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ABSTRACT

The term seismic interferometry refers to the principle of
generating new seismic responses by crosscorrelating seis-
mic observations at different receiver locations. The first ver-
sion of this principle was derived by Claerbout �1968�, who
showed that the reflection response of a horizontally layered
medium can be synthesized from the autocorrelation of its
transmission response. For an arbitrary 3D inhomogeneous
lossless medium it follows from Rayleigh’s reciprocity theo-
rem and the principle of time-reversal invariance that the
acoustic Green’s function between any two points in the me-
dium can be represented by an integral of crosscorrelations of
wavefield observations at those two points. The integral is
along sources on an arbitrarily shaped surface enclosing
these points. No assumptions are made with respect to the dif-
fusivity of the wavefield. The Rayleigh-Betti reciprocity the-
orem leads to a similar representation of the elastodynamic
Green’s function. When a part of the enclosing surface is the
earth’s free surface, the integral needs only to be evaluated
over the remaining part of the closed surface. In practice, not
all sources are equally important: The main contributions to
the reconstructed Green’s function come from sources at sta-
tionary points. When the sources emit transient signals, a
shaping filter can be applied to correct for the differences in
source wavelets. When the sources are uncorrelated noise
sources, the representation simplifies to a direct crosscorrela-
tion of wavefield observations at two points, similar as in
methods that retrieve Green’s functions from diffuse wave-
fields in disordered media or in finite media with an irregular
bounding surface.

INTRODUCTION

It has been shown by many authors that the crosscorrelation of
wo recordings of a diffuse wavefield at two receiver positions leads
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o the Green’s function that would be observed at one of these receiv-
r positions if there were an impulsive source at the other. The diffu-
ivity of the wavefield can be due to a random distribution of uncor-
elated noise sources �Weaver and Lobkis, 2001, 2002; Wapenaar et
l., 2002, 2004b; Shapiro and Campillo, 2004; Shapiro et al., 2005;
oux et al., 2005�, reverberations in an enclosure with an irregular
ounding surface �Lobkis and Weaver, 2001�, multiple scattering
etween heterogeneities in a disordered medium �Campillo and
aul, 2003; Derode et al., 2003a; van Tiggelen, 2003; Malcolm et al.,
004; Snieder, 2004�, or any combination of these causes.

Diffusivity of the wavefield is not a necessary condition for the re-
rieval of the Green’s function by means of correlation. Claerbout
1968� showed that the autocorrelation of the transmission response
f an arbitrary horizontally layered lossless earth yields its reflection
esponse. This result has been generalized for three-dimensional in-
omogeneous media by the authors �Wapenaar et al., 2002, 2004b�.
t appeared that the reflection response between a source and receiv-
r at two positions at the earth’s free surface can be expressed as an
ntegral of crosscorrelations of transmission responses observed at
he same two surface positions; the integral is along sources at some
ubsurface level. Since the reflection response of a medium relates
owngoing to upgoing waves, it can be seen as the Green’s function
f the coupled one-way wave equations for downgoing and upgoing
aves. In the above mentioned papers the relation between the re-
ection response and the correlation of the transmission responses
as derived from a reciprocity theorem for the one-way wave equa-

ions. For this derivation it was not necessary to make any assump-
ions about the diffusivity of the wavefield. In the same papers we
lso derived a variant of the relation for the situation of uncorrelated
oise sources in the subsurface �hence, for a specific type of diffuse
avefield�. This led to a direct relation between the reflection re-

ponse and the crosscorrelation of the transmission responses, with-
ut the integral along the sources. With the latter relation we con-
rmed a conjecture of Claerbout for the 3D situation. Following
chuster �2001�, we use the term seismic interferometry for the pro-
ess of generating new seismic responses by crosscorrelating seis-
ic observations at different receiver locations.
Since a reflection response is the Green’s function of the one-way
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SI34 Wapenaar and Fokkema
ave equations, it is quite natural to employ one-way wave theory
or the derivation of interferometric relations. In one of the above-
entioned papers �Wapenaar et al., 2004b�, we presented an exten-

ive overview of relations between reflection and transmission re-
ponses of 3D inhomogeneous media, based on reciprocity theorems
or the one-way wave equations. However, these theorems also in-
olve some restrictions with respect to the configuration. The main
nderlying assumption is that the boundary of the considered do-
ain consists of two parallel horizontal surfaces, one of them usual-

y coinciding with the earth’s surface and the other being some arbi-
rary horizontal subsurface level �in general, not coinciding with a
hysical boundary�. Although in practice this assumption can be
omewhat relaxed, it implies a restriction with respect to the applica-
ions in seismic interferometry. Another complication of the one-
ay interferometric relations is that they apply to downgoing and
pgoing wavefields. Hence, wavefield decomposition is required
rior to employing one-way interferometry.

In the current paper we give an overview of representations of
reen’s functions in terms of crosscorrelations of full wavefields in

rbitrary configurations �Wapenaar, 2004; Weaver and Lobkis,
004; van Manen et al., 2005� and discuss modifications for their ap-
lication in seismic interferometry. Note that the term Green’s func-
ion is often associated with a solution of the wave equation for an
mpulsive point source in a background medium. Throughout this
aper, however, we mean by Green’s function the response of an im-
ulsive point source in the actual medium. Similar to our derivations
f the relations between the reflection and transmission responses
e make no assumptions with respect to the diffusivity of the wave-
eld; the situation with uncorrelated noise sources is handled as a
pecial case. We consider the acoustic as well as the elastodynamic
ituation. The paper is set up in such a way that the sections on the
lastodynamic representations can be read independently from those
n the acoustic representations.

ACOUSTIC RECIPROCITY THEOREMS

A reciprocity theorem relates two independent acoustic states in
ne and the same domain �de Hoop, 1988; Fokkema and van den
erg, 1993�. Consider an acoustic wavefield, characterized by the
coustic pressure p�x,t� and the particle velocity vi�x,t�. Lower-case
atin subscripts take on the values 1, 2 and 3; furthermore, x
�x1,x2,x3� denotes the Cartesian coordinate vector �as usual the

3-axis is pointing downward� and t denotes time. We define the tem-
oral Fourier transform of a space- and time-dependent quantity
�x,t� as

p̂�x,�� = �
−�

�

exp�− j�t�p�x,t�dt , �1�

here j is the imaginary unit and � the angular frequency. In the
pace-frequency domain, the acoustic pressure and particle velocity
n a lossless arbitrary inhomogeneous fluid medium obey the equa-
ion of motion

j��v̂i + �ip̂ = f̂ i �2�

nd the stress-strain relation

j��p̂ + � v̂ = q̂ . �3�
i i

Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
ere �i denotes the partial derivative in the xi-direction �Einstein’s
ummation convention applies for repeated subscripts�, ��x� is the
ass density of the medium, ��x� its compressibility, f̂ i�x,�� the ex-

ernal volume force density, and q̂�x,�� a source distribution in
erms of volume injection rate density. We consider the interaction
uantity �de Hoop, 1988�

�i�p̂Av̂i,B − v̂i,Ap̂B� , �4�

here subscripts A and B are used to distinguish two independent
coustic states. Rayleigh’s reciprocity theorem is obtained by substi-
uting the equation of motion �equation 2� and the stress-strain rela-
ion �equation 3� for states A and B into the interaction quantity
equation 4�, integrating the result over an arbitrary spatial domain D
nclosed by boundary �D with outward pointing normal vector n
�n1,n2,n3�, and applying the theorem of Gauss. This gives

�
D

�p̂Aq̂B − v̂i,Af̂ i,B − q̂Ap̂B + f̂ i,Av̂i,B�d3x

= �
�D

�p̂Av̂i,B − v̂i,Ap̂B�nid
2x �5�

Rayleigh, 1878; de Hoop, 1988; Fokkema and van den Berg, 1993�.
e call this a reciprocity theorem of the convolution type since the

roducts in the frequency domain �p̂Av̂i,B, etc.� correspond to convo-
utions in the time domain.

Because the medium is assumed to be lossless, we can apply the
rinciple of time-reversal invariance �Bojarski, 1983; Fink, 1997�.
n the frequency domain, time-reversal is replaced by complex con-
ugation. Hence, when p̂ and v̂i are a solution of the equation of mo-
ion and the stress-strain relation with source terms f̂ i and q̂, then p̂*

nd − v̂i
* obey the same equations with source terms f̂ i

* and − q̂* �the
sterisk denotes complex conjugation�. Making these substitutions
or state A we obtain

�
D

�p̂A
* q̂B + v̂i,A

* f̂ i,B + q̂A
* p̂B + f̂ i,A

* v̂i,B�d3x

= �
�D

�p̂A
* v̂i,B + v̂i,A

* p̂B�nid
2x . �6�

e call this a reciprocity theorem of the correlation type because the
roducts in the frequency domain �p̂A

* v̂i,B, etc.� correspond to correla-
ions in the time domain.

