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The Green function method is applied to the calculation of the diamagnetic susceptibility 
of a dense electron gas. The exact high density value for the correction to the Landau 
diamagnetism is calculated. 

~ 1. Introduction 

The influence of Coulomb interaction between electrons on the diamagnetism 
was treated by March and Donovan,l) and Kanazawa. 2

) March and Donovan, and 
Fletcher and Larson3

) inserted one-electron energy spectrum, which was obtained 
by Bohm-Pines theory, into the formula for the diamagnetic susceptibility for the 
quasi-bound electrons :4) 
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X = - ~i2 (;h~·)2 3 dP +-sT ~l!? k = ko' 
(1·1) 

The effect of the long-range part of the Coulomb interactions including the effect 
of subsidiary conditions was investigated by Kanazawa in the scheme of Bohm-Pines 
theory. All these works show that there is a small correction to the diamagnetic 
susceptibility due to the Coulomb interactions. 

WentzeP) used an equivalent Hamiltonian which gives the correct high density 
value for the correlation energy and calculated the diamagnetic susceptibility. His 
conclusion is that there is no correction to the Landau value of non-interacting 
electron gas. His argument, however, is valid only in so far as the exchange 
effects are omitted. If we take the exchange effects into account, there remains a 
finite correction,6) and in this case the equivalent Hamiltonian formalism of Wentzel 
cannot be applied. The diagrams which were taken into account by \Nentzel are 
shown in Fig. la and Fig. lb. The contribution from the process shown in Fig. 
la gives the Landau diamagnetism and the contributions from the processes shown 
in Fig. 1b vanish. vVentzel did not consider the contributions from other processes 
which are shown, for example, by Fig. lc or Fig. 3c. In this paper we investigate 
the contributions from these processes and derive the exact high density formula 
for the correction to the Landau diamagnetism, using the Green function method. 
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434 H. Kanaza'wa and lV. l\1atsudaira 

(a) (G) (c) 

Fig. 1. Diagrams contributing to susceptibility 
Wavy line and dotted line represent magnetic per­
turbations and Coulomb interactions respectively. 

In ~ 2 we express the diamagnetic susceptibility in terms of the two-particle 
Green function, which is calculated in a consistent approximation in § 3 and § 4. 

Since temperature dependence of the diamagnetism is expected to be small, 
we calculate the susceptibility at zero temperature. The interaction Hamiltonian with 
the magnetic field is treated as a small perturbation, and consequently our formu­
lation is not applicable to the case of strong magnetic field (de-Haas van Alphen 
effect) . 

§ 2. :Magnetic susceptibility in tern'lS Green function 

vVe consider an lv-electron system in a box of unit volume. As usual it is 
embedded in the uniform positive charge. \Ne apply a static magnetic field, which 
is expressed in terms of the vector potential A(r) =2~A(q) exp (iq·r). Then 

the Hamiltonian and the current operators are: (n = 1) 

H = Ho + He + 1-1' + J-I'! 

1-Jo= 2~cpoal~ ap, Cpo = j;y2/2m 
p 

Hc=~2~ Vel?) al:+ka;)~-iJlplap 
p, pi, k 

!cfO 

jCYI_ .1 \d . /.) A(") 
L---~J lr}o\,r' lJ 

2 

j 1 (r) = _ .. e ·A (r ) sb: (r ) Sb (r ) 
1nc 

q 

(2 ·1) 

(2·2a) 

(2·2b) 

(2·2c) 

(2·2d) 

(2·3) 

(2·4) 

where ¢(r) =)~apexp (ip·r), V(l?) = 47Te2/P, ap and a1; are the annihilation and 
p 

creation operators of electrons. \Ve have omitted spin indices for simplicity. The 
expectation value of the current jo (q) + jl (q), which are the Fourier components 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/23/3/433/1839500 by guest on 20 August 2022



