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GREEN'S FUNCTION OF THE CLAMPED PUNCTURED DISK
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Abstract

If a thin elastic circular plate B: | z | < l is clamped (simply supported,
respectively) along its edge \z\ = 1, its deflection at z e B under a point load
at £ e B, measured positively in the direction of the gravitational pull, is the
biharmonic Green's function fi(z, £) of the clamped plate (y(z, £) of the simply
supported plate, respectively). We ask: how do jS(z, £) and y(z, £) compare
with the corresponding deflections /?0(z, £) and yo(z, £) of the punctured
circular plate B0:0<\z\<l that is "clamped" or "simply supported",
respectively, also at the origin? We shall show that y(z, £) is not affected
by the puncturing, that is, y{ •, £) = yo( •, £)> whereas jS( •, £) is:

PA*. 0 = |8(z, D - l&rfl*, 0) /5(C, 0)

on BoxBo. Moreover, while /?(•,£) is of constant sign, $)(•>£) ' s n o t -
This gives a simple counterexample to the conjecture of Hadamard [6] that
the deflection of a clamped thin elastic plate be always of constant sign:

The biharmonic Green's function of a clamped concentric circular annulus
is not of constant sign if the radius of the inner boundary circle is sufficiently
small.

Earlier counterexamples to Hadamard's conjecture were given by Duffin
[2], Garabedian [4], Loewner [7] and Szeg6 [9]. Interest in the problem was
recently revived by the invited address of Duffin [3] before the Annual
Meeting of the American Mathematical Society in 1974. The drawback of
the counterexample we will present is that, whereas the classical examples
are all simply connected, ours is not. In the simplicity of the proof, however,
there is no comparison.

1. Clamping and simple supporting

First we make precise what we mean by clamping and simple supporting at the
isolated point O. Denote by 2?8the annulus s < \ z \ < 1 for s e(0,1). The corresponding
biharmonic Green's function /?8(z, £) (ys(z, £), respectively) of the clamped (simply
supported, respectively) annulus B8 is characterized by

A2j3a(-,£) = 8C (A 2
n ( - , 0 = Sf, respectively) (1)
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on Bs, and

J -, 0 = 0, respectively) (2)

on the boundary 8Ba of Ba. Here A is the Laplace-Beltrami operator
-(82/8x2 + 8*/8y2), Sf is the Dirac delta at t,sBs, and 8/8n denotes the inner
normal derivative (for example, Bergman and Schiffer [1]). We will define j30(-, 0
and yo('» 0 a s t n e limits of &(•, 0 and ys(-, 0 , respectively, as s->0.

2. Simply supported punctured disk

Denote by ga(-,Q the harmonic Green's function of Bs with pole £eBs, and by
g(-, 0 t n a t of B. By the maximum principle and the Riemann removability theorem,
OK'J O~Ssi'> 0} converges decreasingly and uniformly to zero on each compact
subset of B—0 as s-+0, and

2TT Z — £

In view of (1) and (2), we have

yg(z, 0 = I gJiWi^Saty'Qdudv (w = u + iv) (3)
JB.

on JBS x B8. On letting •?-» 0 we see that

yo(z, 0 = lim y«(z> 0 (4)

exists uniformly on each compact subset of Bo x Bo, and

Yo(z>O = g(w,z)g(w,Qdudv. (5)
JBO

On the other hand, since A2y(-, 0 = ^ on B and y(-, 0 = Ay(-, 0 = 0 on 8B,

On comparing the right-hand sides of (5) and (6) we conclude that

Yo(z, 0 = y(z, 0 (7)

on Bo x Bo, that is, simple supporting at a single point does not have any effect on
the deflection of a simply supported disk. This result agrees with physical intuition:
if we place the tip of a needle under a very thin plate that is simply supported along
its periphery, and then put a point load on the plate, the plate will be pierced by the
needle.
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3. Clamped punctured disk

In contrast with the above, what happens to /?„(-, £) is somewhat surprising.
Denote by Hs(-, £) = Aj3s(-, £) the ^-density of &(•, £)• It is readily deduced from
Stokes' formula that Hs(-, £)1 H2(BS), that is

U (8)

for any h in the class HZ(B^ of square integrable harmonic functions on Bs (cf. [8]).
As consequences of (8) we easily obtain

&(z,0 = f HJLw,z)HJLw,Qdudv,
JB.

O-^C-.OII^II^C-.OIP-II^CsDII2 (0<t<s<\),

where ||-|| is the L2-riorm on B and functions here and hereafter are defined to be
zero outside their genuine domains of definition. It follows that

jS0(z, 0 = lim&(2, 0 (10)
8->0

exists uniformly on each compact subset of B— O. If we denote by

the ^-density of j30(-, 0 , then by (8) and (9),

H0(-,01H2(fi0),

lim||//0(-, 0--W/-, Oil = 0,
O""0 (11)

j90(z,D= [ H0(w,z)H0(w,Qdudv= f H0(w,z)K(w,Qdudv,
JBo JBo

where K(-, 0 is any square integrable function on Bo with AK(-, 0 = S? on B.

