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1 Introduction

If C is a smooth projective curve of genus g and KC is its canonical bundle,
the theorem of Noether asserts that the multiplication map

µ0 : H0(C, KC)⊗H0(C,KC) → H0(C,K⊗2
C )

is surjective when C is non hyperelliptic.
The theorem of Petri concerns then the ideal I of C in its canonical em-

bedding, assuming C is not hyperelliptic. It says that I is generated by its
elements of degree 2 if C is neither trigonal nor a plane quintic.

In [7], M. Green introduced and studied the Koszul complexes

p+1∧
H0(X,L)⊗H0(X, Lq−1)

δ→
p∧

H0(X,L)⊗H0(X, Lq)
δ→

p−1∧
H0(X, L)⊗H0(X,Lq+1)

for X a variety and L a line bundle on X. Denoting by Kp,q(X,L) the coho-
mology at the middle of the sequence above, one sees immediately that the
surjectivity of the map µ0 is equivalent to K0,2(C, KC) = 0, and that if this is
the case, the ideal I is generated by quadrics if and only if K1,2(C, KC) = 0.
On the other hand, C being non hyperelliptic is equivalent to the fact that the
Clifford index Cliff C is strictly positive, where

CliffC := Min{d− 2r, ∃L ∈ PicC, d0L = d, h0(L) = r + 1 ≥ 2, h1(L) ≥ 2}.
Similarly, C is neither hyperelliptic, nor trigonal nor a plane quintic if and
only if Cliff C > 1.

Green’s conjecture on syzygies of canonical curves generalizes then the
theorems of Noether and Petri as follows

Conjecture 1 [7] For a smooth projective curve C in characteristic 0, the
condition Cliff C > l is equivalent to the fact that Kl′,2(C, KC) = 0, ∀l′ ≤ l.

The interest of this formulation of Noether and Petri’s theorems is already
illustrated in [9], where these theorems are given a modern proof, using geo-
metric technics of computation of syzygies.
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For our purpose, and as is done in [7], it is convenient to use the duality
(cf [7])

Kp,2(C, KC) ∼= Kg−p−2,1(C, KC)∗

to reformulate the conjecture as follows

Conjecture 2 [7] For a smooth projective curve C of genus g in characteristic
0, the condition Cliff C > l is equivalent to the fact that Kg−l′−2,1(C, KC) =
0, ∀l′ ≤ l.

If C is now a generic curve, the theorem of Brill-Noether (cf [2], [11]) implies
that

Cliff C = gon C − 2

where the gonality gonC := Min {d, ∃L ∈ Pic C, d0L = d, h0(L) ≥ 2}, and
that

gonC =
g + 3

2
, if g is odd,

gon C =
g + 2

2
, if g is even.

Hence we arrive at the following conjecture (the generic Green conjecture on
syzygies of a canonical curve) :

Conjecture 3 Let C be a generic curve of genus g. Then if g = 2k + 1 or
g = 2k, we have Kk,1(C, KC) = 0.

Remark 1 The actual conjecture is Kl,1(C, KC) = 0, ∀l ≥ k; but it is easy to
prove that

Kk,1(C, KC) = 0 ⇒ Kl,1(C,KC) = 0, ∀l ≥ k.

Notice that in the appendix to [7], Green and Lazarsfeld prove the conjecture
1 in the direction ⇐ (i. e. they produce non zero syzygies from special linear
systems.) Hence the conjecture above cannot be improved, namely, under the
assumptions above, we have Kk−1,1(C,KC) 6= 0.

Teixidor [16] has recently proposed an approach to the conjecture 3. Her
method uses a degeneration to a tree of elliptic curves and the theory of limit
linear series of Eisenbud and Harris [6], adapted to vector bundles of higher
rank. It is very likely that her method will lead to a proof of the generic Green
conjecture.

We propose here a completely different approach, which at the moment
works only for curves of even genus, but provides further evidence for Green’s
conjecture 1 (cf Corollaries 1 and 2).

Recall from [11] that if S is a K3 surface endowed with a ample line bundle
L such that L generates Pic S and L2 = 2g− 2, the smooth members C ∈| L |
are generic in the sense of Brill-Noether, so that in particular they have the
same Clifford index as a generic curve. Hence conjecture 1 predicts that their
syzygies vanish as stated in conjecture 3. This is indeed what we prove here,
in the case where the genus is even.
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Theorem 1 The pair (S, L) being as above, with g = 2k, we have

Kk,1(C, KC) = 0

for C ∈| L |.

Remark 2 The hyperplane restriction theorem [7] says that

Kk,1(C, KC) = Kk,1(S, L) (1.1)

whenever C is a hyperplane section of a K3 surface S (note that KC = L|C in
this case). What we prove in fact is the equality

Kk,1(S, L) = 0. (1.2)

The body of the paper will be devoted to the proof of (1.2). We state and
prove here the following corollaries.

Corollary 1 Let C be a generic curve of genus g = 2k − 1; then

Kk,1(C,KC) = 0.

Notice that the generic Green conjecture predicts in fact that Kk−1,1(C, KC) =
0.

Proof of Corollary 1. The K3 surface S being as above, let X be a
member of | L | with exactly one node as singularity. Let C be the normal-
ization of X. Then the genus of C is equal to 2k − 1. Let p, q ∈ C be the
two points which are identified in X via the normalization map : n : C → X.
Then we have

n∗KX = KC(p + q)

and an isomorphism

H0(X,KX) = H0(C,KC(p + q)). (1.3)

The hyperplane restriction theorem can be applied to X ⊂ S, and together
with (1.2), it gives

Kk,1(X, KX) = 0.

But the isomorphism (1.3) shows that this implies

Kk,1(C, KC(p + q)) = 0.

Now one shows that the natural map

Kk,1(C, KC) → Kk,1(C, KC(p + q))

is injective. Indeed in general consider the Koszul differential

δ :
l∧

H0(Y,L) → H0(Y,L)⊗
l−1∧

H0(Y,L).
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Then if

∧ : H0(Y,L)⊗
l−1∧

H0(Y,L) →
l∧

H0(Y,L)

is the wedge product map, one has

∧ ◦ δ = ±lId. (1.4)

Consider now the inclusion

j : H0(C,KC)⊗
k∧

H0(C,KC) → H0(C,KC(p + q))⊗
k∧

H0(C, KC(p + q)).