Green Function NIethod for Electron Gas. III 435 

of the current operators (2·3) and (2·4), is written in the form: 

ia (q) = < l]l(t) Ija (q, t) I (F(t» = )~l(a/J (q) (q) +0 (A2) (2·5) 
~ 

where we have referred to the interaction representation with 1-1' + III! as the 

:interaction Hamiltonian which is switched on adiabatically in the infinite past. 
lJF(t) is the Schroedinger function in this representation which is obtained adiabatical­

ly from 7J!'o, the ground state of 1-10 + JIe, and 

j (q, t) =exp [i (I-Io FIe) tli (q) exp [- i (JIo -i-- IIc) t l 
Gauge invariance and the condition of continuity require thaf) 

Ka/J (q) = (q2rJa!3-qaqfJ 1«(q). (2·6) 

Then the susceptibility IS given by 

X==--l---lim J«(q). (2·7) 
c (/->0 

Thus our problem is to calculate the expectation value of the current of our system. 

As is seen from (2·5) and (2·7), we need to calculate i (q) only to the 

first order of A. Therefore in the calculation of i1 (<<J) = (IF(t) iiI (q, t) IIP'(t» we 
may replace P'(t) by P'o and we have 

e2 ne2 

i1 (r, t) = < 1jJ~ IiI (r, t) 1IfJ~) = - A (r ) < ifo I 0 1
- (r) l' (r) 11fJ~) = ------A (r ) . 

rnc Jnc 

Therefore 
~ 2 

. () ne- A ( \ K a/J __ ne" "1 q, t == ----- q), 1 - ---------()a/J. (2·8) 
J71C Inc 

This is the so-called London diamagnetic term, which is almost cancelled by the 
paramagnetic part. 

Next we consider the paramagnetic current io: 
\ 

ioa (r, t) = < IJ/(t) Uoa (r, t) IIF(t» 

f't 

= - i J ~~! < lJi'o I [j 0 a ( r, t), 11' (t') J 1 /1;'0) 

=--L1drl Idt'(lP'oi[jor1(r, t), jr/(r', t')JI1po)A,e(r!), 
c J J-oo 

since 

and higher order terms in are neglected. From (2·3), 

2 

jo (x) jo (x!) =---~-- { -J7 Sf; + (x) ¢ (x)J7 !¢+ (x!) ¢ (x!) 
4m2 

-1}c (x)P¢(x)Sf;+ (x!)J7!¢(x') 

(2·9) 
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436 I-I. !(anazawa and Matsudaira 

+17 su i
- (x) Sf, (x) S/,+ (X')p'SU (x') 

+ Sf;+ (x) J7 Sf, (x) P! Sf; 1 (x') <lJ (x') }, 

(x= (ll, t». 
Introducing the two-particle Green function 

(1, 2; 3, 4) = i( [TSf; (1) Sf; (2) Sf,! (3) <1):- (4) [lJfo) 

and 

( [ • /3 ( ') • a ( ) [ (TI' ) (rip I • a ( ). /3 ( ) I W ) * J 0 \ .':t2 J 0 Xl 'f 0 = '1' 0 I J 0 Xl J 0 x 2 'f 0 • 

From (2·9) to (2 ·12) we get the final expression of io in terms of G2 : 

(2 ·10) 

(2 ·11) 

(2 ·13) 

Thus the whole information of diamagnetism is contained in the two-particle Green 

function for the system. 

~ 3. Pair theory approximation 

For a high-density electron gas the two-particle Green function, which gives 
the correct high density value for the correlation energy, has been obtained in I: 

G2 (1, 2; 3, 4) = - iGo (1, 4) Go (2, 3) 

(' 

- ,\dx5dx6G0 (1, 5)Go(2, 6) V (5, 6)Go(5, 3)Go(6, 4) 

+ 1 dX5dx6GO (1, 5) Go (2, 6) V(5, 6) Go (5, 4) Go (6, 3), (3 ·1) 

where V (x, x') is the effective interaction, the Fourier transform of which is 
V (k, (/j) = V (k) / C (/e, (I), C (/e, (I) being the complex dielectric constan t and 
Vex, x') = V(r-r /) (J (t- t!). Go is the unperturbed one-particle Green function 

and is given by 

Go(x, x') =~r_dc Go(p, E) exp i(P'll-Et), 
p J 2/T 

(3·2) 
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Green Function Method fOT Electron Gas. III 437 

G ( C) -- l"C' C o+:~(l 2 0)J-1 o p, c - - c - e p ZO - n11 • (3·3) 

