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S U M M A R Y
For imaging the earth structure, the cross-correlation function (CCF) of random waves as
ambient noise or coda waves has been widely used for the estimation of the Green’s function.
We precisely study the condition for the Green’s function retrieval in relation to the energy
conservation for a single obstacle of arbitrary shape. When an obstacle is placed in a 2-D
homogeneous medium, the Green’s function is written by a double series expansion using
Hankel functions of the first kind which represent outgoing waves. When two receivers and
the scattering obstacle are illuminated by uncorrelated noise sources randomly and uniformly
distributed on a closed circle of a large radius surrounding them, the lag-time derivative
of the CCF of random waves at the two receivers can be written by a convolution of the
antisymmetrized Green’s function and the autocorrelation function of the noise source time
function. We explicitly derive the constraint for the Hankel function expansion coefficients as
the sufficient condition for the Green’s function retrieval. We show that the constraint is equal
to the generalized optical theorem derived from the energy conservation principle. Physical
meaning of the generalized optical theorem becomes clear when the Hankel function expansion
coefficients are transformed into scattering amplitudes in the framework of the conventional
scattering theory. In the 3-D case, the Green’s function is written by a double series expansion
using spherical Hankel functions of the first kind and spherical harmonic functions. When two
receivers and the scattering obstacle are illuminated by noise sources randomly and uniformly
distributed on a closed spherical shell of a large radius surrounding them, we explicitly derive
the constraint for the spherical Hankel function expansion coefficients for the Green’s function
retrieval and the energy conservation. We note that the derivation of the constraint does not
assume that two receivers are in the far field of the scattering obstacle.

Key words: Interferometry; Theoretical seismology; Wave scattering and diffraction; Wave
propagation; Acoustic properties.

1 I N T RO D U C T I O N

For imagining a medium containing heterogeneities, the Green’s function retrieval from the cross-correlation function (CCF) of random
waves has been widely used in many fields including seismology (e.g. Campillo & Paul 2003). This method has a root in the microtremor
survey method pioneered by Aki (1957). In most theoretical studies, the medium heterogeneity and receivers are illuminated by random
waves in the equipartition state (e.g. Lobkis & Weaver 2001; Sánchez-Sesma et al. 2006), random waves generated by uncorrelated noise
sources widely distributed in space (e.g. Roux et al. 2005; Snieder 2006; Sato 2010), and random waves generated by uncorrelated noise
sources distributed on a closed surface surrounding them (e.g. Wapenaar & Fokkema 2006; Weaver et al. 2009; Sato 2009a,b; Saito 2012).
The condition for the Green’s function retrieval is found to be the same as the generalized optical theorem on the basis of the energy
principle and the scattering theory (e.g. Snieder et al. 2009; Wapenaar et al. 2010; Lu et al. 2011). For the case of multiple scattering by
multiple scatterers, the generalized optical theorem is found to be the condition for the Green’s function retrieval: Snieder & Fleury (2010)
proved the case of a source distribution on a closed surface, and Margerin & Sato (2011a,b) proved the case of a wide distribution of
sources.

Sánchez-Sesma & Campillo (2006) confirmed that the exact solution of the Green’s function satisfying the given boundary condition of
a cylindrical obstacle in the 2-D homogeneous medium can be retrieved from the CCF of random waves in the equipartition state, where they
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998 H. Sato

wrote the Green’s function satisfying the source–receiver reciprocity by a double series expansion using Hankel functions for outgoing waves.
Wapenaar et al. (2010) studied the Green’s function retrieval when random waves are radiated from noise sources distributing on a close
surface surrounding receivers and the scattering obstacle. They derived the generalized optical theorem for the Green’s function retrieval,
where they made a symmetric use of spherically outgoing waves in the far field in the scattering part of the Green’s function for paths between
the scatterer and each of receivers. Lu et al. (2011) derived the generalized optical theorem from the dyadic expression of the elastic Green’s
function in the far field. Historical review of the optical theorem in physics is given by Newton (1976).

Referring those studies, this paper precisely examines the condition for the Green’s function retrieval in relation to the energy conservation
for an obstacle of arbitrary shape. We first study the 2-D case. When a single obstacle of arbitrary shape is placed in a homogeneous medium,
the Green’s function is written by a double series expansion using Hankel functions of the first kind which represent outgoing waves from
the scattering obstacle. In the case that two receivers and the scattering obstacle are illuminated by random waves radiated from uncorrelated
noise sources distributed on a closed circle of large radius surrounding them, we explicitly derive the constraint for the Hankel function
expansion coefficients as the condition of the Green’s function retrieval from the CCF of random waves. It should be noted that our derivation
does not assume that receivers are in the far field of the scattering obstacle. We show that the constraint is equal to the generalized optical
theorem derived from the energy conservation principle. Writing the Green’s function in the standard form of the scattering theory using the
scattering amplitude, we clarify the meaning of the generalized optical theorem. Then, we study the 3-D case.

2 WAV E E Q UAT I O N A N D G R E E N ’ s F U N C T I O N

Real scalar wavefield u(x, t) is governed by the wave equation for an external source N:[
� − 1

V 2
0

∂2
t

]
u (x, t) + L j (x)u (x, t) = N (x, t), (1)

where V0 is the wave velocity and real Lj represents a scattering obstacle j located around the origin. We may imagine a localized velocity
inhomogeneity, a rigid body, or a cavity for Lj. We let L the dimension of the obstacle j. The total energy is conserved in this system. The
wave-field u is calculated by the convolution of N and the Green’s function G. The Green’s function G at x and time t for a delta function
source at xB in space and time 0 is governed by[

� − 1

V 2
0

∂2
t

]
G (x, xB, t) + L j (x)G (x, xB, t) = δ(x − xB)δ(t). (2)

In the angular frequency domain, the Green’s function Ĝ obeys

[� + k2
0]Ĝ(x, xB, ω) + L j (x)Ĝ(x, xB, ω) = δ(x − xB), (3)

where the Fourier transform is defined by Ĝ(ω) = ∫ ∞
∞ G(t)eiωt dt and k0 = ω/V0.