Note that for both theorems we assumed that the medium parame-
ers in states A and B are identical. de Hoop �1988� and Fokkema and
an den Berg �1993� discuss more general reciprocity theorems that
ccount also for different medium parameters in the two states.

ACOUSTIC GREEN’S
FUNCTION REPRESENTATIONS

pen configuration

In this section, we substitute Green’s functions for the wavefields
n both acoustic reciprocity theorems. We show that the reciprocity
heorem of the convolution type �equation 5� thus leads to the well-
nown acoustic source-receiver reciprocity relation, whereas the
eciprocity theorem of the correlation type �equation 6� yields acous-
ic Green’s function representations, which are the basis for seismic
SEG license or copyright; see Terms of Use at http://segdl.org/
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Green’s function representations SI35
nterferometry. We consider an open configuration. The domain D
ith boundary �D is a subdomain of this open configuration; the
oundary �D does in general not coincide with a physical boundary.
We choose impulsive point sources of volume injection rate in

oth states, according to

qA�x,t� = ��x − xA���t� , �7�

qB�x,t� = ��x − xB���t� , �8�

r, in the frequency domain,

q̂A�x,�� = ��x − xA� , �9�

q̂B�x,�� = ��x − xB� , �10�

ith xA and xB both in D; the external forces are chosen equal to zero
n both states. The wavefields in states A and B can thus be expressed
n terms of acoustic Green’s functions, according to

p̂A�x,�� � Ĝ�x,xA,�� , �11�

v̂i,A�x,�� = − �j���x��−1�iĜ�x,xA,�� , �12�

p̂B�x,�� � Ĝ�x,xB,�� , �13�

v̂i,B�x,�� = − �j���x��−1�iĜ�x,xB,�� . �14�

he Green’s function Ĝ�x,xA,�� is the Fourier transform of the caus-
l time-domain Green’s function G�x,xA,t�, which represents an im-
ulse response observed at x, due to a source at xA. According to
quation 11, the observed wavefield quantity at x is acoustic pres-
ure; according to equation 9, the source at xA is a volume injection
ate source. Similar remarks hold for Ĝ�x,xB,��. Other choices for
he observed quantity at x and the source type at xA and xB are possi-
le but will not be considered here because we prefer to keep the no-
ation for the acoustic Green’s functions simple. In the sections on
he elastodynamic Green’s function representations, we employ a

odified notation that accounts for different observed wavefield
uantities and different source types. Acoustic representations for
reen’s functions in terms of observed particle velocities and force

ources can be obtained as a special case of the elastodynamic repre-
entations.

By substituting equations 9, 11, and 12 into equation 3, it follows
hat Ĝ�x,xA,�� obeys the wave equation

�i��−1�iĜ� + ��2/�c2�Ĝ = − j���x − xA� , �15�

ith propagation velocity c�x� = ���x���x��− 1 � 2 . A similar wave
quation holds for Ĝ�x,xB,��.

Substituting equations 9–14 into the acoustic reciprocity theorem
f the convolution type �equation 5� gives

Ĝ�xB,xA,�� − Ĝ�xA,xB,��

= �
�D

− 1

j���x�
�Ĝ�x,xA,���iĜ�x,xB,��

− ��iĜ�x,xA,���Ĝ�x,xB,���nid
2x . �16�

ecall that the Green’s functions Ĝ�x,xA,�� and Ĝ�x,xB,�� are the
ourier transforms of causal time-domain Green’s functions. Hence,
hen �D is a spherical surface with infinite radius, then the right-
Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
and side of equation 16 vanishes on account of the radiation condi-
ions of the Green’s functions �e.g., Bleistein, 1984�. Moreover,
ince the right-hand side of equation 16 is independent of how �D is
hosen �as long as it encloses xA and xB�, it vanishes for any �D.
quation 16 thus yields

Ĝ�xB,xA,�� = Ĝ�xA,xB,�� . �17�

his is the well-known source-receiver reciprocity relation for the
coustic Green’s function.

Substituting equations 9–14 into the acoustic reciprocity theorem
f the correlation type �equation 6� gives

Ĝ*�xB,xA,�� + Ĝ�xA,xB,��

= �
�D

− 1

j���x�
�Ĝ*�x,xA,���iĜ�x,xB,��

− ��iĜ
*�x,xA,���Ĝ�x,xB,���nid

2x . �18�

gain, the right-hand side is independent of the choice of �D, as long
s it encloses xA and xB. Note, however, that since Ĝ*�x,xA,�� is the
ourier transform of the anticausal time-domain Green’s function
�x,xA,−t�, the radiation conditions are not fulfilled and hence the

ight-hand side of equation 18 does not vanish. Using source-receiv-
r reciprocity of the Green’s functions gives

2R�Ĝ�xA,xB,��� = �
�D

− 1

j���x�
�Ĝ*�xA,x,���iĜ�xB,x,��

− ��iĜ
*�xA,x,���Ĝ�xB,x,���nid

2x ,

�19�

here R denotes the real part. Equation 19 is the basis for acoustic
eismic interferometry, as will be discussed in a later section; van

anen et al. �2005� propose an efficient modeling scheme, based on
n expression similar to equation 19.

The terms Ĝ and �iĜni under the integral in the right-hand side of
quation 19 represent responses of monopole and dipole sources at x
n �D. The products Ĝ*�iĜni, etc., correspond to crosscorrelations in
he time domain. Hence, the right-hand side can be interpreted as the
ntegral of the Fourier transform of crosscorrelations of observations
f wavefields at xA and xB, respectively, because of impulsive sourc-
s at x on �D; the integration takes place along the source coordinate
�see Figure 1�. The left-hand side of equation 19 is the Fourier

ransform of G�xA,xB,t� + G�xA,xB,−t�, which is the superposition
f the response at xA due to an impulsive source at xB and its time-re-
ersed version. Because the Green’s function G�xA,xB,t� is causal, it
an be obtained by taking the causal part of this superposition �or,
ore precisely, by multiplying this superposition with the Heaviside

tep function�. Alternatively, in the frequency domain the imaginary
art of Ĝ�xA,xB,�� can be obtained from the Hilbert transform of the
eal part.

Note that equation 19 is exact and applies to any lossless arbitrary
nhomogeneous fluid medium. The choice of the integration bound-
ry �D is arbitrary �as long as it encloses xA and xB� and the medium
ay be inhomogeneous inside as well as outside �D. The recon-

tructed Green’s function Ĝ�x ,x ,�� contains, apart from the direct
A B

SEG license or copyright; see Terms of Use at http://segdl.org/
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SI36 Wapenaar and Fokkema
ave between xB and xA, all scattering contributions �primaries and
ultiples� from inhomogeneities inside as well as outside �D.

odified Green’s function

In many papers on Green’s function retrieval, the imaginary part,
nstead of the real part of the function, is obtained. Here, we show
hat with a slight modification of the Green’s function, we obtain a
epresentation for the imaginary part of the Green’s function instead
f equation 19.

The Green’s function Ĝ�x,xA,�� represents the acoustic pressure
ue to a point source of volume injection rate �see equations 9 and
1�. This Green’s function obeys equation 15, with the source term in
he right-hand side defined as − j���x − xA�. Let us define a new
reen’s function Ĝ�x,xA,�� representing the acoustic pressure due

o a point source of volume injection �instead of volume injection
ate�. This Green’s function obeys the same wave equation, but with
he source in the right-hand side replaced by −��x − xA�, according
o

�i��−1�iĜ� + ��2/�c2�Ĝ = − ��x − xA� . �20�

similar wave equation holds for Ĝ�x,xB,��. Note that Ĝ and Ĝ are
utually related via Ĝ = �1/j�̂�Ĝ. Following the same derivation as

bove, we obtain instead of equation 19

2jI�Ĝ�xA,xB,��� = �
�D

1

��x�
�Ĝ*�xA,x,���iĜ�xB,x,��

− ��iĜ*�xA,x,���Ĝ�xB,x,���nid
2x ,

�21�

here I denotes the imaginary part. The left-hand side of equation
1 is the Fourier transform of G�xA,xB,t� − G�xA,xB,−t�, which is the
ifference of the response at xA due to an impulsive source at xB and
ts time-reversed version. Since the Green’s function G�xA,xB,t� is
ausal, it can be obtained by taking the causal part of this difference.
lternatively, in the frequency domain the real part of Ĝ�xA,xB,��

an be obtained from the Hilbert transform of the imaginary part.
Because 2jI�Ĝ� = 1

j�2R�Ĝ�, equation 21 does not provide new
nformation in comparison with equation 19; it only serves as a link

igure 1. According to equation 19, the Green’s function Ĝ�xA,
B,�� can be obtained by crosscorrelating observations at xA and xB

nd integrating along the source coordinate x at �D. Note that the
ays in this figure represent the full responses between the source and
eceiver points, including primary and multiple scattering due to in-
omogeneities inside as well as outside �D.
Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
ith other literature on Green’s function retrieval �see the remarks
elow equation 32�.

onfiguration with a free surface

We consider a modified configuration for which we define the
losed surface as �D = �D0 � �D1, where �D0 is a part of the earth’s
ree surface and �D1 an arbitrarily shaped surface, in general not co-
nciding with a physical boundary. We consider the situation for
hich xA and xB are located inside �D0 � �D1 �see Figure 2�. For

his configuration, we can use the results of the previous sections.
ecause the acoustic pressure p̂ vanishes on �D0, the integral on the

ight-hand side of equations 6, 18, 19, and 21 needs only be evaluat-
d over �D1. Hence, the Green’s function Ĝ�xA,xB,�� or Ĝ�xA,xB,��
an be recovered by crosscorrelating and integrating the responses
f sources on �D1 only.