~ e ([J) 
---

(a) (b) (c) 

Fig. 2. Diagrams for correlation energy 
Helical line repesents the effective interaction. 

where npo is the occupation number of the unperturbed state. The contribution of 
each term of (3 ·1) to the correlation energy is shown graphically in Fig. 2a, 2b and 
2c. In this section we will use (3·1) for G2• Inserting (3·2) and (3·3) into 
(3,1) we get 

x Go (P2 + q, C' (I) (2PI -q) a (2P2 + q) fJ exp [iq. (1"1- r 2) -iw (t1 - t2) ] 

- :8 r-4~r!~1~~GO(PIC)GO(P2C') V(q) GO(pl-q, C'+(I) 
PIP2 Q J (2n) 

x Go (P2 + q, C - (I) (PI + j)2 + q) a (PI + P2 - q) fJ 

Xexp [i(PI-P2-q)' (1"1- r 2) -iW(t1-t2)]. 

From (3·4) and (2 ·13) we obtain 

Therefore 

ioL't(q) =J_Ld~1J . J_:~_FafJ(q, w)AfJ(q) +c.c. 
c J 2n (V-ZO 

KoafJ(q) =-~J_4~~[P.~ReFafJ(q, (0) -no(w) ImFL'tfJ (q, (O)-J", 
c J 2n (I) 

Here 

with 

(3·4) 

(3·5) 

(3 ·6) 

(3·7) 
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438 .l-I. Kanazawa and .LVI atsudai ra 

(3·9) 

(2Pl-q) u (2P2+ q) fJ 

E') Go (P2+q, E' +(0). (3 ·10) 

Here we notice that the terms FoUfJ, FlccH and F2
u

fJ come from the first, the second 

and the third term of (3·1) respectively, and so it is evident that their contributions 
to KoUfJ are represented diagramatically as in Fig. 3a, 3b and 3c.* We write 
Ko~fJ as 

(3·11) 

(a) (b) (c) 

Fig. 3. Contribution from (:3·1) or (:3·11) 

If we put V(k) ->0 for the moment, then the second and the third terms of 
(3 ·11) vanish. Therefore I{(~~ must give, when combined with I{lUfJ of (2·8), the 
usual Landau diamagnetism. This is actually the case, as is shown in Appendix L 

Next we consider I{(~;~. Comparing Fig. 3b with Fig. Ib, we see at once that 
this is the term investigated by \Ventzel. In other words, to take into account 
only the first and the second terms in (3 ·1) corresponds to Wentzel's approximation, 
in which I-l' is reduced to the parts involving only pair creation and annihilation 
terms. In our formulation the proof that I{(~r~ vanishes is quite easy, if we rewrite 
(3·9) as follows: 

Using 

F1UfJ(q, w) = -iu (q, w)Lu(q, w)L(:J(q, w) (e/2m) 2, 

Lu(q, OJ) =2_:(' d~_ (2jy+q) uGo (p, E)Go(p+ 
p J 2rr 

(3 ·12) 

('dEGo (p, E) Go (p+ Ifj, E + (I) =i[ jl~)~(1~1-11E~~ ___ ?~fJ~_-=-_~~)~:~ -J-' (3 ·13) 
J 2rr - (Up, '1- (/) + ZO Wp, q- (0- ZO 

* i(q)=-(1/c)8E(A)/8A(-q), where E(A)=Eo+h5:(qxA(q»·(qxA(-q». Fig. 3 repre­
sents the diagrams which contribute to the second term. 
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Green Function Method for Electron Gas. III 439 

we get 

where (lJp,q=C~+(I-CIJO. Thus L(q, UJ)=L(q, -(0). Returning to (3·12) and 
changing the integration variables as p--~-p-q, c--->c-ro, we find that L(q, w) 

= -L(q, -(I) = -L(q, (I) =0. 

Therefore in our approximation (3 ·1), the term which gives a correction to 
the Landau diamagnetism is only K(~), which corresponds to the diagram shown 
m Fig. 3c. The calculation is performed in Appendix II and the result is: 

Here we encounter with two difficulties. Firstly, (3,14) is not gauge-invariant. 
From the form of (2·6), gauge-invariance is guaranteed if ~qaq(3KafJ(q) =0, which 

CG,B-

does not hold. Secondly the integral of (3 ·14) diverges. 

