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GREEN’S FUNCTIONS FOR MULTIPLY CONNECTED DOMAINS
VIA CONFORMAL MAPPING *

MARK EMBREET aAnND LLOYD N. TREFETHEN?

Abstract. A method is described for the computation of the Green’s function in the complex
plane corresponding to a set of K symmetrically placed polygons along the real axis. An important
special case is a set of K real intervals. The method is based on a Schwarz—Christoffel conformal map
of the part of the upper half-plane exterior to the problem domain onto a semi-infinite strip whose
end contains K —1 slits. From the Green’s function one can obtain a great deal of information about
polynomial approximations, with applications in digital filters and matrix iterations. By making the
end of the strip jagged, the method can be generalized to weighted Green’s functions and weighted
approximations.
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1. Introduction. Green’s functions in the complex plane are basic tools for the
analysis of real and complex polynomial approximations [10,21,24,30,32], which are
of central importance in the fields of digital signal processing [16,17,19] and matrix
iterations [5,6,11,20,28]. The aim of this article is to show that when the domain of
approximation is a collection of real intervals, or more generally symmetric polygons
along the real axis, the Green’s function can be computed to high accuracy by Schwarz—
Christoffel conformal mapping. The computation of Schwarz—Christoffel maps has
become routine in recent years with the introduction of Driscoll’s MATLAB® Schwarz—
Christoffel Toolbox [4], a descendant of the second author’s Fortran package SCPACK
[26].

The Green’s function for a single interval can be obtained by a Joukowsky confor-
mal map, and related polynomial approximation problems were solved by Chebyshev
in the 1850s [3]. For two disjoint intervals, the Green’s function can be expressed using
elliptic functions, and approximation problems were investigated by Akhiezer in the
1930s [2]. For K > 2 intervals, the Green’s function can be derived from a more gen-
eral Schwarz—Christoffel conformal map, and the formulas that result were stated in
a landmark article by Widom in 1969 [32]. Polynomial approximations can be readily
computed in this case by the Remes algorithm, which was adapted for digital filtering
by Parks and McClellan [3,18].

By a second conformal map, these ideas for intervals can be transplanted to the
more general problem of the Green’s function for the region exterior to a string of
symmetric domains along the real axis ([32], p. 230). The conformal maps in question
can usually not be determined analytically, however, and even for the case of intervals
on the real axis, the formula for the Green’s function requires numerical integration.
Here, for the case in which the domains are polygonal and thus can be reduced to
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intervals by a Schwarz—Christoffel map, we carry out the computations to put these
ideas into practice.

This article originated from discussions with Steve Mitchell of Cornell University,
who is writing a dissertation on applications of these ideas to the design of multirate
filters [15], and we are grateful to him for many suggestions. The contributions of
Jianhong Shen and Gilbert Strang at MIT were also a crucial help to us. Shen and
Strang have studied the accuracy of lowpass digital filters [22,23], and their asymptotic
formulas are directly connected to these Schwarz—Christoffel methods. In addition we
thank Toby Driscoll for his advice and assistance.

Our algorithm makes possible the computational realization of results in approx-
imation theory going back to Faber, Szegd, Walsh, Widom, and Fuchs, among others.
In particular, Walsh, Russell, and Fuchs obtained theorems concerning simultaneous
approximation of distinct entire functions on disjoint sets in the complex plane [8,9,30],
which we illustrate here in Section 6. Wolfgang Fuchs was for many years a leading
figure at Cornell University until his unfortunate death in 1997.

2. Description of the algorithm. Let E be a compact subset of the complex
plane consisting of K disjoint polygons P, ..., P, numbered from left to right, with
each polygon symmetric with respect to the real axis. Degenerate cases are permitted
in which a portion of a polygon, or all of it, reduces to a line segment (but not to a
point). The Green’s function problem for E is defined as follows:

Green’s Function Problem. Find a real function g defined in the
region of the complex plane exterior to E satisfying

Ag(z) = 0 for z¢ E, (1a)
g(z) >0 for 2z = E, (1b)
g(z) ~log|z| for z — co. (1c)

In (1a), A denotes the Laplacian operator, and thus ¢ is harmonic throughout the
complex plane exterior to the polygons P;. Standard results of potential theory ensure
that there exists a unique function g satisfying these conditions [12,13,29,32].

