫
0

r−(2−δ1−δ+ε)drds ≤ c22

M∫
2x

s−δ1ds ≤ c22

M∫
0

s−δ1ds < ∞.

Thus III < ∞, and so we have proved the lemma. �

Lemma 3.7. Assume additionally that (A-5) holds. Fix Q ∈ ∂D and let

h(y) =

{
V (δD(y)), y ∈ B(Q,R) ∩D,

0, otherwise .

There exists C1 = C1(Λ, R, φ) > 0 independent of the point Q ∈ ∂D such that Ah
is well defined in D ∩B(Q, R4 ) and

(3.3) |Ah(x)| ≤ C1 for all x ∈ D ∩B(Q, R
4 ) .

Proof. We first note that when d = 1, the lemma follows from Proposition 3.2 and
Theorem 3.3 by following the same proof as the one in [KSV12b, Lemma 4.4].

Assume now that d ≥ 2. Fix x ∈ D ∩ B(Q, R
4 ) and let x0 ∈ ∂D such that

δD(x) = |x− x0|.
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Denote by ψ a C1,1 function and by CS = CSx0
an orthonormal coordinate

system with x0 chosen so that x = (0̃, xd) and

B(x0, R) ∩D = {y = (ỹ, yd) in CS : y ∈ B(0, R), yd > ψ(ỹ)} .
We fix such ψ and the coordinate system CS.
Define two auxiliary functions ψ1, ψ2 : B(0̃, R) → R by

ψ1(ỹ) = R−
√
R2 − |ỹ|2 and ψ2(ỹ) = −

(
R −

√
R2 − |ỹ|2

)
.

By the interior/exterior uniform ball conditions (with radius R) it follows that

(3.4) ψ2(ỹ) ≤ ψ(ỹ) ≤ ψ1(ỹ) for any y ∈ D ∩B(x, R4 ) .

Now we define a function hx(y) = V (δH+(y)), where

H+ = {y = (ỹ, yd) in CS : yd > 0}
denotes the half-space in CS.

Since δH+(y) = (yd)
+ in CS, we can use Theorem 3.3 to deduce that

Ahx(y) = 0, ∀y ∈ H+.

Now the idea is to show that A(h− hx)(x) is well defined and that there exists
a constant C1 = C1(Λ, R, φ) > 0 so that

(3.5)

∫
{y∈D∪H+ : |y−x|>ε}

|h(y)− hx(y)|j(|y − x|) dy ≤ C1 for any ε > 0 .

To do this we estimate the integral in (3.5) by the sum of the following three
integrals:

I1 =

∫
B(x,R4 )c

(h(y) + hx(y))j(|y − x|) dy,

I2 =

∫
A

(h(y) + hx(y))j(|y − x|) dy, where

A := {y ∈ (D ∪H+) ∩B(x, R
4 ) : ψ2(ỹ) ≤ yd ≤ ψ1(ỹ)},

I3 =

∫
E

|h(y)− hx(y)|j(|y − x|) dy, where E := {y ∈ B(x, R
4 ) : yd > ψ1(ỹ)} ,

and prove that I1 + I2 + I3 ≤ C1 .
To estimate I1 note that, by definition of h, h = 0 on B(Q,R)c, which gives

I1 ≤ sup
z ∈ R

d

0 < zd < R

∫
B(z,R4 )c∩H+

V (yd)j(|z − y|) dy + c1

∫
B(0,R4 )c

j(|y|)dy < ∞.

Here we have used Proposition 3.2 and the fact that the Lévy measure is a finite
measure away from the origin.

Now we estimate I2. Denoting by md−1(dy) the surface measure, we obtain

I2 ≤

R
4∫

0

∫
|ỹ|=r

1A(y)(hx(y) + h(y))j
(√

r2 + |yd − xd|2
)
md−1(dy) dr .
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Since V is increasing and

R−
√
R2 − |ỹ|2 ≤ |ỹ|2

R ≤ |ỹ|,

we can use (3.4) to deduce

hx(y) + h(y) ≤ 2V (ψ1(ỹ)− ψ2(ỹ)) ≤ 2V (2|ỹ|) .

Then, by the fact that j decreases, Proposition 2.4 and (2.7), we get

I2 ≤ 2

R
4∫

0

∫
|ỹ|=r

1A(y)V (2|ỹ|)j(r)md−1(dy) dr

≤ c2

R
4∫

0

r−d−2 φ′(r−2)√
φ(r−2)

md−1({y ∈ A : |ỹ| = r}) dr .

Noting that |ψ2(ỹ)− ψ1(ỹ)| ≤ 2|ỹ|2
R = 2r2

R for |ỹ| = r, we obtain

md−1({y : |ỹ| = r, ψ2(ỹ) ≤ yd ≤ ψ1(ỹ)}) ≤ c3r
d for r ≤ R

4 .

Thus, by the previous observation and integration by parts we get

I2 ≤ c4

R
4∫

0

r−2 φ′(r−2)√
φ(r−2)

dr = c4

R
4∫

0

r
(
−
√

φ(r−2)
)′

dr

≤ c4

⎡⎢⎣lim
r↓0

r
√
φ(r−2) +

R
4∫

0

√
φ(r−2) dr

⎤⎥⎦ .

By Lemma 2.3 applied to a fixed ε < δ we see that there is a constant c5 =
c5(ε) > 0 so that

φ(r−2) ≤ c5r
−2(1−δ+ε),

which gives

I2 ≤ c4

R
4∫

0

√
φ(r−2) dr ≤ c4

√
c5

R
4∫

0

r−1+δ−ε dr < ∞ .

In order to estimate I3, we consider two cases. First, if 0 < yd = δ
H+ (y) ≤ δD(y),

h(y)− hx(y) ≤ V (yd +R−1|ỹ|2)− V (yd) =

yd+R−1|ỹ|2∫
yd

v(z)dz ≤ R−1|ỹ|2v(yd),

(3.6)

since v is decreasing.
If yd = δ

H+ (y) > δD(y) and y ∈ E, using the fact that δD(y) is greater than or
equal to the distance between y and the graph of ψ1 and

yd −R+
√
|ỹ|2 + (R− yd)2 = |ỹ|2√

|ỹ|2+(R−yd)2+(R−yd)
≤ |ỹ|2

2(R−yd)
≤ |ỹ|2

R ,
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we obtain

hx(y)− h(y) ≤
yd∫

R−
√

|ỹ|2+(R−yd)2

v(z)dz ≤ R−1|ỹ|2 v
(
R −

√
|ỹ|2 + (R− yd)2

)
.

(3.7)

By (3.6) and (3.7),

I3 ≤R−1

∫
E∩{y:yd≤δD(y)}

|ỹ|2v(yd)j(|x− y|)dy

+R−1

∫
E∩{y:yd>δD(y)}

|ỹ|2v
(
R−

√
|ỹ|2 + (R− yd)2

)
j(|x− y|)dy

=:R−1(L1 + L2).

Since

E ⊂ {z = (z̃, zd) ∈ R
d : |z̃| < R

4
∧
√
2Rzd − z2d and 0 < zd ≤ R

2
},

changing to polar coordinates for ỹ and using (2.1), (2.3), (2.7) and Proposition
2.4, yields

L1 ≤ c6

R
2∫

0

v(yd)

⎛⎜⎜⎝
R
4 ∧

√
2Ryd−y2

d∫
0

rdφ′((r2 + |yd − xd|2)−1)

(r2 + |yd − xd|2)(d+2)/2
dr

⎞⎟⎟⎠ dyd

≤ c7

R
2∫

0

v(yd/6)

⎛⎝ R∫
0

rdφ′((r + |yd − xd|)−2)

(r + |yd − xd|)d+2
dr

⎞⎠ dyd =: c7L̂1.