MODIFICATIONS FOR ACOUSTIC
SEISMIC INTERFEROMETRY

Equation 19 is an exact representation of the acoustic Green’s
unction, but in its present form it is not very well suited for applica-
ion in seismic interferometry. The main complication is that the in-
egrand consists of a superposition of two correlation products that
eed to be evaluated separately. Moreover, monopole as well as di-
ole responses are assumed to be available for all source positions x
n �D. Finally, the sources are assumed to be impulsive point sourc-
s, which does not comply with reality. In this section, we first dis-
uss a number of simplifications of the integrand of equation 19.
ext we discuss the modifications of equation 19 for realistic sourc-

s �transient as well as noise sources�.

implification of the integrand

In the following, we first investigate the effect of scatterers out-
ide the integration boundary �D. Next we discuss the approxima-
ions that are needed so that the integrand of equation 19 reduces to a
ingle correlation product. Finally we discuss the approximation that
s required when only monopole responses are available.

The starting point for the analysis in this section is equation 19,
ith integration boundary �D �see Figure 1�. However, everything

hat is discussed below also applies to the free surface configuration
f Figure 2, with integration boundary �D1. Moreover, all results be-
ow can be easily adapted for the modified Green’s function Ĝ, sim-
ly by substituting Ĝ = j�Ĝ.

We temporarily denote Ĝ�xA,x,�� and Ĝ�xB,x,�� by ĜA and ĜB,
espectively. Furthermore, we write

igure 2. Modified configuration, with a free surface �D0. The rays
epresent the full responses, including primary and multiple scatter-
ng due to inhomogeneities inside as well as outside �D1 as well as
eflections from the free surface �D .
0

SEG license or copyright; see Terms of Use at http://segdl.org/
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Green’s function representations SI37
ĜA = ĜA
in + ĜA

out, �22�

ĜB = ĜB
in + ĜB

out, �23�

here the superscripts in and out refer to waves propagating inward
nd outward from the sources at x on �D �see Figure 3�. Substituting
hese expressions into equation 19 gives

2R�Ĝ�xA,xB,���

= �
�D

− 1

j���x�
��ĜA

in* + ĜA
out*���iĜB

in + �iĜB
out�

− ��iĜA
in* + �iĜA

out*��ĜB
in + ĜB

out��nid
2x . �24�

ssuming the medium is smooth in a small region around �D, the
ormal derivatives of the Green’s functions can be approximated in
he high frequency regime by multiplying each constituent �direct
ave, scattered wave etc.� by � j �

c�x� �cos ��x��, where c�x� is the lo-
al propagation velocity at �D and ��x� the local angle between the
ertinent ray and the normal on �D. The minus-sign applies to in-
ard propagating waves and the plus-sign to outward propagating
aves. The main contributions to the integral in equation 24 come

rom stationary points on �D �Schuster et al., 2004; Wapenaar et al.,
004a; Snieder, 2004; Snieder et al., 2006�.At those points the abso-
ute cosines of the ray angles for ĜA and ĜB are identical. This im-
lies, for example, that the terms ĜA

in*�iĜB
inni and −��iĜA

in*�ĜB
inni give

qual contributions to the integral, whereas the contributions of
ˆ

A
in*�iĜB

outni and −��iĜA
in*�ĜB

outni cancel each other. Hence, we can re-
rite equation 24 as

R�Ĝ�xA,xB,���

= �
�D

2

j���x�
���iĜA

in*�ĜB
in + ��iĜA

out*�ĜB
out�nid

2x . �25�

f course, the inward and outward propagating waves at x on �D
annot be separately measured at xA and xB. We use equations 22 and
3 to rewrite the integrand of equation 25 as

igure 3. When the medium outside �D is inhomogeneous, then the
reen’s function Ĝ�xA,x,�� consists of a term Ĝin�xA,x,�� that
ropagates inward from the source at x on �D to xA and a term

ˆ out�xA,x,�� that propagates outward from the source at x on �D and
eaches xA after having been scattered at inhomogeneities outside
D. In the text these terms are abbreviated as ĜA

in and ĜA
out, respective-

y.
Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
��iĜA
in*�ĜB

in + ��iĜA
out*�ĜB

out

= ��iĜA
*�ĜB − ��iĜA

in*�ĜB
out − ��iĜA

out*�ĜB
in. �26�

ubstituting this into the right-hand side of equation 25 yields

2R�Ĝ�xA,xB,��� + ‘ghost’

= �
�D

2

j���x�
��iĜ

*�xA,x,���Ĝ�xB,x,��nid
2x ,

�27�

here

‘ghost’ = �
�D

2

j���x�
���iĜA

in*�ĜB
out + ��iĜA

out*�ĜB
in�nid

2x .

�28�

he right-hand side of equation 27 contains only one correlation
roduct and therefore has a more manageable form than equation 19.
owever, the left-hand side of equation 27 contains a ghost term that

dds spurious events to the reconstructed Green’s function
ˆ �xA,xB,��. According to equation 28, this ghost term contains cor-
elation products of waves that propagate inward in one state and
utward in the other. Note that when �D is an irregular surface
which is the case when the sources are randomly distributed�, these
orrelation products are not integrated coherently in equation 28,
nd therefore their contribution can be ignored in equation 27.
ence, the Green’s function Ĝ�xA,xB,�� can be accurately retrieved

rom the right-hand side of equation 27 as long as �D is sufficiently
rregular. The resulting reconstructed Green’s function contains all
cattering effects from inhomogeneities inside as well as outside �D.
his interesting phenomenon was first observed with numerical ex-
eriments by Draganov et al. �2003, 2006�.

Recall that ĜA
out stands for Ĝout�xA,x,��, i.e., a Green’s wavefield

hat propagates outward from the source at x on �D, gets scattered at
nhomogeneities outside �D and propagates to the observation point

A inside �D �see Figure 3�. A similar remark applies to ĜB
out. From

ere onward, we assume that the medium at and outside �D is homo-
eneous, with propagation velocity c and mass density �, and that
he Green’s functions ĜA

out and ĜB
out are zero. This implies that the

host term defined by equation 28 vanishes, hence

2R�Ĝ�xA,xB,���

=
2

j��
�

�D
��iĜ

*�xA,x,���Ĝ�xB,x,��nid
2x . �29�

espite the simple form of equation 29 in comparison with the origi-
al equation 19 �i.e., one correlation product instead of two�, this
quation still requires the availability of monopole- and dipole-
ource responses. When only monopole responses are available, we
ave to express the dipole response �iĜ�xA,x,��ni in terms of the
onopole response Ĝ�xA,x,��.As explained before, to this end each

onstituent of the monopole response should be multiplied by
j �

c �cos ��x��, where ��x� is the local angle between the pertinent
ay and the normal on �D. However, since ��x� may have multiple
alues, and because these values are generally unknown �unless the
SEG license or copyright; see Terms of Use at http://segdl.org/
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SI38 Wapenaar and Fokkema
nhomogeneous medium and source positions are known�, we ap-
roximate the dipole response by

�iĜ�xA,x,��ni � − j �
c Ĝ�xA,x,�� , �30�

ence

2R�Ĝ�xA,xB,��� �
2

�c
�

�D
Ĝ*�xA,x,��Ĝ�xB,x,��d2x .

�31�

he approximation in equation 30 is quite accurate when �D is a
phere with a very large radius, because in this case all rays are nor-
al to �D �i.e., � � 0�. In general, however, this approximation in-

olves an amplitude error that can be significant. Moreover, spurious
vents may occur due to incomplete cancellation of contributions
rom different stationary points. However, since the approximation
n equation 30 does not affect the phase of equation 31, it is consid-
red acceptable for seismic interferometry. Apart from the propor-
ionality factor 2/�c, equation 31 was also obtained by Derode et al.
2003a,b� purely by physical reasoning.