The solution to (1) can be constructed by conformal mapping. What makes this
possible is that the problem is symmetric with respect to the real axis, so it is enough
to find g(z) for the part of the upper half-plane Imz > 0 exterior to F; the solution in
the lower half-plane is then obtained by reflection (the Schwarz reflection principle).
This half-planar region is bounded by the upper halves of the polygons P; and by
the intervals along the real axis that separate the polygons, where the appropriate
boundary condition for g, by symmetry, is the Neumann condition dg/dn = 0.

Restricting the map to the upper half-plane makes the domain simply-connected,
suggesting the following conformal mapping problem.

Conformal Mapping Problem. Find an analytic function f that
maps the portion of the upper half-plane exterior to E (Fig. 1a) confor-
mally onto a semi-infinite slit strip (Fig. 1c). Only the vertices f(s,) =
mi, f(Tr) =0, and f(o0) = oo are prescribed. The remaining vertices,
and hence the lengths and heights of the slits, are not specified.

Once this mapping problem is solved, the function g defined by
9(z) = Re(f(2)) (2)
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Figure 1. Determination of the Green’s function g(z) by a composition of two
conformal maps, g(z) = Ref(z) = Ref,(f,(2)). (a) The problem domain is re-
stricted to the part of the upper half-plane exterior to the polygons P;. (b) The first
Schwarz—Christoffel map f; takes this problem domain onto the upper half-plane itself.
(c) The second Schwarz—Christoffel map f, takes the upper half-plane to a slit semi-
infinite strip. The interval [s;,t;] maps to a vertical boundary segment [0, 7;] with
Re[o;,7;] = 0. The gaps along the real axis between the intervals [s;,¢;] map to hor-
izontal slits, and the semi-infinite intervals (—oo, s;) and (¢,,00) map to semi-infinite
horizontal lines with imaginary parts 7 and 0, respectively. Only the real parts of the
left endpoints of the slits are prescribed; the imaginary parts and the right endpoints
@;, as well as their pre-images a;, are determined as part of the calculation.

is the Green’s function (1) for values of z in the upper half-plane. To see this we
note that g satisfies (1a) because the real part of an analytic function is harmonic,
it satisfies (1b) because of the form of the slit strip, and it satisfies (1c) because the
half-strip has height 7. The existence and uniqueness of a solution to the Conformal
Mapping Problem can be derived from standard theory of conformal mapping [12] or
as a consequence of the corresponding facts for the Green’s Function Problem.
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w-plane
w = ®(z)

Figure 2. Composition of a third conformal map, the complex exponential, trans-
plants the slit strip to the exterior of a disk with radial spikes in the upper half-plane.
Reflection in the real axis completes the map of the problem domain of Fig. 1a, yielding
a function w = ®(z) such that g(z) = log |®(2)|.

The function f(z) is a conformal map from one polygon to another, and as such,
it can be represented by Schwarz—Christoffel formulas, an idea going back to Schwarz
and independently Christoffel around 1869. Figure 1 shows how f can be constructed
as the composition of two Schwarz—Christoffel maps. The first one maps the problem
domain in the upper half-plane to the upper half-plane, with the upper half of the
boundary of the polygon P; going to the interval [sj, tj]. This mapping problem is a
standard one, for which a parameter problem must be solved to determine accessory
parameters in the Schwarz—Christoffel formula; see [4,12,26]. By the second Schwarz—
Christoffel map, the upper half-plane is then mapped to the slit strip. This is a
Schwarz—Christoffel problem in the reverse, more trivial direction, with only a linear
parameter problem to be solved to impose the condition that the upper and lower
sides of each slit have equal length. Details can be found in [23] and [32]. A related
linear Schwarz—Christoffel problem involving slits in the complex plane is implicit in
[14].

