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GREEN FUNCTIONS IN STOCHASTIC FIELD THEORY

J. Honkonen∗

National Defence University, Helsinki

Functional representations are reviewed for the generating function of Green functions of sto-
chastic problems stated either with the use of the FokkerÄPlanck equation or the master equation.
Both cases are treated in a uniˇed manner based on the operator approach similar to quantum me-
chanics. Solution of a second-order stochastic differential equation in the framework of stochastic
ˇeld theory is constructed. Ambiguities in the mathematical formulation of stochastic ˇeld theory
are discussed. The SchwingerÄKeldysh representation is constructed for the Green functions of the
stochastic ˇeld theory which yields a functional-integral representation with local action but without
the explicit functional Jacobi determinant or ghost ˇelds.

PACS: 05.10.Gg; 11.10.-z

1. INTRODUCTION

Diverse models describing evolution of physical, chemical, biological, social
and ˇnancial processes are presented in the form of differential equations with
the implicit understanding that they are mean-ˇeld equations for averages of
quantities describing intrinsically random processes. There are two mainstream
approaches to take into account the intrinsic randomness of such processes. The
most straightforward way is to include some random function (source) in the
original differential equation to obtain a stochastic differential equation (SDE).
The alternative approach is to construct balance equations for the probability
density functions of suitable random quantities in the system, which gives rise to
master equations (ME).

1.1. Stochastic Differential Equation. To take �uctuations into account,
a traditional and straightforward way to proceed is to introduce a source of
randomness directly in the mean-ˇeld equation. This approach leads to description
of �uctuations by the Langevin equation (stochastic differential equation)

∂ϕ

∂t
= −Kϕ + U(ϕ) + fb(ϕ), 〈f(t)f(t′)〉 = δ(t − t′)D. (1)

The white-noise stochastic differential equation (1) is mathematically ill-deˇned.
The straightforward way to use a δ sequence with ˇnite correlation times to obtain
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a mathematically consistent equation with subsequent passing to the δ-function
limit

〈f(t,x)f(t′,x′)〉 = D(t,x; t′,x′) → δ(t − t′)D(x,x′), t′ → t (2)

leads to the Stratonovich interpretation of the SDE (1) (see, e.g., [1]). However,
in theoretical analysis, as well as in perturbation theory, the Ito interpretation is
more convenient, but not so easily approached from the ˇnite correlation time
problem.

In the overwhelming majority of applications the SDE with the ˇrst-order
time derivative is used. There are, however, situations in which the second-order
time derivative is included. Here, the second-order stochastic differential equation
in the form of the direct generalization of (1) shall be discussed:

m
∂2ϕ

∂t2
+ β

∂ϕ

∂t
= −Kϕ + U(ϕ) + fb(ϕ). (3)

The use of second-order SDE seems to be growingly popular in ˇnancial
applications.

Let us start from solution of the ˇrst-order equation (1) for simplicity. The
standard tree-graph solution for the function ϕ

ϕ[χ, f ] = (∂t + K)−1χ + tree graphs

yields the generating function of correlation functions of the stochastic process
ϕ[χ, f ] with the aid of Wick's theorem

G(J) =
〈
eϕ[χ,f ]J

〉
=
∫

Df exp
(
−1

2
fD

−1
f

)
eϕ[χ,f ]J . (4)

It should be noted that in this representation there are closed loops of the free-ˇeld
Green function Δ = (∂t + K)−1. Representation (4) is inconvenient for practical
calculations; therefore, it is a widespread trick to change variables to arrive at the
MartinÄSiggiaÄRose (MSR) ˇeld theory [2] with the generating function

G(J) =
∫
Dϕ 〈δ(ϕ − ϕ[χ, f ])〉 eϕJ =

=
∫∫∫

Df DϕDϕ̃ |det(−∂t − K + U ′ + fb′)| ×

× exp
{
−1

2
fD

−1
f + ϕ̃[−∂tϕ − Kϕ + U(ϕ) + fb(ϕ)] + ϕJ

}
. (5)

According to the standard Feynman rules, the exponential expression in the right-
hand side of (5) gives rise to graphs containing closed loops of propagators Δ.
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In case of the ˇrst-order SDE only closed loops with a single propagator survive,
but in case of second-order SDE graphs with loops of any number of propagators
may appear. Loop expansion of the determinant |det (−∂t − K + U ′ + fb′)|
serves to remove Δ loops. The loop expansion of the determinant itself is
somewhat ambiguous in a manner similar to the ambiguity of the SDE itself.

The point of introducing of the SDE with white noise is to avoid dealing
with the limit (2) explicitly. To this end, instead of the mathematically prob-
lematic SDE (1), the stochastic problem may be equivalently stated in terms of
the FokkerÄPlanck equation (FPE) for both the conditional probability density
p (ϕ, t|ϕ0, t0) and the probability density p(ϕ, t) of the variable ϕ. Other joint
probability densities follow from the assumption of a Markov process. The main
advantage of the FokkerÄPlanck equation is that the equation itself is a completely
well-deˇned partial differential (or functional-differential for ˇeld variables) equa-
tion. The ambiguity of the Langevin problem shows in the fact that the FPE is
different for different interpretations of the SDE.