Let α ∈ H0(C, KC) ⊗∧k H0(C, KC) such that δα = 0 and j(α) = δβ. Then
(1.4) gives

j(α) = δβ = ± 1

k + 1
δ(∧ ◦ δβ)

= ± 1

k + 1
δ(∧(j(α))).

But ∧(j(α)) ∈ ∧k+1H0(C,KC), so that α is in fact exact.

Corollary 2 For any δ ≤ k
2
, the generic curve of genus 2k−δ which is k+1−δ-

gonal satisfies
Kk,1(C,KC) = 0.

Notice that this result is optimal and exactly predicted by Green’s conjecture
1, since the Clifford index of such curve is equal to k − 1− δ.

Proof of Corollary 2. Again let (S, L) be as above. A generic member
X of | L | is k + 1-gonal. As in section 2, and following [11], it follows that
there is a stable vector bundle E on S with detE = L, c2(E) = k + 1, and
h0(E) = k + 2. The zero set of a generic section of E is a generic member of
a g1

k+1 of a generic curve X ∈| L |.
Now let x1, . . . , xδ be generic points of S. The space

Hx· = H0(S,E ⊗ Ix1 ⊗ . . .⊗ Ixδ
)

has rank at least 2. One checks that for α, β generic in this space, the curve
X defined by the equation

det (α ∧ β) ∈ H0(S, detE) = H0(S, L)

is nodal with nodes exactly as the xi’s. On the other hand, the two sections
α, β generate a rank 1 subsheaf of the restriction E|X . Let now

n : C → X

be the normalization. The rank 1 subsheaf introduced above induces a subline
bundle

D ⊂ n∗E
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with two sections, and it is obvious that the moving part of this linear system
on C is of degree k + 1− δ, since the sections λα + µβ of E vanish at the xi’s,
so that the moving part of their zero sets is of degree k + 1 − δ. Hence C is
k + 1− δ-gonal. It remains to show that

Kk,1(C,KC) = 0. (1.5)

This is proven exactly as in the proof of Corollary 1, using the fact that

Kk,1(X, KX) = 0. (1.6)

Notice that it is not true for δ ≥ 2 that

n∗ : H0(X,KX) → H0(C,KC(
∑

i

pi + qi))

is an isomorphism, but it is injective onto a subspace which contains H0(C, KC),
and this is enough to deduce (1.5) from (1.6).

We conclude this introduction with a sketch of the main ideas in the proof
of (1.2). The very starting point is the following observation : denote by S[l]

the Hilbert scheme parametrizing 0-dimensional length l subschemes of S. Let
Il ⊂ S × S[l] be the incidence subscheme and

Il
πl→ S[l]

q ↓
S

be the incidence correspondence. Let

EL := R0πl∗q
∗L

and Ll := det EL. Then we have
Fact. Kl−1,1(S, L) = 0 if and only if

H0(Il, π
∗
l Ll) = π∗l H

0(S[l], Ll).

Our strategy will be then to construct a subvariety Z of S[k+1], such that

H0(Z̃, π∗l Ll) = π∗l H
0(Z, Ll)

where Z̃ := π−1
l (Z), and the restriction map

H0(Il, π
∗
l Ll) → H0(Z̃, π∗l Ll)

is injective.
As in the papers [11], [8], the key role in constructing our variety Z and

verifying the conditions above will be played by the vector bundles on S asso-
ciated with base-point free linear systems on smooth members of | L |.
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Terminology. In this paper, we shall say that a Zariski open subset U ⊂ X
is large if the complementary closed subset Z = X − U has codimension non
smaller that 2 in X. In the considered cases, the variety X will be normal,
and we will use freely the fact that for a line bundle L on X

H0(X,L) ∼= H0(U,L|U)

for U a large open subset of X.

2 Strategy of the proof

We start with the following observation : Let X be a smooth projective variety.
Denote by X

[k]
curv the Hilbert scheme parametrizing curvilinear 0-dimensional

subschemes of X of length k. X
[k]
curv is smooth, and if X is a curve or a surface,

it is a large open set in the Hilbert scheme X [k] which is smooth.
Let

Ik
πk→ X

[k]
curv

q ↓
X

be the incidence correspondence. For a line bundle L on X denote by EL the
vector bundle on X

[k]
curv defined by EL = R0πk∗q∗L, and let

Lk := det EL.

We have

Lemma 1 There is a natural isomorphism

Kk,1(X, L) ∼= H0(Ik+1, π
∗
k+1Lk+1)/π

∗
k+1H

0(X [k+1]
curv , Lk+1).

In particular, Kk,1(X,L) = 0 is equivalent to

H0(Ik+1, π
∗
k+1Lk+1) = π∗k+1H

0(X [k+1]
curv , Lk+1).

Proof. Recall that Kk,1(X, L) is the cohomology at the middle of the sequence

k+1∧
H0(X, L)

δ→ H0(X, L)⊗
k∧

H0(X, L)
δ→ H0(X, L⊗2)⊗

k−1∧
H0(X,L).(2.7)

Now note that there is a natural morphism

τ : Ik+1 → X ×X [k]
curv (2.8)

which to (x, z), x ∈ Supp z associates (x, z′), where z′ is the residual scheme of
x in z. This morphism is well defined because we are working with curvilinear
schemes.
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One shows easily that τ identifies Ik+1 to a large open subset of the blow-up

of X × X
[k]
curv along the incidence subscheme Ik. Furthermore, if D ⊂ Ik+1 is

the exceptional divisor one has

π∗k+1Lk+1 = τ ∗(L £ Lk)(−D). (2.9)

It follows that

H0(Ik+1, π
∗
k+1Lk+1) = Ker (H0(X,L)⊗H0(X [k]

curv, Lk)
rest→ H0(Ik, L £ Lk |Ik

)).(2.10)

On the other hand one checks easily that the natural map

l∧
H0(X,L) → H0(X [l]

curv, Ll) (2.11)

induced by the evaluation map

H0(X, L)⊗O
X

[k]
curv

→ EL

are isomorphisms for any l.
We now apply the description above to Ik : we note that denoting by pi, i =

1, 2, the compositions of the projections with the inclusion Ik ↪→ X × X
[k]
curv,

we have
p2 = πk, p1 = pr1 ◦ τ,

where
τ : Ik → X ×X [k−1]

curv

is defined as in (2.8). Hence applying formula (2.9), we get

L £ Lk |Ik
= τ ∗(L2 £ Lk−1)(−D).

