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We calculate the local Green function for a quantum-mechanical particle with hopping between nearest
and next-nearest neighbors on the Bethe lattice, where the on-site energies may alternate on sublattices.
For infinite connectivity the renormalized perturbation expansion is carried out by counting all non-self-
intersecting paths, leading to an implicit equation for the local Green function. By integrating out branches
of the Bethe lattice the same equation is obtained from a path integral approach for the partition function.
This also provides the local Green function for finite connectivity. Finally, a recently developed topological
approach is extended to derive an operator identity which maps the problem onto the case of only nearest-
neighbor hopping. We find in particular that hopping between next-nearest neighbors leads to an asymmetric
spectrum with additional van-Hove singularities.

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The Bethe lattice plays an important role in statistical mechanics and condensed matter theory. It is defined
as an infinite tree graph in which each vertex has Z edges, such that any two vertices are connected by only
one shortest path, as shown in Fig. 1. Several physical problems involving interactions and/or disorder can
be solved exactly for the Bethe lattice due to its recursive structure, e.g., Ising models [1,2], or Anderson
localization [3–6]. Furthermore the Bethe lattice is useful as a model for the electronic structure of amorphous
solids [7]; see [8] for a recent application.

In this article we study the spectra of tight-binding Hamiltonians with hopping between nearest (NN)
and next-nearest neighbors (NNN) on the Bethe lattice. In this context the standard methods of solid-state

∗ Corresponding author E-mail: marcus.kollar@physik.uni-augsburg.de

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Ann. Phys. (Leipzig) 14, No. 9 – 10 (2005) / www.ann-phys.org 643

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��
���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

����
����
����
������

��
��
����
��
��
�����
���
���
���

��
��
��
��

����
����
����
����

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��

��
��
��

���
���
���
���

����
����
����

����
����
����

��
��
��

��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��

��
��
��

���
���
���
��� ����

����
����
����

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���

���
���
���

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���
��� ���
���
���
������
���
���
�����
��
��
��

Fig. 1 Part of the Bethe lattice with coordination number
Z = 4. Any two sites are connected by a unique shortest path
of bonds. Starting from the site marked by the open circle,
horizontally shaded circles can be reached by one lattice step
(NN), vertically shaded circles by two lattice steps (NNN),
and doubly shaded circles by three lattice steps. Note that the
lattice is infinite and bipartite.

physics which are based on Bloch’s theorem cannot be directly applied. This has led to the development
of several alternative approaches to calculate the tight-binding spectrum for NN hopping on the Bethe
lattice [9–14]. However, some of these methods become very complicated for hopping beyond NN due
to the proliferation of hopping paths. Below we apply and further develop several different calculational
schemes to determine the Green function in the presence of both NN and NNN hopping.

In terms of the quantum-mechanical single-particle operator |i〉〈j|, which removes a particle from site j
and recreates it at site i, the general, translationally invariant hopping Hamiltonian on the Bethe lattice has
the form

Hkin =
∑

ij

tij |i〉〈j| =
∑

d≥0

tdHd , Hd =
∑

di,j=d

|i〉〈j| . (1)

Here hopping processes between two sites i and j are classified according to their topological distance di,j ,
i.e., the number of nearest-neighbor steps of the shortest path between i and j. We will also allow for an
alternating on-site energy εi,

Hloc =
∑

i

εi|i〉〈i| , εi =

{
εA if i ∈ A

εB if i ∈ B
, (2)

where εi depends only on the sublattice γ = A, B of the bipartite Bethe lattice to which i belongs. In
correlated systems, e.g., for the Hubbard model, on-site energies (2) may be used to detect antiferromagnetic
symmetry breaking.

A well-defined limit for infinite coordination number Z results if the hopping amplitudes and Hamilto-
nians are scaled according to [15]

td =
t∗d

Kd/2 , H̃d =
Hd

Kd/2 , tdHd = t∗dH̃d , (3)

where K = Z − 1 is the connectivity. In the limit K → ∞ dynamical mean-field theory (DMFT) [16–21]
becomes exact. In particular for the Hubbard model the self-energy is then local in space and may be obtained
from a single-impurity problem with self-consistency condition [20]. In recent years DMFT for the Hubbard
model on the Bethe lattice has greatly helped to understand the Mott transition from a paramagnetic metal to a
paramagnetic insulator at half-filling [16–26]. For the paramagnetic phase to be stable the antiferromagnetic
low-temperature phase of the Hubbard model needs to be suppressed by frustration; only then the Mott

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



644 M. Kollar et al.: Green functions for nearest- and next-nearest-neighbor hopping on the Bethe lattice

transition is observable. This can be achieved by including random hopping beyond NN [20,27–30]. In this
case the density of states (DOS) remains semi-elliptic, implying that the Mott transition in the paramagnetic
phase is unchanged. On the other hand, for nonrandom NNN hopping the DOS is usually asymmetric,
and this is also the case for the Bethe lattice [14]. Moreover, an asymmetric DOS is known to stabilize
ferromagnetism away from half-filling [31–33].