By composing a third conformal map with the first two, we obtain a picture that
is even more revealing than Fig. 1. Figure 2 depicts the image of the slit strip under
the complex exponential: w = ®(2) = exp(f,(f;(2))). The vertical segments now
map onto arcs of the upper half of the unit circle, the slits map onto radial spikes
protruding from that circle, and the infinite horizontal lines map to the portion of the
real axis exterior to the circle. The real axis is shown dashed, because we immediately
reflect across it to get a complete picture.

By the composition ®(z) of three conformal maps, we have transplanted the
K-connected exterior of the region E of Fig. 1a to the simply-connected exterior of
the spiked unit disk of Fig. 2. (These connectivities are defined with respect to the
Riemann sphere or the extended complex plane C U {o0}.) The Green’s function for
E is given by the extraordinarily simple formula

9(2) = log|®(2)]. (3)

Have we really mapped a K-connected region conformally onto a simply-connec-
ted region? No, this is is not possible, and to resolve what looks like a contradic-
tion we must think more carefully about reflections. Suppose in Fig. 1a we think of
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the finite dashed intervals as branch cuts not to be crossed, and reflect only across
the semi-infinite dashed intervals at the ends. Then the complement of E becomes
simply-connected, and we have indeed constructed a conformal map onto the simply-
connected region of Fig. 2. However, the Schwarz reflection principle permits reflection
across arbitrary straight lines or circular arcs. There is no reason why one should ex-
clude the finite intervals in Fig. la as candidates, which would correspond in the
w-plane to reflection in the protruding spikes of Fig. 2. When such reflections are
allowed, ®(z) becomes a multi-valued function whose values depend on paths in the
complex plane—or equivalently, a single-valued conformal map of Riemann surfaces.
Even under arbitrary reflections with arbitrary multi-valuedness, fortunately, equa-
tion (3) remains valid, since all reflections preserve the absolute value |®(2)| and g(z)
depends only on this absolute value. Therefore, for the purpose of calculating Green’s
functions, we escape the topological subtleties of the conformal mapping problem.

The phenomenon of multivaluedness is a familiar one in complex analysis. An
analysis of the multivalued function ®(z) is the basis of Widom’s approximation the-
oretic results in [32], and earlier discussions of the same function can be found, for
example, in [30] and [31].

3. Computed example; electrostatic interpretation. Our first computed
example is presented in detail to illustrate our methods. The region E of Fig. 3(a)
has K = 2 polygons, a red hexagon and a green square. (The hexagon is defined by
coordinates —6.5, —5 £ 1.5¢, —5.75 £ 2.25i, —8 and the square by coordinates 9.5,
8.75+0.75¢,8.) In Fig. 3(b), three subsets of the real axis have been introduced, blue
and turquoise and magenta, to complete the boundary of the half-planar region. Plots
(c) and (d) show the conformal images of this region as a slit strip and the exterior
of the disk with a spike. The color coding is maintained to indicate which boundary
segments map to which.

All of these computations, like those in our later examples, have been carried out
with the high accuracy that comes cheaply in Schwarz—Christoffel mapping [26]. Thus
our figures can be regarded as exact for plotting purposes. For the sake of those who
may wish to duplicate some of these computations, in the sections below we report
occasional numbers, which are believed in each case to be correct to all digits listed.

Green’s functions have a physical interpretation in terms of two-dimensional elec-
tric charge distributions, that is, cross-sections of infinite parallel line charge distribu-
tions in three dimensions. In Fig. 3(d), the equilibrium distribution of one (negative)
unit of charge along the unit circle is the uniform distribution, which generates the
associated potential g(w) = log|w|. By conformal transplantation under the map
z = ®—1(w), this maps to a non-uniform distribution along the boundaries of the
polygons P; in the z-plane. This nonuniform charge distribution on the polygons P;
is precisely the minimal-energy, equilibrium charge distribution for these sets. It is
the charge distribution that would be achieved if each polygon were an electrical con-
ductor connected to the other polygons by wires in another dimension so as to put
them all at the same voltage. Mathematically, the charge distribution is distinguished
by the special property that it generates the potential g(z) with constant value on the
boundaries of the polygons.