Using the modified Green’s function Ĝ = 1
j�Ĝ, we obtain instead

f equation 31

2jI�Ĝ�xA,xB,��� � −
2j�

�c
�

�D
Ĝ*�xA,x,��Ĝ�xB,x,��d2x .

�32�

he left-hand side is the Fourier transform of G�xA,xB,t� − G�xA,xB,
t�; the factor j� in the right-hand side corresponds to a differentia-

ion in the time domain. Hence, equation 32 resembles the results of
eaver and Lobkis �2004� and Snieder �2004�, who retrieve the anti-

ymmetric two-sided Green’s function from the time-derivative of
rosscorrelations.

We summarize the assumptions and approximations that we have
ade in deriving equation 31 �or 32� from equation 19 �or 21�. We
ade a high frequency approximation to reduce the integrand to a

ingle correlation product �equation 27�, we assumed that the medi-
m at and outside �D is homogeneous to remove the ghost term
equation 29�, and we assumed � � 0 to replace the dipole response
y a monopole response �equation 31 or 32�.

igure 4. Single diffractor �C� in a homogeneous medium below a
ree surface. The receivers are at A and B. The numerical integration
s carried out along the sources on the surface �D1. The causal contri-
utions come from the indicated stationary points between 	 = 0°
nd 45°, the anticausal contributions from the indicated points be-
ween 	 = 135° and 180°. The contributions from the indicated sta-
ionary points around 	 = 90° cancel each other.
Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
umerical example

We illustrate equation 29 with a 2D example for a configuration
ith a free surface at x3 = 0. We consider a single diffractor at

x1,x3� = �0,600�m in a homogeneous medium with propagation
elocity c = 2000 m/s �see Figure 4�, in which C denotes the dif-
ractor. Further, we define xA = �−500,100�m and xB = �500,
00�m, denoted by A and B in Figure 4. The surface �D1 is a
emicircle with its center at the origin and a radius of 800 m. The sol-
d arrows in Figure 4 denote the Green’s function G�xA,xB,t�. For the
reen’s functions in equation 29, we use analytical expressions
ased on the Born approximation �hence, the contrast at the point
iffractor is assumed to be small�. To be consistent with the Born ap-
roximation, in the crosscorrelations we consider only the zeroth
nd first order terms. Figure 5a shows the time-domain representa-
ion of the integrand of equation 29 �convolved with a wavelet with a
entral frequency of 50 Hz�. Each trace corresponds to a fixed
ource position x on �D1; the source position in polar coordinates is
	,r = 800�. The sum of all these traces �multiplied by rd	� is
hown in Figure 5b. This result accurately matches the time-domain
ersion of the left-hand side of equation 29, i.e., G�xA,xB,t�
G�xA,xB,−t�, convolved with a wavelet �see Figure 6�. Figure 5

learly shows that the main contributions come from Fresnel zones
round the stationary points of the integrand. The causal contribu-
ions come from the indicated stationary points in Figure 4 between

= 0° and 45°, the anticausal contributions from the indicated
oints between 	 = 135° and 180°. The contributions from the indi-
ated stationary points around 	 = 90° cancel each other.

ransient sources

Until now we assumed that the sources on �D are impulsive point
ources. When the sources are transient sources with wavelet s�x,t�
nd corresponding spectrum ŝ�x,��, we write for the observed
avefields at xA and xB

p̂obs�xA,x,�� = Ĝ�xA,x,��ŝ�x,�� , �33�

p̂obs�xB,x,�� = Ĝ�xB,x,��ŝ�x,�� . �34�

e define the power spectrum of the sources as

Ŝ�x,�� = ŝ*�x,��ŝ�x,�� . �35�

sing these equations, we can modify equation 31 as follows

igure 5. �a� Time domain representation of the integrand of equa-
ion 29. �b� The sum of all traces in �a�.
SEG license or copyright; see Terms of Use at http://segdl.org/
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R�Ĝ�xA,xB,���Ŝ0���

�
2

�c
�

�D
F̂�x,��p̂obs*�xA,x,��p̂obs�xB,x,��d2x , �36�

here Ŝ0��� is some average �arbitrarily chosen� power spectrum
nd F̂�x,�� is a shaping filter defined as

F̂�x,�� =
Ŝ0���

Ŝ�x,��
. �37�

quation 36 is well suited for seismic interferometry. It can be ap-
lied when a number of natural transient sources with different
avelets on �D radiate wavefields to xA and xB, that are measured in-
ependently for each source at x on �D. The shaping filter corrects
or the differences in the power spectra of the different sources on �D
this requires that these power spectra are known�. Not all sources
re equally important; the main contributions to the reconstructed
reen’s function come from stationary points on �D, as was illus-

rated with the numerical example. For a careful stationary phase
nalysis of seismic interferometry, see Snieder et al. �2006�.

ncorrelated noise sources

For the transient sources discussed above, we had to assume that
he response of each source at x on �D could be measured separately.
ere we show that this need is obviated when the sources are mutu-

lly uncorrelated noise sources �Weaver and Lobkis, 2001, 2002;
apenaar et al., 2002, 2004b; Derode et al., 2003a; Weaver and

obkis, 2004; Snieder, 2004; Roux et al., 2005; Shapiro et al., 2005�.
e define the noise signal at x on �D as N�x,t� and its corresponding

pectrum as N̂�x,��. When all noise sources act simultaneously, we
ay write for the observed wavefields at xA and xB

p̂obs�xA,�� = �
�D

Ĝ�xA,x,��N̂�x,��d2x , �38�

p̂obs�xB,�� = �
�D

Ĝ�xB,x�,��N̂�x�,��d2x�. �39�

e assume that two noise sources N̂�x,�� and N̂�x�,�� are mutually
ncorrelated for any x � x� at �D, and that their power spectrum is
he same for all x. Hence, we assume that these noise sources obey
he relation

	N̂*�x,��N̂�x�,��
 = ��x − x��Ŝ��� , �40�

here 	 ·
 denotes a spatial ensemble average and Ŝ��� the power
pectrum of the noise. Evaluating the crosscorrelation of the ob-
erved wavefields p̂obs�xA,�� and p̂obs�xB,��, using equations 38–40,
ields

	p̂obs*�xA,��p̂obs�xB,��


= �
�D

Ĝ*�xA,x,��Ĝ�xB,x,��Ŝ���d2x . �41�

ombining this with equation 31, we obtain
Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
2R�Ĝ�xA,xB,���Ŝ��� �
2

�c
	p̂obs*�xA,��p̂obs�xB,��
 .

�42�

quation 42 is well suited for application in seismic interferometry.
he advantage of equation 42 over equation 36 is that no separate
easurements of the responses of all sources at �D are required;

hese responses can be measured simultaneously, according to equa-
ions 38 and 39. The disadvantage is that no corrections can be made
or different power spectra of different sources, like with the shaping
lter F̂�x,�� in equation 36.
Finally, note that in the time domain equation 42 becomes

�
−�

�

�G�xA,xB,t�� + G�xA,xB,− t���S�t − t��dt�

�
2

�c��
−�

�

pobs�xA,t��pobs�xB,t + t��dt�� . �43�

ccording to this equation, the crosscorrelation of the observed
ressures at xA and xB yields the Green’s function for a receiver at xA

nd a source at xB, convolved with the autocorrelation of the noise
ources. Note the striking resemblance with the retrieval of the
reen’s function in diffuse wavefields in finite media with an irregu-

ar bounding surface or in disordered media, as discussed by Lobkis
nd Weaver �2001�, van Tiggelen �2003�, Malcolm et al. �2004�, and
nieder �2004�.