These difficulties indicate clearly that our approximation of G2 is not sufficient 
for the problem of diamagnetism. \Ve must improve the two-particle Green function 
(3 ·1) by taking into account the higher order effects. This, however, is not 
surpnsmg. The difficulty of gauge-invariance is rather evident at the beginning, 
because in the case of diamagnetism there is another term besides (3 ,14) which 
is linear in V(k). From perturbation theoretic point of view, they t9getherform 
the correct first order correction to the ideal gas value. Therefore it is not sur­
prising that a part thereof alone, (3·14), is not gauge-invariant. In the case of 
correlation energy, in contrast to our case, all terms which are in the same order 
in the rs expansion are all contained in (3 ,1). But now this is not the case. Thus 
we must include, besides (3 ·14), all terms that are of the same order in rs. To 
this purpose we first replace Go in the first term of (3 ·1) by GI, which we define 
as the one-particle Green function including exchange self-energy: 

C·.., ( C) -1_ C"" ( C) -1 }' ( ) 
II p, c - IO p, C - ..... ,,»; p 

(3 ·15) 

In other words, we replace, in the expression for the Landau diamagnetism (A2), 
Epo by El,=cpo-l'e.,,(p). Next we expand it in V(k) and retain only the first 
order. Then we get 

K~~r= - I.(_~) 2~ V(p-p') (P+Qq) a (p' + ~q) (3(Il~+,!=!lJ~22~1l~/l:q=!lJJ,)_. 
c In P1>' (l}lJ,Q 

(3 ·16) 
Combining (3·14) and (3·16) we obtain 
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440 l-I. Kanazawa and N. Matsudai ra 

(3 ·17) 

This expression is evidently gauge-invariant as expected and thus the first difficulty 

has been removed. But the second difficulty still remains. We will investigate it 
in the next section. 

§ 4. Elimination of divergence 

In the preceding section we have looked for the correction which is linear in 
V(k) and we have found it to be divergent. This is rather an expected result, 
since if we calculate the diamagnetic susceptibility in a simple manner using (1·1), 
it diverges in the Hartree-Fock approximation. As is well known in the calculation 

of the correlation energy, these divergences are removed by replacing V(k) by 
the effective interaction V (li, (I). Physically it means to take into account the 

correlation effect, or the screening of Coulomb potential, which removes the un­
natural distribution of the energy level on the Fermi surface. In our calculation 
this effect is taken into account by replacing Go (X-Xl) in the first term of (3 ·1) 

by G(x-xl
), which includes the polarization part besides the exchange energy, 

and replacing V (x- x') in the third term of (3 ·1) by V (x- x') : 1. e., 

G2 (I, 2; 3,4) =-iG(I, 4)G(2, 3) (4·Ia) 
(' 

+ J dx5dx6GO (1, 5) Go (2, 6) V (5, 6) Go (5, 4) Go (6, 3), (4·Ib) 

where we have omitted the second term of (3 ·1) which gives no contribution. 
The Fourier transform of G (x- x') in our case is, as is well known, 

G ( C) -1_ GO ( c:) -1 '\' () J' ( C) p, C - p, c - L. 61: P - _ u p, c . (4 ,2) 

2,'61; (p) IS given in (3·15), and 

jf' dw Q (k, (/) 
.2u (p, E) =~ ~--:- V(I<) Go(p+k, E+(I) - -~ .... ----

k 2m 1 +0 (k, (I) 

(4·3) 

where 0 (k, w) =E(1<, w) -l. 
Here we make a symplifying assumption: 

1) (k,w) --->- V (k, 0), (4·4) 

then (4·3) is integrated straightforwardly and we get 

'I:'() '\:'( C)-~1V(k)O i'l Q(k,0)l_~1dJQ(kO)O 
"::'el' p +..:..u p, c -2....J ., np+k -----------------J'-2...l U '-, np+1c 

" 1c I+O(k, O) id 
(4· 5) 

which is independent of E. Comparing (4·2) with (3 ·15) we see at once that 
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Green Function Method for Electron Gas. III 441 

the contribution of the first term of (4·1) is K(~~+ (3·16), except that V(p-p') 
is replaced by V (p- pI, 0). Contribution of (4 ·1b) is calculated in the same 
fashion as Appendix II, and the result is just (3 ·14) where also V(l>-l>') is 
replaced by V (p- pI, 0). Thus we come to the final result: 

(4· 6) 

(4·7) 

Expression (4·7) is gauge-invariant and finite. Its calculation IS elementary but 
somewhat lengthy, which we give in Appendix III. 