4. Asymptotic convergence factor, harmonic measure, and capacity.
Every geometrical detail of Fig. 3 has a mathematical interpretation for the Green’s
function problem, which becomes a physical interpretation if we think in terms of
equilibrium charge distributions. We now describe several items that are particularly
important.
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(a) Problem domain, showing the computed
critical level curve g(z) = g. as well as one
lower and one higher level curve.

(b) To obtain these results, first the real axis
is drawn in as an artificial boundary. Heavy
lines mark the boundary of the new simply-
connected problem domain.

(c) The half-planar region is then transplanted
by a composition of two Schwarz—Christoffel
maps to a slit semi-infinite strip. The real in-
terval between the polygons (turquoise) maps
to a horizontal slit whose coordinates are de-
termined as part of the solution. Vertical lines
in the strip correspond to level curves of the
Green’s function of the original problem.

(d) Finally, the exponential function maps the
strip to the upper half of the exterior of the
unit disk. The slit becomes a protruding tur-
quoise spike. Here the Green’s function is
log |w|, with concentric circles as level curves.
Reflection extends the circles to the lower half-
plane, and following the maps in reverse pro-
duces the curves of (a).

Figure 3. Color-coded computed illustration of our algorithm for an example with
K = 2 polygons. The blue, red, turquoise, green, and magenta boundary segments
in the various domains correspond under conformal maps. Fainter lines distinguish

function values obtained by reflection.
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Crritical point, potential, and level curve. For sufficiently small ¢ > 0, the region
of C\E where g(z) < € consists of K disjoint open sets surrounding the polygons P;.
At some value g., two of these sets first coalesce at a point z. € R, which will be
a saddle point of g(z), i.e., a point where the gradient of g(z) and also the complex
derivative ®/(z) are zero [30]. We call z. the critical point, g. the critical potential,
and {z € C: ¢(z) = g.} the critical level curve. (We speak as if z. is a single point
and just two sets coalesce there, which is the generic situation, but in special cases
there may be more than one critical point and more than two coalescing regions, as
in Fig. 7 below.)

These critical quantities can be immediately obtained from the geometry of our
conformal mapping problem. Let w. denote the endpoint of the shortest protruding
spike as in Figs. 2 or 3(d). Then z. = ®—1(w.) (= f; *(a;.), where j. is the index of
the critical point a; as in Figure 1), g. = log(|w.|), and the critical level curve is the
pre-image under ® of the circle |w| = |w.|. For the example of Fig. 3, z. = 2.517348,
ge = 0.634942, and the critical level curve is plotted in Fig. 3(a).

Asymptotic convergence factor. In applications to polynomial approximation, as
described in Section 6, the absolute value of the end of the shortest spike is of particular
interest. With the same notation as above, we define the asymptotic convergence factor
associated with g(z) by

p = lwe| ™" = exp(—g.). (4)

For the example of Fig. 3, p = 0.529966.

Note that g. and p depend on the shape of the domain E, but not on its scale.
Doubling the sizes of the polygons and the distances between them, for example, does
not change these quantities. They are also invariant with respect to translation of the
set F in the complex plane.

Harmonic measure. Another scale-independent quantity is the proportion p; of
the total charge on each polygon P;, which is known as the harmonic measure of P;
(with respect to the point z = o0) [1,7,13]. This quantity is equal to 7~ times the
distance between the appropriate two slits in the strip domain (or a slit and one of
the semi-infinite boundary lines), or equivalently to 7—1 times the angle between two
spikes (or a spike and the real axis) in the w-plane. In the notation of Fig. 1,

og. —T.

= 2y 5
Hj i ()

For the example of Fig. 3, the slit is at height Imo, = 1.290334, and dividing by 7
shows that the proportion of charge on the green square is pu2 = 0.410726. The density
of charge at particular points along the boundary is equal to 7=1|dw/dz| = #=1|®'(z)],
a number that is easy to evaluate since the Schwarz—Christoffel formula expresses ®(z)
in terms of integrals. (This density can be used to define the harmonic measure of
arbitrary measurable subsets of the boundary of E, not just of the boundary of Pj.)