So we conclude that there is a natural inclusion

i : H0(Ik, L £ Lk |Ik
) ⊂ H0(X, L⊗2)⊗

k−1∧
H0(X,L).

Hence we have an exact sequence

0 → H0(Ik+1, π
∗
k+1Lk+1)

j→ H0(X,L)⊗H0(X [k]
curv, Lk)

i ◦ rest→ H0(X, L⊗2)⊗H0(X [k−1]
curv , Lk−1).

To conclude, it remains to show that the maps j ◦ π∗k+1 and i ◦ rest identify
via the isomorphisms (2.11) for l = k + 1, k, k − 1 to the differentials δ of the
sequence (2.7). This is quite easy for the first one, working on the open set U
of X [k+1] parametrizing reduced subschemes. The second follows similarly.

We consider now a K3 surface S endowed with an ample line bundle L
generating Pic S and satisfying

L2 = 2g − 2, g = 2k, k > 1.
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As mentioned in the introduction, Green’s conjecture 1 together with Lazars-
feld’s work [11] implies that

Kk,1(C, KC) = 0

for a smooth member C ∈| L | or equivalently that

Kk,1(S, L) = 0.

We now explain our strategy to prove this. Assume we have a subscheme
T ⊂ S[k+1] such that, if T̃ denotes the subvariety π−1

k+1(T ) of Ik+1, the following
conditions are satisfied : (Here we use the notation π for πk+1.)

1. We have an isomorphism

H0(T̃ , π∗Lk+1) = π∗H0(T, Lk+1).

2. The restriction map

H0(Ik+1, π
∗Lk+1) → H0(T̃ , π∗Lk+1)

is injective.

Then we claim that Kk,1(S, L) = 0.
Indeed we have the trace maps

tr : H0(Ik+1, π
∗Lk+1) → H0(S[k+1]

curv , Lk+1)

trT : H0(T̃ , π∗k+1Lk+1) → H0(T, Lk+1)

which commute with the restriction maps and which compose to (k + 1) Id
with the pull-back maps. If σ ∈ H0(Ik+1, π

∗Lk+1), the section

σ′ = σ − π∗(
1

k + 1
Tr σ)

vanishes on T̃ by property 1, hence it is zero by property 2. Hence

H0(Ik+1, π
∗Lk+1) = π∗H0(S[k+1]

curv , Lk+1)

and this proves our claim, using lemma 1.
We will have to weaken the assumptions above as follows : Suppose we

have a normal scheme Z together with a morphism

j : Z → Ik+1

such that π ◦ j is generically one to one on its image, which is not contained in
the branch locus of π. Suppose also that we have a normal scheme Z ′ together
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with a proper degree k morphism π′ : Z ′ → Z and a morphism j′ : Z ′ → Ik+1

satisfying the conditions that

π ◦ j′ = j ◦ π′

and the union j(Z)∪ j′(Z ′) is equal set theoretically to π−1(π ◦ j(Z)). Finally
assume there are subschemes Z ′

1 ⊂ Z ′, Z1 ⊂ Z such that

π′|Z′1 =: φ : Z ′
1 → Z1

is a birational isomorphism and j ◦ φ = j′|Z′1 .
(Hence roughly speaking, and up to birational maps, π−1(π ◦ j(Z)) is the

scheme obtained by gluing Z ′ and Z along Z ′
1
∼= Z1.)

Assume now that they satisfy the following set (H) of hypotheses

1. The map

π′∗ : H0(Z, (π ◦ j)∗Lk+1) → H0(Z ′, (π ◦ j′)∗Lk+1)

is an isomorphism.

2. The restriction map

H0(Z, (π ◦ j)∗Lk+1) → H0(Z1, (π ◦ j)∗Lk+1|Z1
)

is injective.

3. The restriction map

j∗ : H0(Ik+1, π
∗Lk+1) → H0(Z, (π ◦ j)∗Lk+1)

is injective.

Then we claim that Kk,1(S, L) = 0.
Indeed by Lemma 1 we have to show that

H0(Ik+1, π
∗Lk+1) = π∗H0(S[k+1]

curv , Lk+1).

Now if σ ∈ H0(Ik+1, π
∗Lk+1), by hypothesis H1, j′∗σ = π′∗α for some α ∈

H0(Z, (π ◦ j)∗Lk+1). We show now that j∗σ = α. Indeed, by property H2, it
suffices to show that this is true on Z1, and since φ : Z ′

1 → Z1 is dominating,
it suffices to show that

φ∗(α|Z1) = φ∗(j∗σ|Z1).

But this follows from j ◦ φ = j′|Z′1 and from j′∗σ = π′∗α, with φ = π′|Z′1 .
Finally it follows from the equality α = j∗σ that

σ′ = σ − π∗(
1

k + 1
Tr σ)

satisfies the condition j∗σ′ = 0. Hence it vanishes by hypothesis H3. This
concludes the proof of our claim.
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We conclude this section with the description of the schemes Z, Z ′ we will
be considering.

Recall from [8], [11], [12], that there is a unique stable bundle E of rank 2
on S which satisfies the following properties:

det E = L, c2(E) = k + 1, h0(E) = k + 2.

Such vector bundle is obtained by choosing a line bundle D on a generic
member C of | L |, such that h0(D) = 2 and d0D = k + 1. Such a line
bundle exists by Brill-Noether theory, and it is generated by global sections
since C does not carry a g1

k by Lazarsfeld [11]. Then we have a vector bundle
F on S defined by the exact sequence

0 → F → H0(D)⊗OS → D → 0 (2.12)

and E is defined as the dual of F . The stability of E follows from the fact that
Pic S = ZL and H0(S, E(−L)) = 0. The uniqueness of such E follows then
from the fact that χ(E, E ′) = 2 for any other vector bundle E ′ with the same
numerical properties, so that either Hom (E, E ′) 6= 0 or Hom (E ′, E) 6= 0. But
then by stability, E = E ′.