If δ �= 1
2 , by (A-3)

R∫
0

φ′((r + |yd − xd|)−2)

(r + |yd − xd|)2
dr

=φ′((R+ |yd − xd|)−2)

R∫
0

φ′((r + |yd − xd|)−2)

φ′((R+ |yd − xd|)−2)

dr

(r + |yd − xd|)2

≤c8φ
′((R+ |yd − xd|)−2)

R∫
0

(
(r + |yd − xd|)−2

(R+ |yd − xd|)−2

)−δ
dr

(r + |yd − xd|)2

=c8φ
′((R+ |yd − xd|)−2)(R+ |yd − xd|)−2δ

R∫
0

(r + |yd − xd|)−2+2δdr

≤c9φ
′((R+ |yd − xd|)−2)(R+ |yd − xd|)−2δ|yd − xd|−(1−2δ)+ .(3.8)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GREEN FUNCTION ESTIMATES FOR SBM 4401

Thus, in the case δ > 1
2 , (3.8) implies

L̂1 ≤ c11

R
2∫

0

v(yd/6)dyd ≤ c12V ( R
12 ) < ∞.(3.9)

For the case δ ≤ 1
2 , we first note that by using (2.3) we obtain

R∫
0

rdφ′((r + |yd − xd|)−2)

(r + |yd − xd|)d+2
dr

≤
|s−xd|∫
0

rdφ((r + |s− xd|)−2)

(r + |s− xd|)d
dr +

R∫
|s−xd|

rdφ((r + |s− xd|)−2)

(r + |s− xd|)d
dr

≤ φ(|s− xd|−2)

|s− xd|d

|s−xd|∫
0

rddr +

R∫
|s−xd|

φ(r−2)dr

= (d+ 1)−1φ(|s− xd|−2)|s− xd|+
R∫

|s−xd|

φ(r−2)dr.

Thus, by Lemma 3.6,

L̂1 ≤ c13

R
2∫

0

v(s/6)

⎛⎜⎝φ(|s− xd|−2)|s− xd|+
R∫

|s−xd|

φ(r−2)dr

⎞⎟⎠ ds < ∞.

Let us estimate L2. Switching to polar coordinates for ỹ, and by the use of (2.7),
we get

L2 ≤ c20

xd+
R
4∫

0

⎛⎜⎜⎝
√

2Ryd−y2
d∫

0

v(R−
√
r2+(R− yd)2)r

dj((r2 + |yd − xd|2)1/2)dr

⎞⎟⎟⎠ dyd

≤ c21

xd+
R
4∫

0

⎛⎜⎜⎝
√

2Ryd−y2
d∫

0

v(R−
√
r2 + (R− yd)2)φ

′((r2 + |yd − xd|2)−1)

(r2 + |yd − xd|2)(d+2)/2
rddr

⎞⎟⎟⎠ dyd

≤ c22

xd+
R
4∫

0

⎛⎜⎜⎝
√

2Ryd−y2
d∫

0

v(R−
√
r2 + (R− yd)2)φ

′((r + |yd − xd|)−2)

(r + |yd − xd|)2+d
rddr

⎞⎟⎟⎠ dyd.

Since, for 0 < r < R,

R−
√
r2 + (R− yd)2 =

(√
2Ryd−y2

d+r
)(√

2Ryd−y2
d−r

)
R+

√
r2+(R−yd)2

≥
√
yd

3
√
R

(√
2Ryd − y2d − r

)
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and
√
2Ryd − y2d <

√
R/2

√
2R− yd < R for 0 < yd < xd +

R
4 , we have

L2 ≤ c22

xd+
R
4∫

0

√
2Ryd−y2

d∫
0

·
v
(√

yd(
√
2Ryd − y2d − r)/(3

√
R)

)
φ′((r + |yd − xd|)−2)

(r + |yd − xd|)2+d
rddrdyd .

Using (2.3), we see that with a :=
√
2Ryd − y2d and b := |yd − xd|,

a∫
0

v(
√
yd(a− r)/(3

√
R))φ′((r + b)−2)

(r + b)2+d
rddr

≤
a/2∫
0

v(
√
yd(a− r)/(3

√
R))φ′((r + b)−2)

(r + b)2+d
rddr

+

a∫
a/2

v(
√
yd(a− r)/(3

√
R))φ((r + b)−2)

(r + b)d
rddr

≤ v(
√
yda/(6

√
R))

a/2∫
0

φ′((r+b)−2)

(r + b)2+d
rddr+φ((b+a/2)−2)

a∫
a/2

v(
√
yd(a−r)/(3

√
R))dr

≤ v(
√
yda/(6

√
R))

R∫
0

φ′((r + b)−2)

(r + b)2+d
rddr + c23φ((b+ a/2)−2)

1
√
yd

V (
√
yda/(6

√
R))

:= B1(yd) +B2(yd).

First, note that
√
ydR <

√
2Ryd − y2d = a ≤ √

yd
√
2R. Thus

R
2∫

0

B1(yd)dyd ≤ c24

R
2∫

0

v(yd/6)

R∫
0

φ′((r + |yd − xd|)−2)

(r + |yd − xd|)2+d
rddrdyd = c24L̂1 < ∞.

Since
√
ydR < a ≤ √

yd
√
2R, by Proposition 2.4 and (2.1),

B2(yd) ≤ c25y
−1/2
d φ((|yd − xd|+

√
yd)

−2)φ(yd
−2)−1/2.

Using the inequality yd/
√
R ≤ √

yd ≤ |yd − xd|+
√
yd, we have

φ((|yd − xd|+
√
yd)

−2) ≤ φ((yd/
√
R)−2)1/2φ(y−1

d )1/2.

Thus, by (2.1) and Lemma 2.3 with ε = δ/2 we have

B2(yd) ≤ c26y
−1/2
d φ(y−1

d )1/2 ≤ c27y
−1/2
d y

(−1+δ−ε)/2
d = c27y

−1+(δ−ε)/2
d .

Thus
R
2∫

0

B2(yd)dyd ≤ c27

R
2∫

0

y
−1+(δ−ε)/2
d dyd < ∞.

Therefore L2 < ∞.
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Now we see that A(h− hx)(x) is well defined. Indeed, since hx(x) = h(x) and

1{y∈D∪H+: |y−x|>ε}|h(y)− hx(y)|j(|y − x|)
≤ 1A∪B(x,R4 )c(h(y) + hx(y))j(|y − x|) + 1E |h(y)− hx(y)|j(|y − x|) ∈ L1(Rd),

we can use the dominated convergence theorem to deduce that the limit

lim
ε↓0

∫
{y∈D∪H+ : |y−x|>ε}

(h(y)− hx(y))j(|y − x|) dy

exists. Moreover, Ah(x) is then also well defined and satisfies |Ah(x)| ≤ C1 . �

For a, b > 0, we define DQ(a, b) := {y ∈ D : a > ρQ(y) > 0, |ỹ| < b}.

Lemma 3.8. Assume additionally that (A-5) holds. There are constants R1 =
R1(R,Λ, φ) ∈ (0, R

16
√

1+(1+Λ)2
) and ci = ci(R,Λ, φ) > 0, i = 1, 2, such that for

every r ≤ R1, Q ∈ ∂D and x ∈ DQ(r, r),

(3.10) Px

(
XτDQ(r,r)

∈ D
)
≥ c1V (δD(x))

and

(3.11) Ex

[
τDQ(r,r)

]
≤ c2V (δD(x)).

Proof. Without loss of generality we may assume that Q = 0 and that ψ : Rd−1 → R

is a C1,1 function such that in the coordinate system CS0,

B(0, R) ∩D = {(ỹ, yd) ∈ B(0, R) in CS0 : yd > ψ(ỹ)} .
The function ρ defined by ρ(y) = yd − ψ(ỹ) satisfies

(3.12)
ρ(y)√
1 + Λ2

≤ δD(y) ≤ ρ(y) for all y ∈ B(0, R) ∩D.

Define for a > 0,

Da = {y ∈ D : 0 < ρ(y) < a, |ỹ| < a}
and the function

h(y) =

{
V (δD(y)), y ∈ B(0, R) ∩D,

0, otherwise .

Using the Dynkin formula and the same approximation argument as in the proof
of Lemma 4.5 in [KSV12b], from our Lemma 3.7 we have the following estimate for
any open set U ⊂ B(0, R4 ) ∩D:

(3.13) h(x)− C1ExτU ≤ Exh(XτU ) ≤ h(x) + C1ExτU ,

where C1 > 0 is the constant from Lemma 3.7.
By choosing A := R

4
√

1+(1+Λ)2
we obtain

Dr ⊂ DA ⊂ D(0, R4 ) ∩D for all r ≤ A .

Indeed, for y ∈ Dr and r > 0 the following is true:

(3.14) |y|2 = |ỹ|2 + |yd|2 ≤ r2 + (|yd − ψ(ỹ)|+ |ψ(ỹ)|)2 ≤ (1 + (1 + Λ)2)r2 .