3 2 - D C A S E

3.1 Series expansion of the Green’s function using Hankel functions

Outside of the obstacle j, waves in the homogenous medium are written by outgoing wave modes H (1)
m (r )eimϕ and incoming wave modes

H (2)
m (r )eimϕ ; however, the Green’s function satisfying the radiation condition in the far field is written by using only the outgoing waves. The

Green’s function for a homogeneous medium is Ĝ0(xA, xB, ω) = −i
4 H (1)

0 (k0rAB), where rAB is a distance between A and B (e.g. Snieder 2004,
p. 301). Scattered waves at receiver A for source B are represented by a superposition of outgoing waves

∑∞
l=−∞ al H (1)

l (k0rAj )eilθAj , where
rAj is a distance between A and the obstacle j and θAj is the angle of A measured from the x-axis at j. On the other hand, scattered waves at
receiver B for source A are written by a superposition of outgoing waves

∑∞
l=−∞ bl H (1)

l (k0rB j )eilθB j , where rBj is a distance between B and
the obstacle j and θBj is the angle of B measured from the x-axis at j. We may write the Green’s function as a sum of the direct term Ĝ0 and
the scattered wave term ĜS by using the double series expansion of Hankel functions of the first kind and Fourier series of angles:

Ĝ(xA, xB, ω) = Ĝ0(xA, xB, ω) + ĜS(xA, xB, ω)

= −i

4
H (1)

0 (k0rAB) + i
∞∑

l=−∞

∞∑
m=−∞

Flm(ω)H (1)
l (k0rAj )H (1)

m (k0rB j )e
ilθAj +imθB j , (4)

where double series expansion coefficients Flm are non-dimensional since Ĝ is non-dimensional for the 2-D case. This is an extension of
(Sánchez-Sesma et al. 2006, eq. 4) for a cylindrical obstacle to an arbitrary shape obstacle and an explicit representation of (Wapenaar et al.
2010, eq. 6).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/193/2/997/638726 by guest on 20 August 2022
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According to the source–receiver reciprocity, the Green’s function is symmetric with respect to the exchange of A and B, which leads
to Flm = Fml. Replacing xA with x, we see the Green’s function in this representation Ĝ(x, xB, ω) explicitly satisfies the radiation condition
limrx j →∞

√
rx j (ik0Ĝ − ∂rx j Ĝ) = 0 at a large distance from the source B and the scatterer j when rx j � k−1

0 , rB j and L.
The coefficients Flm can be determined by solving the appropriate boundary condition for the given obstacle Lj.

3.2 Green’s function retrieval from the CCF of random waves

We suppose a random and uniform distribution of uncorrelated noise sources on a large circle shell with radius R and thickness �R surrounding
the scattering obstacle j and receivers A and B as shown in Fig. 1, where R � 1/k0, rAj, rBj, L and �R � R. We imagine an ensemble of noise
source distributions on the circle shell {N}. Each noise source generates stationary random signals in time (e.g. Sato 2009a; Sato et al. 2012).
We first define the CCF of the source time function as the average over a long time window of length T and the average over the ensemble of
source distributions as〈
CN (x, x′, τ )

〉 ≡ lim
T →∞

1

T

∫ T/2

−T/2
dt

〈
N (x, t − τ ) N

(
x′, t

)〉 = δ
(
x − x′) SN (τ ) , (5)

where SN(τ ) is the autocorrelation function (ACF) of the noise source signals and angular brackets mean the average over the ensemble and
δ(x) is a delta function in 2-D space. It means that noise sources at different locations are uncorrelated. In the angular frequency domain,

lim
T →∞

1

T
〈N̂ (x, ω)∗ N̂

(
x′, ω

)〉 = δ
(
x − x′) 	

SN (ω) , (6)

where N̂ (x, ω) = ∫ T/2
−T/2 N (x, t)eiωt dt , and

	

SN (ω) is the power-spectral density function (PSDF) of the noise source signals.
The CCF of random waves registered at receivers A and B is

〈Cu(xA, xB, τ )〉 ≡ lim
T →∞

1

T

∫ T/2

−T/2
〈u (xA, t − τ ) u (xB, t)〉 dt,

= 1

2π

∫ ∞

−∞
dωe−iωτ lim

T →∞
1

T

〈
û (xA, ω)∗ û (xB, ω)

〉
. (7)

By using a convolution integral of the Green’s function and noise sources on the circle shell, random waves at the receiver location is

û (xA,B, ω) =
∫

R,�R
Ĝ (xA,B, x, ω) N̂ (x, ω) dx, (8)

Figure 1. Scattering obstacle j and receivers A and B are illuminated by random waves radiated from uncorrelated noise sources distributed on a circular shell
with a large radius.
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1000 H. Sato

where dx is an areal element. Substituting (8) into (7), and taking the average over the noise source ensemble using (6), we have

〈Cu(xA, xB, τ )〉 = 1

2π

∫ ∞

−∞
dω e−iωτ

∫
R,�R

Ĝ (xA, x, ω)∗ dx
∫

R,�R
Ĝ

(
xB, x′, ω

)
δ
(
x − x′) 	

SN (ω) dx′,

= 1

2π

∫ ∞

−∞
dω e−iωτ

	

SN (ω) �R

[∮
R

Ĝ (xA, x, ω)∗ Ĝ (xB, x, ω) dl(x)

]
, (9)

where the areal element dx is written by a product of the thickness �R and the line element dl(x). This equation means that random waves
radiated from different locations on the circle are incoherent.