The property h0(S,E) = k + 2 follows from the sequence dual to (2.12)

0 → H0(D)∗ ⊗OS → E → KC −D → 0, (2.13)

and from Riemann-Roch which gives h0(KC −D) = k.
Another way to construct the bundle E is via Serre’s construction. By

Riemann-Roch the divisors D of degree k + 1 on smooth members C of | L |
which satisfy h0(C, D) = 2 are exactly the subschemes z of degree k + 1 on S
contained in a smooth member C of | L | and satisfying the condition that the
restriction map

H0(S, L) → H0(L|z)

is not surjective. Note that since the curves C are general in the sense of Brill-
Noether, the corank of this map is exactly 1 and furthermore for any z′ ( z
the restriction map

H0(S, L) → H0(L|z′)

is surjective. Hence, since KS is trivial, to such z corresponds a vector bundle
E together with a section σz vanishing on z. This E is an extension

0 → OS
σz→ E →∧σz→ Iz(L) → 0. (2.14)

Computing the numerical invariants of this bundle E, and arguing as before by
stability, we see that this bundle is isomorphic to the one constructed above.
Notice that each g1

k+1, D on a smooth member C ∈| L | provides by (2.13)
a rank 2 subspace of sections of E, and that the zero sets of these sections
identify to the members of | D |, as subschemes of S.
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It follows from the exact sequence (2.14) twisted by E that h0(S, E⊗Iz) = 1
for any z as above. Hence the morphism

P(H0(S, E)) → S[k+1]

which to σ associates its zero set, is in fact an embedding. One sees easily that
the open set P(H0(S, E))curv corresponding to curvilinear subschemes is large
in P(H0(S, E)).

Let now W := π−1(P(H0(S, E))curv) ⊂ Ik+1. W is easily shown to be
smooth. There is a natural morphism

ψ : W → S[k]
curv

defined as the restriction of pr2◦τ to W . This ψ can be shown to be generically
of degree one on its image.

Consider the blow-up S̃ ×W of S×W along K := (Id, ψ)−1(Ik). It admits

a morphism (̃Id, ψ) to the blow-up of S×S
[k]
curv along Ik, and the later contains

Ik+1 as a large open set. One verifies that (̃Id, ψ)
−1

(Ik+1) is a large open set

of S̃ ×W . This will be our scheme Z. The morphism j : Z → Ik+1 will be

simply the restriction to Z of (̃Id, ψ).
Again one can show (using now the assumption that k > 1) that the

morphism π ◦ j : Z → S[k+1] is generically of degree one on its image.
Next let π′′ : W̃ → W be the degree k cover obtained by completing the

Cartesian diagram
W̃ → Ik

π′′ ↓ πk ↓
W

ψ→ S
[k]
curv

.

Consider the rational map

j′ : S × W̃ −−−− > Ik+1

which to (s, s1, w) s1 ∈ Supp ψ(w) associates (s1, s ∪ ψ(w)). This morphism
becomes well defined after blowing-up K ′ := (Id, π′′)−1(K) and restricting to
a large open subset. Our scheme Z ′ will be this large open set. The morphism
π′ : Z ′ → Z is the restriction to Z ′ of the morphism BlK′(S×W̃ ) → BlK(S×Z)
induced by (Id, π′′). The morphism j′ : Z ′ → Ik+1 is induced by the rational
map j′ above. It is obvious that π−1(π◦j(Z)) is equal to j(Z)∪j′(Z ′). Indeed,
the fiber over s∪ψ(w) ∈ π ◦ j(Z) consists in choosing one point in the scheme
s ∪ ψ(w). This point may be s in which case we are in j(Z), or may be
contained in ψ(w) in which case it determines a point of W̃ over w, and we
are then in j′(Z ′).

Remark 3 The scheme Z is non necessarily smooth, but one can show that K
is reduced, so that its singular locus is of codimension at least two in S ×W .
The same thing is true for Z ′ and K ′. If one wants to work with smooth
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schemes Z0 and Z ′
0 (so as to be exactly in the conditions (H) described above),

it suffices to restrict to the blowing-ups of S × W − Ksing along K − Ksing

and S ×W −K ′
sing along K ′ −K ′

sing. All what follows will be true for these
subschemes.

To conclude, it remains now to construct Z1 and Z ′
1. Z1 will be the excep-

tional divisor of Z (recall that Z is a large open set in BlK(S ×W )). Hence
Z1 is the inverse image under the blow-up map Z → S ×W of K = {(s, w) ∈
S ×W, s ∈ Supp ψ(w)}.

We now construct a generic lifting of Z1 in Z ′, the closure of the image of
which will be Z ′

1. By definition of Z ′ as a large open set of BlK′(S × W̃ ), it
suffices to construct a lifting of K to a component of K ′ in S × W̃ . But if
(s, w) ∈ K, we have s ∈ Supp ψ(w) so that (s, w) identifies to an element w̃ of
W̃ . Our lifting sends simply (s, w) to (s, w̃).

It remains finally to see that the morphisms j′ and j ◦π′ agree on Z ′
1. Since

Ik+1 is contained in S × S
[k+1]
curv , it suffices to prove that pr1 ◦ j′ and pr1 ◦ j ◦ π′

agree on Z ′
1 and that pr2 ◦ j′ and pr2 ◦ j ◦π′ agree on Z ′

1, with pr2 = π on Ik+1.
For the first one this is obvious since both maps factor through the contraction
Z ′

1 → K ′, and are equal on K ′ ⊂ S× W̃ to the first projection on S, as follows
from the definition of the lifting K → K ′.

As for the second one, it follows from the fact that, by construction, π ◦ j′

and π ◦ j ◦ π′ agree on Z ′.

3 Proof of the assumptions H2 and H3

We start with the proof of hypothesis H2.

Proposition 1 Let

Z1 ⊂ Z
π◦j→ S[k+1]

be as in the previous section. Then the restriction map

H0(Z, (π ◦ j)∗Lk+1) → H0(Z1, (π ◦ j)∗Lk+1|Z1
)

is injective.