In Appendix III we use a further approximation of replacing V (k, 0) by 
tJ I (I~), where (q=k/ l~() 

V (k, 0) =-1:~~·(q2+ 2::~s __ { 1-- i~ O(l)]} -1, 

JU I (k) = ~71':2 (l + 2E) -\ E= ar" 
/?() 71' 

Then the result IS: 

K'{jl(q) = (l(;a(3-qaq(3)Kc(q) , 

Ke(q) = 471'e
4 

I -21- 1 J1. 
(271')6C Lq 8 

where I vanishes independent of E, and 

J=A log E+13+CE log E+ "', 

871'2 871'2' 
A= ,13= (4-- log 2). 

9 9 

§ 5. Diseussion 

In our calculation we have made four approximations: 
( i) approximation (4 ·1) 

(4·8a) 

(4'8b) 

(4·9a) 

(4·9b) 

(4·9c) 

(4·9d) 

(ii) the approximation made in deriving the second term of (4·7) which 
originates from (4· 1a) 

(iii) neglect of retardation, i.e. the approximation (4·4) 
( iv) replacement of V by V'. 

These approximations are justified as follows. 
( i) In § 3 and § 4 we considered the processes that are represented dia­

gramatically in Fig. 4. In other words, we considered the correction to Fig. 3a, 
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442 H. Kana.zawa and 1'1. Matsudaira 

which are of first order in 
(elimination of divergence). 
by the prescription: 

He> and replaced V (k) by the effective interaction 
All other corrections may in principle be calculated 

( a) write down the processes in diagrams (e. g. Fig. 5) 
(b) construct the Green function G2 which contribute to that diagram 
( c) insert it into (2 ·13) and perform the calculation 
( d) if divergences appear, they are always treated by the principle of 

elimination of divergence. 

2 

- pi 
3 § 
p,+q~ 

~~--4 

(a) (b) 

Fig. 4. Processes representing each term of (4·2) 

Double line is the propagator of electron 
and hole including self energy. 

1 

(a) (b) 

Fig. 5. Diagrams representing higher 
order corrections 

For example, we will briefly investigate the processes represented in Fig. 5. 
Fig. 5a gives no contribution, just as in the case of Fig. 3b. This is the consequence 
of the situation that the matrix element at the point (1) or (2) in Fig. 5a is of 

the form (p+Jgq)A(q), which changes sign by the replacement p~-p-q, and 
the integration variables p and p' are independent of each other. Thus in general 
diagrams of this type, i.e., diagrams which are composed of two parts each of 
which has one perturbation line H' and which are both connected' by single 
interaction line rIc, give no contribution. The contribution from Fig. 5b does not 
vanish. However, it is of second order in l-lc, and if we compare the result with 
that of Fig. 4b, it contains a factor e2

, or rs. Thus the contribution is of higher 

order. 
(ii) Approximation (ii) is justified in the same fashion. The contribution 

from (4 ·la) (Fig. 4a) is just (A2), except that UJp,q is replaced by W (jy, q) = 
E(p+q) -E(p), where E(p) is the energy of the quasi-particle 

E (jY) = 81'0 - 2: (p) . 

Our approximation IS to replace 

by 
l'(j;>j-q) -l'(p) 

2 
(Vp,q 

so the correction to our approximation IS 

(5 ·1) 

(5·2) 
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(5 . 1) - (5 . 2) = ~1:1' (p - q t= 1.:iE2J_~, 
W(j), q) (/)~p,,, 

which is also of the higher order in 7"8' 

(iii) Properties of the approximations of (iii) and (iv) are also of the same 
type as before, because 1J (l?, (I) - 1J (k, 0) and V (k, 0) - 1J! (k) are proportional 
to e6 times integrals which do not diverge. 