With the use of the standard rules [1], it is readily seen that the SDE (1) in
the Stratonovich sense yields the FPE

∂

∂t
p (ϕ, t|ϕ0, t0) = − ∂

∂ϕ
{[−Kϕ + U(ϕ)] p (ϕ, t|ϕ0, t0)}+

+
1
2

∂

∂ϕ

{
b(ϕ)

∂

∂ϕ
[Db(ϕ)p (ϕ, t|ϕ0, t0)]

}
, (6)

whereas the Ito interpretation of the same SDE yields the FPE

∂

∂t
p(ϕ, t|ϕ0, t0) = − ∂

∂ϕ
{[−Kϕ + U(ϕ)]p(ϕ, t|ϕ0, t0)}+

+
1
2

∂2

∂ϕ2
[b(ϕ)Db(ϕ)p(ϕ, t|ϕ0, t0)] . (7)

These equations coincide when b(ϕ) is a constant (additive noise).
In case of the second-order SDE (3), it is convenient to cast the problem into

the form of a set of two ˇrst-order equations for a doubled set of variables:

∂ϕ

∂t
= v, m

∂v

∂t
+ βv = −Kϕ + U(ϕ) + fb(ϕ).

Standard rules yield for the conditional PDF of this problem p(t, ϕ, v|t0, ϕ0, v0)
the FokkerÄPlanck equation

∂

∂t
p = − ∂

∂ϕ
(vp) +

∂

∂v

[(
β

m
v +

Kϕ

m
− U

m

)
p

]
+

1
2

∂2

∂v2
[bDbp] , (8)

where the Ito interpretation of the SDE has been adopted. As will be seen
further, this is the more convenient choice for the construction of the functional
representation.
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1.2. Master Equation. Markov processes described in terms of the FokkerÄ
Planck equation have continuous sample paths; i.e., ϕ = ϕ(t) is a continuous
function of time. Not all interesting stochastic processes belong to this category.
A wide class of such processes describe changes in occupation numbers (e.g.,
individuals of some population, molecules in chemical reaction) which cannot be
naturally described by continuous paths. This kind of processes are described by
master equations.

The generic form of a master equation written for the conditional probability
density p(ϕ, t|ϕ0, t0) of a Markov process is

∂

∂t
p(ϕ, t |ϕ0, t0) =

∫
dχ[W (ϕ |χ, t)p(χ, t |ϕ0, t0) − W (χ |ϕ, t)p(ϕ, t |ϕ0, t0)],

(9)
where W (ϕ|χ, t) is the transition probability per unit time, whose formal deˇni-
tion from the differential Kolmogorov equation is (for all ε > 0)

W (ϕ |χ, t) = lim
Δt→0

p(ϕ, t + Δt |χ, t)
Δt

,

uniformly in ϕ, χ and t for all |ϕ − χ| � ε [1].
Here, the master equation shall be used for discrete variables (occupation

numbers). In this case the discontinuous character of the paths of the jump
processes described by the master equation is especially transparent. The tran-
sition probabilities are usually simple functions of the occupation number n.
As an example, consider the generic master equation for the stochastic Verhulst
model [3]

dP (t, n)
dt

= [β(n + 1) + γ(n + 1)2]P (t, n + 1) + λ(n − 1)P (t, n − 1)−

− (βn + λn + γn2)P (t, n), (10)

where β is the death rate, λ the birth rate and γ the damping coefˇcient necessary
to bring about a saturation for the population. The choice λ = β = 0 leads to
the master equation for the annihilation reaction A + A → A. The set of master
equations may also be cast in the form of an evolution equation of the type of
Schréodinger equation in a Fock space of many-particle quantum mechanics. This
representation is due to Doi [4]. Contrary to the widely known MartinÄSiggiaÄ
Rose approach, the method of Doi has gained due attention only recently.

2. STOCHASTIC FIELD THEORY

Formulation of stochastic problems in terms of quantum ˇeld theory gives
rise to stochastic ˇeld theory. The two main approaches are the analysis of the
solution of the SDE with the use of ˇeld operators initiated by Martin, Siggia and
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Rose and the somewhat analogous representation of stochastic problems stated
in terms of master equations due to Doi. In case of stochastic processes with
continuous sample paths, the two approaches are equivalent, but there is no
consistent SDE representation in the case of discontinuous sample paths.

2.1. Field Theory for FokkerÄPlanck Equation. The FokkerÄPlanck equa-
tion is similar to the Schréodinger equation (with imaginary time). Using this
analogy, the solution of the FPE, as well as calculation of expectation values,
may be represented in a way analogous to quantum ˇeld theory [5]. Construction
with the FPE as the starting point gives rise to the famous MartinÄSiggiaÄRose
solution of the SDE [2], but avoids ambiguities inherent in the SDE (they have
been ˇxed by the choice of the FPE).

Consider, for deˇniteness, the FokkerÄPlanck equation (7) corresponding to
the Ito interpretation of the Langevin equation (1). Introduce Å in analogy with
Dirac's notation in quantum mechanics Å the state vector |pt〉 according to the
following representation of the PDF:

p(ϕ, t) = 〈ϕ|pt〉,

which is the solution of the FPE (7) with the initial condition p(ϕ, 0) = p0(ϕ).
To construct the evolution operator for the state vector, introduce momentum and
coordinate operators in the manner of quantum mechanics by relations

π̂f(ϕ) = − ∂

∂ϕ
f(ϕ), ϕ̂f(ϕ) = ϕf(ϕ), [ϕ̂, π̂] = 1.

In these terms, the FPE for the PDF gives rise to the evolution equation for the
state vector in the form

∂

∂t
|pt〉 = L̂|pt〉,

where the Liouville operator for the FPE corresponding to the Ito interpretation
of the SDE assumes, according to (7), the form

L̂ = π̂[−Kϕ̂ + U(ϕ̂)] +
1
2
π̂2b(ϕ̂)Db(ϕ̂). (11)

Note that, contrary to quantum mechanics, there is no ordering ambiguity in the
construction of the Liouville operator here.