Capacity. The capacity C (= logarithmic capacity, also called the transfinite
diameter) of a compact set E C C is a standard notion in complex analysis and ap-
proximation theory [1,13]. This scale-dependent number can be defined informally as
the average distance between charges, in the geometric-mean sense, for an equilibrium
charge density distribution on the boundary of E. Familiar special cases are C' = R
for a disk of radius R and C' = L/4 for an interval of length L. For a general domain
E, C is equal to the derivative dz/dw evaluated at z = w = oo, that is, C' = 1/®'(c0).
(Normally one would have absolute values, but for our problem ®'(co) is real and
positive.)
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One way to compute C is to note that ®(z) is the composition of fi(z) and
exp(f2(z)), in the notation of Figs. 1 and 2, and f{(oo) is just the multiplicative
constant of the first of our two Schwarz—Christoffel maps. Thus the crucial quantity
to determine is the limit of z/exp(f2(2)) as z = oo, whose logarithm is given by

Zli)n;o(logz—ﬁ(z)) = lim {/1 ¢td¢ —/t fﬁ(C)dC]

Z—00

o0 1 ,
/tK (7”1_“[( —f2(Z)> &z

since fa(tx) = 0. This is a convergent integral of Schwarz—Christoffel type that can
be evaluated accurately by numerical methods related to those of SCPACK and the
SC Toolbox.

Alternatively, we have found that sufficient accuracy can be achieved without the
explicit manipulation of integrals. Using the Schwarz—Christoffel maps, we calculate
the quantities

for a collection of values of z such as z = 24, j = 10,...,15. The function C(z) is
analytic at z = oo, and the capacity C = C(o0) can be obtained in a standard manner
by Richardson extrapolation. For the example of Fig. 3, C' = 4.082273.

The ideas of this section can be spelled out more fully in formulas, generally
integrals or double integrals involving the charge density distribution; see [13,21,29].
We omit these details here.

5. Further examples. Figures 4-7 present computed examples with K = 2,3,4
and 5 polygons. In each case, the critical level curve of g(z) has been plotted together
with three level curves outside the critical one. In the case of Fig. 6, a fifth level curve
has also been plotted that corresponds to the highest of the three saddle points of
g(z) for that problem. If the small square on the right in that figure were not present,
then by symmetry, there would be two saddle points between the long quadrilaterals
at the same value of g(z). The square, however, breaks the symmetry, moving those
saddle points to the slightly distinct levels g(z) = 3.491 x 10—* (shown) and ¢(z) =
3.681 x 104 (not shown).

Figure 7 may puzzle the reader. Why does the critical level curve self-intersect at
four points, indicating four saddles at exactly the same level, even though there is no
left-right symmetry in the figure? The answer is that the coordinates of the squares in
this example have been adjusted to make this happen. The widths of the squares are
1, 2, 3, 4, and 5, with the left-hand edges of the first two located at z = 0 and z = 4.
This gave us a system of three nonlinear equations in three unknowns to solve for the
locations of the remaining three left-hand edges that would achieve the uniform critical
value. (This is an example of a generalized Schwarz—Christoffel parameter problem, in
which geometric constraints from various domains are mixed [27].) The locations that
satisfy the conditions are 10.948290, 20.326250, and 31.191359, the critical potential
value is g. = 0.0698122, and the capacity is C' = 10.292969.

6. Applications to polynomial approximation. Many uses of Green’s func-
tions pertain to problems of polynomial approximation. The basis of this connection
is an elementary fact: if p(z) = [[(2—z;), then log |p(2)| = >_log |z —z;|, and thus the
size of a polynomial p(z) is essentially the same as the value of the potential generated
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Figure 4. Green’s function for a region defined by two polygons. This computation
is identical in structure to that of Fig. 3.

Figure 5. Green’s function for a region defined by three degenerate polygons with
empty interior. As it is exteriors that are conformally mapped, the degeneracy has no
effect on the mathematical problem or the method of solution.

by “point charges” with potentials log |z — 2| located at its roots {z;}. In the limit
as the number of roots and charges goes to 0o, one obtains a continuous problem such
as (1). Generally speaking, the properties of optimal degree-n polynomials for various
approximation problems can typically be determined to leading order as n — oo from
the Green’s function in the sense that we get the exponential factors right but not the
algebraic ones. Numerous results in this vein are set forth in the treatise of Walsh
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Figure 6. Green’s function for a region defined by four polygons. The square on the
side breaks the symmetry.

