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The one-dimensional Heisenberg model with S= 1/2 is treated with the use of the two
time Green's functions. The hierarchy of the equations of motion of the Green's functions 
is decoupled at a stage one-step further than Tyablikov's decoupling. The thermal average 
of the spin component, <Sz), is set to zero, because the long-range order does not exist in 
one dimension. Instead, our Green's functions are expressed in terms of the correlation 
functions cn=4<S0zSnz). The Green's function is essentially of the form representing undamped 
spin waves, whose spectrum depends on ct, c2 and one more parameter. They are determined 
by the requirement that c 1 and c2 should be self-consistent and that co should be unity. 
The self-consistency equations have been solved analytically at high- and low-temperature 
limits, and also solved numel:ically in the whole range of the temperature. Thermodynamic 
quantities have been calculated using these ·solutions. 

It has turned out that the theory gives the correct high-temperature expansion for the 
thermodynamic quantities and the correlation functions. The latter is expressed by 
en= (Jj4kBT)n. In the case of ferromagnetic coupling, the correlation function en at T=O 
is equal to 1/3 for all n's. This is what is expected from the correct ground state of the 
ferromagnetic Heisenberg system. The spin-wave spectrum at T=O also agrees with the 
correct one. At T4:;JfkB, we find that the specific heat goes as T 112 and the suscepti
bility goes as T- 2• The gross feature of the temperature-dependence of the thermodynamic 
quantities agrees with Bonner and Fisher. In the case of the antiferromagnetic Heisenberg 
model, we find cl=-0.55407 and c2=0.16100 at T=O, which are fairly close to the exact 
values. The thermodynamic quantities are also in gross agreement with Bonner and Fisher. 

§ 1. Introduction 

The one-dimensional Heisenberg system has been the subject of much 
theoretical and experimental efforts in recent years. It has been proved by Mermin 
and W agner1

) that such a system does not possess the long-rang order at any 
temperature. In some respect, this situation makes the theoretical treatment of 
this system difficult compared with that of the three-dimensional Heisenberg 
system. Because of the absence of the long-range order, both the molecular-field 
theory and the spin-wave theory, which have been so successful in three dimension, 
become useless. Intuitively, however, one may consider that at low temperatures 
the correlation between spins decreases only very slowly as the distance between 
them is increased. In other words, the spins are practically ordered when viewed 
locally. This would imply that the spin wave is still a practical entity, which 
may properly describe the excitation of the system. 
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808 J. Kondo and K. Yamaji 

In this paper, we propose a theory of spin waves which does not require 
the existence of the long-rang order. The theory is formulated solely in terms 
of the short-range orders (or the correlation functions). A previous theory of 
the Heisenberg model which invokes the existence of the long-range order is due 
to Tyablikov.2

) His decoupling procedure gives a spin-wave spectrum which 
depends on <Sz). Since <Sz) vanishes in one dimension, we make a decoupling 
at a stage one-step further than Tyablikov. Then, the averages such as <S0zS1z) 
and <S0zS2z) appear. The Green's functions then become of the form of undamped 
spin waves, whose spectrum depends on these parameters. The latter are 
determined by the self-co,nsistency requirement, and then the thermodynamic 
quantities are calculated using the solution. Thus, our procedure is analogous 
to the Nagaoka decoupling3

) in the problem of the exchange scattering in metals. 
For the ferromagnetic coupling, the spin-wave spectrum will turn out to be exact 
at T = 0. For the antiferromagnetic coupling, it is fairly close to the correct 
one. It will also turn out that our theory gives the correct high-temperature 
expansion of the thermodynamic quantities. A numerical solution of the self
consistency equations has been obtained, and with the use of it, the thermodynamic 
quantities have been calculated in the whole range of the temperature. They 
are in gross agreement with Bonner and Fisher's numerical calculation on a finite 
number of spins.4

) 