In this notation, the conditional PDF may be expressed as the matrix element

p (ϕ, t |ϕ0, t0) = 〈ϕ| eL̂(t−t0) |ϕ0〉. (12)

The FokkerÄPlanck equation (8) of the second-order SDE (3) gives rise to the set
of operators

ϕ̂, π̂ = − ∂

∂ϕ
, [ϕ̂, π̂] = 1; v̂, η̂ = − ∂

∂v
, [v̂, η̂] = 1.
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The Liouville operator of the FokkerÄPlanck equation (8) for the single-time PDF
p(t, ϕ, v) = 〈ϕ, v|pt〉 is

L̂ = π̂v̂ − η̂

[
β

m
v̂ +

K

m
ϕ̂ − U(ϕ̂)

m

]
+

1
2
η̂2b(ϕ̂)Db(ϕ̂). (13)

The conditional PDF p(t, φ, v|t0, φ0, v0) is, as usual, the Green function of this
equation.

Introduce time-dependent operators ϕ̂(t) in the Heisenberg picture of imagi-
nary time quantum mechanics (i.e., Euclidean quantum mechanics):

ϕ̂H(t) = e−L̂(t−t0)ϕ̂ eL̂(t−t0), (14)

and deˇne the time-ordered product (chronological product, T product) of time-
dependent operators

T [Â1(t1) · · · Ân(tn)] =
∑

P (1,...,n)

P [θ (t1 · · · tn) Â1(t1) · · · Ân(tn)], (15)

where
θ(t1 · · · tn) ≡ θ(t1 − t2)θ(t2 − t3) · · · θ(tn−1 − tn).

In deˇnition (15) the sum is taken over all permutations of the labels of the
time arguments {ti}n

i=1 and the operators in each term are put in the order of
growing time arguments from the right to the left. Thus, under the T -product
sign operators commute. It should be noted that the deˇnition of the time-ordered
product should be amended for coinciding time arguments. Here, it is convenient
to deˇne the T product at coinciding time arguments as the normal-ordered
product (N product) (see, e.g., [6]).

Introduce then the n-point Green function as the quantum-mechanical expec-
tation value of the T product of n operators (14)

Gn(t1, t2, . . . , tn) = Tr {p̂0T [ϕ̂H(t1)ϕ̂H(t2) · · · ϕ̂H(tn)]} (16)

determined by the trace Tr and the density operator

p̂0 =
∫

dϕ|p0〉〈ϕ|. (17)

Choosing, for deˇniteness, the time sequence t1 > t2 > t3 > . . . > tn−1 > tn >
t0, it is readily seen by direct substitution of relations (12), (14) and (17) in (16)
with the aid of the normalization conditions of the PDF and insertions of the
resolution of the identity

∫
dϕ |ϕ〉〈ϕ| = 1 that∫

dϕ1 · · ·
∫

dϕn ϕ1 · · ·ϕnp (ϕ1, t1; ϕ2, t2; . . . ; ϕn, tn) = Gn(t1, t2, . . . , tn);

(18)
i.e., the Green function (16) is equal to the moment function (18). This relation
connects the operator approach to evaluation of moments of the random process.
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2.2. Field Theory for Master Equation. The set of master equations for
P (t, n) may be cast into a single kinetic equation by the ®second quantization¯
of Doi [4]. Let us ˇrst construct a suitable Fock space spanned by the annihilation
and creation operators â, â+ and the basis vectors |n〉:

â |0〉 = 0, â+ |n〉 = |n + 1〉, [ â, â+] = 1, 〈n|m〉 = n!δnm. (19)

The set of master equations yields for the state vector

|pt〉 =
∞∑

n=0

P (t, n)|n〉 (20)

a kinetic equation in the form of a single evolution equation for the state vec-
tor (20) without any explicit dependence on the occupation number:

d|Pt〉
dt

= L̂(â+, â)|Pt〉, (21)

where the Liouville operator L̂(â+, â) is constructed from the set of master
equations according to rules:

nP (t, n)|n〉 = â+âP (t, n)|n〉,
nP (t, n)|n − 1〉 = âP (t, n)|n〉,
nP (t, n)|n + 1〉 = â+â+âP (t, n)|n〉.

For instance, the Liouville operator for the stochastic Verhulst model (10) is

L̂(â+, â) = β(I − â+)â + γ(I − â+) ââ+â + λ(â+ − I) â+â. (22)

Equation (21) gives rise to the Heisenberg evolution of operators in analogy
with (14). To represent expectation values of occupation-number dependent quan-
tities in the operator formalism use the projection vector 〈P |:

〈P | =
∞∑

n=0

1
n!

〈n| =
∞∑

n=0

1
n!

〈0| ân = 〈0| eâ. (23)

Consider the Green function of occupation-number operators n̂H(t) = â+
H(t)âH(t):

Gm(t1, t2, . . . , tm) = Tr
{
P̂0T [n̂H(t1)n̂H(t2) · · · n̂H(tm)]

}
, (24)

with the density operator
P̂0 = |p0〉〈P |. (25)
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From deˇnitions it follows that the conditional probability density function for
the master equation may be written as (the factorial in front of the matrix element
is due to the normalization (19) of the basis states)

P (n, t|n0, t0) =
1
n!

〈n| eL̂(t−t0) |n0〉. (26)

Choosing, for deˇniteness, the time sequence t1 > t2 > t3 > . . . > tn−1 > tn >
t0, it is readily seen by direct substitution of relations (26) and (25) in (24) with
the aid of the normalization conditions of the PDF and insertions of the resolution
of the identity ∑

n

1
n!

|n〉〈n| = 1

that∑
n1

· · ·
∑
nm

n1 · · ·nmP (n1, t1; n2, t2; . . . ; nm, tm) = Gm(t1, t2, . . . , tm); (27)

i.e., the Green function (24) is equal to the moment function (27). This relation
connects the operator approach to evaluation of moments of the random process
described by a master equation.