If the relation∮
R

Ĝ (xA, x, ω)∗ Ĝ (xB, x, ω) dl(x) = i

2k0
[Ĝ (xA, xB, ω) − Ĝ (xA, xB, ω)∗] (10)

holds good, the lag-time derivative of the ensemble averaged CCF of random waves is given by

d

dτ
〈Cu(xA, xB, τ )〉 = �R

V0

2

∫ ∞

−∞

[
G

(
xA, xB, τ − τ ′) − G

(
xA, xB,−τ − τ ′)] SN

(
τ ′) dτ ′, (11)

where we used that S(τ ) is symmetric and G(xA, xB, t) is real. The first term is the retarded Green’s function and the second term is the
advanced Green’s function. Thus the derivative of the CCF with respect to lag time is a convolution of the antisymmetrized retarded Green’s
function and the ACF of the noise source signals. This equation means that the Green’s function can be retrieved from the ensemble averaged
CCF of random waves. Thus, the relation (10) is the key for the Green’s function retrieval. In the following we seek the constraint for
expansion coefficients Flm’s in (4) to satisfy (10).

3.3 Constraint for the Hankel function expansion coefficients

In the following, we abbreviate Ĝ(xA, xB, ω) to Ĝ(AB) and H (1,2)
l (k0rAB) to H (1,2)

l (AB). First we calculate the RHS of (10):

Ĝ(AB) − Ĝ(AB)∗ = −i

2
J0(AB) + i

∞∑
l,m=−∞

Flm H (1)
l (Aj)H (1)

m (B j)eilθAj +imθB j + i
∞∑

l,m=−∞
F∗

lm H (2)
l (Aj)H (2)

m (B j)e−ilθAj −imθB j . (12)

Next, we calculate the LHS of (10). According to the Graf’s addition theorem, H (1)
0 (

√
z2 + y2 − 2zy cos θ ) = ∑∞

l=−∞ H (1)
l (z)Jl (y)eilθ

for |z| > |y|, where included angle θ = ∠zoy. Using this theorem, we rewrite the direct propagation term Ĝ0 as if waves were radiated from
the obstacle j since rxj > rAj, rBj:

Ĝ(Ax)∗ = i

4

∞∑
l=−∞

H (2)
l (x j)Jl (Aj)e−il(θAj −θx j ) − i

∞∑
l,m=−∞

F∗
lm H (2)

l (Aj)H (2)
m (x j)e−ilθAj −imθx j , (13a)

Ĝ(Bx) = −i

4

∞∑
l ′=−∞

H (1)
l ′ (x j)Jl ′ (B j)eil ′(θB j −θx j ) + i

∞∑
l ′,m′=−∞

Fl ′m′ H (1)
l ′ (B j)H (1)

m′ (x j)eil ′θB j +im′θx j . (13b)

The line integral on the circle is written as the angular integral. Using the orthogonality
∫ 2π

0 dθx j ei(l−m)θx j = 2πδlm , we perform the
angular integral of the product Ĝ(Ax)∗ Ĝ(Bx):∮

R
dl(x) Ĝ(Ax)∗Ĝ(Bx) = R

∫ 2π

0
dθx j Ĝ(Ax)∗Ĝ(Bx),

= π R

8

∞∑
l=−∞

H (2)
l (x j)Jl (Aj)H (1)

l (x j)Jl (B j)eil(θAj −θB j )

−π R

2

∞∑
l,m=−∞

F∗
lm H (2)

l (Aj)H (2)
m (x j)H (1)

m (x j)Jm(B j)e−ilθAj −imθB j

−π R

2

∞∑
l ′,m′=−∞

H (2)
m′ (x j)Jm′ (Aj)Fl ′m′ H (1)

l ′ (B j)H (1)
m′ (x j)eim′θAj +il ′θB j

+ 2π R
∞∑

l,m,l ′=−∞
F∗

lm H (2)
l (Aj)H (2)

m (x j)Fl ′m H (1)
l ′ (B j)H (1)

m (x j)e−ilθAj +il ′θB j , (14)
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Green F. retrieval and energy conservation 1001

where we used J−l(z) = (−1)lJl(z) and H (1,2)
−l (z) = (−1)l H (1,2)

l (z). On the circle of radius R, H (1,2)
l (x j) means H (1,2)

l (k0 R). We note that Han-
kel functions H (1)

l (x j) and H (2)
l (x j) appear as a pair having the same index l. Using the asymptote H (1)

l (z) ≈ √
2/(π z) e+i[z−(2l+1)π/4]

and H (2)
l (z) ≈ √

2/(π z) e−i[z−(2l+1)π/4] for z � 1, we approximate the product H (2)
l (k0 R)H (1)

l (k0 R) ≈ 2/(πk0R) since R � k−1
0 .

Using this approximation, we obtain∮
R

dl(x)Ĝ(Ax)∗Ĝ(Bx) = 1

4k0
J0(AB) − 1

k0

∞∑
l,m=−∞

F∗
lme−ilθAj −imθB j H (2)

l (Aj)Jm(B j)

− 1

k0

∞∑
l,m=−∞

FlmeimθAj +ilθB j Jm(Aj)H (1)
l (B j) + 4

k0

∞∑
l,m,n=−∞

F∗
ln Fmne−ilθAj +imθB j H (2)

l (Aj)H (1)
m (B j), (15)

where the Neumann’s addition theorem J0(AB) = ∑∞
l=−∞ Jl (Aj)Jl (B j)eil(θAj −θB j ) is also used in the first term.