§ 2. Derivation of the basic equations 

Our Hamiltonian for the one-dimensional Heisenberg model reads 

N/2 

H= -J :E Sn·Sn+l, 
n=-N/2+1 

(1) 

where we assume S = 1/2. We use the formalism of the two-time Green's func
tion, whose time-Fourier transform satisfies the equation 

w«A; B))= (2n)-\[A, B])+«[A, H]; B)). (2) 

Here, [ J denotes the commutator and < ) denotes the thermal average. Let us 
consider a Green's function «So+; Sn-)), which satisfies 

w«S0+; Sn-))= (n)- 1ono<Soz)-J«Sozsl++Sozs~l-So+Slz_So+S~l; Sn-». (3) 

Tyablikov2
) proposed a decoupling such as «SozSl+; Sn -»~<Soz) · «Sl+; Sn -)). This 

is not a good approximation in one dimension, because it was proved by Mermin 
and Wagner1

) that the spontaneous magnetization <Sz) vanishes in one dimension. 
So, we write the equation of motion for Green's functions on the right-hand side 
of Eq. (3). Thus, for example, we have 

w«Sozsl+; Sn -» = (2n)- 1 {2onl<Sozslz)- Dno<So-S1 +)} 

+ J«Sozs2zsl+- SozS1zS2 + + tSl+So-S~1- iS1+ So+ S.::-1 + tS1+ -tSo+; Sn-». 
(4) 
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Green' s-Function Formalism of the Heisenberg Spin System 809 

Now, we decouple the Green's functions on the right-hand side of this equation. 

The simplest way to do this would be to set, for example, ((Sozs2zs1+; Sn-)) 

-'?<SozS2z)((S1+; Sn -)). It will turn out to be important to introduce a parameter 

a and set 

((SozS2zS1+; Sn-))-'?a<Sozs2z)((S1+; Sn-)), 

((Sl+So-S~l; Sn-))-'?a<Sl+so-)((S~l; Sn-))+a<So-S~l)((Sl+; Sn-)), etc. (5) 

The reason for the occurrence of a will be seen as 

((Sozs2zs1 +; Sn-))=((Sozs2z {a+ 2 (1- a) S1z} S1 +; Sn-» 

-'?<Sozs2z {a+ 2 (1- a) S1z} )((Sl+; Sn -)) 

=a<SozS/)((Sl+; Sn -)). (6) 

The first line of Eq. (6) is valid for an arbitrary a. For simplicity, we use 

the same a, wherever decoupling like Eq. (6) is introduced. 

We introduce the correlation function (or short-range order) en, which is 

defined by 

We also define Cn by 

Then, we find after the decoupling like Eq. (6) 

(J)((Soz S1 + + Soz S:!:1- So+ S1z- So+ S~1; Sn -)) 

en =0 1 2 ···) 
' ' ' 

= (An/2n) +J{t(l+cl+c2)((Sl++S_~-1; Sn-)) 

where 

- tc1((S2 + + S~2; Sn -))- (1 + c2) ((So+; Sn -))}, 

n=1, -1, 

n=O, 

otherwise. 

(7) 

(8) 

(9) 

(10) 

Equations (3) and (9) are easily solved by defining the Fourier transform 

of ((So+;Sn-)), I.e., 

Gk((J)) =2.:: einka«So-1-; Sn -)), (11) 
n 

where a Is the lattice spacmg. We find 

Gk((J)) = (c1J/n) (1-coska)j((J)2 -(J)k2
), (12) 

where 

(13) 
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810 J. Kondo and K. Y amaji 

We also find 

rk(w)=L: einka«sozs1+; sn-»= (c1/4n) (eika_1)w/(w2 -Q)k2
). (14) 

·n 

Gk and Tk as obtained in Eqs. (12) and (14) involve three parameters, ch c2 

and a. These are determined by requiring that c1 and c2 should be self-consistent 

and that c0 should be identically equal to unity (from definition (7)). From the 
relation ' 

we find 

where n(x) =1/(ex-1). We have set h=l. Three equations for n=O, 1, 2 are 

used to determine c1, c2 and a. Before describing how to determine these param

eters, we note that the averages such as (S0zS1+ Sn-) (n=/=0, 1) vanish in our 

formalism as they naturally should. This is seen by using Eq. (14) in the 

equation similar to Eq. (15), where ((So+; Sn-)) is replaced by ((S0z81+; Sn -». 