3. GENERATING FUNCTIONALS FOR GREEN FUNCTIONS

The generic representation for the generating function of Green functions
introduced in the previous section may be written in the form

Gif (J) = Tr
[
ρ̂0T eŜJ

]
, (28)

where the source term and the density operator are

ŜJ =

tf∫
ti

dt ϕ̂H(t)J(t), ρ̂0 =
∫

dϕ|p0〉〈ϕ|

for the FokkerÄPlanck equation, or, for the master equation,

ŜJ =

tf∫
ti

dt â+
H(t)âH(t)J(t), ρ̂0 = |P0〉〈P |.

Perturbation theory is constructed in the Dirac (interaction) picture of quantum
mechanics. To this end, the Liouville operator is decomposed to the free and
interaction parts L̂0 and L̂I :

L̂ = L̂0 + L̂I .
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In our cases, the convenient choices are L̂0 = −Kπ̂ϕ̂ for (11), L̂0 = π̂v̂ − β

m
η̂v̂

for (13) and L̂0 = −β(â+ − I)â for (22), where K > 0, β > 0. Time-dependent
operators in the interaction picture are deˇned according to

ϕ̂(t) = e−(t−t0)L̂0 ϕ̂ e(t−t0)L̂0 .

The corresponding evolution operator may be expressed in terms of the T product
(here, t > t′ > t0):

Û(t − t0, t
′ − t0) = e−(t−t0)L̂0 e(t−t′)L̂ e(t′−t0)L̂0 =

= eL̂0t0 T exp

⎡⎣ t∫
t′

L̂I(u) du

⎤⎦ e−L̂0t0 . (29)

Note that the Dirac operators in the T product do not carry any t0-dependence
in (29). In the interaction picture the T product in (28) may be written as [6]

T eŜJ = eL̂0t0 Û(t0, tf )T
[
eŜJ+ŜI

]
Û(ti, t0) e−L̂0t0 , (30)

where ŜI =
tf∫
ti

L̂I(t) dt and the time instants tf and ti are chosen such that tf >

tl > ti > t0 for all tl, l = 1, 2, . . . , n. The evolution operator with the reversed
order of time arguments may be cast into the form of the antichronologically
ordered exponential (t > t0)

Û(t0, t) = T̃ exp

⎡⎣− t∫
t0

L̂(t) dt

⎤⎦ . (31)

With the use of representations (29) and (31), the chronological product in the
generating function (28) may be expressed as the product of three chronological
products:

T eŜJ = eL̂0t0 T̃ exp

⎡⎣− tf∫
t0

L̂(t) dt

⎤⎦ T
[
eŜJ+ŜI

]
×

× T exp

⎡⎣ ti∫
t0

L̂(t) dt

⎤⎦ e−L̂0t0 . (32)

The three T products in (32) fuse Å due to Wick's theorems Å in a nor-
mal product (π̂ to the left of ϕ̂ or â+ to the left of â), giving rise to the
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representation [6]

Gif (J) = Tr e−L̂0t0 ρ̂0 eL̂0t0×

× N

{
exp

[
1
2

δ

δφ1
Δ̃

δ

δφ1
+

1
2

δ

δφ2
Δ

δ

δφ2
+

δ

δφ1
n

δ

δφ2

]
×

× exp

[
SJ(φ2) −

tf∫
t0

LI(φ1) du +

tf∫
t0

LI(φ2) du

]∣∣∣∣∣
φ1=φ2=φ̂

}
, (33)

where φ̂ is a two-component shorthand for all the operators appearing in L̂I , i.e.,
either φ̂ = (ϕ̂, π̂) or φ̂ = (â, â+). In (33), the auxiliary ˇeld variables φ1 and φ2

correspond to functional arguments prescribed to the antichronological product
and the chronological products in (32), respectively. Originally, in the functional
representation of Wick's theorem for (32) to each T product a separate ˇeld
variable is prescribed, but those corresponding to the two consecutive rightmost
T -product factors may be replaced by a single variable φ2. The propagators and
contractions in (33) are standard [6]:

Δ̃(t, t′) = T̃ [φ̂(t)φ̂(t′)] − N [φ̂(t)φ̂(t′)],

Δ(t, t′) = T [φ̂(t)φ̂(t′)] − N [φ̂(t)φ̂(t′)],

n(t, t′) = φ̂(t)φ̂(t′) − N [φ̂(t)φ̂(t′)].

The functional LI in (33) (not an operator any more) is ambiguous, however,
because the chronological products have not been deˇned at coinciding time
arguments. The choice of the value of the T and T̃ products at coinciding
time arguments ˇxes the form of the interaction functional LI . It should be
noted that this choice affects the propagators as well. The normal form obtained
by replacing operators by functions in the representation obeying L̂I = N [L̂I ]
(see [6] for details) is the most convenient here. For the T product this deˇnition
boils down to choosing the temporal step function equal to zero at the origin.
Thus, the practical rule to resolve this ambiguity sounds similar to that in the
Ito interpretation of the SDE [1], but it should be borne in mind that the latter
ambiguity has already been ˇxed by different means and there is no obligation
to make the same choice here. Henceforth, the normal form of LI is implied
together with the corresponding choice: Δ(t, t) = 0, Δ̃(t, t) = 0.

In quantum ˇeld theory we would have substitutions L̂ → −i(Ĥ − μN̂)/�,

ρ̂0 → e−(Ĥ−μN̂)/T /ZG, and the Green functions deˇned above would then be
replaced by Green functions at ˇnite temperature and give rise to the Keldysh
rules for the graphical representation of the perturbation expansion.
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Calculation of the trace in (33) may be reduced to the calculation of the trace
of a linear exponential, since

Tr
{
e−L̂0t0 ρ̂0 eL̂0t0 N [F (φ̂)]

}
=

= F

(
δ

δB

)
Tr

{
e−L̂0t0 ρ̂0 eL̂0t0 N eBφ̂

}∣∣∣
B=0

. (34)

The rules of construction and the form of the functional in the normal product
in (33) are similar in all cases of quantum ˇeld theory and stochastic problems.
The differences show in the result of the calculation of the ®expectation value¯
of the linear exponential operator in (34).