The proof will be obtained by restricting the construction to a generic smooth
member C ∈| L |. Indeed, recall that Z is a large open set in the blow-up of
S ×W along the incidence subscheme K = (id, ψ)−1(Ik), where

W = {(x, σ) ∈ S × P(H0(S, E))curv, σ(x) = 0},

and ψ : W → S[k] sends (x, σ) to the residual scheme of x in V (σ). Now since
k ≥ 1, the generic element z = V (σ) is supported in a pencil of elements of
| L |, the generic member being smooth. It follows that a generic element of
S×W is of the form (s1, s2, z), z = V (σ), σ(s2) = 0 and there exists a smooth
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member C ∈| L | such that s1, s2, z are supported on C. Hence it suffices
to prove the analogue of proposition 1 with Z replaced by ZC , the proper
transform of C ×WC in Z ⊂ BlK(S ×W ), where

WC := {(c, σ) ∈ C × P(H0(S, E)), σ(c) = 0, V (σ) ⊂ C},
and Z1 is replaced by Z1,C := Z1 ∩ ZC .

Proposition 2 The restriction map

H0(ZC , (π ◦ j)∗Lk+1|ZC
) → H0(Z1, (π ◦ j)∗Lk+1|Z1,C

)

is injective.

Proof. By the description of the bundle E given in the previous section, we
note that the set

{σ ∈ P(H0(S, E)), V (σ) ⊂ C},
identifies by the map σ 7→ V (σ) to the disjoint union of the P1 ⊂ C(k+1)

corresponding to g1
k+1’s on C. If D is such a g1

k+1 on C, D gives a morphism
of degree k + 1

φD : C → P1

or a line bundle LD on C of degree k + 1 with two sections. By definition, WC

identifies (via ψ) to the disjoint union of copies CD of C contained in C(k),
where the map

ψD : C ∼= CD → C(k)

is given by c 7→ the unique effective divisor equivalent to D − c.
Finally ZC identifies to a disjoint union of surfaces ZC,D isomorphic to

C ×C, since the pull-back ∆D to C ×CD of the incidence scheme in C ×C(k)

is of pure codimension 1.
Recall now that

(π ◦ j)∗Lk+1 = L £ ψ∗Lk(−Z1).

We have L|C = KC and in the sequel we will use the notation HD for the line
bundle KC(k) |CD

. (It will be shown that HD ≡ kLD but this will not be used
now.) We have to show that for each D the restriction map

H0(C × C,KC £ HD(−∆D)) → H0(∆D, KC £ HD(−∆D)|∆D
)

is injective, where ∆D := Z1∩ (C×CD). In other words we want to show that

H0(C × C,KC £ HD(−2∆D) = 0. (3.15)

Now, since ∆D is the restriction to C ×CD of the incidence scheme, and since
CD parametrizes the effective divisors of the form LD − x, x ∈ C, it is clear
that

∆D = (φD, φD)−1(diag (P1))− diag (C).
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Hence we have
∆D ≡ LD £ LD − diag (C)

in C × C. Hence we have

KC £ HD(−2∆D) ≡ (KC − 2LD) £ (HD − 2LD) + 2diag C.

Now we have the equality

H0(C, KC − 2LD) = 0, (3.16)

which is proven in [11], since C is generic in S. (Indeed for a base point free
pencil, | LD |, the condition that the µ0-map

H0(C, LD)⊗H0(C, KC − LD) → H0(C, KC)

is injective is equivalent by the base-point free pencil trick to the condition

H0(C, KC − 2LD) = 0.

The equality (3.15) follows now from (3.16) and from the fact that the map
H0(C, 2LD) → H0(2LD |2x) is surjective for generic x in C. Hence by Riemann-
Roch, H0(C,KC − 2LD) = 0 implies H0(C, KC − 2LD + 2x) = 0 for generic
x ∈ C. It follows that

H0(C × C, (KC − 2LD) £ (HD − 2LD) + 2diag C) = 0,

which proves the proposition 2, and hence proposition 1 is proven.

We turn now to the proof of hypothesis H3.

Proposition 3 The morphism Z
j→ Ik+1 being defined as in the previous

section, the pull-back map

j∗ : H0(Ik+1, π
∗Lk+1) → H0(Z, (π ◦ j)∗Lk+1)

is injective.

The proof proceeds in several steps, and occupies the remainder of this section.
Recall that Ik+1 is a large open set in the blow-up of S×S[k] along the incidence
subscheme Ik and that we have the following formula

π∗Lk+1 = τ ∗(L £ Lk)(−D),

where D is the exceptional divisor and τ is the blowing-up map. Since Z is a
large open set in the proper transform of this blowing-up under the morphism
(Id, ψ) : S ×W → S × S[k], it suffices to prove

Proposition 4 The restriction map

ψ∗ : H0(S[k], Lk) → H0(W,ψ∗Lk)

is injective.
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In order to prove this proposition, we first show

Lemma 2 Denoting by π : W → P(H0(S,E)) the restriction of the morphism
πk+1 : Ik+1 → S[k+1], we have the formula

ψ∗Lk = π∗OP(H0(S,E))(k).

Proof. By definition, ψ∗Lk = det ψ∗EL,k, where the bundle EL,k has for fiber
H0(L|z) at a point z ∈ S[k]. Now, if z ∈ W , the scheme z′ = ψ(z) has length
k, hence the restriction map

H0(S, L) → H0(L|z′)

is surjective. On the other hand if z′′ = π(z), we have z′ ⊂ z′′ and the
restriction map

H0(S, L) → H0(L|z′′)

is not surjective. Hence we have

H0(S, L⊗ Iz′) = H0(S, L⊗ Iz′′),

and the fiber of ψ∗EL,k at z is canonically isomorphic to H0(S, L)/H0(S, L ⊗
Iπ(z)). Hence we have

ψ∗Lk = −π∗detF ,

where the bundle F on P(H0(S, E)) is the bundle with fiber H0(S, L⊗ Iz) at
σ, z = V (σ). Now recall that for each σ we have the exact sequence

0 → OS
σ→ E

∧σ→ Iz(L) → 0.