4. Clamped disk

The function 0(-, 0 is defined by A2 jS(-, 0 = S{on5andj3(-, 0 = ^(-, Q/dn = 0
on dB. An explicit expression for jS(-, £) is known (for example, Garabedian [5]):

02)
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on B x B. Our immediate aim is to express /?0(z, £) in terms of jS(z, £). The basis
of our computation is the first relation (11) and its counterpart //(•, £)±H0{B),
where H(-, Q = Afl(-, Q is the /J-density of £(•,£)• The latter orthogonality
relation implies that

j8(z, Q = f H(w,z)H(w, Qdudv = f i/(>v,z)g(w, Odinfo (13)

on BxB. Since H(-,Q — Ho(•, '£) is harmonic on 2?0 and square integrable over Bo,
we have

# ( « « O-Ho(reil>, 0 = <«(r) + 6+ S ( S cBm5nm(0))r» (14)
n=l \m=l /

with uniform convergence on each compact subset of 5 - 0 . Here a,b and cnm

are constants, g(r) = g(r,0) = -(l/27r)logr, Snl(0) = cosn^, and 5n2(^) = sinnfl
for n = 1,2,.... We denote by (•, •) the inner product on L2(B) and by |f-ff̂ . the
norm on L^B). Since hnjreie) = Snm(9)rn is in the class H2(B)czH2(B0), and

0-H0(-, 0,hnm) = 0

and cnm = 0 for every n and m. Observe that

By virtue of 1 e H2(B)<= H2(B0) and geH2(B0) (but g$H2(B)), these equations
take the form

In view of H l̂d = 1/4 and||#||2 = l/8w, we obtain a = 16TTJ8(£,O) and b = -4/5(f,O).
By (14), we conclude that

H0(-,Q = H{;, 0-16nptt,0)g(-,O) + 4J8(C,O) (15)

on i?0. We take the inner product of each side of (15) with H(-,z) and obtain by (13)
the following main identity of the present study:

ft(z, 0 = i8fe 0 - 16T7)8(Z) 0)j3(f, 0) (16)

on Bo x 50. This is the required representation of /?0 in terms of jS.
By (12), j8(z, £)>0 on BxB, and a fortiori,
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on Bo x BQ. Thus adding to the clamping at the periphery, the clamping at a single
point O does have a noticeable effect on the resulting deflection. Compared with
the case of y0, this result is quite intriguing.

We now analyse the boundary behavior of j30 in some more detail, with a view
on our main identity (16).

5. Boundary behaviour

By (12) and (16), we have A2j30(-, Q = S? on Bo and &(•, Q = Wot, Q/dn = 0
on 8B: \z\ = 1. Thus both clamping conditions are satisfied at the outer boundary
8B. By (12), J3(O,O) = 1/16TT, and by (16) and the symmetry of ft

j30(0, 0 = lim/30(2, 0
s-»0

= 0(0, 0 -16^(0,0) jS(£, 0) = 0, (17)

that is, the first clamping condition is satisfied at the inner boundary z = 0.
We proceed to examine the second condition. Denote by 8jdne the directional

derivative in the direction eie, that is,

(18)

Again by (16),

vng vrig 8tlg

Since fi(teie, 0) = (81T)-1 [t2 log t + \(f -1)] for t > 0, we have

m o ) l i m

and, therefore,

By (12) we see that J3(z, 0 is real analytic in the neighbourhood |z\<\ £| of z = 0
and a fortiori,

dn0

Using the explicit representation (12) for /}(z, 0 . we obtain by direct calculation

^-]80(0, 0 = jj^l ^ | ( | ^|2-21og| t\- l)cos(0-arg 0- (20)

Thus the "normal derivative" of 0o(z, £) at z = 0 does not vanish identically, and
the second clamping condition is not satisfied. However, this failed "clamping"
will conveniently serve to disprove Hadamard's conjecture, as we shall now see.
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6. Hadamard's conjecture

Hadamard [6] conjectured that the Green's function of a clamped thin elastic
plate cannot take on negative values. We give here a simple counterexample based
on ]S0(z, £)• Observe that for any £,eBQ,

| £ | a - 2 1 o g U | - l > 0 .

From this and (20) we see that

sign
vne 0=arg £

This means that /S0(z, £) takes values of opposite sign on line segments

{z; 0<|z |<a,argz = 7r+arg^} and {z; 0<|z|<o-,argz = arg£}

(21)

for a sufficiently small ae(0,1). This rather agrees with our intuition provided
A)(0, 0 — 0» a fact which, however, is not clear a priori.

By (10) we see that #,(•, £) converges to /?0(-, £) uniformly on each compact
subset of Bo and therefore, /?g(-, 0 takes on values of nonconstant sign along with
/30 (•, 0 if J > 0 is sufficiently small. Thus we have the following

COUNTEREXAMPLE TO HADAMARD'S CONJECTURE. The Green's function of a
clamped concentric circular annulus is of nonconstant sign if the radius of the inner
boundary circle is sufficiently small.
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