3.1. Expectation Value of the Linear Exponential in Coordinate Basis. It
is convenient to write out the linear exponential in terms of the operators π̂ and
ϕ̂ instead of the generic notation. Thus,

Tr
{

e−L̂0t0 ρ̂0 eL̂0t0 N eϕ̂A+π̂B
}

=

=
∫

dχ 〈χ| e−L̂0t0

∫
dϕ |p0〉〈ϕ| eL̂0t0 N eϕ̂A+π̂B|χ〉 =

=
∫

dχ

∫
dϕ

∫
dζ 〈χ| e−L̂0t0 |p0〉〈ϕ| eL̂0t0 |ζ〉〈ζ|N eϕ̂A+π̂B |χ〉. (35)

In the normal product the operators π̂(t) go to the left and ϕ̂(t) to the right as
suggested by the form of the Liouvillean. The convenient choice for the time
evolution of the free theory is given by the free Liouvillean in the form (K > 0)

L̂0 = −π̂Kϕ̂ (36)

with the time-dependent operators

π̂(t) = π̂ eKt, ϕ̂(t) = ϕ̂ e−Kt. (37)

Calculate ˇrst the matrix element of the normal product of the linear exponential
in the coordinate basis:

〈ζ|N
[
eϕ̂ A+π̂B

]
|χ〉 = 〈ζ| eπ̂B̃eϕ̂Ã|χ〉, (38)

where Ã =
∫

e−KtA(t) dt and B̃ =
∫

eKt B(t) dt. In the coordinate basis
the operator ϕ̂ is the multiplication operator, whereas the exponential of the
momentum operator is the translation operator. Therefore, (38) immediately
yields

〈ζ|N [eϕ̂ A+π̂B ] |χ〉 = δ(ζ − χ − B̃) eχÃ. (39)
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The matrix element 〈χ| e−L̂0t0 |p0〉 = p1(t0) in (35) is the solution of the ˇrst-
order partial differential equation[

∂

∂t
+ L̂0

]
p1(t, χ) =

[
∂

∂t
+

∂

∂χ
Kχ

]
p1(t, χ) = 0

with the initial condition p1(0, χ) = 〈chi|p0〉 = p0(χ). Thus,

〈χ| e−L̂0t0 |p0〉 = e−Kt0 p0(e−Kt0 χ). (40)

The matrix element of the other evolution operator in (35) yields the unity due
to probability conservation: ∫

dϕ 〈ϕ| eL̂0t0 |ζ〉 = 1.

Thus, the average of the linear exponential (35) is reduced to

Tr
{
e−L̂0t0 ρ̂0 eL̂0t0 N eϕ̂A+π̂B

}
=

=
∫

dχ

∫
dζ δ(ζ − χ − B̃) eχÃ e−Kt0 p0(e−Kt0 χ) =

∫
dχ eeKt0χÃ p0(χ), (41)

and for any operator functional F [π̂, ϕ̂] we obtain

Tr e−L̂0t0 ρ̂0 eL̂0t0 N {F [π̂, ϕ̂]} =
∫

dϕ p0(ϕ)F [0, nϕ], (42)

where nϕ = n(t, t0)ϕ = e−K(t−t0) ϕ. Therefore,

Gif (J) =
∫

dϕ p0(ϕ) exp
[

δ

δϕ1
Δ̃

δ

δπ1
+

δ

δϕ2
Δ

δ

δπ2
+

δ

δϕ1
n

δ

δπ2

]
×

× exp

⎡⎣ tf∫
ti

dt ϕ2(t)J(t) −
tf∫

t0

LI(π1, ϕ1) dt +

tf∫
t0

LI(π2, ϕ2) dt

⎤⎦
∣∣∣∣∣∣

πi=0
ϕi=nϕ

. (43)

It should be noted that here we have two sets of variables evolving in opposite
directions of time. This is usually referred to as the result of introduction of path-
ordered products of operators in the construction of the generating function (43).
The generic expression (43) in a ˇnite time interval is somewhat complicated
due to the lack of translation invariance in time. Therefore, it is convenient to
pass to the the limit tf → ∞, ti, t0 → −∞ and arrive at the Keldysh rules of
the graphical representation. Moreover, the dependence on the initial ˇeld in
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the exponential disappears Å provided the condition K > 0 holds Å and the
normalization condition of the PDF leads to

G(J) = exp
[

δ

δϕ1
Δ̃

δ

δπ1
+

δ

δϕ2
Δ

δ

δπ2
+

δ

δϕ1
n

δ

δπ2

]
×

× exp

⎡⎣ ∞∫
−∞

dt ϕ2(t)J(t) −
∞∫

−∞

LI(π1, ϕ1) dt +

∞∫
−∞

LI(π2, ϕ2) dt

⎤⎦
∣∣∣∣∣∣

πi=0
ϕi=0

. (44)

Inspection of diagrams of the model allows us to conclude that closed propagator
loops of the physical set of ˇelds π2, ϕ2 are cancelled due to the contribution
produced by the auxiliary set of ˇelds π1, ϕ1.

In ˇrst-order models, closed loops of the propagators Δ and Δ̃ vanish. The
contribution of ˇelds π1, ϕ1 is then reduced to a constant, and we obtain the
expression

G(J) =
[
exp

(
δ

δϕ2
Δ

δ

δπ2

)
exp (SI(π2, ϕ2) + ϕ2J)

] ∣∣∣∣
π2=0
ϕ2=0

, (45)

which is the functional representation of the generating function of the MSR ˇeld
theory.