Using the symmetry Flm = Fml, and writing Bessel functions by Hankel functions, we have

∮
R

dl(x)Ĝ(Ax)∗Ĝ(Bx) = i

2k0

[
− i

2
J0(AB) + i

∞∑
l,m=−∞

FlmeilθAj +imθB j H (1)
l (Aj)H (1)

m (B j)

+ i
∞∑

l,m=−∞
F∗

lme−ilθAj −imθB j H (2)
l (Aj)H (2)

m (B j)

]
− 1

2k0

∞∑
l,m=−∞

F∗
lme−ilθAj −imθB j H (2)

l (Aj)H (1)
m (B j)

− 1

2k0

∞∑
l,m=−∞

Fmle
ilθAj +imθB j H (2)

l (Aj)H (1)
m (B j) + 4

k0

∞∑
l,m,n=−∞

F∗
ln Fmne−ilθAj +imθB j H (2)

l (Aj)H (1)
m (B j). (16)

Substituting the terms in angular braces with (12) and recovering the original arguments, we finally write the LHS of (10) as∮
R

dl(x)Ĝ(xA, x, ω)∗Ĝ(xB, x, ω) = i

2k0
[Ĝ(xA, xB, ω) − G(xA, xB, ω)∗]

+ 1

2k0

∞∑
l,m=−∞

[
−(−1)m F∗

l,−m − (−1)l Fm,−l + 8
∞∑

n=−∞
F∗

ln Fmn

]
e−ilθAj +imθB j H (2)

l (k0rAj )H (1)
m (k0rB j ). (17)

Thus the constraint for Hankel function expansion coefficients in (4) is to satisfy

(−1)m F∗
l,−m + (−1)l Fm,−l = 8

∞∑
n=−∞

F∗
ln Fmn for any l and m. (18)

This is the sufficient condition for the Green’s function retrieval for the 2-D case (10) which we sought.

3.4 Energy conservation

In the homogeneous medium outside of the obstacle j, the continuity equation of energy is given by

∂t
1

2

(
u̇∗u̇ + V 2

0 ∇u∗∇u
) + ∇

[
− V 2

0

2
(u̇∗∇u + ∇u∗u̇)

]
= 0, (19)

where M(x, t) = − V 2
0
2 (u̇∗∇u + ∇u∗ u̇) is the energy flux density. For a plane wave of unit amplitude û = eik·x, M = V0ω

2k/|k|. In the

angular frequency domain, the corresponding spectral density M̂(x, ω) = −iω
V 2

0
2 (û∗∇û − ∇û∗ û). As illustrated in Fig. 2, the total radiated

energy is given by the integral of the energy flux density over a closed circle of radius R′ surrounding the obstacle j and the source B,∫ ∞
−∞ dt

∮
dl(x)

∑2
i=1 Mi (x, t)ni = 1

2π

∫ ∞
−∞ dω

∮
dl(x)

∑2
i=1 M̂i (x, ω)ni , where n is the outward normal unit vector of the circle. At angular

frequency ω, the line integral over the circle for a delta function source at B is

∮
R′

dl(x)
2∑

i=1

M̂i (Ĝ(x B))ni = −i
ωV 2

0

2

∮
R′

dl(x)
2∑

i=1

ni [Ĝ(x B)∗∂i Ĝ(x B) − ∂i Ĝ(x B)∗Ĝ(x B)]. (20)
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1002 H. Sato

Figure 2. Line integral of M̂ n over the circle of a large radius R′ enclosing the source B and the scatterer j gives the total radiated energy at angular
frequency ω.

We write the line integral over the circle of radius R′ into the areal integral by using the Gauss’s divergence theorem. Then, using (3)
and knowing Lj is real, we obtain∮

R′
dl(x)

2∑
i=1

M̂i (Ĝ(x B))ni = −i
ωV 2

0

2

∫
R′

dx
[
Ĝ(x B)∗�Ĝ(x B) − (�Ĝ(x B)∗)Ĝ(x B)

]
,

= −i
ωV 2

0

2

∫
R′

dx
{
Ĝ(x B)∗

[−k2
0 Ĝ(x B) − L j (x)Ĝ(x B) + δ(x − xB)

]
− [−k2

0 Ĝ(x B)∗ − L j (x)Ĝ(x B)∗ + δ(x − xB)
]

Ĝ(x B)
}
,

= −i
ωV 2

0

2

∫
R′

dx
[
Ĝ(x B)∗δ(x − xB) − Ĝ(x B)δ(x − xB)

]
,

= i
ωV 2

0

2
[Ĝ(B B) − Ĝ(B B)∗], (21)

where the RHS is the imaginary part of the return Green’s function Ĝ(B B), of which the source and the receiver locations coincide with each
other. This quantity is independent of radius R′, which means the conservation of energy.

Then, we calculate the energy flux density integral (20) using the Hankel function expansion form of the Green’s function (4). At a large
distance R′ � 1/k0, rBj and L, using the fact that the Green’s function Ĝ satisfies the radiation condition, we may replace

∑2
i=1 ni∂i Ĝ → ik0Ĝ

and
∑2

i=1 ni∂i Ĝ∗ → −ik0Ĝ∗ in (20) since
∑2

i=1 ni∂i = ∂r on the large circle. Then, this integral becomes the same form as the LHS of (10),
where the source and the receiver are located at the same point. Using the source–receiver reciprocity and then putting A to B in (17),
we get∮

R′
dl(x)

2∑
i=1

M̂i (Ĝ(x B))ni ≈ ω2V0

∮
R′

dl(x) Ĝ(x B)∗Ĝ(x B),

= i
ωV 2

0

2
[Ĝ(B B) − Ĝ(B B)∗]

+ωV 2
0

2

∞∑
l,m=−∞

[
−(−1)m F∗

l,−m − (−1)l Fm,−l + 8
∞∑

n=−∞
F∗

ln Fmn

]
H (2)

l (B j)H (1)
m (B j)ei(−l+m)θB j , (22)

which should be equal to (21). Thus, we derived the same constraint with (18) for the energy conservation. The constraint derived from the
energy conservation principle is called the generalized optical theorem.
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Green F. retrieval and energy conservation 1003

Figure 3. Source B and a receiver x are placed in the far field of the scattering obstacle j.