Here, as a prerequisite for any investigations of frustrated interacting or disordered systems, we will
study the noninteracting Hamiltonian with (nonrandom) NN and NNN hopping

H = Hloc + t1H1 + t2H2 = Hloc + t∗1H̃1 + t∗2H̃2 (4)

and obtain its local Green function Gi(z), defined for Im z �= 0 by

Gij(z) := 〈i| 1
z − H

|j〉 , Gi(z) := Gii(z) , G∞
i (z) := lim

K→∞
Gi(z) , (5)

paying special attention to the limit K → ∞. Note that due to translational symmetry of the infinite Bethe
lattice Gi(z) =: Gγ(z) depends only on the sublattice γ of i. We recall that for only NN hopping the local
Green function for sublattice γ is given by [11]

gγ(z) := 〈i| 1
z − h

|i〉 =
2K(z − εγ̄)

(K − 1)x + (K + 1)
√

x − 4t∗2
1

√
x

, h = Hloc + t∗1H̃1 , (6)

where x = (z − εA)(z − εB) and the square roots are given by their principal branches.
The derivation of the local Green function for t1-t2 hopping will proceed as follows. In Sect. 2 we use

the renormalized perturbation expansion (RPE) [11] to obtain a closed set of equations for G∞
γ (z), which

are also related to the DMFT selfconsistency equations. The RPE method is well-suited for the Bethe lattice
due to its recursive nature, although the classification of paths for t2 �= 0 is rather involved. We show how
to use the RPE result to establish the asymmetry of the DOS. On the other hand, in Sect. 3 we use the
many-body path integral approach [34] to derive an exact effective action by a recursive method. This also
yields closed equations for the local Green functions Gγ(z) for any coordination number Z. Furthermore
a surprising algebraic relation between Green functions for finite and infinite Z is uncovered. Finally, in
Sect. 4 a recently developed topological method [14] is extended to include Hloc. We derive an operator
identity, valid for any Z, that allows one to express Gγ(z) in terms of the known solutions (6) for only NN
hopping. Our results for the local Green function are discussed in Sect. 5. A conclusion in Sect. 6 closes
the presentation.

2 Renormalized perturbation expansion

2.1 Dressed expansion for the local Green function

In this section we obtain an equation for the local Green function (5) using the renormalized perturbation
expansion (RPE) [11, 35]. In this approach the Green function Gij(z) for H is obtained in terms of the
Green function Gloc

ij (z) = δijG
loc
i (z) for Hloc as

Gij = δijG
loc
i + Gloc

i tijG
loc
j +

∑

k

Gloc
i tikGloc

k tkjG
loc
j + · · · , Gloc

i =
1

z − εi
, (7)

where we omit the argument z for the moment. This expansion contains terms in which site indices are
repeated. In a graphical representation this corresponds to paths in which some lattice sites are “decorated”
with closed paths [11]. One can omit these decorations at the first site i by replacing Gloc

i by the full local
Green function Gi. At the next site k, however, the decorations at site i must not be repeated, leading to the
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replacement of Gloc
k by the local Green function with site i removed, i.e., by G

[i]
k = Gk|εi=∞. Repeating

this process one obtains

Gi = Gloc
i +

∑

k

′
Gi tik G

[i]
k tki Gloc

i +
∑

km

′
Gi tik G

[i]
k tkm G[i,k]

m tmi Gloc
i + · · · , (8)

where the primed sums are now only over non-self-intersecting paths. The RPE is particularly useful in the
limit Z → ∞ which allows the replacement G

[··· ]
i → G∞

i . This yields an equation involving only local
Green functions,

G∞
i (z)−1 = z − εi −

[
∑

k

tik G∞
k (z) tki +

∑

km

′
tik G∞

k (z) tkm G∞
m (z) tmi + · · ·

]
. (9)

For the case of two sublattices with on-site energies εA, εB we thus obtain two coupled equations (γ = A,B;
Ā = B, B̄ = A),

G∞
γ (z)−1 = z − εγ − F (G∞

γ (z), G∞
γ̄ (z)) . (10)

This is a closed system of implicit equations for the local Green functions G∞
γ (z).

Note that the self-consistency equations of DMFT are essentially contained in Eq. (10). In DMFT the
self-energy is local [20], Σij(z) = Σγ(z)δij for i ∈ γ, and the local interacting Green function Gint

γ (z)
is given by the Dyson equation Gint

γ (z)−1 = G∞
γ (z − Σγ(z))−1 = Gγ(z)−1 − Σγ(z), where Gγ(z) is

the Weiss field of an auxiliary single-site problem for sublattice γ. From Eq. (10) one thus obtains the
self-consistency equation

Gγ(z)−1 = z − εγ − F (Gint
γ (z), Gint

γ̄ (z)) . (11)

Here spin indices were suppressed for simplicity. Detailed discussions of DMFT self-consistency equations
can be found in Refs. [14,20].