In a similar fashion, the generating function for problem corresponding to
the second-order SDE may be cast in the form

G2 if (J) =
∫∫

dϕdv p0(ϕ, v) exp
[

δ

δϕ1
Δ̃

δ

δη1
+

δ

δϕ2
Δ

δ

δη2
+

δ

δϕ1
n2

δ

δη2

]
×

× exp

⎡⎣ tf∫
ti

dt ϕ2(t)J(t) −
tf∫

t0

LI(η1, ϕ1) dt +

tf∫
t0

LI(η2, ϕ2) dt

⎤⎦
∣∣∣∣∣∣

ηi=0
ϕi=n1ϕ+n2v

, (46)

where the functions ni are commutators of the Dirac ˇelds

n1(t, t′) = [ϕ̂(t), π̂(t′)] , n2(t, t′) = [ϕ̂(t), η̂(t′)] , n3(t, t′) = [v̂(t), η̂(t′)]

and, e.g., n3v = n3(t, t0)v, where v is the initial value of the ˇeld.

3.2. Expectation Value of the Linear Exponential in Occupation Num-
ber Basis. In case of master equation the form of the evolution operator is
just the same as in the case of FokkerÄPlanck equation, but the density oper-
ator is different. Operators â+ and â, speciˇc for this problem, shall be used
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in what follows

Tr
{

e−L̂0t0 ρ̂0 eL̂0t0 N eâB++â+B
}

=

=
∑

n

1
n!
〈n|P0〈P | eL̂0t0 eâ+B eâB+

e−L̂0t0 |n〉. (47)

Choose the free Liouville operator in the form

L̂0 = −
(
â+ − I

)
Kâ, (48)

for which the ®conservation of probability¯ holds:

〈P | eL̂0t0 = 〈P |,

because the projection vector is the left eigenstate of the creation operator

〈P |â+ = 〈P |.

The free Liouvillean (48) gives rise to time-dependent operators

â+(t) = â+ eKt + (1 − eKt), â(t) = â e−Kt. (49)

Therefore,

〈P | eL̂0t0 eâ+B eâB+
e−L̂0t0 |n〉 =

= exp
[∫

(1 − eKt)B(t) dt

]
〈P | eâ+B̃ eâB̃+

e−L̂0t0 |n〉, (50)

where B̃ =
∫
eKtB(t) dt and B̃+ =

∫
e−KtB+(t) dt. Pull now the operator

exponential eâ from 〈P | to the right by the rule

eââ+ = (â+ + I) eâ,

which boils down to the shift â+ → â+ + I in operators, through which the
coherent-state exponential is pulled:

〈P | eâ+B̃ eâB̃+
e−L̂0t0 |n〉 = 〈0| e(â++I) B̃ eâB̃+

e−L̂′
0t0 (â+ + I)n|0〉. (51)

The basis state |n〉 is an eigenstate of the shifted free Liouville operator (48):

L̂′
0 |n〉 = −â+Kâ |n〉 = −Kn |n〉;

therefore,
e−L̂′

0t0
(
â+ + I

)n |0〉 =
(
â+eKt0 + I

)n |0〉. (52)
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Combining (50), (51) and (52), we obtain

1
n!
〈n|P0〈P | eL̂0t0 eâ+B eâB+

e−L̂0t0 |n〉 =

= P (0, n) exp
[∫

B(t) dt

] [∫
e−K(t−t0) B+(t) dt + 1

]n

. (53)

Thus, the expectation value of the linear exponential (47) is

Tr
{

e−L̂0t0 ρ̂0 eL̂0t0 N eâB++â+B
}

=

=
∑

n

P (0, n) exp
[∫

B(t) dt

] [∫
e−K(t−t0) B+(t) dt + 1

]n

. (54)

The result for the expectation value of the normal form of an operator functional
F [â+(t), â(t)] may be written in a closed form with the use of the identity

xn =
n!
2πi

∮
C

exz

zn+1
dz,

where C is a closed Jordan contour encircling the origin of the complex z plane.
We obtain

Tr
(
e−L̂0t0 ρ̂0 eL̂0t0 N

{
F
[
â+(t), â(t)

]})
=

= F

[
δ

δB(t)
,

δ

δB+(t)

]
Tr

(
e−L̂0t0 ρ̂0 eL̂0t0 N eâB++â+B

)
B=B+=0

=

= F

[
δ

δB(t)
,

δ

δB+(t)

]
exp

[∫
B(t) dt

]
×

×
∑

n

P (0, n)
n!
2πi

∮
C

exp
[
z
(∫

e−K(t−t0) B+(t) dt + 1
)]

zn+1
dz

∣∣∣∣∣
B=B+=0

=

=
∑

n

P (0, n)
n!
2πi

∮
C

ez

zn+1
F [1, nz] dz =

1
2πi

∮
C

ezG̃(z)F [1, nz] dz, (55)

where nz = n(t, t0)z = e−K(t−t0)z. In (55) the shorthand notation

G̃(z) =
∑

n

P (0, n)n!
zn+1
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has been used on the right side. For the generating function we thus obtain the
representation

Gif (J) =
1

2πi

∮
C

ez G̃(z) exp
[

δ

δa1
Δ̃

δ

δa+
1

+
δ

δa2
Δ

δ

δa+
2

+
δ

δa1
n

δ

δa+
2

]
×

× exp

⎡⎣ tf∫
ti

dt a+
2 (t) a2(t)J(t) −

tf∫
t0

LI(a+
1 , a1) dt +

tf∫
t0

LI(a+
2 , a2) dt

⎤⎦
∣∣∣∣∣∣
a+

i =1
ai=nz

. (56)

Master equations have so far been applied to ˇrst-order models, in which closed
loops of the propagators Δ and Δ̃ vanish. The contribution of ˇelds a+