§ 3. High-t,emperature limit 

It Is convenient to introduce a dimensionless parameter f) by 

(17) 

It may be positive or negative, depending on the sign of J. At high temperature 

(jf)j~1), Eq. (16) may be solved iteratively by expansion in terms of e- 1
• We 

may set n (w/kBT) rvkBT I Q). we note that c1 rv{)-1 and c2"'"()-2, so Wk may be 

expauded in terms of c1 and c2• Then, Eq. (16) for n = 1 reads 

Similarly, Eq. (16) for n = 2 reads 

c2 = 4c1eN-1 .B e-2ika (1- c1 + c2- 2c1 cos ka )-1:::::::::.4c18c12
• 

1G 

Equation (16) for n=O reads l=c0 =4c10. From these results, we find 

a=l. (18) 

These values are identical to the direct high-temperature expansiOn of the cor

relation functions, which does not involve any approximation. Furthermore, one 

can show in the leading term in e- 1 that 

(19) 

This also agrees with the direct expansion of Cn. 
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Green~ s-Function Formalism of the Heisenberg Spin System 811 

§ 4. Low-temperature limit (J>O) 

In the low-temperature limit, Eq. (16) may be solved by expansion in terms 

of (}(or (} 112). The solution for J>O is quite different from that for J<O. In this 

section, we consider the case of J>O. 
We first note that, even at T = 0, it is not allowed to neglect n (wk/kBT) in 

Eq. (16). As we shall see later, 1-3Z\ + c2 tends to zero as T goes to zero. 

Then, wkock2 for small k. The first term of Eq. (16) (the part involving 

n (wk/kBT)) then becomes, for small k, 

(2c1J/N) ~ e-inka(1-cos ka) (kBT/wk2
) ocT~ k-2

, 

k k 

which is divergent for finite T. We shall see that 1- 3c1 + c2 tends to zero in such 

a way that the above srim remains finite as T goes to zero. 

We define o and wk by 

o = (1- 3c1 + c2) /4c1, 

Wx = 2 (2c1)112 J sin X (sin2x + o)112. 

Equation (16) is expressed by 

(x=ka/2) 

(20) 

(21) 

Cn = (2/rc) (2cl)112 {2 1"12 
sin X cos 2nx (sin2x + o)- 1

1
2n (wx!kBT) dx + Kn}' (22) 

where 

{ 

sin-1 (1 + o)-112
, n = 0' 

= - ol/2 + 0 sin-1 (1 + o)-112
, n = 1 ' 

- ol/2 (1 + 3o) + 0 (2 + 3o) sin-1 (1 + o)-112
, n = 2. 

(23) 

As o tends to zero, Kn (n>1) vanishes. The leading term of Cn (n>1) is, then, 

obtained from the first term of Eq. (22) by setting n(wx/kBT) to kBT/wx: 

en= (2/rc) (} 1"12 

cos 2nx/ (sin2x + o) dx 

= e{a c1 + o)} - 112 [1 + 2o -2{o(1 + o) P12r. (24) 

This is correct up to the leading term in (}, which is independent of n. So, we 

have Z\=c2 at T=O. From this result and o=O, we have c1=c2=1/2 at T=O. 
Then, from Eq. (24), we find 

o=4fP. (25) 

We need another relation between c1 and c2, which is obtained by making their 

difference. From Eq. (22), we have, in the leading term, 
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812 J. Kondo and K. Yamaji 

------- (24/n) (2c1)112 .[~r/
2 

x 3 (x2 + o)- 112n (wx/kBT) dx 

------- (24/n) (2c1)1f2fJ312 (2cl)-314 (n/8) I 

------- 3IfJ3/2 (26) 

with I= (2n)-112( (3/2) = 1.042, where ( is Riemann's zeta function. Equations (25) 
and (26) may be solved for c1 and c2, and we find 

cl = t- !IfJ3/2 + o (fJ2), 

c2 = t- firJ3/2 + o (fJ2). 