2.2 RPE for t1-t2 hopping on the Bethe lattice

For the remainder of this section we consider the Bethe lattice in the limit Z → ∞. As a standard example,
we first consider only NN hopping (6). Since no closed loops are possible, the only allowed non-self-
intersecting paths are visits to one of the Z NN sites which return immediately. This yields the well-known
equation [11]

g∞
γ (z)−1 = z − εγ − t∗2

1 g∞
γ̄ (z) , g∞

γ (z) =
2(z − εγ̄)

x +
√

x − 4t∗2
1

√
x

, (t2 = 0) (12)

where the solution is a special case of Eq. (6).
We now proceed to the case of t1-t2 hopping, for which the evaluation of the square bracket in Eq. (9) is

more involved, since it requires the enumeration [26,36] of several classes of closed non-self-intersecting
paths which begin and end at site i. First we note that at each site j (�= i) on the path it is possible to make a
detour within the same shell, i.e., to one of the yet unvisited NNN sites k of j with same distance di,j = di,k

from i, as illustrated in Fig. 2a. In the limit Z → ∞ we can take these detours into account by replacing
G∞

γ by

Ĝ∞
γ = G∞

γ + G∞
γ t∗2 G∞

γ + G∞
γ t∗2 G∞

γ t∗2 G∞
γ + · · · =

G∞
γ

1 − t∗2 G∞
γ

(13)

and only considering non-self-intersecting paths that change shells in every step. Such shell-changing, non-
self-intersecting paths are referred to as proper paths from now on. They may be drawn using simplified
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Fig. 2 (a) Example of intra-shell detours in RPE. A non-self-intersecting path, which starts and ends at site i, may
contain NNN steps (dotted) to sites with the same distance from i, e.g., from j to k. Open and solid circles indicate γ
and γ̄ sublattices. (b) Simplified diagram for the proper path corresponding to (a). (c) Rule (14) for proper paths: After
visiting k and j, the shaded sites are blocked and one must return towards i. From a NN site of i it may then either
return immediately to i or leave again with NNN steps, eventually taking a NN step and being forced back to i. Dashed
arrows indicate forced moves.

diagrams indicating the visited shells only, see Fig. 2b. Closed proper paths, starting and ending at site i,
are then governed by the following rule:

Whenever two neighboring sites j and k have been visited, with j further away
from i than k, all sites on j’s branch further away from i than j cannot be visited.

(14)

This rule, which is illustrated in Fig. 2c, is due to the tree-like structure of the Bethe lattice and the
requirements that the paths are non-self-intersecting, involve only NN or NNN steps, and change shells in
every step. It is not affected by intra-shell detours contained in Ĝ∞

γ .
Therefore a sequence of outgoing NNN steps, starting at a site in shell 0 or 1 and terminated by a NN

step must be followed by a NNN step going inward until shell 1 or 0, respectively, is reached. We are thus
led to the following classification of proper paths by their outermost shell smax, as shown in Fig. 3 and listed
in Table 1:

(a) An even shell smax is reached by taking NNN steps. After taking one NN step inward the path must
return towards i until reaching shell 1 due to rule (14). Then the path may turn outward again, finally
using a NN step (a1) inward or (a2) outward to reach i’s sublattice and return. The reverse path is also
possible, but in case (a1) may be identical.

(b) An odd shell smax is reached by taking NNN steps and one NN step outward. After returning to shell
1 due to rule (14), one may turn outward again in (b1) and (b2) similar to (a1) and (a2). The reverse
path is also possible, but in case (b2) may be identical.

(c) Whereas (a) and (b) involve at least one NN step, there is also one proper path involving no NN step;
it visits a NNN site and returns immediately.

Note that paths that start with a NN step are included in the inverted paths mentioned under (a) and (b). The
contributions of all proper paths are also collected in Table 1, and their sum is

F (G∞
γ , G∞

γ̄ ) =
∞∑

m=1

m−1∑

k=0

[
G(a1)

γ,m,k + G(a2)
γ,m,k

]
+

∞∑

m=0

m∑

k=0

[
G(b1)

γ,m,k + G(b2)
γ,m,k

]
+ G(c)

γ

=
t∗2
1 G∞

γ̄ (1 − t∗2 G∞
γ̄ )

(1 − t∗2 G∞
γ − t∗2 G∞̄

γ )2
+

t∗2
2 G∞

γ

1 − t∗2 G∞
γ

. (15)

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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(a1) (a2) (b1) (b2) (c)

Fig. 3 Simplified diagrams for proper paths that contribute to Eq. (15). Only paths which change the shell in each
step are considered; the effect of intra-shell detours is taken into account by working with dressed Green functions Ĝ∞

γ ,
Ĝ∞

γ̄ . Open and solid circles indicate γ and γ̄ sublattices, respectively. Dashed arrows indicate moves that are forced
due to the rules (14). See Table 1 for details.

Eqs. (10) and (15) are a set of coupled quartic equations for G∞
γ and G∞

γ̄ . Eq. (15), taken together with
(11), fully determines the DMFT self-consistency equation for t1-t2 hopping on the Bethe lattice. This
result differs [14,36] from the self-consistency equations employed in Refs. [20,27–30], which apply only
to random hopping.