ELASTODYNAMIC RECIPROCITY THEOREMS

Consider an elastodynamic wavefield, characterized by the stress
ensor 
ij�x,t� and the particle velocity vi�x,t�. In the space-frequen-
y domain, the stress tensor and particle velocity in a lossless arbi-
rary inhomogeneous anisotropic solid medium obey the equation of

otion

igure 6. Zoomed-in version of the causal scattered events in Figure
b. The solid line is the time-domain version of the left-hand side of
quation 29. The plus-signs �+� represent the numerical integration
esult of the right-hand side of equation 29 �i.e., the sum of the traces
n Figure 5a�.
SEG license or copyright; see Terms of Use at http://segdl.org/
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SI40 Wapenaar and Fokkema
j��v̂i − � j
̂ij = f̂ i �44�

nd the stress-strain relation

− j�sijkl
̂kl + �� jv̂i + �iv̂ j�/2 = ĥij , �45�

here ��x� is the mass density of the medium, sijkl�x� its compliance,
f i�x,�� the external volume force density, and ĥij�x,�� the external
eformation rate density. We consider the interaction quantity

� j�v̂i,A
̂ij,B − 
̂ij,Av̂i,B� , �46�

here subscripts A and B are used to distinguish two independent
lastodynamic states. The Rayleigh-Betti reciprocity theorem is ob-
ained by substituting the equation of motion �equation 44� and the
tress-strain relation �equation 45� for states A and B into the interac-
ion quantity �equation 46�, using the symmetry relations 
̂ij = 
̂ ji

nd sijkl = sklij, integrating the result over an arbitrary spatial domain
enclosed by boundary �D with outward pointing normal vector n
�n1,n2,n3�, and applying the theorem of Gauss. This gives

�
D

�− 
̂ij,Aĥij,B − v̂i,Af̂ i,B + ĥij,A
̂ij,B + f̂ i,Av̂i,B�d3x

= �
�D

�v̂i,A
̂ij,B − 
̂ij,Av̂i,B�njd
2x �47�

Knopoff and Gangi, 1959; de Hoop, 1966; Aki and Richards, 1980�.
his is the elastodynamic reciprocity theorem of the convolution

ype.
Because the medium is assumed to be lossless, we can apply the

rinciple of time-reversal invariance �Bojarski, 1983�. Hence, when
ˆij and v̂i are a solution of the equation of motion and the stress-strain
elation with source terms f̂ i and ĥij, then 
̂ij

* and − v̂i
* obey the same

quations with source terms f̂ i
* and − ĥij

* . Making these substitutions
or state A, we obtain

�
D

�− 
̂ij,A
* ĥij,B + v̂i,A

* f̂ i,B − ĥij,A
* 
̂ij,B + f̂ i,A

* v̂i,B�d3x

= �
�D

�− v̂i,A
* 
̂ij,B − 
̂ij,A

* v̂i,B�njd
2x . �48�

his is the elastodynamic reciprocity theorem of the correlation
ype.

Note that for both theorems we assumed that the medium parame-
ers in states A and B are identical. de Hoop �1995� discusses more
eneral reciprocity theorems that account also for different medium
arameters in the two states.

ELASTODYNAMIC GREEN’S
FUNCTION REPRESENTATIONS

pen configuration

In this section, we substitute Green’s functions for the wavefields
n both elastodynamic reciprocity theorems. Thus, we show that the
eciprocity theorem of the convolution type �equation 47� leads to
he well-known elastodynamic source-receiver reciprocity relation,
hereas the reciprocity theorem of the correlation type �equation 48�
ields elastodynamic Green’s function representations, which are
he basis for seismic interferometry. We consider an open configura-
Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
ion. The domain D with boundary �D is a subdomain of this open
onfiguration; the boundary �D in general does not coincide with a
hysical boundary.

We choose impulsive point sources of force in both states, accord-
ng to

f i,A�x,t� = ��x − xA���t��ip, �49�

f i,B�x,t� = ��x − xB���t��iq, �50�

r, in the frequency domain,

f̂ i,A�x,�� = ��x − xA��ip, �51�

f̂ i,B�x,�� = ��x − xB��iq, �52�

ith xA and xB both in D; the deformation sources are chosen equal to
ero in both states. The wavefields in states A and B can thus be ex-
ressed in terms of elastodynamic Green’s functions, according to

v̂i,A�x,�� � Ĝi,p
v,f�x,xA,�� , �53�


̂ij,A�x,�� = �j��−1cijkl�x��lĜk,p
v,f�x,xA,��

� Ĝij,p

,f �x,xA,�� , �54�

v̂i,B�x,�� � Ĝi,q
v,f�x,xB,�� , �55�


̂ij,B�x,�� = �j��−1cijkl�x��lĜk,q
v,f�x,xB,��

� Ĝij,q

,f �x,xB,�� , �56�

here the stiffness cijkl is the inverse of the compliance sijkl, accord-
ng to

cijklsklmn = sijklcklmn =
1

2
��im� jn + �in� jm� . �57�

e explain the notation convention for the elastodynamic Green’s
unctions at the hand of Ĝi,p

v,f�x,xA,��. This Green’s function is the
ourier transform of the causal time-domain Green’s function
i,p
v,f�x,xA,t�, which represents an impulse response observed at x,
ue to a source at xA. The superscripts �here v and f� represent the ob-
erved quantity �particle velocity� and the source quantity �force�,
espectively; the subscripts �here i and p� represent the components
f the observed quantity and the source quantity, respectively.

Substituting equations 51, 53, and 54 into equation 44, it follows
hat Ĝi,p

v,f�x,xA,�� obeys the wave equation

� j�cijkl�lĜk,p
v,f� + ��2Ĝi,p

v,f = − j���x − xA��ip. �58�

similar wave equation holds for Ĝi,q
v,f�x,xB,��.

Substituting equations 51–56 into the elastodynamic reciprocity
heorem of the convolution type �equation 47� gives

− Ĝq,p
v,f �xB,xA,�� + Ĝp,q

v,f �xA,xB,��

= �
�D

�Ĝi,p
v,f�x,xA,��Ĝij,q


,f �x,xB,��

− Ĝij,p

,f �x,xA,��Ĝi,q

v,f�x,xB,���njd
2x . �59�
SEG license or copyright; see Terms of Use at http://segdl.org/
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Green’s function representations SI41
ecall that the Green’s functions are the Fourier transforms of causal
ime-domain Green’s functions. Hence, when �D is a spherical sur-
ace with infinite radius, then the right-hand side of equation 59 van-
shes on account of the radiation conditions of the Green’s functions
e.g., Pao and Varatharajulu, 1976�. Moreover, since the right-hand
ide of equation 59 is independent of how �D is chosen �as long as it
ncloses xA and xB�, it vanishes for any �D. Equation 59 thus yields

Ĝq,p
v,f �xB,xA,�� = Ĝp,q

v,f �xA,xB,�� . �60�

his is the well-known source-receiver reciprocity relation for the
lastodynamic Green’s function.

If we replace the source in equation 52 by a point source of the de-
ormation type, according to ĥij,B�x,�� = ��x − xB��iq� jr, then a
imilar derivation as above yields the following source-receiver rec-
procity relation

Ĝqr,p

,f �xB,xA,�� = Ĝp,qr

v,h �xA,xB,�� . �61�

Substituting equations 51–56 into the elastodynamic reciprocity
heorem of the correlation type �equation 48� gives

�Ĝq,p
v,f �xB,xA,���* + Ĝp,q

v,f �xA,xB,��

= − �
�D

��Ĝi,p
v,f�x,xA,���*Ĝij,q


,f �x,xB,��

+ �Ĝij,p

,f �x,xA,���*Ĝi,q

v,f�x,xB,���njd
2x . �62�

gain, the right-hand side is independent of the choice of �D, as long
s it encloses xA and xB. Note, however, that since �Ĝi,p

v,f�x,xA,���*

nd �Ĝij,p

,f �x,xA,���* are the Fourier transforms of the anticausal

ime-domain Green’s functions Gi,p
v,f�x,xA,−t� and Gij,p


,f �x,xA,−t�, the
adiation conditions are not fulfilled and hence the right-hand side of
quation 62 does not vanish. Using source-receiver reciprocity of
he Green’s functions gives

2R�Ĝp,q
v,f �xA,xB,��� = − �

�D
��Ĝp,i

v,f�xA,x,���*Ĝq,ij
v,h �xB,x,��

+ �Ĝp,ij
v,h �xA,x,���*Ĝq,i

v,f�xB,x,���njd
2x

�63�

Wapenaar, 2004�. Equation 63 is the basis for elastodynamic seis-
ic interferometry, as will be discussed in a later section.
The terms Ĝp,i

v,f and Ĝq,ij
v,h , under the integral in the right-hand side of

quation 63, represent responses of force and deformation sources at
on �D. The products �Ĝp,i

v,f�*Ĝq,ij
v,h , etc., correspond to crosscorrela-

ions in the time domain. Hence, the right-hand side can be interpret-
d as the integral of the Fourier transform of crosscorrelations of ob-
ervations of wavefields at xA and xB, respectively, due to impulsive
ources at x on �D; the integration takes place along the source coor-
inate x �see Figure 7�. The left-hand side of equation 63 is the Fouri-
r transform of Gp,q

v,f �xA,xB,t� + Gp,q
v,f �xA,xB,−t�, which is the superpo-

ition of the response at xA due to an impulsive source at xB and its
ime-reversed version. Since the Green’s function Gp,q

v,f �xA,xB,t� is
ausal, it can be obtained by taking the causal part of this superposi-
ion �or, more precisely, by multiplying this superposition with the
eaviside step function�. Alternatively, in the frequency domain the

maginary part of Ĝp,q
v,f �xA,xB,�� can be obtained from the Hilbert

ransform of the real part.
Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
Note that equation 63 is exact and applies to any lossless arbitrary
nhomogeneous anisotropic solid medium. The choice of the inte-
ration boundary �D is arbitrary �as long as it encloses xA and xB� and
he medium may be inhomogeneous and anisotropic inside as well as
utside �D. The reconstructed Green’s function Ĝp,q

v,f �xA,xB,�� con-
ains, apart from the direct wave between xB and xA, all scattering
ontributions �primaries, multiples and mode conversions� from in-
omogeneities inside as well as outside �D.