In particular, for r ≤ A,

|y| ≤
√
1 + (1 + Λ)2A = R

4 .
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The idea is to choose λ2 ≥ 1 large enough so that (3.10) and (3.11) hold for
r ≤ λ−1

2 A and x ∈ Dr .
We are going to show that there are constants c1, c2 > 0 such that for any λ ≥ 4

and x ∈ Dλ−1A the following two inequalities hold:

Ex[h(XτD
λ−1A

)] ≥ c1

(√
φ(16λ2R−2)−

√
φ(R−2)

)
ExτDλ−1A

,(3.15)

Px

(
XτD

λ−1A
∈ D

)
≥ c2

(
φ(16λ2R−2)− φ(R−2)

)
ExτDλ−1A

.(3.16)

Once we prove this, we can choose λ2 > 4 so that√
φ(16λ2

2R
−2) >

√
φ(R−2) + 2C1

c1
.

Then, for any λ ≥ λ2 and x ∈ Dλ−1A we can use

c1

(√
φ(16λ2R−2)−

√
φ(R−2)

)
− C1 > C1

on (3.15) and (3.13) to get

V (δD(x)) = h(x) ≥ Ex[h(XτD
λ−1A

)]− C1ExτDλ−1A
≥ C1ExτDλ−1A

,

which proves (3.11) with R1 = λ−1
2 A .

Similarly, by (3.13) and (3.16), for any λ ≥ λ2 and x ∈ Dλ−1A we have

V (δD(x)) = h(x) ≤ Ex[h(XτD
λ−1A

)] + C1ExτDλ−1A

≤ V (R)Px

(
XτD

λ−1A
∈D

)
+C1c

−1
2

(
φ(16λ2

2R
−2)− φ(R−2)

)−1
Px

(
XτD

λ−1A
∈ D

)
,

where the first term is obtained by estimating h by V (R) and noting that h(x) = 0
unless x ∈ D. This yields

Px

(
XτD

λ−1A
∈ D

)
≥ V (δD(x))

V (R) + C1c
−1
2 (φ(16λ2

2R
−2)− φ(R−2))

−1 .

This proves (3.10) with R1 = λ−1
2 A .

Now we prove (3.15). Note that for z ∈ Dλ−1A and y �∈ B(0, λ−1R
r ),

|z| ≤
√
1 + (1 + λ2)λ−1A = λ−1R

4 ≤ |y|(3.17)

implies

j(|z − y|) ≥ j(2|y|) ≥ c3j(|y|) .
Then the Ikeda-Watanabe formula implies

Ex[h(XτD
λ−1A

)] ≥
∫

B(0,r)∩D\Dλ−1A

∫
Dλ−1A

GDλ−1A
(x, z)j(|z − y|)V (δD(y)) dz dy

≥ c3

⎛⎜⎝ ∫
Dλ−1A

GDλ−1A
(x, z) dz

⎞⎟⎠ ∫
B(0,R)∩D\Dλ−1A

V (δD(y))j(|y|) dy

≥ c3ExτDλ−1A

∫
B(0,R)∩D\Dλ−1A

j(|y|)V
(

yd−ψ(ỹ)√
1+Λ2

)
dy,

since yd−ψ(ỹ)√
1+Λ2

≤ δD(y) by (3.12) .
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On the set E := {(ỹ, yd) : 2Λ|ỹ| < yd, λ
−1R

4 < |y| < R} we have

|y| ≤
√
1 + 4Λ2 yd and yd − ψ(ỹ) ≥ yd − Λ|ỹ| ≥ |y|

2
√
1+4Λ2

.

Since E ⊂ B(0, R) \ Dλ−1A because of the first inequality in (3.17), changing to
polar coordinates gives

Ex[h(XτD
λ−1A

)] ≥ c4Ex[τDλ−1A
]

R∫
λ−1 R

4

j(r)V ( r
2
√
1+4Λ2

√
1+Λ2

)rd−1 dr

with constant c4 > 0 depending on Λ and d.
Then (2.7) and Proposition 2.4 imply

Ex[h(XτD
λ−1A

)] ≥ c5Ex[τDλ−1A
]

R∫
λ−1 R

4

r−3 φ′(r−2)√
φ(r−2)

dr

= c5Ex[τDλ−1A
]
(√

φ(16λ2R−2)−
√
φ(R−2)

)
.

We prove (3.16) similarly by the same computation as above without V :

Px

(
XτD

λ−1A
∈ D

)
≥ Px

(
XτD

λ−1A
∈ B(0, R) ∩D \B(0, λ−1R

4 )
)

≥ c6Ex[τDλ−1A
]

R∫
λ−1 R

4

j(r)rd−1 dr

≥ c7Ex[τDλ−1A
]

R∫
λ−1 R

4

r−3φ′(r−2) dr

= 2−1c7Ex[τDλ−1A
]
(
φ(16λ2R−2)− φ(R−2)

)
.

�

4. Analysis of the Poisson kernel

In this section we always assume that the Laplace exponent φ of the subordinator
S = (St : t ≥ 0) satisfies (A-1)–(A-4) and the corresponding subordinate Brownian
motion X = (Xt,Px) is transient.

First we record an inequality.

Lemma 4.1. For every R0 > 0, there exists a constant c(R0, φ) > 0 such that

(4.1) λ2

λ−1∫
0

r−1φ′(r−2)dr +

R0∫
λ−1

r−3φ′(r−2)dr ≤ c φ(λ2), ∀λ ≥ 1
R0

.
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Proof. Assume λ ≥ λ0 ∨ 1
R0

. By (1.2), φ′(r−2) ≤ c1r
2δλ2δφ′(λ2) for r ≤ λ−1. Thus

λ2

λ−1∫
0

r−1φ′(r−2)dr +

R0∫
λ−1

r−3φ′(r−2)dr

= λ2φ′(λ2)

λ−1∫
0

r−1φ
′(r−2)

φ′(λ2)
dr − 1

2

R0∫
λ−1

(φ(r−2))′dr

≤ c2φ
′(λ2)λ2+2δ

λ−1∫
0

r−1+2δdr + c2φ(λ
2) ≤ c3(φ

′(λ2)λ2 + φ(λ2)) ≤ 2c3φ(λ
2),

where we have used (2.3) in the last inequality.
If 1

R0
> λ0 and 1

R0
≤ λ ≤ λ0, then clearly the left hand side of (4.1) is bounded

above by

λ2
0

R0∫
0

r−1φ′(r−2)dr +

R0∫
λ−1
0

r−3φ′(r−2)dr = c4 ≤ c5φ(λ
2).

�

Recall that the infinitesimal generator L of X is given by

(4.2) Lf(x) =
∫
Rd

(
f(x+ y)− f(x)− y · ∇f(x)1{|y|≤ε}

)
j(|y|)dy

for every ε > 0 and f ∈ C2
b (R

d), where C2
b (R

d) is the collection of bounded C2

functions in R
d.

Using Lemma 4.1, we now prove [KSV12c, Lemma 4.2] under a weaker assump-
tion.

Lemma 4.2. There exists a constant c = c(φ) > 0 such that for every f ∈ C2
b (R

d)
with 0 ≤ f ≤ 1,

|Lfr(x)| ≤ cφ(r−2)

⎛⎝1+sup
y

∑
j,k

∣∣∣ ∂2f
∂yj∂yk

(y)
∣∣∣
⎞⎠+b0, for every x∈R

d and r∈(0, 1],

where fr(y) := f( yr ) and b0 := 2
∫

|z|>1

j(|z|)dz < ∞.

Proof. Set L1 = supy∈Rd

∑
j,k |

∂2f(y)
∂yj∂yk

|. Then

|f(z + y)− f(z)− y · ∇f(z)| ≤ 1
2L1|y|2,

which implies the following estimate:

|fr(z + y)− fr(z)− y · ∇fr(z)1{|y|≤r}| ≤ L1

2
|y|2
r2 1{|y|≤r} + 2 · 1{|y|≥r} .
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Now, (2.7) and (4.1) yield

|Lfr(z)|

≤
∫
Rd

|fr(z + y)− fr(z)− y · ∇fr(z)1{|y|≤r}| j(|y|)dy

≤ L1

2

∫
Rd

1{|y|≤r}
|y|2
r2 j(|y|)dy + 2

∫
Rd

1{r≤|y|≤1}j(|y|)dy + 2

∫
Rd

1{|y|≥1}j(|y|)dy

≤ cφ(r−2)
(
2 + L1

2

)
+ 2

∫
{|y|≥1}

j(|y|)dy ,

where the constant c is independent of r ∈ (0, 1]. �

Lemma 4.3. For every a ∈ (0, 1), there exists a positive constant c = c(a, φ) > 0
such that for any r ∈ (0, 1) and any open set D with D ⊂ B(0, r),

Px (XτD ∈ B(0, r)c) ≤ c φ(r−2)Ex[τD] for all x ∈ D ∩B(0, ar) .