Finally we note that 1 in (4· 9b) vanishes independent of c, as is seen in 
(A9). This means that our original form (3 ·17) does not contain the constant 
term, although the coefficient of q2 is infinite. Therefore, our procedure of ~ 4, 
that is, the approximation mentioned above, does not affect the vanishing of 1 III 

(4· 9b). 
Thus we conclude that our result (4·9) is exact up to the second term of 

(4· 9c). 
It is interesting to compare our result with that obtained by Donovan and 

IvTarch. They give 

ar -
(X/Xo) =1+ 6n' llog r s +2(2+1og 0.417-log 2) + ... / 

while (4.· 9) gIves 

Numerically, 

r ' ar a 
(X/Xo) = 1 +;R log rs + 4 + log ~~~J. 

6n _ 2n 

2 (2 + log 0.417 -log 2) = 1.12 

4+log (a/2n) = 1.51. 

We find that the correction is finite but very small. 
We are indebted to Prof. T. Usui, Miss E. Fujita and other members of the 

group of many-body problem for helpful discussions. 

Appendix I 

Landau diamagnetism 

(3·8) can be readily integrated with respect to c, USIllg (3·3) : 

x r __ 1~ __ ~_ + ---~~-.... --~----J .. .", +." L (/)1',,,- (I) - ZO (lip,,! (I) - lO 
(AI) 

(AI) IS put In (3·6), where we notice that (AI) IS symmetrical with respect 
to (V, so that 
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444 I-l. Kanazawa and ~V. Matsudai ra 

(A2) 

Now we transform the coordinate system from (OLpr) to (xyz) , where we take 
z-axis pararell to q. Thus 

Pa=p·a='2..JPiOLi, etc., 
1. 

then the integration of (A2) over p is straightforward and yields 

K(~~=._ne2 qaq(3+ ((~a(3- qaq(3) e2~_~_ko3_ lq2ko
2 

me q2 4n2mc \12 16 

+ __ ~ __ (ko'! - -- q2 __ ) 2 log I ko + -~q} . 
4q 4 - ko-"tjq f 

Expanding logarithm in power series of q and adding (2·8), 

KL (q) =K1 +K(o)= - (q oa(3-qaq(3) .----, _. + .... a(3 a(3 ct~ 2 ~ [ ne
2 

1 -J' 

me 4ko 
So that 

where we have put n=ko
3/3n2

, taking spin into consideration. 

Appendix II 

Deri'vation of (3 ·14) 

From (3 ·10) and (3 ·13), 

xGo(p, E)Go(p+q, c+(I})GO(p', 8')GO(p'+q, 8'+(1) 

= -i( e )22J( p+~q) a (p' +~q) (3 V(p_p/) [!.~~_fJ.i"L-=!Z~?_ 
171 pp' (Vpq-W+ZO 

(A3) 

_.nlJ.°(~:-= n~+.~2 J X [ tl~)!+q(~ ____ +_7!~}_ -~~,_~~.-=-n~,.~q2-J. (A4) 
Wp,q-W-Z{) (/}pfq-W Z(j (I)pl'l-OJ-Zu 

Here we note that F 2a(3(q, -(0) =F2a(3(q, (0), because in (A4) if we change the 
variable from p, p' to - p - q, - p' - q, nothing is changed except the sign of w. 

Thus in (3·6) the first term of the integrand vanishes. So that 

K(~~= _IImF2a(3(q, 0), 
e 

(A5) 

which gives at once the result (3 ·14), since 1J((I)p,q) =0 everywhere m the range 
of integration. 
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Appendix III 

Calculation of K~P (q) 

In the calculation of (4·7) we can choose, because of gauge-invariance, a 
special coordinate system where the z-axis is parallel to q. As was stated in ~ 4, 
we make an approximation of replacing (4· 8a) by (4· 8b) . ( 4·7) then becomes 

K(~C(q) =q2KO(q) 

or 

(A6) 