odified Green’s function

The Green’s function Ĝi,p
v,f�x,xA,�� represents the particle velocity

ue to a point source of force �see equations 51 and 53�. This Green’s
unction obeys equation 58, with the source term in the right-hand
ide defined as − j���x − xA��ip. Let us define a new Green’s func-
ion Ĝi,p

u,f�x,xA,��, representing the particle displacement due to a
oint source of force. This Green’s function obeys the same wave
quation, but with the source in the right-hand side replaced by
��x − xA��ip, according to

� j�cijkl�lĜk,p
u,f � + ��2Ĝi,p

u,f = − ��x − xA��ip. �64�

similar wave equation holds for Ĝi,q
u,f�x,xB,��. Note that Ĝi,p

u,f and
ˆ

i,p
v,f are mutually related via Ĝi,p

u,f = 1
j�Ĝi,p

v,f. Following the same deri-
ation as above, we obtain instead of equation 63

2jI�Ĝp,q
u,f �xA,xB,��� = j��

�D
��Ĝp,i

u,f�xA,x,���*Ĝq,ij
u,h �xB,x,��

+ �Ĝp,ij
u,h �xA,x,���*Ĝq,i

u,f�xB,x,���njd
2x . �65�

he left-hand side of equation 65 is the Fourier transform of
p,q
u,f �xA,xB,t� − Gp,q

u,f �xA,xB,−t�, which is the difference of the re-
ponse at xA due to an impulsive source at xB and its time-reversed
ersion. Because the Green’s function Gp,q

u,f �xA,xB,t� is causal, it can
e obtained by taking the causal part of this difference.Alternatively,
n the frequency domain the real part of Ĝp,q

u,f �xA,xB,�� can be ob-
ained from the Hilbert transform of the imaginary part.

igure 7. According to equation 63, the Green’s function Ĝp,q
v,f �xA,

B,�� can be obtained by crosscorrelating observations at xA and xB

nd integrating along the source coordinate x at �D. Note that the
ays in this figure represent the full responses between the source and
eceiver points, including primary and multiple scattering as well as
ode conversion due to inhomogeneities inside as well as outside
D.
SEG license or copyright; see Terms of Use at http://segdl.org/
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onfiguration with a free surface

We consider a modified configuration for which we define the
losed surface as �D = �D0 � �D1, where �D0 is a part of the earth’s
ree surface and �D1 an arbitrarily shaped surface, in general not co-
nciding with a physical boundary. First, we consider the situation
or which xA and xB are located inside �D0 � �D1, similar as in Fig-
re 2. For this configuration, we can use the results of the previous
ections. Because the elastodynamic traction 
̂ijnj vanishes on �D0,
he integral on the right-hand side of equations 48, 62, 63, and 65
eeds only be evaluated over �D1. Hence, the Green’s function

ˆ
p,q
v,f �xA,xB,�� or Ĝp,q

u,f �xA,xB,�� can be recovered by crosscorrelating
nd integrating the responses of sources on �D1 only.

Next, we consider the situation for which xA and xB are located at
he free surface �D0 �see Figure 8�. For this situation, we reconsider
he elastodynamic reciprocity theorem of the correlation type �equa-
ion 48�, in which we set the sources f̂ i,A, f̂ i,B, ĥij,A, and ĥij,B in D equal
o zero. Hence, the domain integral on the left-hand side of equation
8 vanishes. For the right-hand side of equation 48, we separately
onsider the boundary integrals along �D0 and �D1, hence

�
�D0

�v̂i,A
* 
̂ij,B + 
̂ij,A

* v̂i,B�njd
2x

= − �
�D1

�v̂i,A
* 
̂ij,B + 
̂ij,A

* v̂i,B�njd
2x . �66�

e introduce sources in terms of boundary conditions at the free sur-
ace �D0. This is possible because at a free surface the traction is zero
verywhere, except at those positions where a source traction is ap-
lied. Hence, for x � �D0, the tractions in both states read


̂ij,A�x,��nj = ��x − xA��ip, �67�


̂ij,B�x,��nj = ��x − xB��iq, �68�

ith xA and xB both at �D0. For the particle velocities at the free sur-
ace we write

v̂i,A�x,�� � Ĝi,p
v,
�x,xA,�� , �69�

v̂i,B�x,�� � Ĝi,q
v,
�x,xB,�� , �70�

here the second superscript 
 refers to the traction sources at xA and
B. Substituting equations 67–70 into the left-hand side of equation
6, and using the source-receiver reciprocity relation Ĝq,p

v,
�xB,xA,��
Ĝp,q

v,
�xA,xB,�� gives

igure 8. Modified configuration, with xA and xB at the free surface
D . The rays represent again the full responses.
0

Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
�
�D0

�v̂i,A
* 
̂ij,B + 
̂ij,A

* v̂i,B�njd
2x = 2R�Ĝp,q

v,
�xA,xB,��� .

�71�

n order to evaluate the right-hand side of equation 66, we express
he wavefields at �D1 analogous to equations 53–56, but with the
econd superscript f of all Green’s functions replaced by 
. Substi-
uting these wavefields into the right-hand side of equation 66, ap-
lying the appropriate source-receiver relations, and combining the
esult with equation 71 for the left-hand side of equation 66, we ob-
ain

2R�Ĝp,q
v,
�xA,xB,���

= − �
�D1

��Ĝp,i
v,f�xA,x,���*Ĝq,ij

v,h �xB,x,��

+ �Ĝp,ij
v,h �xA,x,���*Ĝq,i

v,f�xB,x,���njd
2x . �72�

ote the similarity with equation 63. The various Green’s functions
n this representation are indicated in Figure 8. Using the modified
reen’s function Ĝi,p

u,
 = 1
j�Ĝi,p

v,
, etc., we obtain an expression similar
o equation 65.

MODIFICATIONS FOR ELASTODYNAMIC
SEISMIC INTERFEROMETRY

Equation 63 �as well as equation 72� is an exact representation of
he elastodynamic Green’s function, but in its present form it is not
ery well suited for application in seismic interferometry. The main
omplication is that the integrand consists of a superposition of two
orrelation products that need to be evaluated separately. Moreover,
orce- as well as deformation-source responses are assumed to be
vailable for all source positions x on �D. Finally, the sources are as-
umed to be impulsive point sources, which does not comply with re-
lity. In this section, we first discuss a simplification of the integrand
f equation 63. Next, we discuss the modifications of equation 63 for
ealistic sources �transient as well as noise sources�.

implification of the integrand

Unlike in the stepwise analysis of the integrand of the acoustic
reen’s function representation �equation 19�, we straightaway as-

ume that the medium at and outside �D is homogeneous and isotro-
ic, with P- and S-wave propagation velocities cP and cS, respective-
y, and mass density �. In the Appendix, we show that for this situa-
ion equation 63 can be rewritten as

R�Ĝp,q
v,f �xA,xB,���

=
2

j��
�

�D
��iĜp,K

v,	�xA,x,���*Ĝq,K
v,	�xB,x,��nid

2x . �73�

pper-case Latin subscripts take on the values 0, 1, 2, and 3; the re-
eated subscript K represents a summation from 0 to 3. The Green’s
unctions in the right-hand side, which are defined in equations A-17
nd A-18, represent the observed particle velocities at xA and xB due
o sources at x on �D. The superscript 	 denotes that these sources
re P-wave sources �for K = 0� and S-wave sources with different
olarizations �for K = 1,2,3�. Hence, the summation over the re-
SEG license or copyright; see Terms of Use at http://segdl.org/
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eated subscript K represents a summation over P- and S-wave
ource responses. Note that equation 73 is slightly different from
quation 5 in Wapenaar �2004�, where the sources of the Green’s
unctions were power-flux normalized. Here we follow a different
pproach in order to maintain the analogy between the acoustic and
lastodynamic expressions �compare equation 73 with equation 29�.
e postpone power normalization until we introduce noise sources

n equation 84.
Despite the simple form of equation 73 in comparison with the

riginal equation 63, this equation still requires the availability of
onopole and dipole P- and S-wave source responses. When only
onopole responses are available, we have to express the dipole

esponse �iĜp,K
v,	�xA,x,��ni in terms of the monopole response

ˆ
p,K
v,	�xA,x,��. Note that like the acoustic case, this Green’s function
beys Helmholtz equations for x at and outside �D �see the remark at
he end of the Appendix �. Hence, to obtain the dipole responses,
ach P-wave constituent of the monopole response should be multi-
lied by − j �

cP
�cos ��x�� and each S-wave constituent by

j �

cS
�cos ��x��, where ��x� and ��x� are the local angles between

he pertinent P- and S-rays and the normal on �D. However, because
�x� and ��x� may have multiple values that are generally un-
nown, we approximate the dipole response by

�iĜp,K
v,	�xA,x,��ni � − j

�

cKĜp,K
v,	�xA,x,�� , �74�

ith

cK = cP for K = 0,

cS for K = 1,2,3.
�75�

ince K is not a subscript in cK, no summation takes place over K in
he right-hand side of equation 74. Using equation 74, equation 73
ecomes

2R�Ĝp,q
v,f �xA,xB,���

�
2

�cK�
�D

�Ĝp,K
v,	�xA,x,���*Ĝq,K

v,	�xB,x,��d2x .