Proof. Using Lemma 4.2, the proof of the lemma is similar to that of [KSV12a,
Lemma 13.4.15]. We omit the details. �

Let A(x, a, b) := {y ∈ R
d : a ≤ |y − x| < b} and recall that the Poisson kernel

KD(x, z) of X in D is defined in (2.13).
Unlike [KSV12c], instead of the Harnack inequality we use Corollary 2.11 (which

is a combination of Proposition 2.7 and the Harnack inequality) in the next propo-
sition.

Proposition 4.4. Let p ∈ (0, 1). Then there exists a constant c(φ, p) > 0 such that
for any r ∈ (0, 1) we have

|z|∫
1+p
2 r

KB(0,s)(x, z) ds ≤ c r
φ(r−2) j(|z|)

for all x ∈ B(0, pr) and z ∈ A(0, 1+p
2 r, r).

Proof. We split the Poisson kernel into two parts:

KB(0,s)(x, z) =

∫
B(0,s)

GB(0,s)(x, y)j(|z − y|) dy = I1(s) + I2(s),

where

I1(s) =

∫
B(0,3s/4)

GB(0,s)(x, y)j(|z − y|) dy,

I2(s) =

∫
A(0,3s/4,s)

GB(0,s)(x, y)j(|z − y|) dy.
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First we consider I1(s). Since |z − y| ≥ 1
4 |z|, we conclude from (2.1) and (2.8)

that

I1(s) ≤ j
(

|z|
4

) ∫
B(0,3s/4)

G(x, y) dy ≤ j
(

|z|
4

) ∫
B(x,2s)

G(x, y) dy

≤ c1j (|z|)
2s∫
0

t−3 φ′(t−2)
φ(t−2)2 dt =

c1
2
j (|z|)

2s∫
0

(
1

φ(t−2)

)′
dt ≤ c2

j(|z|)
φ(s−2) .

Then, since |z| ≤ r,

|z|∫
1+p
2 r

I1(s) ds ≤ c2j(|z|)
|z|∫

1+p
2 r

ds
φ(s−2)

≤ c2j(|z|) |z|−
1+p
2 r

φ(r−2) ≤ c2j(|z|) r
φ(r−2) .

On the other hand, by Corollary 2.11 and Lemma 2.5,

I2(s) ≤ c3s
−d−2 φ′(s−2)

φ(s−2)

∫
A(0,3s/4,s)

Ey[τB(0,s)] j(|z − y|) dy

≤ c4s
−d−2 φ′(s−2)

φ(s−2)

∫
A(0,3s/4,s)

j(|z−y|)√
φ(s−2)φ((s−|y|)−2)

dy

≤ c4s
−d−2 φ′(s−2)

φ(s−2)3/2

∫
A(0,3s/4,s)

j(|z−y|)√
φ(|z−y|−2)

dy,

since s− |y| ≤ |z − y|.
Observing that A(z, 3s/4, s) ⊂ B(z, s) ⊂ A(0, |z| − s, 2r) we arrive at

I2(s) ≤ c4s
−d−2 φ′(s−2)

φ(s−2)3/2

∫
A(0,|z|−s,2r)

j(|v|)√
φ(|v|−2)

dv

= c5s
−d−2 φ′(s−2)

φ(s−2)3/2

2r∫
|z|−s

t−3 φ′(t−2)√
φ(t−2)

dv

≤ c6s
−d−2 φ′(s−2)

φ(s−2)3/2

√
φ((|z| − s))−2.

Then using the fact that s �→ φ′(s−2) and s �→ φ(s−2)−1 are increasing, we obtain

|z|∫
1+p
2 r

I2(s) ds ≤ c6

|z|∫
1+p
2 r

s−d−2φ′(s−2)
φ(s−2)3/2

√
φ((|z| − s)−2) ds

≤ c6
( 1+p

2 r)−d−2
φ′(|z|−2)

φ(|z|−2)3/2

|z|− 1+p
2 r∫

0

√
φ(t−2) dt .(4.3)
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By Lemma 2.3 with ε = δ
2 > 0 for any a ∈ (0, 1) we have

a∫
0

√
φ(s−2) ds =

a∫
0

√
φ(s−2)√
φ(a−2)

ds
√

φ(a−2)

≤ c7a
1−δ/2

√
φ(a−2)

a∫
0

s−1+δ/2ds ≤ c8a
√
φ(a−2).(4.4)

Since 1+p
2 r ≤ |z| ≤ r, (4.3)–(4.4) together with (2.2) and (2.7) give

|z|∫
1+p
2 r

I2(s) ds ≤ c9

(
1+p
2 r

)−d−2

φ′(|z|−2)

φ(|z|−2)3/2

(
|z| − 1+p

2 r
)
φ
((

|z| − 1+p
2 r

)−2
)1/2

≤ c9
( 1+p

2 r)−d−2
φ′(|z|−2)

φ(|z|−2)3/2
|z|

√
φ (|z|−2) ≤ c9|z|−d−2φ′(|z|−2) r

φ(r−2)

≤ c10j(|z|) r
φ(r−2) .

�

5. Uniform boundary Harnack principle

In this section we give a proof of the uniform boundary Harnack principle for X
in an arbitrary open set with the constant not depending on the open set itself. This
type of boundary Harnack principle was first obtained in [BKK08] for rotationally
symmetric stable processes. Since, using results of the previous section, the proofs
in this section are almost identical to the one in [KSV12c, Section 5], we give details
only on parts that require extra explanation.

Recall that X = (Xt,Px) is a subordinate process defined by Xt = WSt
where

W = (Wt,Px) is a Brownian motion in R
d independent of the subordinator S and

the Laplace exponent φ of the subordinator S satisfies (A-1)–(A-3).
Using (2.9), (2.10), Proposition 2.12, Proposition 4.4 and the fact that for U ⊂ D

(5.1) KD(x, z) = KU (x, z) + Ex [KD(XτU , z)] , (x, z) ∈ U ×Dc,

the proof of the next result is the same as the one of [KSV12c, Lemma 5.2].

Lemma 5.1. Assume that X is transient and satisfies (A-1)–(A-4). For every
p ∈ (0, 1), there exists c = c(φ, p) > 0 such that for every r ∈ (0, 1), z0 ∈ R

d,
U ⊂ B(z0, r) and for any (x, y) ∈ (U ∩B(z0, pr))×B(z0, r)

c,

KU (x, y) ≤ c 1
φ(r−2)

⎛⎜⎜⎝ ∫
U\B(z0, (1+p)r

2 )

j(|z − z0|)KU (z, y)dz + j(|y − z0|)

⎞⎟⎟⎠ .

The process X satisfies the hypothesis H in [Szt00]. Therefore, by [Szt00, The-
orem 1], for a Lipschitz open set V ⊂ R

d and an open subset U ⊂ V ,

(5.2) Px(XτU ∈ ∂V ) = 0 and Px(XτU ∈ dz) = KU (x, z)dz on V c.

Using (5.2) and Lemma 5.1, the proof of the next result is the same as the one of
[KSV12c, Lemma 5.3].
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Lemma 5.2. Assume that X is transient and satisfies (A-1)–(A-4). For every
p ∈ (0, 1), there exists c = c(φ, p) > 0 such that for every r ∈ (0, 1), for every
z0 ∈ R

d, U ⊂ B(z0, r) and any nonnegative function u in R
d which is regular

harmonic in U with respect to X and vanishes in Uc ∩B(z0, r), we have

u(x) ≤ c 1
φ(r−2)

∫
(U\B(z0,

(1+p)r
2 ))∪B(z0,r)c

j(|y − z0|)u(y)dy, x ∈ U ∩B(z0, pr).

We give a detailed proof of the next result.