This induces the exact sequence

0 →< σ >→ H0(S,E)
∧σ→ H0(S, Iz(L)) → 0.

We conclude immediately from this that F fits into the exact sequence

0 → OP(H0(S,E))(−2) → H0(S, E)⊗OP(H0(S,E))(−1) → F → 0.

Since rank H0(S, E) = k + 2, it follows that detF = OP(H0(S,E))(−k).

It follows from this lemma that we have a natural inclusion

SkH0(S,E)∗ ↪→ H0(W,ψ∗Lk). (3.17)

(It will be proven in the next section that this inclusion is in fact an isomor-
phism, but we shall not need this here.)

Our strategy to prove proposition 4 will be first to construct an isomor-
phism

H0(S[k], Lk) = ∧kH0(S, L) ∼= SkH0(S, E)∗ (3.18)
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and then to show that composed with the inclusion (3.17), it is equal, up to a
coefficient, to the pull-back map ψ∗.

Construction of the isomorphism (3.18).
We note first that the determinant map

det :
2∧

H0(S, E) → H0(S, det E) = H0(S, L)

does not vanish on any element of rank 2. Indeed, such element of rank 2 is
given by a subspace W of rank 2 of H0(S, E), and if its determinant would
vanish this would imply that W generates a rank 1 subsheaf of E with at least
two sections. But since Pic S is generated by L and H0(S, E(−L)) = 0 this is
impossible.Hence det provides a morphism

d : G2 → P(H0(S, L)),

where G2 is the Grassmannian of rank two vector subspaces of H0(S, E), or
dually a base-point free linear system

K := H0(S, L)∗
d∗
↪→ H0(G2,L) = ∧2H0(S,E)∗,

where L is the Plücker polarization on G2. Notice that rank K = 2k+1. Since
K is base-point free, we have the exact Koszul complex on G2

0 →
2k+1∧

K ⊗ L−(2k+1) → . . . → K ⊗ L−1 → OG2 → 0.

We can now tensor this sequence with SkE , where the rank 2 vector bundle E on
G2 is dual to the tautological rank two subbundle and satisfies H0(G2, S

kE) =
SkH0(S, E)∗.

This provides the exact complex

0 →
2k+1∧

K ⊗ L−(2k+1) ⊗ SkE → . . . → K ⊗ L−1 ⊗ SkE → SkE → 0. (3.19)

In this complex K., the term SkE is put in degree 0. The hypercohomology
H 0(G2,K·) vanishes. Now we have a spectral sequence

Ep,q
1 = Hq(G2,Kp) ⇒ H p+q(G2,K·).

It is obvious for degree reasons that all differentials dr starting from the term
E0,0

r vanish. On the other hand the terms Ep,q
1 with p+ q = −1 are of the form

Hq(G2,

q+1∧
K ⊗ L−q−1 ⊗ SkE).

Using the proposition 9 proven in the appendix, we see that these terms are
all 0, except for

E−k−1,k
1 = Hk(G2,

k+1∧
K ⊗ L−k−1 ⊗ SkE),
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which is equal to
∧k+1 K. It follows that there is only one non zero differential

which arrives in some E0,0
r , namely

dk+1 : E−k−1,k
k+1 → E0,0

k+1.

This implies that

E0,0
k+1 = E0,0

1 = H0(G2, S
kE) = SkH0(S,E)∗

and that the differential dk+1 above is surjective, since the spectral sequence
abuts to 0. Hence we have build a surjective map dk+1 from a subquotient
of E−k−1,k

1 =
∧k+1 K to SkH0(S,E)∗. Since dim

∧k+1 K = dimSkH0(S, E)∗

this subquotient must in fact be equal to
∧k+1 K and the map dk+1 has to be

an isomorphism. Finally, since rank K = 2k + 1,

k+1∧
K = (

k∧
K)∗ =

k∧
H0(S, L).

Hence we have constructed our isomorphism

dk+1 :
k∧

H0(S, L) → SkH0(S, E)∗.

To conclude the proof of proposition 4, it remains only to show :

Proposition 5 The map dk+1 constructed above identifies up to a coefficient
to the map

ψ∗ : H0(S[k], Lk) → H0(W,ψ∗Lk),

which takes values in SkH0(S, E)∗ ⊂ H0(W,ψ∗Lk).

Proof. First of all it is clear that ψ∗ takes values in π∗H0(P(H0(S,E)),O(k)) =
SkH0(S, E)∗. Indeed, this map is the pull-back map associated to the mor-
phism

W → Grass(k + 1, H0(S, L))

z 7→ H0(S, L⊗ Iz′), z′ = ψ(z).

But as mentioned in the proof of lemma 2, this morphism factors through
π : W → P(H0(S, E)).

Next, we note that, with the same spectral sequence argument, and re-
placing K = H0(S, L)∗ ⊂ ∧2 H0(S,E)∗ by the base point free linear system
K ′ =

∧2 H0(S,E)∗ on G2, we could have constructed more generally a surjec-
tive map

Dk+1 :
k+1∧

(
2∧

H0(S, E)∗) → SkH0(S,E)∗,

whose restriction to
∧k+1 K is equal to dk+1.
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On the other hand, we already noticed that the restriction map

ψ∗ : ∧kH0(S, L) → SkH0(S, E)∗

corresponds to the morphism

P(H0(S, E)) → Grass(k + 1, H0(S, L))

σ 7→ det(σ ∧H0(S, E)).

But this morphism is the composition of the morphism

β : P(H0(S, E)) → Grass(k + 1,
2∧

H0(S, E))

σ 7→ σ ∧H0(S, E).

and of the rational map induced by the determinant

det : Grass(k + 1,
2∧

H0(S,E)) → Grass(k + 1, H0(S, L)).

Hence proposition 5 will follow from the following

Lemma 3 The maps Dk+1 and β∗ from
∧k+1(

∧2 H0(S, E)∗) to SkH0(S, E)∗

coincide up to a coefficient.