The result (15) can immediately be used to determine the moments Mn of the density of states. For the
case εA = εB = 0 we have the large-z expansion

G∞
γ (z) =

∞∫

−∞

ρ∞(ε)
z − ε

dε =:
∞∑

n=0

Mn

zn+1 , ρ∞(ε) := − 1
π

Im G∞
γ (ε + i0) . (16)

Multiplying Eq. (10) by G∞
γ , inserting Eq. (16), and comparing coefficients of powers of z we find

M1 = 0 , M2 = t∗2
1 + t∗2

2 , M3 = (3t∗2
1 + t∗2

2 ) t∗2 , M4 = 2t∗4
1 + 12t∗2

1 t∗2
2 + 3t∗4

2 , (17)

revealing at once that the DOS ρ∞(ε) is asymmetric for t∗2 �= 0 [26], in contrast to the case of random
hopping [20,27–30].

Clearly the RPE is well-suited for the Bethe lattice because rule (14) represents a strict constraint on
proper paths. However, already for the case of t1-t2 hopping the RPE requires some care. Furthermore,
the enumeration of paths for hopping beyond NNN, or for Z < ∞, is likely to be very tedious. Another
drawback is that the RPE only yields an implicit system of equations for the local Green functions. Below
we derive explicit expressions for them via a different route.

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 1 Proper paths contributing to Eq. (15) for a Bethe lattice with Z → ∞. Paths (a1) and (a2) reach an even
outermost shell, while paths (b1) and (b2) reach an odd outermost shell; both contain at least one NN step. On the other
hand, without NN steps only path (c) is possible. Steps forced by rule (14) are marked by an asterisk (∗). The reversion
of each non-symmetric path yields a factor of 2.

path steps factor reached shell

(a) smax = 2m 1. m NNN steps outward (t∗2)
m(Ĝ∞

γ )m 2m

(m ≥ 1) 2. 1 NN step inward (t∗1)(Ĝ
∞
γ̄ ) 2m − 1

3. (m − 1) NNN steps inward∗ (t∗2)
m−1(Ĝ∞

γ̄ )m−1 1
4. k NNN steps outward (k ≤ m − 1) (t∗2)

k(Ĝ∞
γ̄ )k 2k + 1

(a1) 5. 1 NN step outward (t∗1)(Ĝ
∞
γ ) 2k + 2

6. (k + 1) NNN steps inward∗ (t∗2)
k+1(Ĝ∞

γ )k 0
reverse path (if different) (2 − δk,m−1)

G(a1)
γ,m,k = (2 − δk,m−1)(t∗1)

2(t∗2)
2m+2k(Ĝ∞

γ )m+k+1(Ĝ∞
γ̄ )m+k

(a2) 5. 1 NN step inward (t∗1)(Ĝ
∞
γ ) 2k

6. k NNN steps inward∗ (t∗2)
k(Ĝ∞

γ )k−1 0
reverse path 2

G(a2)
γ,m,k = 2(t∗1)

2(t∗2)
2m+2k−1(Ĝ∞

γ )m+k(Ĝ∞
γ̄ )m+k

(b) smax = 2m + 1 1. m NNN steps outward (t∗2)
m(Ĝ∞

γ )m 2m

(m ≥ 0) 2. 1 NN step outward (t∗1)(Ĝ
∞
γ̄ ) 2m + 1

3. m NNN steps inward∗ (t∗2)
m(Ĝ∞

γ̄ )m 1
4. k NNN steps outward (k ≤ m) (t∗2)

k(Ĝ∞
γ̄ )k 2k + 1

(b1) 5. 1 NN step outward (if k �= m) (t∗1)(Ĝ
∞
γ ) 2k + 2

6. (k + 1) NNN steps inward∗ (t∗2)
k+1(Ĝ∞

γ )k 0
reverse path 2

G(b1)
γ,m,k = 2(1 − δk,m)(t∗1)

2(t∗2)
2m+2k+1(Ĝ∞

γ )m+k+1(Ĝ∞
γ̄ )m+k+1

(b2) 5. 1 NN step inward (t∗1)(Ĝ
∞
γ ) 2k

6. k NNN steps inward∗ (t∗2)
k(Ĝ∞

γ )k−1 0
reverse path (if different) (2 − δk,m)

G(b2)
γ,m,k = (2 − δk,m)(t∗1)

2(t∗2)
2m+2k(Ĝ∞

γ )m+k(Ĝ∞
γ̄ )m+k+1

(c) smax = 2 1. 1 NNN step outward (t∗2)(Ĝ
∞
γ ) 2

(no NN steps) 2. 1 NN step inward (t∗2) 0

G(c)
γ = (t∗2)

2(Ĝ∞
γ )

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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3 Path-integral approach

3.1 Green function as path integral

In this section we use the standard many-body path-integral approach to the local Green function. For
non-interacting spinless fermions with Hamiltonian Hloc + Hkin the action is [34]

S =
∫ 1/T

0

∑

ij

ci(τ)
[
(∂τ − µ + εi)δij + tij

]
cj(τ) dτ , (18)

where ci(τ), ci(τ) are Grassmann variables. Fourier transforming to fermionic Matsubara frequencies,
ωn = (2n + 1)πT , we obtain S =