3.5 Scattering amplitude and optical theorem

In order to clarify the physical meaning of the constraint (18), we place both source B and receiver x in the far field of the scattering

obstacle j as illustrated in Fig. 3: rxj and rB j � k−1
0 and L. Using the approximation H (1)

l (k0rx j ) ≈
√

2
πk0rx j

eik0rx j e−i(2l+1)π/4 and H (1)
m (k0rB j ) ≈

e−imπ/2 H (1)
0 (k0rB j ), we write the scattering term in (4) by a product of the incident wave Ĝ0 and a cylindrically outgoing wave eik0rx j /

√
rx j in

the standard form of the scattering theory:

Ĝ(x, xB, ω) ≈ Ĝ0(rx B, ω) +
∞∑

l,m=−∞

√
1

rx j
eik0rx j

√
32

πk0
ei3π/4(−i)l im Flm(ω)eilθx j +im(θB j +π )Ĝ0(rB j , ω),

= Ĝ0(rx B, ω) + eik0rx j

√
rx j

∞∑
l,m=−∞

flm(ω)eilθx j +im(θB j +π )Ĝ0(rB j , ω), (23)

where the functions flm’s are the double Fourier series coefficients of the scattering amplitude f (θ xj, θBj + π , ω). Angle θBj + π is for the
incident ray direction from the source B to the obstacle j at the origin, and θ xj for the scattered wave ray direction from the obstacle j to the
receiver at x. The scattering pattern depends on both angles in general. There is a relation

Flm =
√

πk0

32
e−i3π/4i l (−i)m flm, (24)

where flm = (−1)l − mfml. The Green’s function retrieval constraint (18) for Flm is written as the constraint for flm:

i f ∗
l,−meiπ/4 − i fm,−l e−iπ/4 = √

2πk0
∑∞

n=−∞ f ∗
ln fmn . (25)

For the special case of a cylindrically symmetric obstacle, the scattering amplitude f becomes a function of scattering angle θ xj − (θBj +
π ) measured from the incident ray direction. If we let

flm = δl,−m fl , (26)

where fl = f−l, we rewrite (23) as

Ĝ(x, xB, ω) ≈ Ĝ0(rx B, ω) + eik0rx j

√
rx j

∞∑
l=−∞

fl (ω)eil(θx j −θB j −π )Ĝ0(rB j , ω). (27)

When the source B is on the x-axis left of the origin, θBj = π , fl is the Fourier expansion coefficient of the scattering amplitude. Substituting
(26) into (25), we have

Im
fl√
i

=
√

πk0

2
| fl |2. (28)

This is the conventional form of the optical theorem for scattering amplitude in the 2-D space (e.g. Sheng 2006, eq. 3.46). For example, in
the special case of a cylindrical cavity of radius a, the free boundary condition is ∂r Ĝ = 0 at rxj = a. The Green’s function is

Ĝ(xA, xB, ω) = − i

4
H (1)

0 (k0rAB) + i

4

∞∑
l=−∞

Jl
′(k0a)

H (1)
l

′(k0a)
H (1)

l (k0rAj )H (1)
l (k0rB j )e

il(θAj −θB j ) (29)

(e.g. Sánchez-Sesma et al. 2006, eq. 5), where

Flm(ω) = δl,−m
1

4
(−1)l J ′

l (k0a)

H (1)′
l (k0a)

, (30a)
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1004 H. Sato

fl (ω) =
√

2

πk0
ieiπ/4 J ′

l (k0a)

H (1)′
l (k0a)

. (30b)

We can easily confirm that this solution satisfies the optical theorem (28).

4 3 - D C A S E

Extending the theory developed in the previous section, we study the 3-D case using spherical Hankel functions and spherical harmonic
functions. In order to avoid unnecessary duplication, we use mathematical equations developed in the previous section.

4.1 Series expansion of the Green’s function using spherical Hankel functions

A scattering obstacle j is placed around the origin as shown in Fig. 4. The Green’s function Ĝ which satisfies the wave eq. (3) for a delta
function source in 3-D space has a dimension of the reciprocal of length. Outside of the obstacle j, we may write the Green’s function Ĝ by
using spherical Hankel functions of the first kind representing outgoing waves and spherical harmonic functions:

Ĝ(xA, xB, ω) = Ĝ0(xA, xB, ω) + ĜS(xA, xB, ω),

= −i
k0

4π
h(1)

0 (k0rAB) + ik0

∞∑
l=0

l∑
m=−l

∞∑
l ′=0

l ′∑
m′=−l ′

Flm,l ′m′ (ω)h(1)
l (k0rAj )Ylm(θAj , ϕAj )h

(1)
l ′ (k0rB j )Yl ′m′ (θB j , ϕB j ), (31)

where rAj = |xA − x j |, and θAj and ϕAj are angles of A measured at j. The spherical harmonic function is

Ylm (θ, ϕ) = (−1)
m+|m|

2 i l

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)! P |m|

l (cos θ ) eimϕ, (32)

where the phase factor is chosen as Y ∗
lm = (−1)l−mYl,−m (e.g. Landau & Lifshitz 2003, eqs 28.7 and 28.9). Double series expansion coefficients

Flm,l ′m′ ’s are non-dimensional and the source–receiver reciprocity leads to Flm,l ′m′ = Fl ′m′,lm . The Green’s function Ĝ(x, xB, ω) explicitly
satisfies the radiation condition limrx j →∞ rx j (ik0Ĝ − ∂rx j Ĝ) = 0 at a large distance from the source B and the scatterer j when rx j � k−1

0 , rB j

and L.

