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Abstract—In the linear wave propagation regime, an analytical
mesh-free Green-function decomposition has been shown as a
viable alternative to FDTD and FEM. However, its expansion into
nonlinear regimes has remained elusive due to the inherent linear
properties of the Green-function approach. This work presents
a novel frequency-domain Green function method to describe
and model nonlinear wave interactions in isotropic hyperelastic
media. As an example of the capabilities of the method, we
detail the generation of sum frequency waves when initial quasi-
monochromatic waves are emitted in a fluid by finite sources.
The method is supported by both numerical and experimental
results using immersion ultrasonic techniques.

Index Terms—Green functions, nonlinear ultrasonics, wave
mixing

I. INTRODUCTION

Nonlinear ultrasonic measurements are attractive for indus-

trial nondestructive testing in various engineering structures

due to their higher sensitivity to changes of material properties

than in linear cases. However, due to the limited availability of

models of the nonlinear wave scattering in solids, which are

often challenging to implement and resource-intensive, these

measurements are not widely used in the industry. Most of the

developed methods consider the linear wave propagation only,

so there is a huge need for an efficient modeling technique for

the wave scattering in the nonlinear regime. This will open up

new measurement techniques with increased performance.

Numerical methods such as finite element [1], [2] and finite

difference time domain [3] are used to model nonlinear wave

interactions in 2D and 3D configurations. These well known

methods become inefficient at higher frequencies (MHz range

and above) due to the requirement of 20 or more points per

wavelength in the meshing grid. To overcome this constraint,

we present a semi-analytical mesh-free method, based on

Green functions, able to describe 3D elastic wave scattering in

the nonlinear regime. The method enables us to study classical
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and non-classical second order elastic waves interactions in

isotropic hyperelastic media [4], [5].

II. GREEN FUNCTION METHOD FOR NONLINEAR

INTERACTIONS OF ELASTIC WAVES IN ISOTROPIC MEDIA

A frequency domain Green tensor Gji(xk−x0k) satisfies the

following Navier-form equation of motion of a homogeneous

isotropic hyperelastic solid

ρc2LGji,jkFi − ρc2S (Gji,jk −Gki,jj)Fi

+ρω2GkiFi = F
(n)
i , (1)

with summation over repeating indices and with Gji,hk =
∂h∂kGji and where cL and cS are the longitudinal and shear

wave velocities, respectively, ρ is the volumetric mass density.

Further, Fi is the discreet force applied at point x0k. F
(n)
i

is the nonlinear force that depends on the second and third

order elastic constants of medium [5]. The nonlinear bulk force

Fig. 1. Problem geometry for the calculation of the nonlinear elastic fields
in the elastic medium. Two finite dimension sources S1,2 are submersed in
the fluid.



Fig. 2. Linear evanescent ultrasonic fields in the x0z plane at 4 MHz:
pressure P in the fluid, and ux,z displacements in the solid, of the evanescent
longitudinal and shear waves.

can be written in terms of divergence of the nonlinear stress

tensor. It was calculated by applying a specific procedure for

the interaction interference term as presented in [5], [6]. The

two-wave interaction stress tensor σ
(12)
ij for any two interacting

displacement wave-fields u1 and u2 was

σ
(12)
ij (u1,u2) =

1

4
(σij(u1 + u2)− σij (u1 − u2)) (2)

where u(x) =
∫
G(x − x0) · F(x0)d

3x0. The divergence of

the interference term led to the nonlinear bulk force F
(n)
i .

Using this approach, the following procedure was used to

calculate nonlinear elastic fields in submersed elastic isotropic

semi-space:

• Formulate the geometry using a grid as outlined in [7].

Note that a full interface between the fluid and solid semi-

spaces is considered for both sources S1,2, see Fig. 1.

Fig. 3. Linear ultrasonic fields in the x0z plane at 6 MHz: pressure P in the
fluid, and ux,z displacements in the solid, of propagating shear wave.

Two separate grids are used for each frequency in order

to minimise the number of equations to solve.

• Calculate point-source strengths at the interfaces, using

global matrices at both initial frequencies [7].

• Calculate the nonlinear forces to propagate nonlinear

elastic fields in the solid. In our case, we use the x0z
plane to visualize the fields, see Fig. 1.

III. RESULTS

A numerical model for the nonlinear wave interactions

below water-aluminium interface was implemented using the

following configuration. Two sources inclined at angles 31.5◦

and 20.8◦ with diameters of 4 mm were used to generate initial

waves of 4 MHz and 6 MHz, respectively. The first source has

a vertical offset of 25 mm from the interface and generated

only evanescent fields in the aluminium whilst the second one

(vertical offset 27 mm) generated a shear wave field in the

solid. The horizontal offset was 25 mm between the sources.

Material properties were the same as in [5].

Figs. 2 and 3 show calculated linear ultrasonic fields (pres-

sure in fluid, and x and z displacements in the solid) generated

by individual sources at their different initial frequencies.

When the incidence beam impinges the interface above the

second critical angle, see Fig. 2, we observe a Goos-Hänchen

beam shift [8] as well as the evanescent field. Fig. 3 shows

the shear wave ultrasonic wave-field in the solid only due to

the source angle above the first critical angle.

Fig. 4 shows nonlinear ultrasonic field in the solid gener-

ated by the non-classical wave mixing when the interaction

occurred between propagating shear wave and evanescent

longitudinal and shear waves. It is important to note that the

magnitude of the nonlinear field is 75 dBm below that of the

linear field in the far-field zone, due to the small interaction

volume linked to the small penetration depth of the evanescent

wave-field.

Experimental results employing quasi-monochromatic wave

excitation of initial waves are presented in [9].

Fig. 4. Nonlinear ultrasonic field in the x0z plane: pressure P in the fluid,
and uz displacement in the solid, of the nonlinear wave at sum frequency of
10 MHz.



IV. CONCLUSIONS

A 3D frequency-domain Green function method to describe

and model nonlinear wave interactions in isotropic hyperelastic

media is presented. It is supported by numerical results,

calculating the sum frequency due to the ultrasonic response

from the mixing at a water-aluminium interface. The analytical

nature of the method enables the individual analysis of the

nonlinear wave interactions for the different wave combi-

nations (L+S,S+L,L+L,S+S) with an arbitrary selected wave

interaction volume in both the near and far-field zones. The

method can be extended to more complex guided wave inter-

actions with localised inhomogeneities in elastic waveguides,

by changing boundary conditions.
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