∑
n

∑
ij

[
tij + (εi − iωn − µ)δij

]
cincjn, i.e., the functional integral

factorizes with respect to n. We thus consider a fixed Matsubara frequency, set z = iωn + µ, and omit the
index n. The local Green function is then given by

Gi(z) =
∫ ∏

j

D[cj , cj ] e−S̃ cici

/ ∫ ∏

j

D[cj , cj ] e−S̃ , (19)

with S̃ =
∑

i Sloc(i) + 1
2

∑
ij Shop(i, j), Sloc(i) = −(z − εi)cici, Shop(i, j) = tij(cicj + cjci). Note that

for this non-interacting system the many-body Matsubara Green function is independent of the temperature
T and coincides with the Green function defined in Eq. (5).

3.2 Decomposition of the action for t1-t2 hopping on the Bethe lattice

We now consider t1-t2 hopping on the Bethe lattice as in Eq. (4). In this case the following decomposition
of the Bethe lattice turns out to be useful. For two NN sites i and j we let Z(i|j) denote the set of NN sites
of i, but with site j omitted. Furthermore B(i|j) shall denote the sites on all the branches which begin at
the sites in Z(i|j) and lead away from i. These definitions are illustrated in Fig. 4a.

Now consider a partial trace where we integrate out the Grassmann variables for the sites in B(i|j), i.e.,
all the sites connected to i except for those on the branch starting at j. We thus define, for NN sites i and j,

Ξ(i|j) =
∫ ∏

k∈B(i|j)
D[ck, ck] e−S(i|j) , (20)
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Fig. 4 (a) The NN sites of i, except j, are denoted by Z(i|j), marked by horizontal shading. B(i|j) denotes the sites
on the branches starting on any k ∈ Z(i|j) and leading away from i, marked by horizontal or double shading. Ξ(i|j)
[Eq. (20)] involves a trace over shaded sites. (b) Here the shaded sites are involved in the trace appearing in Ξ(j|i)
[Eq. (20)]. When combined with the sites traced over in Ξ(i|j), i.e., the shaded sites in (a), one obtains a trace over all
sites except i and j, leading to the expression for the local Green function Gi in Eq. (23). (c) The shaded sites in (a)
can also be enumerated by combining B(k|i) for all k ∈ Z(i|j), leading to Eq. (25) which expresses Ξ(i|j) in terms
of a product Ξ(k|i)Ξ(k′|i) · · · .
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S(i|j) =
∑

k∈B(i|j)

[
Sloc(k) + Shop(k, i) + Shop(k, j)

]
+

1
2

∑

k,m∈B(i|j)
Shop(k, m) , (21)

i.e., we include only the part S(i|j) of the action in the trace that involves Grassmann variables on the
branches B(i|j). As a consequence, the only Grassmann variables remaining in Ξ(i|j) are ci, ci and cj , cj .
Because they are connected to other ck, ck in S(i|j) only linearly, Ξ(i|j) is of Gaussian form,

Ξ(i|j) ∝ exp

(
−
(
ci cj

)
Xγ

(
ci

cj

))
, Xγ =

(
uγ wγ

wγ vγ

)
, (22)

for i ∈ γ, j ∈ γ̄. Here the coefficients in the exponent depend only on the sublattices to which i and j
belong, due to the translational invariance of the infinite Bethe lattice. These coefficients will be determined
below.

The partial trace in Eq. (20) serves two purposes. On the one hand the local Green function (19) can
now be written as a trace over i and a neighboring site j, together with their respective partial traces and
the remaining parts of the action,

Gi(z) =
∫ D[ci, ci, cj , cj ] Ξ(i|j) Ξ(j|i) e−Sloc(i)−Sloc(j)−Shop(i,j) cici∫ D[ci, ci, cj , cj ] Ξ(i|j) Ξ(j|i) e−Sloc(i)−Sloc(j)−Shop(i,j)

. (23)

This equals (19) because, when considering the two neighboring sites i and j, Ξ(i|j) contains the contri-
butions of all the sites “behind” i, whereas Ξ(j|i) contains the contributions of all the sites “behind” j, as
illustrated in Figs. 4a and 4b, and the remaining action involves only i and j because the hopping is only
between NN or NNN sites. We note in passing that a generalization to hopping beyond NNN, while possible
in principle, will become increasingly complicated. Inserting Eq. (22) into (23) gives a Gaussian integral
which can be performed by completing the square, yielding

Gγ(z) =
zγ̄ − uγ̄ − vγ

(zγ − uγ − vγ̄)(zγ̄ − uγ̄ − vγ) − (t1 + wγ̄ + wγ)(t1 + wγ + wγ̄)
(24)

for the local Green function on sublattice γ, with zγ = z − εγ .
On the other hand one can obtain a functional equation for Ξ(i|j) by decomposing the Bethe lattice in

different ways. Recall that Ξ(i|j) contains the branches which start at the NN sites k of i, where k �= j.
We can also move one site away from i and consider Ξ(k|i), which contains the branches which start at k’s
NN neighbors, except i, as illustrated in Fig. 4c. We recover Ξ(i|j) when we multiply the Ξ(k|i)’s, include
pieces of the action which connect the B(k|i) among each other and with i and j, and trace over the sites
k. Thus we arrive at