Lemma 5.3. Assume that X is transient and satisfies (A-1)–(A-4). There exists
C2 = C2(d, φ) > 1 such that for every r ∈ (0, 1), for every z0 ∈ R

d, U ⊂ B(z0, r)
and for any (x, y) ∈ U ∩B(z0,

r
2 )× B(z0, r)

c,

C−1
2 Ex[τU ]

⎛⎜⎝ ∫
U\B(z0,

r
2 )

j(|z − z0|)KU (z, y)dz + j(|y − z0|)

⎞⎟⎠
≤ KU (x, y) ≤ C2 Ex[τU ]

⎛⎜⎝ ∫
U\B(z0,

r
2 )

j(|z − z0|)KU (z, y)dz + j(|y − z0|)

⎞⎟⎠ .

Proof. Without loss of generality, we assume z0 = 0. Fix r ∈ (0, 1) and let U1 :=
U ∩ B(0, 1

2r), U2 := U ∩ B(0, 2
3r) and U3 := U ∩ B(0, 3

4r). Let x ∈ U ∩ B(0, r
2 ),

y ∈ B(0, r)c. By (5.1),

KU (x, y) = Ex[KU (XτU2
, y)] +KU2

(x, y)

=

∫
U\U2

KU (z, y)Px(XτU2
∈ dz) +KU2

(x, y)

=

∫
U3\U2

KU (z, y)Px(XτU2
∈ dz)

+

∫
U\U3

KU (z, y)KU2
(x, z)dz +KU2

(x, y)

=

∫
U3\U2

KU (z, y)Px(XτU2
∈ dz)

+

∫
U\U3

KU (z, y)

∫
U2

GU2
(x,w)j(|z − w|)dwdz

+

∫
U2

GU2
(x,w)j(|y − w|)dw =: I1 + I2 + I3.
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From Lemma 4.3 and Lemma 5.1, we see that there exist c1 and c2 such that

(5.3)

I1 ≤ c1

(
sup
z∈U3

KU (z, y)

)
φ(r−2)Ex[τU2

]

≤ c2Ex[τU2
]

⎛⎜⎝ ∫
U\U3

j(|z|)KU (z, y)dz + j(|y|)

⎞⎟⎠ .

Now using (2.9) and (2.10) one can check as in [KSV12c] that there exists c5 =
c5(d, φ) > 1 such that

(5.4) c−1
5 Ex[τU2

]

∫
U\U3

j(|z|)KU (z, y)dz ≤ I2 ≤ c5Ex[τU2
]

∫
U\U3

j(|z|)KU (z, y)dz

and

(5.5) c−1
5 Ex[τU2

]j(|y|) ≤ I3 ≤ c5Ex[τU2
]j(|y|) .

The upper bound follows from (5.3)–(5.5).
Using the strong Markov property, we get

Ex[τU ] = Ex[τU2
] + Ex

[
EXτU2

[τU ]
]

≤ Ex[τU2
] +

(
sup
z∈U

Ez[τU ]

)
Px

(
XτU2

∈ B(0, 2r3 )
c
)

≤ Ex[τU2
] + c6φ(r

−2)−1 φ(( 2r3 )−2)Ex[τU2
] ≤ c7Ex[τU2

],

where in the second inequality we have used Lemma 2.5 and Lemma 4.3 and in last
inequality we have used (2.1).

Since

∫
U\U1

j(|z|)KU (z, y)dz =

∫
U\U3

j(|z|)KU (z, y)dz +

∫
U3\U1

j(|z|)KU (z, y)dz

≤
∫

U\U3

j(|z|)KU (z, y)dz

+

(
sup
z∈U3

KU (z, y)

) ∫
A(0,r/2,3r/4)

j(|y|)dy,
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by (2.7) and Lemma 5.1,∫
U\U1

j(|z|)KU (z, y)dz

≤

⎛⎜⎝1 +
c8

φ(r−2)

3r
4∫

r
2

s−3φ′(s−2)ds

⎞⎟⎠
⎛⎜⎝ ∫
U\U3

j(|z|)KU (z, y)dz + j(|y|)

⎞⎟⎠
=

⎛⎜⎝1− 2
c8

φ(r−2)

3r
4∫

r
2

(φ(s−2))′ds

⎞⎟⎠
⎛⎜⎝ ∫
U\U3

j(|z|)KU (z, y)dz + j(|y|)

⎞⎟⎠
≤

(
1 + c9

φ(4r−2)

φ(r−2)

)⎛⎜⎝ ∫
U\U3

j(|z|)KU (z, y)dz + j(|y|)

⎞⎟⎠ .(5.6)

Combining (2.1) and (5.4)–(5.6), we finish the proof of the lower bound. �

Using Lemmas 5.2 and 5.3, the proof of the next result is the same as the one
of [KSV12c, Lemma 5.5].

Lemma 5.4. Assume that X is transient and satisfies (A-1)–(A-4). For every
z0 ∈ R

d, every open set U ⊂ B(z0, r) and for any nonnegative function u in R
d

which is regular harmonic in U with respect to X and vanishes a.e. on Uc∩B(z0, r),

C−1
2 Ex[τU ]

∫
B(z0,

r
2 )

c

j(|y − z0|)u(y)dy ≤ u(x) ≤ C2Ex[τU ]

∫
B(z0,

r
2 )

c

j(|y − z0|)u(y)dy,

for every x ∈ U ∩B(z0,
r
2 ) (where C2 is the constant from Lemma 5.3).

As in [KSV12c, Corollary 5.6], the last two lemmas immediately imply the fol-
lowing approximate factorization of the Poisson kernel.

Corollary 5.5. Assume that X is transient and satisfies (A-1)–(A-4). Let z0 ∈
R

d and D ⊂ R
d be open. Then for every r ∈ (0, 1) and all (x, y) ∈ (D∩B(z0,

r
2 ))×

(Dc ∩B(z0, r)
c) it holds that

(5.7) C−1
2 Ex[τD∩B(z0,r)]AD(z0, r, y) ≤ KD(x, y) ≤ C2 Ex[τD∩B(z0,r)]AD(z0, r, y) ,

where

AD(z0, r, y) :=

∫
(D∩B(z0,r))\B(z0,

r
2 )

j(|z − z0|)KD∩B(z0,r)(z, y) dz

+j(|y − z0|) +
∫

B(z0,
r
2 )

c

j(|z − z0|)Ez

[
KD(XτD∩B(z0,r)

, y)
]
dz .

Lemma 5.4 and (5.7) imply the following uniform boundary Harnack principle.
Note that the constants in the following theorem do not depend on the open set
itself. That is why this type of result is called the uniform boundary Harnack
principle.
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Theorem 5.6. Suppose that φ satisfies (A-1)–(A-3). There exists a constant
c = c(φ) > 0 such that

(i) For every z0 ∈ R
d, every open set D ⊂ R

d, every r ∈ (0, 1) and for any
nonnegative functions u, v in R

d which are regular harmonic in D∩B(z0, r)
with respect to X and vanish a.e. on Dc ∩B(z0, r), we have

u(x)

v(x)
≤ c

u(y)

v(y)

for all x, y ∈ D ∩B(z0,
r
2 ).

(ii) If X is, additionally, transient and satisfies (A-4), then for every z0 ∈ R
d,

every Greenian open set D ⊂ R
d, and every r ∈ (0, 1), we have

KD(x1, y1)KD(x2, y2) ≤ cKD(x1, y2)KD(x2, y1)

for all x1, x2 ∈ D ∩B(z0,
r
2 ) and all y1, y2 ∈ D

c ∩B(z0, r)
c.

Proof. Under the assumption of transience and (A-1)–(A-4) the result follows
from Lemma 5.4 and Corollary 5.5 (see the proof of [KSV12c, Theorem 1.1]).

If the process X is not transient, we can use an argument similar to the proof of
[KM12, Theorem 1.2, p. 17], where it is shown how to deduce Harnack inequality
in dimensions d = 1, 2 from Harnack inequality in dimension d ≥ 3 (since in the
latter case the process is always transient). Since we will use the argument in the
proof of Theorem 1.5 again, here we provide the detail for the readers’ convenience.

We use the notation x̃ = (x1, . . . , xd−1) for x = (x1, . . . , xd−1, xd) ∈ R
d and

X = ((X̃t, X
d
t ),P(x̃,xd)). As in the proof of [KM12, Theorem 1.2, p. 17], we have

that for every xd ∈ R, X̃ = (X̃t,Px̃) is a (d− 1)-dimensional subordinate Brownian

motion with characteristic exponent Φ̃(ξ̃) = φ(|ξ̃|2) for ξ̃ ∈ R
d−1.