4.2 Green’s function retrieval from the CCF of random waves

We suppose a random and uniform distribution of uncorrelated noise sources on a large closed spherical shell with radius R with a thickness
�R surrounding the scattering obstacle j and receivers A and B as shown in Fig. 4, where R � k−1

0 , rAj , rB j , L and �R � R. Each noise
source generates stationary random signals in time. We define the CCF of the source time function as the average over a long time window of
length T and over the ensemble of noise source distributions {N} as given by (5), where δ(x) is a delta function in 3-D space. The ensemble

Figure 4. Scattering obstacle j and receivers A and B are illuminated by random waves radiated from uncorrelated noise sources distributed on a spherical
shell with a large radius.
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averaged CCF of waves registered at two receivers A and B is

〈Cu(xA, xB, τ )〉 = 1

2π

∫ ∞

−∞
dω e−iωτ

∫
R,�R

Ĝ (xA, x, ω)∗ dx
∫

R,�R
Ĝ

(
xB, x′, ω

)
δ
(
x − x′) 	

SN (ω) dx′,

= 1

2π

∫ ∞

−∞
dω e−iωτ

	

SN (ω) �R

[∮
R

Ĝ (xA, x, ω)∗ Ĝ (xB, x, ω) ds(x)

]
, (33)

where the volume element dx on the spherical shell is written by a product of the thickness �R and the surface element ds(x). It means that
random waves radiated from different locations on the spherical surface are incoherent.

If the relation∮
R

Ĝ (xA, x, ω)∗ Ĝ (xB, x, ω) ds(x) = i

2k0
[Ĝ (xA, xB, ω) − Ĝ (xA, xB, ω)∗] (34)

holds good, the relation (11) is established. Thus, the relation (34) is the key for the Green’s function retrieval from the CCF of random waves.
We seek the constraint for expansion coefficients Flm,l ′m′ ’s in (31) to satisfy (34).

4.3 Constraint for the spherical Hankel function expansion coefficients

In the following, we abbreviate Ĝ(xA, xB, ω) to Ĝ(AB), h(1)
l (k0rAj ) to h(1)

l (Aj), and Ylm(θAj, ϕAj) to Ylm(Aj). We abbreviate
∑∞

l=0

∑l
m=−l to∑

l, m if not otherwise specified. The RHS of (34) is

Ĝ(AB) − Ĝ(AB)∗ = −i
k0

2π
j (1)
0 (AB) + ik0

∑
l,m

∑
l ′,m′

Flm,l ′m′ h(1)
l (Aj)h(1)

l ′ (B j)Ylm(Aj)Yl ′m′ (B j)

+ ik0

∑
l,m

∑
l ′,m′

F∗
lm,l ′m′ h

(2)
l (Aj)h(2)

l ′ (B j)Y ∗
lm(Aj)Y ∗

l ′m′ (B j) (35)

since h(1)
l (z)∗ = h(2)

l (z).
Using the addition theorem h(1)

0 (
√

z2 + y2 − 2zy cos θ ) = ∑∞
l=0(2l + 1)h(1)

l (z) jl (y)Pl (cos θ ) for |z| > |y|, where included angle θ = ∠y0z

(Abramowitz & Stegun 1970, eqs 10.1.45–46), we rewrite the direct propagation term Ĝ0 as if waves were radiated from the obstacle j since
rxj > rAj, rBj:

Ĝ(Ax)∗ = i
k0

4π

∞∑
l=0

(2l + 1)h(2)
l (x j) jl (Aj)Pl (cos ∠Ajx ) − ik0

∑
l,m

∑
l ′,m′

F∗
lm,l ′,m′ h

(2)
l (Aj)h(2)

l ′ (x j)Y ∗
lm(Aj)Y ∗

l ′,m′ (x j), (36a)

Ĝ(Bx) = −i
k0

4π

∞∑
l ′′=0

(2l ′′ + 1)h(1)
l ′′ (x j) jl ′′ (B j)Pl ′′ (cos ∠B j x ) + ik0

∑
l ′′,m′′

∑
l ′′′,m′′′

Fl ′′m′′,l ′′′,m′′′ h(1)
l ′′ (B j)h(1)

l ′′′ (x j)Yl ′′m′′ (B j)Yl ′′′,m′′′ (x j). (36b)

Using the addition theorem for Legendre polynomials Pl (cos ∠B j x ) = 4π

2l+1

∑l
m=−l Ylm

∗(B j)Ylm(x j) = 4π

2l+1

∑l
m=−l Ylm(B j)Y ∗

lm(x j), we
may write the LHS of (34) as an angular integral of the product:∮

R
ds(x)Ĝ(Ax)∗Ĝ(Bx) =

∮
R2d�x j

×
[

ik0

∑
l,m

h(2)
l (x j) jl (Aj)Ylm(Aj)Y ∗

lm(x j) −ik0

∑
l,m

∑
l ′,m′

F∗
lm,l ′,m′ h

(2)
l (Aj)h(2)

l ′ (x j)Y ∗
lm(Aj)Y ∗

l ′,m′ (x j)

⎤⎦

×
⎡⎣−ik0

∑
l ′′,m′′

h(1)
l ′′ (x j) jl ′′ (B j)Y ∗

l ′′m′′ (B j)Yl ′′m′′ (x j) +ik0

∑
l ′′,m′′

∑
l ′′′,m′′′

Fl ′′m′′,l ′′′,m′′′ h(1)
l ′′ (B j)h(1)

l ′′′ (x j)Yl ′′m′′ (B j)Yl ′′′,m′′′ (x j)

⎤⎦ . (37)

Then, we perform the angular integral by using the orthogonality of spherical harmonic functions
∮

d�Ylm
∗Yl ′m′ = δll ′δmm′ :∮

R
ds(x)Ĝ(Ax)∗Ĝ(Bx) = k2

0 R2
∑
l,m

h(2)
l (x j) jl (Aj)Ylm(Aj)h(1)

l (x j) jl (B j)Y ∗
lm(B j)

− k2
0 R2

∑
l,m

∑
l ′′,m′′

h(2)
l (x j) jl (Aj)Ylm(Aj)Fl ′′m′′,l,mh(1)

l ′′ (B j)h(1)
l (x j)Yl ′′m′′ (B j)

− k2
0 R2

∑
l,m

∑
l ′,m′

F∗
lm,l ′,m′ h

(2)
l (Aj)h(2)

l ′ (x j)Y ∗
lm(Aj)h(1)

l ′ (x j) jl ′ (B j)Y ∗
l ′m′ (B j)