Proof. We could argue by Sl(k + 2)-equivariance. A more direct way to
prove this is to note the following : If W ⊂ ∧2 H0(S, E)∗ is a rank k+1 vector
subspace in general position, it defines a codimension k + 1 subvariety GW of
G2. Consider the incidence correspondence

P
π→ P(H0(S, E))

p ↓
G2

Then we have an hypersurface XW = π(p−1)(GW ) of P(H0(S, E)), which is
easily proven to be of degree k. It is clear that

H0(G2, S
kE ⊗ IGW

) = H0(P(H0(S, E)),OP(H0(S,E))(k)(−XW )).

On the other hand, from the linear system W we can construct a Koszul
complex which is a resolution of IGW

. Hence it is clear that

Dk+1(
k+1∧

W ) ⊂ H0(G2, S
kE ⊗ IGW

).

In other words, if η is a generator of
∧k+1 W , Dk+1(η) is a defining equation

of XW or 0. It remains then only to prove that β∗η also vanishes on XW . But
by definition

XW = {x ∈ P(H0(S, E)), ∃0 6= γ ∈ P(H0(S,E)/ < x >), x ∧ γ ⊥ W}.
This means that for x ∈ XW , the composed map

W ↪→
2∧

H0(S,E)∗ → (x ∧H0(S, E))∗

is not an isomorphism, hence its determinant vanishes. But this determinant
is equal to β∗η(x).
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4 Proof of the assumption H1

Recall that we have a Cartesian diagram

Z ′ π′→ Z
τ ′ ↓ τ ↓

S × W̃
π′′→ S ×W

where the vertical maps τ, τ ′ are blow-ups and the degree k morphism π′′ fits
into the Cartesian diagram

W̃ → Ik

π′′ ↓ πk ↓
W

ψ→ S
[k]
curv

.

We have the morphisms

j′ : Z ′ → Ik+1, j : Z → Ik+1

such that π ◦ j′ = π ◦ j ◦ π′ and the formula

(π ◦ j)∗Lk+1 = τ ∗(L £ ψ∗Lk)(−D)

where D is the exceptional divisor of τ . Similarly we have

(π ◦ j′)∗Lk+1 = τ ′∗(L £ (ψ ◦ r)∗Lk)(−D′).

Since D′ = π′−1(D) and π′ is surjective, we conclude that in order to prove
H1, that is the fact that the pull-back map

π′∗ : H0(Z, (π ◦ j)∗Lk+1) → H0(Z ′, (π ◦ j′)∗Lk+1)

is surjective, it suffices to show that the pull-back map

π′′∗ : H0(W,ψ∗Lk) → H0(W̃ , (ψ ◦ π′′)∗Lk)

is surjective.
Now recall that we have a morphism

π : W → P(H0(S,E))

such that (cf lemma 2)

ψ∗Lk = π∗OP(H0(S,E))(k).

Denoting by β := π ◦ π′′ : W̃ → P((H0(S, E)), we shall prove the following
stronger statement
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Theorem 2 The pull-back map

β∗ : H0(P(H0(S, E)),OP(H0(S,E))(k)) → H0(W̃ , (ψ ◦ r)∗Lk) (4.20)

is surjective.

The end of this section will be devoted to the proof of this theorem, which
proceeds in several steps. In what follows, we shall use the notation H0(E) for
H0(S, E).

Notice to begin with that W̃ is a large open set in the subscheme

W ′ ⊂ S̃ × S × P(H0(E)),

where S̃ × S is the blow-up of S × S along the diagonal, defined as

W ′ := {(x, y, η, σ), σ|η=0, {x}, {y} ⊂ η}.

(Here η is a subscheme of length 2 of S, and we see elements of S̃ × S as
elements (x, y) of S × S together with a schematic structure η of length 2 on
{x} ∪ {y}.)

The map β is just the restriction to W ′ of the second projection. Hence we
have

H0(W̃ , (ψ ◦ r)∗Lk) = H0(W ′, pr∗2OP(H0(E))(k))

and the surjectivity of (4.20) is equivalent to the condition

H1(S̃ × S × P(H0(E)), pr∗2O(k)⊗ IW ′) = 0. (4.21)

Now notice that there is a vector bundle Ẽ2 on S̃ × S such that W ′ is the
zero set of a section σ of Ẽ2 £ OP(H0(E))(1). Indeed it suffices to take for Ẽ2

the vector bundle with fiber H0(E|η) at the point (x, y, η) of S̃ × S. Then the

section σ takes the value τ|η at the point (x, y, η, τ) of S̃ × S×P(H0(E)). One
checks easily that W ′ is reduced of codimension 4. Hence we have a Koszul
resolution of IW ′

0 →
4∧

Ẽ∗
2 £O(−4) → . . . → Ẽ∗

2 £O(−1) → IW ′ → 0. (4.22)

Our first goal will be to compute the cohomology groups of S̃ × S×P(H0(E))
with value in

∧i Ẽ∗
2 £ O(k − i). Since k ≥ 2, i ≤ 4, O(k − i) has no higher

cohomology on P(H0(E)) = Pk+1. Hence we have

H l(S̃ × S×P(H0(E)),
i∧

Ẽ∗
2 £O(k− i)) = H l(S̃ × S,

i∧
Ẽ∗

2)⊗Sk−iH0(S, E)∗.

We have now the following proposition
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Proposition 6 1. H2(S̃ × S, Ẽ∗
2) = pr∗1H

2(S,E∗)⊕ pr∗2H
2(S, E∗) and

H1(S̃ × S, Ẽ∗
2)) = 0.

2. H2(S̃ × S,
∧2 Ẽ∗

2) = pr∗1H
2(S,−L)⊕ pr∗2H

2(S, E − L).

3. H4(S̃ × S,
∧4 Ẽ∗

2) is dual to Ker (H0(S, L)⊗H0(S, L) → H0(S, 2L)).

4. H3(S̃ × S,
∧3 Ẽ∗

2) = 0 and H4(S̃ × S,
∧3 Ẽ∗

2) admits as a quotient

H4(S̃ × S, τ ∗(pr∗1E
∗⊗pr∗2(−L))(2∆))⊕H4(S̃ × S, τ ∗(pr∗1(−L)⊗pr∗1E

∗)(2∆)),

which is dual to the direct sum of two copies of

Ker H0(S, E)⊗H0(S, L) → H0(S,E ⊗ L).