Suppose (i) is true for for some d ≥ 2 and let D be an open subset of Rd−1 and
u, v : Rd−1 → [0,∞) be functions that are regular harmonic in D ∩ B(x̃0, r) with

respect to X̃ and vanish on Dc∩B(x̃0, r) a.e. with respect to the (d−1)-dimensional
Lebesgue measure.

Let f and g : Rd → [0,∞) be defined by

f(x̃, xd) = u(x̃) and g(x̃, xd) = v(x̃).

Since

τ(B(x̃0,s)∩D)×R = inf{t > 0 : X̃t /∈ B(x̃0, s) ∩D},

by the strong Markov property, f and g are regular harmonic in B(x̃0, r)×R with
respect to X. Clearly f and g vanish on (B(x̃0, r)×R)∩ (D×R)c a.e. with respect
to the d-dimensional Lebesgue measure. Thus, by applying the result to f and g,
we see that there exists a constant c > 0 such that for all x̃0 ∈ R

d−1, open set
D ⊂ R

d−1 and r ∈ (0, 1),

u(x̃1)

v(x̃1)
=

f((x̃1, 0))

g((x̃1, 0))
≤ c

f((x̃2, 0))

g((x̃2, 0))
= c

u(x̃2)

v(x̃2)
for all x̃1, x̃2 ∈ D ∩B(x̃0,

r
2 ).

Applying this argument first to d = 3 and then to d = 2, we finish the proof of
the theorem. �
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6. Green function estimates on bounded Lipschitz domain

The purpose of this section is to establish sharp two-sided Green function esti-
mates for X in any bounded Lipschitz domain D of Rd.

Recall that we have assumed that X = (Xt,Px) is the subordinate process
defined by Xt = WSt

where W = (Wt,Px) is a Brownian motion in R
d independent

of the subordinator S and the Laplace exponent φ of the subordinator S satisfies
(A-1)–(A-3). In this section we further assume that X is transient and that (A-4)
also holds.

We will first establish the interior estimates using Proposition 2.6 and Theorem
2.10. As in [KSV12b], once we have the interior estimates, we can apply Theorem
2.10 and the boundary Harnack principle (Theorem 5.6), and use the arguments of
[Bog00,Han05] to get the full estimates for bounded Lipschitz domain D.

Lemma 6.1. For every bounded domain D ⊂ R
d, there exists a constant C3 =

C3(d, φ, diam(D)) > 0 such that

(6.1) GD(x, y) ≤ C3
|x− y|−d−2φ′(|x− y|−2)

φ(|x− y|−2)2
for all x, y ∈ D ,

and for all x, y ∈ D with b−1
2 |x− y| ≤ δD(x) ∧ δD(y),

(6.2) GD(x, y) ≥ C−1
3

|x− y|−d−2φ′(|x− y|−2)

φ(|x− y|−2)2
,

where b2 ∈ (0, 12 ) is the constant from Proposition 2.7.

Proof. Since GD(x, y) ≤ g(|x− y|) and D is bounded, (6.1) is an immediate conse-
quence of Proposition 2.6.

Now we show (6.2). We have two cases:

Case 1: |x− y| ≤ b2. Since B(x, b−1
2 |x− y|) ⊂ D and y ∈ A(x, |x− y|, b−1

2 |x− y|),
we can use Proposition 2.7 to get

GD(x, y) ≥ GB(x,b−1
2 |x−y|)(x, y) ≥ c1

bd+2
2 |x−y|−d−2φ′(b22|x−y|−2)

φ(b22|x−y|−2)
Ex[τB(x,b−1

2 |x−y|)]

≥ c2
|x−y|−d−2φ′(|x−y|−2)

φ(|x−y|−2)2 ,

where in the last inequality we have used Proposition 2.8, (A-3) and the facts that
b2 ∈ (0, 1

2 ) and that the function r �→ 1
φ(r) is decreasing.

Case 2: |x − y| > b2. In this case it follows that δD(x) ∧ δD(y) > 1. Let x0 ∈
∂B(y, b2). Then

b−1
2 |x0 − y| = 1 < δD(x) ∧ δD(y),

and so, by the Case 1, we obtain

(6.3) GD(x0, y) ≥ c2
b−d−2
2 φ′(b−2

2 )

φ(b−2
2 )2

.

Since GD(·, y) is harmonic in B(x0,
b2
2 ) ∪ B(x, b22 ) (with respect to X), we can

use Theorem 2.10 to deduce

GD(x, y) = Ex[GD(XτB(x,b2/4)
, y)] ≥ Ex[GD(XτB(x,b2/4)

, y);XτB(x,b2/4)
∈ B(x0,

b2
4 )]

≥ c3GD(x0, y)Px(XτB(x,b2/4)
∈ B(x0,

b2
4 )) .(6.4)
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By Proposition 2.12, (2.12) and (2.13) we get

Px(XτB(x,b2/4)
∈ B(x0,

b2
4 )) =

∫
B(x0,

b2
4 )

K
B(x,

b2
4 )

(x, z) dz

≥ c4
φ(16b−2

2 )

∫
B(x0,

b2
4 )

j(|z − x|) dz.(6.5)

Since |z − x| ≤ diam(D), by the monotonicity of j we deduce

Px(XτB(x,b2/4)
∈ B(x0,

b2
4 )) ≥ c5

bd2j(diam(D))

φ(16b−2
2 )

.

Therefore, using (6.3)–(6.5) we conclude that

GD(x, y) ≥ c6 ≥ c7
|x−y|−d−2φ′(|x−y|−2)

φ(|x−y|−2)2 .

In the last inequality we use the fact that b2 < |x − y| ≤ diam(D) and Corollary
2.2. �

An open set D is said to be a Lipschitz domain if there is a localization radius
R1 > 0 and a constant Λ > 0 such that for every z ∈ ∂D, there is a Lipschitz
function φz : Rd−1 → R satisfying

|φz(x)− φz(w)| ≤ Λ|x− w|,
and an orthonormal coordinate system CSz with origin at z such that

B(z,R1) ∩D = B(z,R1) ∩ {y = (ỹ, yd) in CSz : yd > φz(ỹ)}.
The pair (R1,Λ) is called the characteristic of the Lipschitz domain D.

Unlike [KSV12b] we will assume that D is a bounded Lipschitz domain instead
of a κ-fat open set. The main reason we assume that D is a bounded Lipschitz
domain is Theorem 2.10 and the Harnack chain argument. Note that in [KSV12b],
[KSV12b, Theorem 2.14] is used instead of Theorem 2.10 and the Harnack chain
argument. Unfortunately, it seems that, under our assumptions, such a result is
not true for certain harmonic functions like u(x) := Px(XτB(x1,r)

∈ B(x0, r)) when
the distance between x0 and x1 is large and r is small.

Lemma 6.2. For every L > 0 and bounded Lipschitz domain D with the charac-
teristics (R1,Λ), there exists c = c(L, d, φ,R1,Λ, diam(D)) > 0 such that for every
x, y ∈ D with |x− y| ≤ L(δD(x) ∧ δD(y)),

(6.6) GD(x, y) ≥ c
|x− y|−d−2φ′(|x− y|−2)

φ(|x− y|−2)2
.

Proof. By symmetry of GD we may assume δD(x) ≤ δD(y). Moreover, by Lemma
6.1 we can assume that L > b2 and so we only need to show (6.6) for b2δD(x) ≤
|x− y| ≤ LδD(x).

Choose a point w ∈ ∂B(x, b2δD(x)). Then Lemma 6.1 gives

GD(x,w) ≥ c1
(b2δD(x))−d−2φ′((b2δD(x))−2)

φ((b2δD(x))−2)2
.

Since |y−w| ≤ |x−y|+|x−w| ≤ (L+1)δD(x) and GD(x, · ) = GD( · , x) is harmonic
with respect to X in B(y, b2δD(x)) ∪ B(w, b2δD(x)), using the assumption that D
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is a bounded Lipschitz domain, Theorem 2.10 and the Harnack chain argument we
obtain

GD(x, y) ≥ c2GD(x,w) ≥ c3
(b2δD(x))−d−2φ′((b2δD(x))−2)

φ((b2δD(x))−2)2
.