Since we seek for the value of Ku(q) in the limit of small q, we expand (n~+fJ-npO) 

and (n~'+fJ-n~,) in power series of q. Changing the variable in (A6) from p, pI 

to p-~q, p' -~q for convenience, we get 

n~)ifJ/2-n~-fJ/2= __ Cp_oq). fJ(p-ko) +-.~~~r q2(poq) -(po :)3 J--fJ(p-ko) 
p 8 \,_ p3 pO 

+[(P/' - </(:; q) ]al(p-ko) - (~~~)' a" (p-ko) 1+ 0(</), (A7) 

thus 

q4 xfJ (j:> _ ko) [ X' y/2(J (j:>' - ko) __ Xl yl2(p ( pI - ko) _~:_301/ (j)1 - ko) J 
8 _ ko

2 j:>1 - 3 

q4 xlfJ (p' _ ko) [ __ ~y2 (J (p-!?o) - _:x:.....y2(J' (j)-!?o) - :3r~(j/l (j:>- ko)]-} 
8 ._ !?o2 P 

= (4·9b), (AS) 

where x=cos (9, Xl =cos (91, 

J= idPdPI-(p=-p~f;+281;~20-.Y._c~~p--[y! ~~~/ - yc~s ~] 

X (J (p - ko) (J (pI - J?o) , 

J = i dp dPI-{p=p,52+-2Ek~2· Y-~2sP- [-yl _~~p.~ - Y c:SCfJ -J 
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(.,.. r x' ,2 'I , , x' ,2 -"'" X,3 "II' -J' X ixo(j)-l?o) y o(p -ko) - y 0 (p -l?o) ----0 (p -ko) 
, !_ 1?o2 p' 3 

+x'o(p'-ko)r-X2y26(P-l:co) --:X:y26'(j)-ko) - x
3 

(jl/(j)-ko)]"}. 
~~ P 3 

In order to compute the integrals 1 and J, we use the following formulas: 

(p- p') 2 + 2El?o2= p2 + p,2 + 2cko
2- 2})// (xx' + yy' cos cp") , cp" = cp- cp' 

J
r'2='O dcpdcp' r y' cos cp' y cos cp J-" xy cos <f "'" -- --
o a- 19 cos cpll ,__ x' x 

1'2" xy r y' cos mil y l =77'1 d(f)" ,T - J 
.; 0 I a - (1 cos cp II '---_ X ' x· 

Then the integrations over p, p' and cp' are performed to obtain 

1 = (7:/2) ko
2J 1, 

(1.1T)J=Jl-'~J/+£J2+~(1 -c\, J 2'- c
2 

Js' , ~ ~ 3 ) 3 

where 

\

,'1 Jr'2." yy' cos {()- (x' / X)y2 
I n = dxdx' dcp T / '-, 

c' -1 0 ( a - /1 cos cp)"~ 

J ' __ Jr'll l ,('2d" yy' COScp. - (X'/X)y2 (,2+ '2) 
n C xc x J cP x x , 

-1 0 (a - ,9 cos cp) n 

a=l+c-xx', i9=yy'. 

Integrations over cp, x and x' are calculated straightforwardly. Here we write only 
the result: 

J 1 =J2 =0 

J/= (81T/3)l-*-2c(2+c) +£(1+c) (2+c)r] 

J 2'= (8n/3)16(1+c) - (2+6c+3c2)r-' 
where 

r=log ((2+£)/c), 
and 

Thus we finally get 
1=0, 

J = (8n2/9)[log (£/2) + 4J + terms which vanish with c. 

References 

1) N. H. March and B. Donovan, Proc. Phys. Soc. A 67 (1954), 464. 
2) H. Kanazawa, Prog. Theor. Phys. 15 (1956), 273; 17 (1957), l. 
3) J. G. Fletcher and D. C. Larson, Phys, Rev. 111 (1958), 455. 
4) A. H. Wilson, Proc. Cambridge Phil. Soc. 49 (1953), 292. 
5) G, Wentzel, Phys. Rev. 108 (1957), 1593. 
6) This is also pointed out by R. A. Ferrell, private communication. 
7) M. R. Schafroth, Hel v. Phys. Acta 24 (1951), 645. 

(A9) 

8) Gauge-invariant expression (3 ·17) was first discovered by T. Usui, to be published. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/23/3/433/1839500 by guest on 20 August 2022