(27) 

(28) 

Our next task IS to determine a. From Eq. (22) for n = 0 and n = 1, we 
have 

a- c1----- (2/n) (2c1)112 { ~ IfJ312 + Ko- K1}. 

From Eq. (23), we have 

Ko-Kl =n/2+ 0 (fJ2
). 

Then, we find, within the terms of fJ 312, 

a= c1 + (2c1)112 {1 + IfJ312} 

=!- 2IfJ3f2. 

We arrive at our final results: 

c1 = c1/ a= i- 't-IfJ312, 

c2 = c2/ a= i- ?fifJ312 . 

This procedure has been put forward two-step further, resulting in 

c = 1-_ _ ~ Ie3/2 + 28e2 + {' C5/2) + 34 v12 r 1 e5/2 
1 3 9 9 2r;zrclJ2 3n J ' 

where 

I'= 1"" dxx- 112 {1/ (ex -1) -1/ x} 

= -2.593. 

§ 5. Low-temperature limit CJ<O) 

(29) 

(30) 

(31) 

(32) 

(33) 

In this case, c1 is negative. It is covenient to define o and Wx as follows: 

0 _ 1-3cl +c2 
4Jcll ' 

(34) 
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Green's-Function Formalism of the Heisenberg Spin System 813 

(35) 

Equation (16) reads 

Cn = (2/n)(2IZ\IY12 {21
1112 

sin x cos 2nx(cos2x + o -1)-112n (w:c/kBT) dx + Ln}, 

(36) 

where 

{

log {(I+ o112
) / (o -IYI2

}, 

= ol/3- o log { (1 + ol/2) I Co -1)112}, 

- (3o- 2) L1- o1
/

2
, 

n=O, 

n=l, 

n=2. 

(37) 

(38) 

Contrary to the ferromagnetic case, a remains greater than unity at all the 
temperatures, and so the integral in Eq. (36) vanishes as T goes to zero. The 
leading term of the integral at low temperatuTes is in T 2 and is expressed by 
(n2/48)fP/Icdo 312

• This result and Eq. (38) may be put into Eq. (36) for n=l 
and 2, and they may be solved for Z\ and c2• We find 

!c1l =0.97206+ 2.140\ c2 =0.28246 + 1.5902
• 

These results are put into Eq. (36) for n = 0, and '~Te find 

a= 1.75441 + 3.962
• 

So, we obtain finally 

lc1i =0.55407 -0.027990\ 

§ 6. Numerical solution at arbitrary temperatures 

(39) 

(40) 

At arbitrary temperatmes, we have solved Eq. (22) and Eq. (36) numerically. 
The results for c1 and c2 in the ferromagnetic case are shown in Fig. 1. The 
points represent the direct high-temperature expansion which does not involve 
any approximation such as our decoupling. B-F means the result obtained by 
Bonner and Fisher numerically for a chain of 11 spins. The results for J <O 
are shown in Fig. 2. The points again represent the direct high-temperature 
expansiOn. B-F means the estimated limit for infinite number of spins as obtained 
by Bonner and Fisher. 

§ 7. Discussion of the results (J>O) 

From Eq. (22), one sees that, at a finite temperature, en tends to zero as n~ 
oo. On the other hand, one sees from Eq. (24) that, for a fixed n, en tends to 
1/3, irrespective of n, as T tends to zero. This is the value which is ex-
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oL-L-L-L-~~~~~_J~~~~~~~~~=±~~~=±~ 

0 2 4 5 
e 

Fig. 1. Correlation functions vs () = k B T I J for the one-dimensional ferromagnetic Heisenberg 
system. The lines are the results of numerical solution of Eq. (22). The points rep
resent direct high-temperature expansion. B-F represents Bonner and Fisher's numerical 
calculation on a chain of 11 spins. 