By Corollary 2.2

GD(x, y) ≥ c2GD(x,w) ≥ c3
(b2δD(x))−d−2φ′((b2δD(x))−2)

φ((b2δD(x))−2)2

≥ c4
|x− y|−d−2φ′(|x− y|−2)

φ(|x− y|−2)2
.

�

For the remainder of this section, we assume that D is a bounded Lipschitz
domain with characteristics (R1,Λ).

Without loss of generality we may assume that R1 ≤ 1
4 . Since D is Lipschitz,

there exists κ = κ(Λ) ∈ (0, 12 ) such that for each Q ∈ ∂D and r ∈ (0, R1), there
exists a point

Ar(Q) ∈ D ∩B(Q, r) satisfying B(Ar(Q), κr) ⊂ D ∩B(Q, r) .

Recall that GD(·, y) is regular harmonic in D \ B(y, ε) for every ε > 0 and
vanishes outside D.

Fix z0 ∈ D with κR1 < δD(z0) < R1 and set ε1 := κR1

24 . Define

r(x, y) := δD(x) ∨ δD(y) ∨ |x− y|, x, y ∈ D,

and
(6.7)

B(x, y) :=
{{

A∈D : δD(A)> κ
2 r(x, y), |x−A|∨|y −A|<5r(x, y)

}
if r(x, y)<ε1,

{z0} if r(x, y)≥ε1.

Note that for every (x, y) ∈ D ×D with r(x, y) < ε1,

(6.8) 1
6δD(A) ≤ r(x, y) ≤ 2κ−1δD(A), A ∈ B(x, y).

Set

C4 := C3diam(D)( δD(z0)
2 )−d−3 φ

′(( δD(z0)
2 )−2)

φ(( δD(z0)
2 )−2)2

.

By (6.1) and Corollary 2.2 (with a = 2diam(D)/δD(z0) and b = 1) we see that

GD(x, z0) ≤ C4 for x ∈ D \B(z0,
δD(z0)

2 ).

Now we define

(6.9) gD(x) := GD(x, z0) ∧ C4.

We note that for δD(z) ≤ 6ε1,

gD(z) = GD(z, z0),

since 6ε1 < δD(z0)
4 , and thus |z − z0| ≥ δD(z0)− 6ε1 ≥ δD(z0)

2 .
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The following lemma follows from Theorem 2.10 and the standard Harnack chain
argument:

Lemma 6.3. There exists c > 1 such that for every x ∈ D satisfying δD(x) ≥ κ3ε1
64

we have

c−1 ≤ gD(x) ≤ c .

Theorem 6.4. Suppose X is transient and φ satisfies (A-1)–(A-4). If D is
a bounded Lipschitz domain with characteristics (R1,Λ), then there exists c =
c(diam(D), R1,Λ, φ) > 1 such that for every x, y ∈ D and A ∈ B(x, y),

(6.10) c−1 gD(x)gD(y)φ′(|x−y|−2)
gD(A)2|x−y|d+2φ(|x−y|−2)2

≤ GD(x, y) ≤ c gD(x)gD(y)φ′(|x−y|−2)
gD(A)2|x−y|d+2φ(|x−y|−2)2

,

where gD and B(x, y) are defined by (6.9) and (6.7) respectively.

Proof. Since the proof is an adaptation of the proofs of [Bog00, Proposition 6] and
[Han05, Theorem 2.4], we only give the proof when δD(x) ≤ δD(y) ≤ κ

4 |x − y|. In
this case, we have r(x, y) = |x− y|.

By Theorem 2.10, we see that for all x, y ∈ D and A1, A2 ∈ B(x, y),
gD(A1) is comparable to gD(A2) .

Set r = |x−y|∧ε1
2 and choose

Qx, Qy ∈ ∂D with |Qx − x| = δD(x) and |Qy − y| = δD(y) .

Pick points x1 = Aκr/2(Qx) and y1 = Aκr/2(Qy) so that

x, x1 ∈ B(Qx, κr/2) and y, y1 ∈ B(Qy, κr/2) .

Then one can easily check that |z0 −Qx| ≥ κr and |y −Qx| ≥ r.
Then Theorem 5.6 implies

c−1
1

GD(x1, y)

gD(x1)
≤ GD(x, y)

gD(x)
≤ c1

GD(x1, y)

gD(x1)

for some c1 > 1.
Also, since |z0 −Qy| ≥ r and |x1 −Qy| ≥ r, by Theorem 5.6 again,

c−1
1

GD(x1, y1)

gD(y1)
≤ GD(x1, y)

gD(y)
≤ c1

GD(x1, y1)

gD(y1)
.

Therefore

c−2
1

GD(x1, y1)

gD(x1)gD(y1)
≤ GD(x, y)

gD(x)gD(y)
≤ c21

GD(x1, y1)

gD(x1)gD(y1)
.

Now we can use Lemma 6.2 for the lower and Lemma 6.1 for the upper bound
to get

c−1
2 c−2

1

gD(x1)gD(y1)
|x1−y1|−d−2φ′(|x1−y1|−2)

φ(|x1−y1|−2)2 ≤ GD(x, y)

gD(x)gD(y)

≤ c2c
2
1

gD(x1)gD(y1)
|x1−y1|−d−2φ′(|x1−y1|−2)

φ(|x1−y1|−2)2(6.11)

for some c2 > 1.

Since |x−y|
3 < |x1 − y1| < 2|x− y|, Corollary 2.2 yields

|x1−y1|−d−2φ′(|x1−y1|−2)
φ(|x1−y1|−2)2 ≤ 2 · 3d+3 |x−y|−d−2φ′(9|x−y|−2)

φ(9|x−y|−2)2 ≤ 2 · 3d+3 |x−y|−d−2φ′(|x−y|−2)
φ(|x−y|−2)2
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and
|x1−y1|−d−2φ′(|x1−y1|−2)

φ(|x1−y1|−2)2 ≥ 3−1 · 2−d−3 |x−y|−d−2φ′(4−1|x−y|−2)
φ(4−1|x−y|−2)2

≥ 3−1 · 2−d−3 |x−y|−d−2φ′(|x−y|−2)
φ(|x−y|−2)2 .

Therefore,

2−d−3c−1
2 c−2

1

3gD(x1)gD(y1)
|x−y|−d−2φ′(|x−y|−2)

φ(|x−y|−2)2 ≤ GD(x,y)
gD(x)gD(y) ≤ 2·3d+3c2c

2
1

gD(x1)gD(y1)
|x−y|−d−2φ′(|x−y|−2)

φ(|x−y|−2)2 .

(6.12)

If r = ε1
2 , then r(x, y) = |x− y| ≥ ε1, and so

gD(A) = gD(z0) = C4 and δD(x1) ∧ δD(y1) ≥ κ2r
2 = κ2ε1

4 .

Thus, in this case, Lemma 6.3 yields

(6.13) c−1
3 ≤ gD(A)2

gD(x1)gD(y1)
≤ c3

for some c3 > 1.
In the case r < ε1

2 we have r(x, y) = |x− y| < ε1 and r = 1
2r(x, y). Hence

δD(x1) ∧ δD(y1) ≥ κ2r
2 = κ2r(x,y)

4 .

Since |x1−A|∨|y1−A| ≤ 5r(x, y)+ |x1−x|+ |y1−y| ≤ 5r(x, y)+2κr ≤ 6r(x, y),
Theorem 2.10 applied to gD gives

(6.14) c−1
4 ≤ gD(A)

gD(x1)
≤ c4 and c−1

4 ≤ gD(A)

gD(y1)
≤ c4

for some constant c4 > 0. Combining (6.12)-(6.14), we get

c−1
5

gD(x)gD(y)
gD(A)2

|x−y|−d−2φ′(|x−y|−2)
φ(|x−y|−2)2 ≤ GD(x, y) ≤ c5

gD(x)gD(y)
gD(A)2

|x−y|−d−2φ′(|x−y|−2)
φ(|x−y|−2)2

for all A ∈ B(x, y). �

7. Explicit Green function estimates on bounded C1,1
open sets

The purpose of this section is to establish the explicit Green function estimates
from Theorem 6.4 in the case of bounded C1,1 open sets.

Theorem 7.1. Suppose that X = (Xt : t ≥ 0) is a transient d-dimensional sub-
ordinate Brownian motion where the corresponding subordinator S has the Laplace
exponent φ satisfying (A-1)–(A-5). If D is a bounded C1,1 domain in R

d with
C1,1 characteristics (R,Λ), then there exists c = c(R,Λ, φ, diam(D)) > 0 such that

(7.1) c−1 (V (δD(x)) ∧ 1) ≤ gD(x) ≤ c (V (δD(x)) ∧ 1) for all x ∈ D.