&>

Figure 7. Green’s function for a region defined by five polygons. The spacing of the
squares has been adjusted to make all the critical points lie at the same value g..

[30].

Perhaps the simplest approximation topic one might consider is the Chebyshev
polynomials {T,,} associated with a compact set E C C. For each n, T}, is defined
as the monic polynomial of degree n that minimizes ||T,|| = max,cg |Tn(z)|. The
following result indicates one of the connections between T}, and the Green’s function
for E.

THEOREM 1. Let E C C be a compact set with capacity C. Then a unique
Chebyshev polynomial T, exists for each n > 0, and

3 1/n —
Jim [ 75| C. (6)

It follows from this theorem that the numerical methods of this paper enable us to
determine the leading order behavior of Chebyshev polynomials for polygons sym-
metrically located on the real axis. For example, the nth Chebyshev polynomial of
the five-square region of Fig. 7 has size approximately (10.292969)". Other related
matters, such as generalized Faber polynomials [32], can also be pursued.
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Theorem 1 is due to Szegé [25], who extended earlier work of Fekete; a proof can
be found for example in [29]. For the case in which E is a smooth Jordan domain,
Faber showed that in fact |T,||/C™ — 1 as n — oo. If E consists of two intervals,
Akhiezer showed that ||T,]|/C™ oscillates between two constants, and the starting
point of the paper of Widom [32] is the generalization of this result to a broad class
of sets E with multiple components.

Instead of discussing Chebyshev polynomials further, we shall consider a different,
related approximation problem investigated by Walsh, Russell, and Fuchs, among
others [8,9,30,31]. Let hy,h,,...,hy be entire functions, i.e., each h; is analytic
throughout the complex plane, and to keep the formulations simple, assume that
these functions are distinct. The following is a special case of the general complex
Chebyshev approximation problem:

Polynomial Approximation Problem. Given n, find a polynomial
pn of degree n that minimizes the quantity

E, = max max |pn(z) — h;(2)]- (7)
1<j<K z€P,

Note that we are concerned here with simultaneous approximation of distinct func-
tions on disjoint sets by a single polynomial. The approximations are measured only
on the polygons P;; nothing is required in the “don’t care” space in-between. For
digital filtering, the polygons would typically be intervals corresponding to pass and
stop bands, and for matrix iterations, they would be regions approximately enclosing
various components of the spectrum or pseudospectra of the matrix.

According to results of approximation theory going back to Chebyshev, there
exists a polynomial p,, that minimizes (7), and it is unique [2,3,30]. What is interesting
is how much about p, can be inferred from the Green’s function. We summarize two
of the known facts about this problem as follows:

THEOREM 2. Let {p,} and {E,} be the optimal polynomials and corresponding
errors for the Polynomial Approzimation Problem, let g be the Green’s function, and
let the critical level curve and the asymptotic convergence factor p be defined as in
Section 4. Then

(a) limsup,,_, BN = p.

(b) (“Overconvergence”) pn(2) — h;(z) as n — oo, mot only for z € P;, but for
all z in the region enclosed by the component of the critical level curve enclosing P;,
with uniform convergence on compact subsets. Conversely, pn(z) does not converge
uniformly to hj(z) in any neighborhood of any point on the critical level curve.

These results are due in important measure to Walsh, and are proved in his
treatise [30]; see Theorems 4.5-4.7 and 4.11 and the discussions surrounding them.
Some of this material was presented earlier in a 1934 paper by Walsh and Helen G.
Russell [31], which attributes previous related work to Faber, Bernstein, M. Riesz,
Fejér, and Szegd. The formulations as we have stated them are not very sharp. The
original results of Walsh are more quantitative, and they were sharpened further by
Fuchs, especially for the case in which E is a collection of intervals [8,9].