�76�

he approximation in equation 74 is quite accurate when �D is a
phere with very large radius, since in this case all rays are normal to
D �i.e., � � � � 0�. In general, however, this approximation in-
olves an amplitude error that can be significant. Moreover, spurious
vents may occur due to incomplete cancellation of contributions
rom different stationary points. However, because the approxima-
ion in equation 74 does not affect the phase of equation 76, it is con-
idered acceptable for seismic interferometry.

Note that when xA and xB are chosen at the free surface �D0 �Fig-
re 8�, the left-hand sides of equations 73 and 76 should be replaced
y 2R�Ĝp,q

v,
�xA,xB,��� and the right-hand sides need to be evaluated
ver �D1 only, analogous to equation 72.

ransient sources

Until now we assumed that the sources on �D are impulsive point
ources. When the sources are transient sources with wavelet sK�x,t�
nd corresponding spectrum ŝK�x,��, we write for the observed
avefields at x and x
A B

Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
v̂p,K
obs�xA,x,�� = Ĝp,K

v,	�xA,x,��ŝK�x,�� , �77�

v̂q,K
obs�xB,x,�� = Ĝq,K

v,	�xB,x,��ŝK�x,�� . �78�

ote that ŝK�x,�� is the source spectrum of the P-wave source �for
= 0� and of the S-wave sources with different polarizations �for
= 1,2,3�. We define the power spectrum of the sources as

ŜK�x,�� = ŝK*�x,��ŝK�x,�� . �79�

sing these equations, we can modify equation 76 as follows:

2R�Ĝp,q
v,f �xA,xB,���Ŝ0���

�
2

�cK�
�D

F̂K�x,��v̂p,K
obs*�xA,x,��v̂q,K

obs�xB,x,��d2x ,

�80�

here Ŝ0��� is some average �arbitrarily chosen� power spectrum
nd F̂K�x,�� is a shaping filter defined as

F̂K�x,�� =
Ŝ0���

ŜK�x,��
. �81�

quation 80 is well suited for seismic interferometry. It can be ap-
lied when a number of natural transient P- and S-wave sources with
ifferent wavelets on �D radiate wavefields to xA and xB, that are
easured independently for each source and each source-type at x

n �D. The shaping filter corrects for the differences in the power
pectra of the different sources on �D �this requires that these power
pectra are known�. Not all sources are equally important: the main
ontributions to the reconstructed Green’s function come from sta-
ionary points on �D.

ncorrelated noise sources

For the transient sources discussed above, we had to assume that
he response of each source and each source-type at x on �D could be
easured separately. Here we show that this need is obviated when

he sources are mutually uncorrelated noise sources. We define the
oise signal for the Kth source type at x on �D as NK�x,t� and its cor-
esponding spectrum as N̂K�x,��. When all noise sources act simul-
aneously, we may write for the observed wavefields at xA and xB

v̂p
obs�xA,�� = �

�D
Ĝp,K

v,	�xA,x,��N̂K�x,��d2x , �82�

v̂q
obs�xB,�� = �

�D
Ĝq,L

v,	�xB,x�,��N̂L�x�,��d2x�. �83�

e assume that two noise sources N̂K�x,�� and N̂L�x�,�� are mutu-
lly uncorrelated for any K � L and x � x� at �D, and that their
ower spectrum is the same for all x, apart from a power normaliza-
ion factor �cP/�cK. Hence, we assume that these noise sources obey
he relation

	N̂K
* �x,��N̂L�x�,��
 =

�cP

�cK�KL��x − x��Ŝ��� , �84�

here 	 ·
 denotes a spatial ensemble average and Ŝ��� the power
pectrum of the noise. Evaluating the crosscorrelation of the ob-
SEG license or copyright; see Terms of Use at http://segdl.org/
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SI44 Wapenaar and Fokkema
erved wavefields v̂p
obs�xA,�� and v̂q

obs�xB,��, using equations 82–84,
ields

	v̂p
obs*�xA,��v̂q

obs�xB,��


=
�cP

�cK�
�D

�Ĝp,K
v,	�xA,x,���*Ĝq,K

v,	�xB,x,��Ŝ���d2x .

�85�

ombining this with equation 76 we obtain

2R�Ĝp,q
v,f �xA,xB,���Ŝ��� �

2

�cP
	v̂p

obs*�xA,��v̂q
obs�xB,��
 .

�86�

quation 86 is well suited for application in seismic interferometry.
he advantage of equation 86 over equation 80 is that no separate
easurements of the responses of all sources at �D are required;

hese responses can be measured simultaneously, according to equa-
ions 82 and 83. The disadvantage is that no corrections can be made
or different power spectra of different sources, like with the shaping
lter F̂K�x,�� in equation 80.
Finally, note that in the time domain, equation 86 becomes

�
−�

�

�Gp,q
v,f �xA,xB,t�� + Gp,q

v,f �xA,xB,− t���S�t − t��dt�

�
2

�cP��
−�

�

vp
obs�xA,t��vq

obs�xB,t + t��dt�� . �87�

ccording to this equation, the crosscorrelation of the observed par-
icle velocities in the xp- and xq-directions at xA and xB yields the
reen’s function for a receiver in the xp-direction at xA and a source

n the xq-direction at xB, convolved with the autocorrelation of the
oise sources. Note the striking resemblance with the retrieval of the
reen’s tensor in diffuse wavefields in disordered media, as dis-

ussed by Campillo and Paul �2003� and Shapiro and Campillo
2004�.

CONCLUSIONS

We have given an overview of acoustic and elastodynamic repre-
entations of Green’s functions in terms of crosscorrelations of
avefields at two observation points in lossless arbitrary inhomoge-
eous media. Unlike in many other papers on Green’s function re-
rieval, we have made no assumptions with respect to the diffusivity
f the wavefield. We have considered open configurations as well as
onfigurations with a free surface. For the open configurations it is
ssumed that the wavefields are radiated by sources on an arbitrarily
haped surface that encloses the two observation points. For the situ-
tion with a free surface it suffices that sources are available on an
pen surface that, together with the free surface, forms a surface that
ncloses the two observation points.

The acoustic and elastodynamic Green’s function representations
re exact, but not directly suited for application in seismic interfer-
metry. The integrand in both representations consists of a superpo-
ition of two correlation products that need to be evaluated separate-
y; moreover, different types of sources are assumed to be available
Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
or all source positions on the enclosing surface �scalar monopole
nd dipole sources in the acoustic case; vectorial force and deforma-
ion sources in the elastodynamic case�. Last, but not least, the sourc-
s are assumed to be impulsive point sources, which does not comply
ith reality. With a number of approximations, we have simplified

he integrand to a single correlation product for a reduced number of
ource types �monopole sources for both states in the acoustic case;
onopole P- and S-wave sources for both states in the elastodynam-

c case�. In practice, not all sources are equally important because the
ain contributions to the reconstructed Green’s functions come

rom stationary points on the enclosing surface. Finally, we have dis-
ussed modifications for the situation of transient sources as well as
or uncorrelated noise sources. For the situation of transient sources,
e have introduced a shaping filter in the representation integral that

orrects for the differences in the power spectra of the different
ources �assuming these spectra are known�. For the situation of un-
orrelated noise sources, the representation integral reduced to a di-
ect crosscorrelation of the recorded wavefields at two observation
oints, analogous to the methods that retrieve Green’s functions
rom diffuse wavefields in disordered media, or in finite media with
n irregular bounding surface.
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APPENDIX

DERIVATION OF EQUATION 73

e start our derivation of equation 73 by considering the boundary
ntegral in the right-hand side of equation 48, which we rewrite as

− �
�D

�v̂i,A
* t̂i,B + t̂i,A

* v̂i,B�d2x , �A-1�

here t̂i,A = 
̂ij,Anj and t̂i,B = 
̂ij,Bnj are the tractions at �D in states A
nd B. Everything we discuss below also applies to the free-surface
onfiguration of Figure 8, with integration boundary �D1. We as-
ume that the medium at and outside �D is homogeneous, isotropic
nd source-free, with P- and S-wave propagation velocities cP and
S, respectively, and mass density �. At and outside �D we express
he particle velocities in terms of potentials �̂ and ̂k for P- and
-waves, according to

v̂i =
− 1

j��
��i�̂ + �ijk� ĵk�, with �k̂k = 0, �A-2�

or states A and B. Here �ijk is the alternating tensor �or Levi-Civita
ensor�, with �123 = �312 = �231 = −�213 = −�321 = −�132 = 1 and the
ther elements equal to zero. Note that �̂ and ̂k obey Helmholtz
quations, according to