Proof. The proof follows the proof of [KSV12b, Theorem 4.6] by using our Propo-
sition 2.6, Lemma 3.8 and Theorem 5.6 . �

Proof of Theorem 1.2. Only using the fact that V is increasing and subadditive,
the following is proved in [KSV12b, (4.38)]:

(7.2)
(V (δD(x)) ∧ 1)(V (δD(y)) ∧ 1)

(V (δD(x) ∨ δD(y) ∨ |x− y|) ∧ 1)2
� V (δD(x))V (δD(y))

V 2(δD(x) ∨ δD(y) ∨ |x− y|) :

Thus, when D is connected, Theorem 1.2 follows from (7.2) and our Theorems 6.4
and 7.1.
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Next we assume that D is not connected. The proof below is similar to the one
in [CKSV10, Theorem 3.4].

Let (R,Λ) be the C1,1 characteristics of D. Note that D has only finitely many
components and the distance between any two distinct components of D is at least
R > 0.

Assume first that x and y are in two distinct components of D. Let D(x) be the
component of D that contains x. Then by the strong Markov property and (2.12)
we obtain

GD(x, y) = Ex

[
GD

(
XτD(x)

, y
)]

= Ex

⎡⎢⎣ τD(x)∫
0

⎛⎜⎝ ∫
D\D(x)

j(|Xs − z|)GD(z, y)dz

⎞⎟⎠ ds

⎤⎥⎦ .

Consequently,

j(diam(D))Ex[τD(x)]

∫
D\D(x)

GD(y, z)dz ≤ GD(x, y)

≤ j(R)Ex[τD(x)]

∫
D\D(x)

GD(y, z)dz.(7.3)

Applying the two-sided estimates (1.6) established in the first part of this proof to
D(x), after integrating out the second variable we get

c−1
1√

φ(δD(x)−2)
=

c−1
1√

φ(δD(x)(x)−2)
≤ Ex

[
τD(x)

]
≤ c−1

1√
φ(δD(x)(x)−2)

=
c−1
1√

φ(δD(x)−2)
.(7.4)

By (7.4) we get∫
D\D(x)

GD(y, z)dz ≥
∫

D(y)

GD(y)(y, z)dz = Ey[τD(y)] ≥ c2√
φ(δD(y)−2)

.

On the other hand, (2.12) and (7.4) imply∫
D\D(x)

GD(y, z)dz ≤ Ey

[
τD

]
= Ey

[
τD(y)

]
+ Ey

[
EXτD(y)

[τD]
]

≤ c3√
φ(δD(y)−2)

+ Ey

⎡⎢⎣ τD(y)∫
0

∫
D\D(y)

j(|Xs − z|)Ez[τD]dzds

⎤⎥⎦
≤ c3√

φ(δD(y)−2)
+ j(R)Ey

[
τD(y)

]
|D|E0[τB(0,diam(D))]

≤ c3√
φ(δD(y)−2)

+ c4Ey

[
τD(y)

]
≤ c5√

φ(δD(y)−2)
.

We conclude from the last three displays and (7.3) that there is a constant c6 ≥ 1
such that

(7.5)
c−1
6√

φ(δD(x)−2)φ(δD(y)−2)
≤ GD(x, y) ≤ c6√

φ(δD(x)−2)φ(δD(y)−2)
.

Noting that

R ≤ |x− y| ≤ diam(D)

when x and y are in different components of D, by Corollary 2.2 we obtain (1.6).
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Now we assume that x, y are in the same component U of D. Applying (1.6) to
U we get

GD(x, y) ≥ GU (x, y) ≥ c7

(
1 ∧ φ(|x−y|−2)√

φ(δU (x)−2)φ(δU (y)−2)

)
|x−y|−d−2φ′(|x−y|−2)

φ(|x−y|−2)2

= c7

(
1 ∧ φ(|x−y|−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
|x−y|−d−2φ′(|x−y|−2)

φ(|x−y|−2)2 .

For the upper bound, we use the strong Markov property, (2.12) and (7.4)–(7.5) to
get

GD(x, y)

= GU (x, y) + Ex [GD(XτU , y)]

≤ c8

(
1 ∧ φ(|x−y|−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
|x−y|−d−2φ′(|x−y|−2)

φ(|x−y|−2)2

+Ex

⎡⎢⎣ τU∫
0

∫
D\U

j(|Xs − z|)GD(z, y)dzds

⎤⎥⎦
≤ c8

(
1 ∧ φ(|x−y|−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
|x−y|−d−2φ′(|x−y|−2)

φ(|x−y|−2)2

+j(R)Ex[τU ]

∫
D\U

GD(y, z)dz

≤ c8

(
1 ∧ φ(|x−y|−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
|x−y|−d−2φ′(|x−y|−2)

φ(|x−y|−2)2

+
c9

∫
D\U

dz√
φ(δD(z)−2)

dz

√
φ(δD(x)−2)φ(δD(y)−2)

.(7.6)

Since D is bounded, we get

1√
φ(δD(x)−2)φ(δD(y)−2)

∫
D\U

dz√
φ(δD(z)−2)

≤ |D|√
φ(δD(x)−2)φ(δD(y)−2)φ(diam(D)−2)

≤ c10

(
1 ∧ φ(|x−y|−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
,

which together with (7.6) and Corollary 2.2 gives

GD(x, y) ≤ c11

(
1 ∧ φ(|x−y|−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
≤ c12

(
1 ∧ φ(|x−y|−2)√

φ(δD(x)−2)φ(δD(y)−2)

)
φ′(|x−y|−2)

|x−y|d+2φ(|x−y|−2)2
. �

Proof of Theorem 1.5. When d = 1, the theorem follows from Proposition 2.4,
Theorem 3.1 and Theorem 5.6 (i).

Note that the result in [CKSV12, Lemma 4.2] is true in our case too. By this
result, Theorem 2.10, Theorem 5.6 (i) and Theorem 1.2, the proof of Theorem 1.5
is the same as the proof of [KSV12b, Theorem 1.3] when d ≥ 3.
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Note that if D is a C1,1 open set in R
d−1 with characteristics (R,Λ), then D×R

is clearly a C1,1 open set in R
d with the same characteristics (R,Λ). Thus the case

d = 2 can be handled in the same way as in the proof of Theorem 5.6 (i) . �
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ple for rotationally symmetric Lévy processes in general open sets, Sci. China Math.
55 (2012), no. 11, 2317–2333. MR2994122

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=898871
http://www.ams.org/mathscinet-getitem?mr=898871
http://www.ams.org/mathscinet-getitem?mr=2365478
http://www.ams.org/mathscinet-getitem?mr=2365478
http://www.ams.org/mathscinet-getitem?mr=1741527
http://www.ams.org/mathscinet-getitem?mr=1741527
http://www.ams.org/mathscinet-getitem?mr=2981852
http://www.ams.org/mathscinet-getitem?mr=2928344
http://www.ams.org/mathscinet-getitem?mr=2912450
http://www.ams.org/mathscinet-getitem?mr=1654824
http://www.ams.org/mathscinet-getitem?mr=1654824
http://www.ams.org/mathscinet-getitem?mr=0400406
http://www.ams.org/mathscinet-getitem?mr=0400406
http://www.ams.org/mathscinet-getitem?mr=2160104
http://www.ams.org/mathscinet-getitem?mr=2160104
http://www.ams.org/mathscinet-getitem?mr=0142153
http://www.ams.org/mathscinet-getitem?mr=0142153
http://www.ams.org/mathscinet-getitem?mr=2928720
http://www.ams.org/mathscinet-getitem?mr=3005005
http://www.ams.org/mathscinet-getitem?mr=2928332
http://www.ams.org/mathscinet-getitem?mr=2994122


4422 PANKI KIM AND ANTE MIMICA

[Kul97] Tadeusz Kulczycki, Properties of Green function of symmetric stable processes,
Probab. Math. Statist. 17 (1997), no. 2, Acta Univ. Wratislav. No. 2029, 339–364.
MR1490808 (98m:60119)

[RSV06] Murali Rao, Renming Song, and Zoran Vondraček, Green function estimates and Har-
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