1 , a1 is
then reduced to a constant and we obtain the expression

Gif (J) =
1

2πi

∮
C

ezG̃(z) exp
[

δ

δa2
Δ

δ

δa+
2

]
×

× exp

⎡⎣ tf∫
ti

dt a+
2 (t)a2(t)J(t) +

tf∫
t0

LI(a+
2 , a2) dt

⎤⎦∣∣∣∣∣∣
a+
2 =1

a2=nz

. (57)

To restore translation invariance with respect to time, it is convenient to pass to the
the limit tf → ∞, ti, t0 → −∞. If the condition K > 0 holds, then dependence
on the initial condition in the exponential in (57) disappears. However, in master
equation problems a uniform initial density is often assumed, and in diffusion-
limited cases the wave-number dependent operator K then vanishes for the zero
wave-number and nz → δ(k)z in the limit t0 → −∞.

4. FUNCTIONAL INTEGRALS FOR STOCHASTIC FIELD THEORY

If the cancellation of closed loops of propagators in the perturbation expansion
of ˇrst-order models is taken as granted for the model, then we arrive at the
functional representation of the type (45), which may be cast into a functional
integral through the Gaussian representation of the differential operator:

exp
(

δ

δϕ
Δ

δ

δπ

)
=

= (det πΔ)−1
∫∫

DφDφ̃ exp
(
−φ̃Δ−1φ + φ̃

δ

δπ
+ φ

δ

δϕ

)
. (58)
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The result is the functional-integral representation for the generating function of
the MartinÄSiggiaÄRose theory:

G(J) =
∫∫∫

DϕDφDφ̃ p0(ϕ)×

× exp
[
−φ̃(∂t + K)φ + SI(φ̃, φ + nϕ) + (φ + nϕ)J

]
. (59)

Note the explicit appearance of the initial condition. Vanishing of propagator
loops, however, is not at all obvious in the functional integral, in which only the
differential operator but not the propagator is present. Therefore, the functional
representation with the two sets of ˇelds might be needed even in the ˇrst-
order case.

In representation of the generating function (43) with both sets of ˇelds
as a functional integral, care has to be exercised due to the fact that the nor-
mal contraction n is not a Green function, but a solution of the homogeneous
differential equation related to the free part of the Liouville operator. In partic-
ular, representation (58) cannot be used separately for each differential operator
in (43), because the normal contraction n does not have an inverse. In the matrix
interpretation of (58) the correspondence between the propagator matrix and the
differential operator matrix is highly ambiguous due to the presence of the normal
contraction n. Of course, it should be possible to ˇx this ambiguity by a suitable
choice of the measure of functional integration. However, at present there is no
consistent way to do this in the generic functional integral. In the framework
of perturbation theory, manipulations with the manner of introducing the integral
representation may be useful in deˇning a reasonable functional integral for the
the generating function (43).

To this end, it is proposed to use the following procedure, in which the inte-
gral representations are carried out with the use of operators possessing unique in-
verse operators. First, since the interaction functional LI in (43) is quadratic in π:

LI = πU(ϕ) +
1
2
π2b(ϕ)Db(ϕ),

we may write (time integrals on the right side are implied)

exp

⎡⎣− tf∫
t0

LI(π1, ϕ1) dt

⎤⎦ =

=
[
det 2π (∂t + K)−�b(ϕ1)Db(ϕ1)(∂t + K)−1

]−1/2 ×

×
∫
Dφ1 exp

{
−1

2
(∂t + K)φ1 [b(ϕ1)Db(ϕ1)]

−1 (∂t + K)φ1−
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− i(∂t + K)φ1

[
π1 + [b(ϕ1)Db(ϕ1)]

−1
U(ϕ1)

]
+

+
1
2
U(ϕ1) [b(ϕ1)Db(ϕ1)]

−1 U(ϕ1)
}

(60)

and

exp

⎡⎣ tf∫
t0

LI(π2, ϕ2) dt

⎤⎦ =

=
[
det 2π (∂t + K)−�b(ϕ2)Db(ϕ2)(∂t + K)−1

]−1/2 ×

×
∫

Dφ2 exp
{
−1

2
(∂t + K)φ2 [b(ϕ2)Db(ϕ2)]

−1 (∂t + K)φ2+

+ (∂t + K)φ2

[
π2 + [b(ϕ2)Db(ϕ2)]

−1
U(ϕ2)

]
−

− 1
2
U(ϕ2) [b(ϕ2)Db(ϕ2)]

−1
U(ϕ2)

}
. (61)

The point of extracting the free-ˇeld differential operators ∂t + K from the
integration variables in (60) and (61) will become clear shortly. The integration
ˇelds φ1 and φ2 are assumed to fall off rapidly in space and vanish at the initial
time instant: φ1(t0) = φ2(t0) = 0.

Second, the result of the action of the differential operator from (43) on the
π ˇeld may be calculated explicitly in this representation:

exp
[

δ

δϕ1
Δ̃

δ

δπ1
+

δ

δϕ2
Δ

δ

δπ2
+

δ

δϕ1
n

δ

δπ2

]
×

× exp

⎡⎣ tf∫
ti

dt ϕ2(t)J(t) −
tf∫

t0

LI(π1, ϕ1) dt +

tf∫
t0

LI(π2, ϕ2) dt

⎤⎦
∣∣∣∣∣∣

πi=0
ϕi=nϕ

=

=
∫
Dφ1

∫
Dφ2 exp

[
−i(∂t + K)φ1Δ̃� δ

δϕ1
+

+(∂t + K)φ2Δ� δ

δϕ2
+ (∂t + K)φ2n

� δ

δϕ1

]
×

×
[
det 2π Δ�b(ϕ1)Db(ϕ1)Δ

]−1/2 [
det 2π Δ�b(ϕ2)Db(ϕ2)Δ

]−1/2 ×

× exp
{

Jϕ2 −
1
2
(∂t + K)φ1 [b(ϕ1)Db(ϕ1)]