Theorem 2 concerns the exact optimal polynomials for the Polynomial Approxi-
mation Problem, which are usually unknown and difficult to compute. Walsh showed
that the same conclusions apply more generally, however, to any sequence of poly-
nomials that is mazimally convergent, which means, any sequence {p,} whose errors
{En} as defined by (7) satisfy condition (a) of Theorem 2. Now then, how can we
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construct maximally convergent sequences? Further results of Walsh establish that
this can be done via interpolation in suitably distributed points:

THEOREM 3. Consider a sequence of sets of n+1=1,2,3,... points {,BJ(-n)} either
lying in E or converging uniformly to E asn — oo, and suppose that the potential they
generate in the sense of Section J converges uniformly to the Green’s function g(z) on
all compact subsets disjoint from E. Let {p,} be the sequence of polynomials of degrees
n=0,1,2,... generated by interpolation in these points of a function h(z) defined in
C with h(z) = hj(z) in a neighborhood of each P;. This sequence of polynomials is
mazimally convergent for the Polynomial Approzimation Problem.

THEOREM 4. The overconvergence result of Theorem 2(b) applies to any sequence
{pn} of mazimally convergent polynomials for the Polynomial Approximation Problem.

For proofs see Theorems 4.11 and 7.2 of [30] and the discussions nearby.

Theorem 3 implies that once the Green’s function g(z) is known, it can be used to
construct maximally convergent polynomials by a variety of methods. The simplest
approach is to take p, to be the polynomial defined by interpolation of h; in the
pre-images along the boundary of P; of roots of unity in the w-plane:

2 = d1(ei), (8)

(k=
n+1

Alternatively, and perhaps slightly more effective in practice, we may adjust the points
along the boundary of each polygon P;. Given n, we determine by (8) and (9) the

0, = ., k=1,...,n+1 (9)

number n; of interpolation points that will lie on the boundary of P;. If § and  are
the lower and upper edge angles along the unit circle in the w-plane corresponding
to P; (in the notation of Fig. 1, § = 7;/i and 0= 0;/i), then we define the actual
interpolation points along the boundary of P; by (8) and

Op = 0+ —2" ~ k=1,...,n;. (10)

Both of the choices (9) and (10) lead to maximal convergence as in Theorem 3.

Figure 8 illustrates the ideas of Theorems 2 and 3, especially the phenomenon of
overconvergence. Here we continue with the same geometry as in Fig. 3 and construct
near-best approximations py,(z) by interpolation of the constants —1 on the hexagon
and +1 on the square in the points described by (8) and (9). These two constants
represent distinct entire functions, so the polynomials {p,(z)} cannot converge glob-
ally. They converge on regions much larger than the polygons themselves, however, as
the figure vividly demonstrates: all the way out to the critical “figure-8” level curve,
in keeping with Theorem 2. The colors correspond to just the real part of p,(z), but
the imaginary part (not shown) looks similar, taking values close to zero inside the
figure-8 and growing approximately exponentially outside.

Our final example, motivated by the work of Mitchell, Shen and Strang on digital
filters, takes a special case in which E consists of two real intervals. Consider the
approximation problem defined by a “stop band” P, = [-1,—-0.4] with h,(z) = 0
and a “pass band” P, = [—0.3,1] with hy(z) = 1. That is, the problem is to find
polynomials p,, of degree n that minimize

E, = , TR 11
max {xe[fg§§0_4]lp(w)l s |plo) |} (1)
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Figure 8. Illustration of the overconvergence phenomenon of Theorem 2(b) and
Theorem 4. On the same two-polygon region as in Fig. 3, a polynomial p(z) is sought
that approximates the values —1 on the hexagon and +1 on the square. For this
figure, p is taken as the degree-29 near-best approximation defined by interpolation in
30 pre-images of roots of unity in the unit circle under the conformal map z = ®—1(w)
(egs. (8) and (9)); a similar plot for the exactly optimal polynomial would not look
much different. The figure shows Rep(z) by a blue-red color scale together with the
polygons, the interpolation points, and the figure-8 shaped critical level curve of the
Green’s function. Not just on the polygons themselves, but throughout the two lobes
of the figure-8, Rep(z) comes close to the constant values —1 and +1. Outside, it
grows very fast.