Ξ(i|j) =
∫ ∏

k∈Z(i|j)
D[ck, ck]

∏

k∈Z(i|j)
Ξ(k|i)

× exp



−
∑

k∈Z(i|j)



Sloc(k) + Shop(k, i) + Shop(k, j) +
1
2

∑

k′( �=k)∈Z(i|j)
Shop(k, k′)







 ,

(25)

where i and j are any two NN sites.
Now Ξ(i|j) can be determined from the above relation, using its Gaussian form (22). Due to the trans-

lational symmetry of the infinite Bethe lattice it suffices to consider, say, i = 0 ∈ γ and j = 1 ∈ γ̄. From
Eqs. (22) and (25) we then obtain

Ξ(0|1) ∝
∫ Z∏

k=2

D[ck, ck] exp



−K c0vγ̄c0 −
Z∑

i=2

(ξci + ciξ) −
Z∑

i,j=2

ciMijcj



 , (26)
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where K = Z − 1, ξ = (t1 + wγ̄)c0 + t2c1, ξ = (t1 + wγ̄)c0 + t2c1, and the product and sums are
over nearest neighbors of site 0 other than site 1. The K × K matrix M in the Gaussian integral and its
inverse are of the form Mij = δij a + (1 − δij) b and (M−1)ij = δij c + (1 − δij) d, respectively, with
c = (a + (K − 2)b)/q, d = −b/q, and q = a2 + (K − 2)ab − (K − 1)b2. Here a = uγ̄ − zγ̄ and b = t2.
The Gaussian integration in Eq. (26) is performed by completing the square, yielding

Ξ(0|1) ∝ exp



−K c0vγ̄c0 − ξξ

Z∑

i,j=2

(M−1)ij



= exp
(

−Kc0vγ̄c0 − Kξ
a − b

q
ξ

)
. (27)

Comparing with Eq. (22) we thus obtain the following system of equations:

uγ = K vγ̄ + K (t1 + wγ̄) (t1 + wγ̄) Ĝγ̄ , (28)

wγ = K t2 (t1 + wγ̄) Ĝγ̄ , (29)

wγ = K t2 (t1 + wγ̄) Ĝγ̄ , (30)

vγ = K t22 Ĝγ̄ , (31)

with the abbreviation Ĝγ = [zγ − uγ − (K − 1)t2]−1.

3.3 Local Green function for arbitrary connectivity

For easier discussion of the limit Z → ∞ we use the scaled hopping parameters of Eq. (3). Putting
z̃ = z + t∗2/K and G̃γ = Ĝγ/(1 + t∗2Ĝγ) = (z̃ − εγ − uγ)−1 we find, after some rearrangement,

uγ =
t∗2
1 G̃γ̄ (1 − t∗2 G̃γ̄)

(1 − t∗2 G̃γ − t∗2 G̃γ̄)2
+

t∗2
2 G̃γ

1 − t∗2 G̃γ

= z̃ − εγ − G̃−1
γ , (32)

wγ = wγ =
1√
K

t∗1t
∗
2 G̃γ̄

1 − t∗2 G̃γ − t∗2 G̃γ̄

, vγ =
1
K

t∗2
2 G̃γ̄

1 − t∗2 G̃γ̄

. (33)

For given z̃, εA, εB, Eq. (32) is a system of two symmetric equations for G̃A, G̃B and we denote the appropriate
solution by G̃γ = f(z̃, εγ , εγ̄); note that this function does not depend explicitly on K. Inserting Eqs. (32)-
(33) into (24) we can then express the local Green function as

Gγ(z)−1 = G̃−1
γ − 1

K
R(G̃γ , G̃γ̄) , G̃γ = f(z + t∗

2
K , εγ , εγ̄) , (34)

R(G̃γ , G̃γ̄) =
t∗2
1 G̃γ̄ (1 − t∗2 G̃γ̄)

(1 − t∗2 G̃γ − t∗2 G̃γ̄)2(1 − pt∗2 G̃γ̄)
+

t∗2
1 − t∗2 G̃γ

, (35)

where again p = Z/K. Taking the limit K → ∞ in Eq. (34) we find that G∞
γ (z) = f(z, εγ , εγ̄), and

also limK→∞ Ĝγ(z) = Ĝ∞
γ (z) [Eq. (13)]. This leads us to the remarkable conclusion that the local Green

function Gγ(z) for arbitrary K is a rational function of the local Green functions G∞
γ′ (z) for infinite K,

Gγ(z) =
[
G∞

γ (z + t∗
2

K )−1 − 1
K

R
(
G∞

γ (z + t∗
2

K ), G∞
γ̄ (z + t∗

2
K )

)]−1

. (36)

The function G∞
γ is determined by Eq. (32). However, this is clearly the same implicit equation that was

obtained in (10) and (15), thus confirming the RPE calculation of the previous section. The function G∞
γ (z)

is obtained in the next section.
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Finally we note that the unexpected relation (36) can be checked for only NN hopping,

gγ(z) =
[
g∞

γ (z)−1 − t∗2
1

K
g∞

γ̄ (z)
]−1

, (t2 = 0) (37)

which is indeed fulfilled by the results (6) for this case.