+ k2
0 R2

∑
l,m

∑
l ′,m′

∑
l ′′,m′′

F∗
lm,l ′,m′ h

(2)
l (Aj)h(2)

l ′ (x j)Y ∗
lm(Aj)Fl ′′m′′,l ′,m′ h(1)

l ′′ (B j)h(1)
l ′ (x j)Yl ′′m′′ (B j). (38)
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1006 H. Sato

We note that spherical Hankel functions h(1)
l (x j) and h(2)

l (x j) appear as a pair having the same index l. On the spherical surface, h(1,2)
l (x j)

means h(1,2)
l (k0 R). Using the asymptotic behaviour h(1)

l (z) ≈ (−i)l+1eiz/z and h(2)
l (z) ≈ (i)l+1e−i z/z for z � 1, we approximate the product

h(2)
l (k0 R) h(1)

l (k0 R) ≈1/(k0R) for R � k−1
0 . Then the surface integral becomes∮

R
ds(x)Ĝ(Ax)∗Ĝ(Bx) =

∑
l,m

jl (Aj)Ylm(Aj) jl (B j)Y ∗
lm(B j)

−
∑
l,m

∑
l ′′,m′′

jl (Aj)Ylm(Aj)Fl ′′m′′,l,mh(1)
l ′′ (B j)Yl ′′m′′ (B j)

−
∑
l,m

∑
l ′,m′

F∗
lm,l ′,m′ h

(2)
l (Aj)Y ∗

lm(Aj) jl ′ (B j)Y ∗
l ′m′ (B j)

+
∑
l,m

∑
l ′,m′

∑
l ′′,m′′

F∗
lm,l ′,m′ h

(2)
l (Aj)Y ∗

lm(Aj)Fl ′′m′′,l ′,m′ h(1)
l ′′ (B j)Yl ′′m′′ (B j). (39)

Using relations 2 jl (z) = h(1)
l (z) + h(2)

l (z), Fl,m,l ′m′ = Fl ′,m′,lm and Y ∗
lm = ( − 1)l + mYl, −m, substituting (35) in the RHS, and then recovering

original arguments, we obtain∮
R

ds(x)Ĝ(xA, x, ω)∗Ĝ(xB, x, ω) = i

2k0
[Ĝ(xA, xB, ω) − Ĝ(xA, xB, ω)∗]

+1

2

∑
l,m

∑
l ′,m′

[ − (−1)l−m Fl,−m,l ′,m′ − (−1)l ′−m′
F∗

lm,l ′,−m′ + 2
∑
l ′′,m′′

F∗
l,m,l ′′,m′′ Fl ′m′,l ′′,m′′

]
× h(2)

l (k0rAj )h
(1)
l ′ (k0rB j )Y

∗
l,m(θAj , ϕAj )Yl ′,m′ (θB j , ϕB j ). (40)

Thus the Green’s function retrieval condition (34) for spherical Hankel expansion coefficients in (31) is to satisfy

(−1)l−m Fl,−m,l ′,m′ + (−1)l ′−m′
F∗

lm,l ′,−m′ = 2
∑

l ′′,m′′ F∗
l,m,l ′′,m′′ Fl ′m′,l ′′,m′′ for any l, m, l ′ and m ′. (41)

This is the sufficient condition for the Green’s function retrieval which we sought.

4.4 Energy conservation

As illustrated in Fig. 5, the total energy radiated from a delta function source at B is given by the integral of the energy flux density over a
closed spherical surface of a large radius R′ surrounding the scattering obstacle j and the source B, 1

2π

∫ ∞
−∞ dω

∮
ds(x)

∑3
i=1 M̂i (x, ω)ni , where

n is the outward normal unit vector of the spherical surface. At angular frequency ω, we valuate the following integral over the spherical

Figure 5. Surface integral of M̂ n over the spherical surface of a large radius R′ enclosing the source B and the scatterer j gives the total radiated energy at
angular frequency ω.
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surface:∮
R′ ds(x)

∑3
i=1 M̂i (Ĝ(x B))ni = −i

ωV 2
0

2

∮
R′

ds(x)
3∑

i=1

ni [Ĝ(x B)∗∂i Ĝ(x B) − ∂i Ĝ(x B)∗Ĝ(x B)]. (42)

We may write the surface integral on the sphere into a volumetric integral by using the Gauss’s divergence theorem. Then, using the
same procedure for the 2-D case (21), we obtain∮

R′
ds(x)

3∑
i=1

M̂i (Ĝ(x B))ni = i
ωV 2

0

2
[Ĝ(B B) − Ĝ(B B)∗]. (43)

It is independent of radius R′, which means the conservation of energy.
We calculate the surface integral (42) using the spherical Hankel function expansion of the Green’s function (31). At a large distance

R′ � 1/k0, rBj and L, using the fact that Ĝ satisfies the radiation condition, we may replace
∑3

i=1 ni∂i Ĝ → ik0Ĝ and
∑3

i=1 ni∂i Ĝ∗ → −ik0Ĝ∗

in (42) since
∑3

i=1 ni∂i = ∂r on the spherical surface. The surface integral becomes the same form as the LHS of (34) with A = B because of
the source–receiver reciprocity. Putting A to B in (40), we have∮

R′
ds(x)

3∑
i=1

M̂i (Ĝ(x B))ni ≈ ω2V0

∮
R′

ds(x) Ĝ(Bx)∗Ĝ(Bx),

= iωV 2
0

2
[Ĝ(B B) − Ĝ(B B)∗] + ω2V0

2

∑
l,m

∑
l ′,m′

h(2)
l (B j)h(1)

l ′ (B j)Y ∗
l,m(B j)Yl ′,m′ (B j)

×[ − (−1)l−m Fl,−m,l ′,m′ − (−1)l ′−m′
F∗

lm,l ′,−m′ + 2
∑
l ′′,m′′

F∗
l,m,l ′′,m′′ Fl ′m′,l ′′,m′′

]
. (44)

It should be the same as (43). Thus, we find the same constraint as (41) for Flm,l ′m′ . This is the generalized optical theorem for the 3-D case.