0.7 .-------------------------------------------------~ 

0.5 

0.3 

0,2 

0.1 

0 
lei 

J<o 

. --·--· ----·---·--
2 

Fig. 2. Correlation functions vs I(} I= k B T I I Jl for the one-dimensional antiferromagnetic 
Heisenberg system. The lines are the results of numerical solution of Eq. (36). The 
points represent direct high-temperature expansion. B-F represents the estimated limit 
for infinite number of spins as obtained by Bonner and Fisher. 

pected for the correct ground state of the ferromagnetic Heisenberg system, 
which does not possess spontaneous magnetization. Furthermore, we note that, 
at T=O,the spin-wave spectrum becomes cok=J(1-coska), because Z\=c2=1/2 
at T = 0. This is also the correct spin wave spectrum of the ground state. At 
:finite temperatures, Eq. (13) implies cokock for small k. 

Let us now discuss thermodynamic properties. The internal energy is the 
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Green' s-Function Formalism of the Heisenberg Spin Systent 815 

average of the Hamiltonian (1), and is expressed by E = - (3/ 4) c1JN. In Fig. 
3, (E- E (0)) / JN is plotted vs e. Curve (a) represents the result of numerical 
computation. Curve (b) is obtained from the low-temperature expansion (30). 
It is to be noted that the numerical 'result 
(a) approaches the low-temperature asymptote 
(b) only very slowly. However, if one uses 
Eq. (32), one finds a good agreement with 
Curve (a) up to 8.:::::::::0.01. The specific heat 
is obtained by differentiating E with respect 
to T. Curve (a) of Fig. 4 represents the 
numerical result. Lines (b) and (c) represent 
high- and low-temperature asymptote, respec
tively. The low-temperature asymptote Is 
obtained from Eq. (30) as 

C=NkB(5/8)18112
• (41) 

This is 5/6 times what the simple spm-wave 
theory predicts, and is close to what Bonner 
and Fisher suggested from their numerical 
calculation on finite number of spins. The 
points (d), represent Bonner and Fisher's 
result for a chain of 11 spins. The calcu
lated value of entropy per spin at T =infinite 

c 
Nf<s 

J>O 

Fig. 3. The internal energy vs O=kBTIJ 
for the one-dimensional ferromagnetic 
Heisenberg system. Curve (a) is ob
tained from numerical solution of Eq. 
(22). Curve (b) represents the low
temperature asymptote obtained from 
Eq. (30). 

-3 
10 ,~6,~~~~~~10~-.~~~~~~,0~_,--~~--~U---~~~~,0 

e 
Fig. 4. The specific heat of the one-dimensional ferromagnetic Heisenberg system vs O=kBT/J. 

Curve (a) is obtained from numerical solution of Eq. (22). Curves (b) and (c) represent 
the high- and low-temperature asymptote, respectively. The points (d) represent Bonner 
and Fisher's result for a chain of 11 spins. 
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102 .-~.---------------------------~-------------. 

J>O 

10 

1 -

G 

Fig. 5. ~-1 vs O=kBTIJ for the one-dimensional ferromagnetic Heisenberg system. ~ is 
proportional to the Curie constant and approaches unity at high temperatures. Curve 
(a) represents the numerical calculation based on Eq. (22). Curves (b) and (c) represent 
high- and low-temperature asymptote, respectively. Both of them have the slope of -1. 
The points (d) represent Bonner and Fisher's numerical calculation for a chain of 11 spins. 