−1 (∂t + K)φ1−

− i(∂t + K)φ1 [b(ϕ1)Db(ϕ1)]
−1

U(ϕ1) +
1
2
U(ϕ1) [b(ϕ1)Db(ϕ1)]

−1
U(ϕ1)−
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− 1
2
(∂t +K)φ2 [b(ϕ2)Db(ϕ2)]

−1 (∂t +K)φ2 +(∂t +K)φ2 [b(ϕ2)Db(ϕ2)]
−1 ×

× U(ϕ2) −
1
2
U(ϕ2) [b(ϕ2)Db(ϕ2)]

−1 U(ϕ2)
}∣∣∣∣

ϕi=nϕ

, (62)

where the remaining derivatives with respect to ϕi give rise to shifts of the
functional arguments. The result for the generating function is

Gif (J) =
∫∫∫

DϕDφ1Dφ2 p0(ϕ)
[
det 2π Δ�b1Db1Δ

]−1/2 ×

×
[
det 2π Δ�b2Db2Δ

]−1/2
exp

{
J(φ2 + nϕ) − 1

2
(∂t + K)φ2 (b2Db2)

−1 ×

×(∂t +K)φ2−
1
2
(∂t +K)φ1 (b1Db1)

−1 (∂t +K)φ1−i(∂t+K)φ1(b1Db1)−1U1+

+ (∂t + K)φ2(b2Db2)−1U2 +
1
2
U1(b1Db1)−1U1 −

1
2
U2(b2Db2)−1U2

}
, (63)

where the shorthand notation

b1 = b(iφ1 + φ2 + nϕ), b2 = b(φ2 + nϕ),
U1 = U(iφ1 + φ2 + nϕ), U2 = U(φ2 + nϕ)

has been introduced. Cancellations of contributions from the graphs with direct
and inverse time �ows are now explicit in the functional integral (63). No operator
inversions have been carried out for this representation, and it is unambiguous
in this sense. This representation with ordinary number ˇelds only should be
more convenient numerically than the use of ghost ˇelds. Introduction of integral
representations similar to (60) and (61) in (63) leads to a representation similar
to the MSR theory:

Gif (J) =
∫

· · ·
∫
DϕDφ1 Dφ2 Dφ̃1 Dφ̃2 p0(ϕ)

[
det (2π)2 Δ�Δ

]−1 ×

× exp
{

J(φ2 + nϕ) − 1
2
φ̃2b2Db2φ̃2 + iφ̃2 [− (∂t + K)φ2 + U2]−

− 1
2
φ̃1b1Db1φ̃1 − φ̃1 [− (∂t + K) (iφ1 + φ2) + U1]

}
. (64)

The generating function of Green functions of the FokkerÄPlanck equation of
the Ito interpretation of the second-order SDE (3) may be obtained in a similar
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fashion in the form

G2if (J) =
∫

· · ·
∫
DϕDv Dφ1 Dφ̃1 Dφ2 Dφ̃2 p0(ϕ, v)×

× exp
[
J(φ2 + nϕ) − iφ̃2(m∂2

t + β∂t + K)φ2 + SI(iφ̃2, φ2 + nϕ)+

+ φ̃1(m∂2
t + β∂t + K)(iφ1 + φ2) − SI(φ̃1, iφ1 + φ2 + nϕ)

]
, (65)

in which the propagator determinants are omitted for brevity. The only difference
between (64) and (65) is the form of the free action. In representation (65) there
is no functional determinant, there are no ghost ˇelds, and the dynamic action is
local! Moreover, all variables are usual numbers; therefore, numerical evaluation
might be more straightforward and unambiguous than in other representations of
the generating function.

5. CONCLUSION

Functional representations for the generating function of Green functions of
stochastic problems stated either with the use of the FokkerÄPlanck equation
or the master equation have been constructed with the use of the operator ap-
proach of quantum ˇeld theory. Initial conditions are explicitly included in this
representation and the translation-invariant limit with respect to time discussed.
A representation of the generating function of the master equation in the form
of a functional integral is constructed with the generic initial condition for the
probability density function.

Solution of ˇrst- and second-order stochastic differential equations in the
framework of stochastic ˇeld theory has been analyzed. Ambiguities in the math-
ematical formulation of stochastic ˇeld theory arising from both the ambiguity of
the stochastic differential equation and the ambiguity of the functional representa-
tion are discussed. To resolve the former ambiguity, the FokkerÄPlanck equation
of a Markov process has been used as the starting point of the construction of the
stochastic ˇeld theory. The FokkerÄPlanck equation corresponding to the Ito in-
terpretation of the SDE is put forward as more convenient in practical calculations
than that corresponding to the Stratonovich interpretation. The latter ambiguity
gives rise to the determinant problem in the construction of the corresponding
functional integral. The ambiguity in the functional formulation is related to the
deˇnition of the time-ordered product at coinciding time arguments and is not
connected with the choice between Ito and Stratonovich interpretations. In the
framework of the Ito interpretation, it is argued that the most convenient choice
of the time-ordered product is to deˇne it as the normal product at coinciding
time arguments.
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The functional representation for the generating function of Green functions
allows one to generate the perturbation expansion without any reference to the
functional determinant. A representation of the generating function in the form
of a functional integral is constructed in a way in which the quadratic form
of the dynamic action is determined unambiguously. In this approach, a new
solution is proposed to the functional Jacobi determinant problem, in which by the
introduction of an additional set of variables a functional-integral representation
of the generating function is obtained with local action, but without any explicit
determinant and without ghost ˇelds.
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