4 Topological approach

4.1 Operator identities for hopping Hamiltonians

Recently a topological approach to the tight-binding spectrum of Hkin on the Bethe lattice was developed
[14], which we will extend to the case of additional A-B on-site energies Hloc here.

We begin with a short review of the method of [14]. Unlike crystal lattices, the (infinite) Bethe lattice has
the property that the number of paths between two lattice sites i and j which consist of n NN steps depends
only on the topological distance di,j , but not on the relative orientation of i and j. This “distance regularity”
entails polynomial relations [37] among the tight-binding Hamiltonians Hd. For the Bethe lattice they are
given by [14]

Un(H̃1/2) =
�n/2	∑

s=0

H̃n−2s

Ks
, H̃d = Ud(H̃1/2) − 1

K
Ud−2(H̃1/2) , (d ≥ 2) (38)

where Un(x) are the Chebychev polynomials of the second kind [38]. Similar relations involving the Hermite
polynomials hold for the infinite-dimensional hypercubic lattice [26,39]. By contrast, Eq. (38) is valid for
any K, including the one-dimensional chain (K = 1) as well as the limit K → ∞. These relations can also
be expressed by means of the generating function

1 − x2

1 − xH1 + Kx2 =
∞∑

d=0

Hd xd ,
1 − x2/K

1 − xH̃1 + x2
=

∞∑

d=0

H̃d xd . (39)

From these operator identities one concludes that for the Bethe lattice the eigenstates of any hopping
Hamiltonian (1) are the same as those of H̃1, and its eigenvalues ε(λ) can be expressed as a function of
the eigenvalues λ of H̃1. The calculation of spectral properties, such as the density of states [14] from this
effective dispersion ε(λ) is then straightforward. The method works well for arbitrary hopping td since no
explicit enumerations are required.

We now incorporate the effect of alternating on-site energies [Eq. (2)],

Hloc =
∑

γ=A,B

εγ

∑

i∈γ

|i〉〈i| = ε̄ + ε V , V =
∑

i

(−1)i|i〉〈i| , εA ± εB

2
=:

{
ε̄

ε
, (40)

where (−1)i = ±1 for i ∈ A, B, e.g., (−1)i = (−1)di,j for some fixed site j ∈ A. Since the operators H2d

(H2d+1) connect the same (different) sublattices they commute (anticommute) with V , respectively,

V Hd − (−1)dHdV = 0 , V Hn
1 − (−1)nHn

1 V = 0 , (41)

where the second equation follows from the polynomial relations (38) between Hd and Hn
1 . Together with

V 2 = 1 we immediately obtain the useful new operator identity

(αV + βH1)2n = (α2 + β2H2
1 )n , n = 0, 1, 2, . . . . (42)

for arbitrary constants α, β. This identity makes it possible to reduce resolvent operators involving V and
H1 to simpler expressions.
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As a simple application let us consider only NN hopping (6). We find by straightforward series expansion
and partial fraction decomposition

1
z − h

=
z − ε̄ + εV + t∗1H̃1

(z − ε̄)2 − (ε2 + t∗2
1 H̃2

1 )
=

1
2

∑

s=±1

(
1 +

z − ε̄ + εV

s
√

x

)
1

s
√

x − t∗1H̃1
, (43)

again with x = (z − εA)(z − εB). We therefore conclude that for NN hopping, surprisingly, any Green
function for εA �= εB can be written as a linear combination of two Green functions for the homogeneous
case, εA = εB, at other arguments.

4.2 Results for t1-t2 hopping

For t1-t2 hopping [Eq. (4)] there are now two possible routes to the local Green function Gγ(z) for arbitrary
K. On one hand, according to Eq. (36) of the previous section, Gγ(z) is determined by G∞

γ (z) alone. The
latter was already obtained in [14] from the operator identity (39) for the homogeneous case, together with
a diagonalization of the 2x2 sublattice problem. This gave

G∞
γ (z) =

1
2t∗2

+
1

2(λ2
2 − λ2

1)t
∗2
2

2∑

i=1

(−1)i[zγ̄ − (λ2
i − 1)t∗2]

√
λi − 2

√
λi + 2

λi
, (44a)

λ1,2 =
√

A ±
√

A2 − B , A = 1 +
(zA − zB)t∗2 + t∗2

1

2t∗2
2

, B =
[

zA

t∗2
+ 1

][
zB

t∗2
+ 1

]
, (44b)

where zγ = z−εγ and all square roots are given by their principal branches. While Gγ(z) is given explicitly
by Eqs. (36) and (44), we note that this approach would be less promising for hopping beyond NNN.