4.5 Scattering amplitude and optical theorem

In order to clarify the physical meaning of the constraint (41), we place a source B and a receiver x in the far filed of the scattering

obstacle j at the origin as illustrated in Fig. 6. We may approximate h(1)
l ′ (k0rB j ) ≈ (−i)l ′+1 eik0rB j

k0rB j
≈ (−i)l ′ h(1)

0 (k0rB j ) for k0rBj � 1, and

h(1)
l (k0rx j ) ≈ (−i)l+1 eik0rx j

k0rx j
for k0rxj � 1. Using these approximations, we rewrite the scattering term in (31) by a product of the incident wave

Ĝ0 and spherically outgoing wave eik0rx j /rx j :

Ĝ(x, xB, ω) ≈ Ĝ0(rx B, ω) −
∑
l,m

∑
l ′,m′

eik0rx j

k0rx j
(−i)l+l ′+14π Flm,l ′m′ (ω)Ylm(θx j , ϕx j )Yl ′m′ (θB j , ϕB j )Ĝ0(rB j , ω). (45)

Writing the RHS of this equation in the standard form of the scattering theory, we have

Ĝ(x, xB, ω) ≈ Ĝ0(rx B, ω) +
∑
l,m

∑
l ′,m′

eik0rx j

rx j
4π flm,l ′m′ (ω)Ylm(θx j , ϕx j )Y

∗
l ′m′ (π − θB j , ϕB j + π )Ĝ0(rB j , ω), (46)

Figure 6. Source B and a receiver x are placed in the far field of the scattering obstacle j.
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1008 H. Sato

where flm,l ′m′ ’s are the spherical harmonic function expansion coefficients of the scattering amplitude f, where angles π − θBj and ϕBj + π

are for the incident ray direction from the source B to the obstacle j at the origin, and θ xj and ϕxj for the scattered wave ray direction from j to
a receiver at x. Their included angle is scattering angle ∠−Bjx. By using the relation

Flm,l ′m′ = −(−1)m′
i l+l ′+1k0 flm,l ′,−m′ , (47)

where flm,l ′,m′ = (−1)m+m′
fl ′,−m′,l,−m , the constraint (41) is written as the constraint for the scattering amplitude flm:

−i fl ′,m′,l,m + i f ∗
lm,l ′,m′ = 2k0

∑
l ′′,m′′

f ∗
lm,l ′′,m′′ fl ′m′,l ′′,m′′ . (48)

For the case of a spherically symmetric obstacle, the scattering amplitude is a function of scattering angle ∠−Bjx. In this case,

flm,l ′m′ = flδll ′δmm′ , (49a)

Flm,l ′m′ = −i(−1)l−mk0 flδll ′δm,−m′ . (49b)

Then, (48) is written as the constraint for the scattering amplitude fl:

Im fl = k0| fl |2. (50)

This is the standard form of the optical theorem for a spherical obstacle (e.g. Landau & Lifshitz 2003, eq. 125.14). Substitution of (49) into
(31) leads to

Ĝ(x, xB, ω) = −i

4
h(1)

0 (k0rx B) + k2
0

∑
l,m

fl (ω)h(1)
l (k0rx j )h

(1)
l (k0rB j )Ylm(θx j , ϕx j )Y

∗
lm(θB j , ϕB j ). (51a)

In the far field, it is written as

Ĝ(x, xB, ω) ≈ Ĝ0(rBx , ω) + eik0rx j

rx j

∞∑
l=0

fl (ω)(2l + 1)Pl (cos ∠−B j x )Ĝ0(rB j , ω),

= Ĝ0(rBx , ω) + eik0rx j

rx j
f (∠−B j x , ω)Ĝ0(rB j , ω), (51b)

(e.g. Landau & Lifshitz 2003, eq. 123.14).

5 C O N C LU S I O N

In the case that a single obstacle of arbitrary shape is placed in a 2-D homogeneous medium, the scattering part of the Green’s function is
written by a double series expansion using Hankel functions of the first kind which satisfy the radiation condition at a large distance from the
source and the scattering obstacle. When two receivers and the scattering obstacle are illuminated by uncorrelated noise sources randomly
and uniformly distributed on a closed circle of a large radius surrounding them, the lag-time derivative of the CCF of random waves at the two
receivers can be written by a convolution of the antisymmetrized Green’s function and the ACF of the noise source time function. We have
explicitly derived the constraint for the Hankel function expansion coefficients as the sufficient condition for the Green’s function retrieval. We
have shown that the constraint is equal to the generalized optical theorem derived from the energy conservation principle. Physical meaning
of the generalized optical theorem becomes clear when the Hankel function expansion coefficients are transformed into scattering amplitudes
in the framework of the conventional scattering theory. Furthermore, we have studied the case that a single obstacle of arbitrary shape is
placed in a 3-D homogeneous medium. The Green’s function is written by a double series expansion using spherical Hankel functions of
the first kind and spherical harmonic functions. When two receivers and a scattering obstacle are illuminated by noise sources randomly
and uniformly distributed on a closed spherical surface of large radius surrounding them, we have explicitly derived the constraint for the
spherical Hankel function expansion coefficients for the Green’s function retrieval and the energy conservation.

The radiation condition, the source–receiver reciprocity and the energy conservation are key factors for the derivation of the constraint.
The addition theorem is important for the mathematical derivation. We note that our derivation of the constraint does not assume that two
receivers are in the far field of the scattering obstacle. The theory developed will be a mathematical foundation for imaging a single obstacle
of arbitrary shape from the noise correlation measurements. We will study the constraint for the Green’s function retrieval in the case that
uncorrelated noise sources are uniformly and randomly distributed in a medium with intrinsic absorption.
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