Our Schwarz—Christoffel computations (elementary, since the more difficult first map
f1 of Fig. 1 is the identity in this case) show that the asymptotic convergence factor
is p = 0.947963, the capacity is C = 0.499287, the critical point and level are z. =
—0.350500 and g. = 0.053440, and the harmonic measures are u; = 0.385927 and
w2 = 0.614073.

For n = 19, Fig. 9 plots the near-best polynomial p, defined by interpolation
in the points defined by (8) and (10). The polynomial has approximately equiripple
form, suggesting that it is close to optimal. The horizontal dashed lines suggest the
error in this approximation, but it is clear they do not exactly touch the maximal-
error points of the curve. In fact, these dashed lines are drawn at distances £pn/\/n
from the line to be approximated, where p is the asymptotic convergence factor; the
adjustment by /n is suggested by the theorems of Fuchs [8]. In other words, these
lines mark a predicted error based on the Green’s function, not the actual error of the
polynomial approximation obtained from it.

Figure 10 shows the actual optimal polynomial for this approximation problem,
with equiripple behavior. Something looks wrong here—the errors seem bigger than

[ The original image
is of higher quality,
and is attached at
the end of the paper. ]
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0.8

0.6

0.4

0.2

1 1
-1 -0.8 -0.6 -04 -0.2 0] 0.2 0.4 0.6 0.8 1

Figure 9. The near-best polynomial p,4(z) obtained from the Green’s function by
interpolation in the 20 points (8), (10) of 0 in the stop band [—1,—0.4] and 1 in the
pass band [—0.3,1]. The polynomial is not optimal, but it is close.

1 AN ANANTANLY
AVARVARVAAVA

0.8

0.6

0.4

0.2

-0.2

I I
-1 -08 -0.6

Figure 10. Same as Fig. 9, but for the optimal polynomial p,¢(z) computed by the
Remes algorithm. At first glance, the approximation looks worse. In fact, it is better,
since there are large errors in Fig. 9 at the inner edges of the stop and pass bands.
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Figure 11. Comparison of Green’s function predictions (solid curves) with exact
equiripple approximations (dots) for the example (11). Details in the text.

in Fig. 9, not smaller! In fact, Fig. 9 is not as good as it looks. At the right edge of
the stop band and at the left edge of the pass band, for x ~ —0.4 and z ~ —0.3, there
are large errors. The numerical results line up as follows:

Optimal error E,: 0.1176
Error pm/y/n estimated from Green’s function: 0.0831
Error in polynomial obtained from Green’s function: 0.2030

In some engineering applications, of course, Fig. 9 might represent a better filter than
Fig. 10 after all.

Figure 11 presents three comparisons between properties of the exactly optimal
polynomials p,,(x) for this problem (solid dots) and predictions based on the Green’s
function (curves). Plot (a) compares the error F, with the prediction p"/+/n (the
distances between the horizontal dashed lines in Figs. 9 and 10). Evidently these
quantities differ by a factor of less than 2. Plot (b) compares the proportion of the
interpolation points that lie in the stop band with the harmonic measure p;. The
agreement is as good as one could hope for. Finally, plot (c) compares the point z in
[—1,1] at which the optimal polynomial satisfies p(z) = 0.5 (the vertical dashed line
of Fig. 10) with the critical point z. (the vertical dashed line of Fig. 9). Evidently
the Green’s function makes a good prediction of this transition point for finite n and
exactly the right prediction as n — oo, as it must by Theorem 2(b).
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7. Weighted Green’s functions for weighted approximation. In signal
processing applications, rather than a uniform approximation, one commonly wants
an approximation corresponding to errors weighted by different constants W, in dif-
ferent intervals P;. In closing we note that the techniques we have described can be
generalized to this case by considering a weighted Green’s function in which (1b) is
replaced by the condition

g(z) > —n=tlogW; for z — P, (1b')

which depends on n. The function g can now be determined by a conformal map
onto a semi-infinite strip whose end is jagged, with the K segments lying at real parts
—n~—llog W;. Numerical experiments show that this method is effective, and very
general theoretical developments along these lines are described in the treatise of Saff
and Totik [21].
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