�i�i�̂ + ��2/cP
2 ��̂ = 0 �A-3�

nd

�i�îk + ��2/cS
2�̂k = 0 �A-4�

or states A and B �Aki and Richards, 1980�. Moreover, note that �̂

nd ̂ can be explicitly expressed in terms of v̂ , according to
k i

SEG license or copyright; see Terms of Use at http://segdl.org/
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�̂ = −
�cP

2

j�
�iv̂i �A-5�

nd

̂k =
�cS

2

j�
�kji� jv̂i �A-6�

or states A and B �Wapenaar and Haimé, 1990�. Using the stress-
train relation together with equation A-2, the traction t̂i can also be
xpressed in terms of the potentials �̂ and ̂l. Substituting the result
ogether with equation A-2 for states A and B into equation A-1, we
et terms containing ��̂A

*,�̂B�, ��̂A
*,̂l,B�, �̂k,A

* ,�̂B�, and
̂k,A

* ,̂l,B�. Wapenaar and Haimé �1990� analyze this substitution
or the situation of a horizontal boundary S1 with a downward point-
ng normal vector n = �0,0,1�. When all wavefields at S1 are propa-
ating downward, this substitution leads to

− �
S1

�v̂i,A
* t̂i,B + t̂i,A

* v̂i,B�d2x

=
2

j��
�

S1

���3�̂A
*��̂B + ��3̂k,A

* �̂k,B�d2x . �A-7�

ote that the right-hand side of this equation does not contain prod-
cts of P-waves in one state and S-waves in the other and vice versa.
quation A-7 was derived under the assumption that evanescent
aves may be neglected. This implies that it does not account for
orizontally propagating wave modes like surface waves. We will
ow discuss how equation A-7 can be modified for the closed sur-
ace �D and argue that this modified result does account for surface
aves.

In the high frequency regime, the main contributions to the inte-
ral in equation A-1 come from points on �D where the integrand is
tationary. Upon substitution of the P- and S-wave potentials for
tates A and B, different types of stationary points occur. For the term
ontaining ��̂A

*,�̂B�, the integrand is stationary at those points on �D
here the ray angles �A and �B of the P-waves in both states are iden-

ical. Similarly, for the term containing �̂k,A
* ,̂l,B� the stationary

oints occur where the ray angles �A and �B of the S-waves in both
tates are identical. The stationary points for the term containing
�̂A

*,̂l,B� are determined by the condition �sin �A�/cP = �sin �B�/cS.
inally, the term containing �̂k,A

* ,�̂B� is stationary at those points on
D where �sin �A�/cS = �sin �B�/cP. At each stationary point we
hoose a local coordinate system, with the x3-axis parallel to the lo-
al outward pointing normal on �D. Note that the inner products

ˆ i,A
* t̂i,B and t̂i,A

* v̂i,B of the integrand in equation A-1 remain inner prod-
cts in the local coordinate system. Hence, it is justified to substitute
quation A-2 in the local coordinate system into equation A-1 and
pply a similar analysis as in Wapenaar and Haimé �1990� in the lo-
al coordinate system, assuming all waves are propagating outward
t �D. Depending on the type of stationary point this leads to contri-
utions of the form ��3�̂A

*��̂B or ��3̂k,A
* �̂k,B in the local coordinate

ystem; at those stationary points where �sin �A�/cP = �sin�B�/cS or
here �sin �A�/cS = �sin �B�/cP the terms cancel. The inner prod-
cts ��3̂k,A

* �̂k,B in the local coordinate system remain inner prod-
cts in the absolute coordinate system; only the derivative �3 in the
ocal system has to be replaced by ni�i in the absolute system. Hence,
hen we apply the outlined procedure for all stationary points on
D, we finally obtain �in the absolute coordinate system�
Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
− �
�D

�v̂i,A
* t̂i,B + t̂i,A

* v̂i,B�d2x

=
2

j��
�

�D
���i�̂A

*��̂B + ��îk,A
* �̂k,B�nid

2x . �A-8�

n equation A-7, horizontally propagating wave modes, like surface
aves, were excluded, which was a consequence of choosing a hori-

ontal integration boundary. Another way of explaining this is that
he horizontal integration boundary does not contain the stationary
oints that would contribute to the surface waves. For the closed
oundary integral of equation A-8, horizontally propagating modes
re no more exclusive than any other wave type propagating in any
irection. Hence, equation A-8 accounts for surface waves; the main
tationary points for these waves are located somewhere at the sides
f �D.

Substituting equation A-8 into the right-hand side of equation 48
ives

�
D

�− 
̂ij,A
* ĥij,B + v̂i,A

* f̂ i,B − ĥij,A
* 
̂ij,B + f̂ i,A

* v̂i,B�d3x

=
2

j��
�

�D
���i�̂A

*��̂B + ��îk,A
* �̂k,B�nid

2x . �A-9�

e choose point sources of force at xA and xB �equations 51 and 52�,
hereas the deformation sources are chosen equal to zero. For x in
, the velocities and stresses in states A and B are again expressed in

erms of elastodynamic Green’s functions, according to equations
3–56. For x at and outside �D, the P- and S-wave potentials in states
and B are expressed in terms of Green’s functions, according to

�̂A�x,�� � Ĝ0,p
	,f�x,xA,�� , �A-10�

̂k,A�x,�� � Ĝk,p
	,f�x,xA,�� , �A-11�

�̂B�x,�� � Ĝ0,q
	,f�x,xB,�� , �A-12�

̂k,B�x,�� � Ĝk,q
	,f�x,xB,�� . �A-13�

he superscript 	 denotes that the observed wavefield quantity at x
s a P- or S-wave potential. To describe both wave types with one
reen’s function, we introduce an upper-case Latin subscript K that

akes on the values 0, 1, 2, and 3. Hence, in ĜK,p
	,f �x,xA,�� the ob-

erved wavefield at x is a P-wave �for K = 0� or an S-wave compo-
ent �for K = k = 1,2,3�, respectively. Substituting equations
1–53, 55, and A-10–A-13 into equation A-9 gives

�Ĝq,p
v,f �xB,xA,���* + Ĝp,q

v,f �xA,xB,��

=
2

j��
�

�D
��iĜK,p

	,f �x,xA,���*ĜK,q
	,f �x,xB,��nid

2x .

�A-14�

he repeated subscript K represents a summation from 0 to 3 and
hus accounts for the summation of the different wave types in equa-
ion A-9.
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Note that ĜK,p
	,f �x,xA,�� can be expressed in terms of Ĝi,p

v,f�x,
A,��. Using equations 53,A-5,A-6,A-10, andA-11, we obtain

Ĝ0,p
	,f�x,xA,�� = −

�cP
2

j�
�iĜi,p

v,f�x,xA,�� �A-15�

nd

Ĝk,p
	,f�x,xA,�� =

�cS
2

j�
�kji� jĜi,p

v,f�x,xA,�� �A-16�

and similar expressions for state B�. We define reciprocal Green’s
unctions, analogous to equations A-15 andA-16, as

Ĝp,0
v,	�xA,x,�� � −

�cP
2

j�
�iĜp,i

v,f�xA,x,�� �A-17�

nd

Ĝp,k
v,	�xA,x,�� �

�cS
2

j�
�kji� jĜp,i

v,f�xA,x,�� �A-18�

and similar definitions for state B�. Note that the differentiation op-
rators at the right-hand sides of these equations act on the source co-
rdinate x. The superscript 	 now denotes that the source at x is a
ource for P- or S-waves. Hence, in Ĝp,K

v,	�xA,x,�� the source is a
ource for P-waves �for K = 0� or for S-waves with different polar-
zations �for K = k = 1,2,3�, respectively.

On account of equations 60 and A-15 andA-18 the following rec-
procity relation is obtained

ĜK,p
	,f �x,xA,�� = Ĝp,K

v,	�xA,x,�� . �A-19�

imilarly,

ĜK,q
	,f �x,xB,�� = Ĝq,K

v,	�xB,x,�� . �A-20�

sing reciprocity relations 60, A-19, and A-20 in equation A-14 we
btain equation 73.

Finally, note that according to equations A-3, A-4, A-10–A-13,
-19, andA-20, the Green’s functions in the right-hand side of equa-

ion 73 obey Helmholtz equations for x at and outside �D, similar as
he acoustic Green’s functions in the right-hand side of equation 29.
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