On the other hand we may directly use the operator identities (38) and (42), which provide the relation
H̃2 = H̃2

1 − p = (vV + H̃1)2 − v2 − p, with v arbitrary and p = Z/K. This gives us

H = Hloc + t∗1H̃1 + t∗2H̃2 = ε̄ − t∗2 (p + v2) + t∗1 (vV + H̃1) + t∗2 (vV + H̃1)2 , (45)

with v = ε/t∗1. Performing the partial fraction decomposition for the resolvent we arrive at

1
z − H

=
ξ1 + ξ2

ξ1 − ξ2

2∑

k=1

(−1)k

ξk + ε̄ − h
, Gγ(z) =

ξ1 + ξ2

ξ1 − ξ2

2∑

k=1

(−1)kgγ(ξk + ε̄) , (46a)

ξ1,2 =
−t∗2

1 ±
√

t∗4
1 + 4t∗1

2t∗2 (z − ε̄) + 4t∗2
2 (ε2 + pt∗2

1 )

2t∗2
, (46b)

where gγ(z) again denotes the local Green function (6) for only NN hopping. We note that this remarkably
short route to Gγ(z) is straightforward to carry out also for hopping beyond NNN, as well as for off-diagonal
Green functions.

5 Results for the local Green function

Using the results of the previous sections, i.e., Eqs. (36) and (44), or Eqs. (46) and (6), the local Green
function is now available for arbitrary t1-t2 hopping and on-site energies εA,B on the Bethe lattice for finite
or infinite coordination number.
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Fig. 5 Local Green function Gγ(ω + i0) for the Bethe lattice with εA = εB = 0, t∗
1 = 0.5, and t∗

2/t∗
1 = 0, 1

10 , 1.
Left column: Z = 4. Right column: Z = ∞. Vertical lines mark divergences.

In Figs. 5–7 we consider both Z = 4 and Z = ∞ and compare the unfrustrated case (t∗2 = 0) to weak
frustration (t∗2 = t∗1/10) and strong frustration (t∗2 = t∗1). The homogeneous case, εA = εB, is shown in
Fig. 5, whereas we chose εA − εB = 2t∗1 in Figs. 6 and 7.

From these spectra several effects of frustration may be observed. Beginning with the homogeneous
case (Fig. 5) the imaginary part of the Green function, i.e., the density of states, is no longer symmetric if
t∗2 �= 0, as noted in Sect. 2. This is the expected generic behavior for a bipartite lattice with hopping between
the same sublattices. Furthermore, as discussed already in [14], a square-root singularity at one band edge
develops for large enough |t∗2|. For strong frustration one notices the appearance of several additional cusps
in both real and imaginary part of the Green function, as well as an increase in bandwidth. It is also apparent
that in the limit Z = ∞ the Green function loses some of its features. In this case its real part is linear or
even flat in part of the band.

These characteristics persist for the case εA �= εB (Figs. 6 and 7). In addition the symmetry Gγ(z) =
Gγ̄(−z) is absent for t∗2 �= 0. For strong frustration more van-Hove singularities appear. We also note that
the band gap, which is present for only NN hopping due to the alternating on-site energies, is closed for
large enough NNN hopping.

In summary, the Green function for t1-t2 hopping shows several qualitatively new properties, which are
likely to have an impact also on its behavior in interacting many-body or disordered systems, in particular
for site-diagonal disorder.
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Fig. 6 Local Green function Gγ(ω+i0) for the Bethe lattice with Z = 4, εA = −εB = t∗
1 = 0.5 and t∗

2/t∗
1 = 0, 1

10 , 1.
Left column: Local Green function for sublattice A, GA(ω + i0), which for t∗

2 = 0 also appears in [11]. Right column:
Local Green function for sublattice B, GB(ω+ i0); note the small cusp at ω = −0.167. Vertical lines mark divergences.

6 Conclusion

Due to the special topology of the Bethe lattice, the calculation of the Green function of a quantum-
mechanical particle for hopping beyond nearest neighbors seemed untractable so far. In this paper we pre-
sented the derivation of an explicit expression for the local Green function for t1-t2 hopping and sublattice-
dependent on-site energies εA, εB for arbitrary coordination number Z, employing a set of complementary
analytical techniques. Implicit equations for G∞

γ were derived by RPE. They also follow from a path inte-
gral approach, which furthermore yielded the local Green function Gγ for arbitrary Z as a rational function
of G∞

γ . It should be noted that such a functional relation between Green functions at different Z is quite
unexpected and to our knowledge does not occur for any other lattice. From a topological approach explicit
expressions for Gγ and G∞

γ were obtained in terms of the Green function gγ for only NN hopping. We
found that NNN hopping makes the density of states asymmetric and may induce additional van-Hove
singularities, increase the total bandwidth, and close gaps that were opened by alternating on-site energies.
From the experience of these results we conclude that it will be worthwhile to investigate the effects which
hopping beyond nearest neighbors has on the physics of interacting many-body and disordered systems on
the Bethe lattice.
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Fig. 7 Same as Fig. 6, but for Z = ∞.
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