IS 0.56, which is rather close to the exact value log 2. 
Let us next consider the magnetic susceptibility, which Is expressed by 

X= (N92/1B214kBT) ~ Cn 
n 

(42) 

From Eq. (16), we have 

~ = 2c1J lim { (1- cos ka) I wk} {2n (wkl kB T) + 1} 
k->0 

= 4cdJ I (1 - 3c\ + z:;}>-- (43) 

At high temperatures, one finds from Eq. (16) C:t;:::: (11 48) (1 -11 48) and hence 

~=1+1128. At low temperatures, one finds ~= (413)814ila=1l68. Thus ~-1-
is proportional to 8-1 in both limits with different numerical factors. In Fig. 5, 
~ -1 is plotted vs 8 together with two asymptotes. Between the two asymptotes, 
the slope is approximately -415. This is what was suggested by Bonner and 
Fisher. They also suggested that the true low-temperature asymptote may set 
m below 8 = 0.1. Our result indicates that it may actually set in at (j as small 
as 10-3

• 

§ 8. Discussion of the results CJ<O) 

In the antiferromagnetic linear chain, the exact value of c1 at T = 0 is 
- 0.59086.5

) Bonner and Fisher found c2 = 0.25407 for a chain of 10 spins. 
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Green' s-F unction Formalism of the Heisenberg Spin System 817 

This is expected to be close to correct limit 
of infinite number of spins. Our results, 
Eq. (40), compare with these values fairly 
well. The spin-wave spectrum, Eq. (13), 
is linear in k, for small k, and at T=O, we 
have wk=1.441Jika. This is also close to 
the exact value at T=O obtained by des 
Cloizeaux and Pearson,6

) i.e., wk = (rc/2) IJI 
X I sin kal. At larger k values, however, 
Eq. (13) deviates from the exact value. 
Especially, Eq. (13) does not possess double 
periodicity of I sin kal. 

The internal energy IS plotted vs I e I in 
Fig. 6, where the low-temperature asymptote 
as obtained from Eq. (40) is also shown. 
Contrary to the ferromagnetic case, the 
numerical result approaches the asymptote 
very rapidly. The specific heat is shown 
in Fig. 7 together with Bonner and Fisher's 
estimate based on their numerical calculation 
on :finite number of spins. They agree fairly 
well except at the lowest temperatures, where 

0 
lSI 

0.5 

104 

I 81 1 2 5 10 

Fig. 6. The internal energy of the one
dimensional antiferromagnetic Heisen
berg system vs IOI=kBTfiJI. Curve 
(a) is obtained from numerical solution 
of Eq. (36). Curve (b) represents the 
low-temperature asymptote obtained 
from Eq. (40). 

Fig. 7. The specific heat of the one-dimensional antiferromagnetic Heisenberg system vs 
IOI=kBTfiJJ. Curve (a) is obtained from numerical solution of Eq. (36). Curve (b) 
represents the high-temperature expansion C= (3jl6)NkB(0-2 -lH/2).Curve (c) is Bonner 
and Fisher's estimate based on their numerical calculation on finite number of spins. 
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X IJI 
Ng2~: 

0.1 

0 
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J<O 

IBI 

Fig. 8. The magnetic susceptibility of the one-dimensional antiferromagnetic Heisenberg 
system vs IOI=kBT/IJI. Curve (a) is the result obtained from numerical solution of 
Eq. (36). The points (b) represent the high-temperature expansion X= (Ng2p.B2/4kBT) 
X (1+1/20). Curve (c) represents Bonner and Fisher's estimate based on their calculation 
on finite number of spins. 

our theory predicts the linear dependence on T with a coefficient much smaller 
than Bonner and Fisher's. This may be related to the approximate nature of 
our spin-wave spectrum at low temperatures. The calculated value of entropy 
per spm at T =infinite is 0.50. 

Our result of the susceptibility is shown in Fig. 8 together with Bonner and 
Fisher. They agree fairly well except at the lowest temperatures, where our 
curve shows an upward turnover. 

§ 9. Conclusion 

We have proposed a theory of spin waves which involves solely the short
range order and does not require the existence of the long-range order. We 
have seen that the theory gives reasonable gross features of the thermodynamic 
properties at all the temperatures for both signs of the exchange. 
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