(Here ∆ ⊂ S̃ × S is the exceptional divisor.)

Proof.
1. The bundle Ẽ2 fits into the exact sequence

0 → Ẽ2 → τ ∗(pr∗1E ⊕ pr∗2E) → τ ′∗E → 0 (4.23)

where τ : S̃ × S → S × S is the contraction, and where τ ′ : ∆ → Diag S is its
restriction to the exceptional divisor.

Dualizing, we get the following exact sequence

0 → τ ∗(pr∗1E
∗ ⊕ pr∗2E

∗) → Ẽ∗
2 → τ ′∗E∗ ⊗O∆(∆) → 0. (4.24)

Now R0τ ′∗O∆(∆) = R1τ ′∗O∆(∆) = 0 hence the sheaf on the right has no
cohomology. It follows that

H i(S̃ × S, Ẽ∗
2) = H i(S̃ × S, τ ∗(pr∗1E

∗ ⊕ pr∗2E))

= H i(S × S, pr∗1E
∗ ⊕ pr∗2E).

Since E∗ has no odd dimensional cohomology, nor OS, it follows from Künneth
formula that the same is true for pr∗1E

∗ ⊕ pr∗2E on S × S. Finally we have

H2(S × S, pr∗1E
∗) = H2(S,E∗)

since H0(S, E∗) = 0. This proves 1.
2. From (4.24) we deduce that

∧2 Ẽ∗
2 has a filtration whose successive

terms are

2∧
τ ∗(pr∗1E

∗⊕pr∗2E
∗), τ ∗(pr∗1E

∗⊕pr∗2E
∗)⊗τ ′∗E∗⊗O∆(∆),

2∧
τ ′∗E∗⊗O∆(2∆).
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The sheaf (pr∗1E
∗⊕ pr∗2E

∗)⊗ τ ′∗E∗⊗O∆(∆) has no cohomology, since O∆(∆)
has no cohomology along the fibers of τ ′. Hence we have an exact sequence

H1(∆,

2∧
τ ′∗E∗⊗O∆(2∆)) → H2(S̃ × S, τ ∗

2∧
(pr∗1E

∗⊕pr∗2E
∗)) → H2(S̃ × S,

2∧
Ẽ∗

2)

→ H2(∆,

2∧
τ ′∗E∗ ⊗O∆(2∆)) . . .

But since
R1τ ′∗(2∆|∆) = OS, R0τ ′∗(2∆|∆) = 0,

the term on the left is equal to H0(S,
∧2 E∗) = 0 and the term on the right is

equal to H1(S,
∧2 E∗) = 0. Hence we have

H2(S̃ × S,

2∧
Ẽ∗

2) = H2(S̃ × S, τ ∗
2∧

(pr∗1E
∗⊕pr∗2E

∗)) = H2(S × S,

2∧
(pr∗1E

∗⊕pr∗2E
∗))

Finally

2∧
(pr∗1E

∗ ⊕ pr∗2E
∗) = pr∗1

2∧
E∗ ⊕ E∗ £ E∗ ⊕ pr∗2

2∧
E∗.

The central term has no cohomology in degree 2 by Künneth formula, because
H1(S, E∗) = H0(S,E∗) = 0, and we have

H2(S × S, pr∗1

2∧
E∗) = H2(S,

2∧
E∗) = H2(S,−L).

This proves 2.
3. We have det Ẽ∗

2 = τ ∗((−L) £ (−L))(2∆) by the exact sequence (4.23).
Hence

3∧
Ẽ∗

2 = Ẽ2 ⊗ det Ẽ∗
2 = Ẽ2 ⊗ τ ∗((−L) £ (−L))(2∆). (4.25)

The exact sequence (4.23) gives now the long exact sequence

H2(∆, τ ′∗(E(−2L))(2∆|∆)) → H3(S̃ × S,

3∧
Ẽ∗

2)

→ H3(S̃ × S, τ ∗((pr∗1E ⊕ pr∗2E)⊗ τ ∗((−L) £ (−L))(2∆)).

Since R0τ ′∗O∆(2∆) = 0, R1τ ′∗O∆(2∆) = OS, the left hand side is equal to
H1(S, E(−2L)), which is easily seen to be 0.

Next we have K]S×S
= O]S×S

(∆), hence H3(S̃ × S, τ ∗(pr∗1E ⊕ pr∗2E) ⊗
τ ∗((−L) £ (−L))(2∆)) is dual to

H1(S̃ × S, τ ∗(pr∗1E
∗ ⊕ pr∗2E

∗)⊗ τ ∗(L £ L)(−∆)). (4.26)
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But one checks easily that the multiplication map

H0(S,E)⊗H0(S, L) → H0(S,E ⊗ L)

is surjective, and it follows that the group (4.26) is 0 since H1(S × S, (pr∗1E
∗⊕

pr∗2E
∗)⊗ L £ L) = 0. (We use here the equality E∗ ⊗ L = E.)

Finally the equality (4.25) and the exact sequence (4.23) also show that

H4(S̃ × S,
∧3 Ẽ∗

2) admits H4(S̃ × S, τ ∗((pr∗1E⊕pr∗2E)⊗ ((−L)£ (−L)))(2∆))
as a quotient. By Serre’s duality this space is dual to

H0(S̃ × S, τ ∗((pr∗1E
∗ ⊕ pr∗2E

∗)⊗ (L £ L))(−∆)). (4.27)

But this is equal to

H0(S × S, (pr∗1E
∗ ⊕ pr∗2E

∗)⊗ (L £ L)⊗ IDiag).

We use then the fact that

pr∗1E
∗ ⊗ (L £ L) = E £ L

to conclude that (4.27) is equal to the sum of two copies of

Ker H0(S, E)⊗H0(S, L) → H0(S,E ⊗ L).

4. We already noticed that

4∧
Ẽ∗

2 = det Ẽ∗
2 = τ ∗((−L) £ (−L))(2∆).

It follows then from Serre’s duality and K]S×S
= O]S×S

(∆) that H4(S̃ × S,
∧4 Ẽ∗

2)
is dual to

H0(S̃ × S, τ ∗(L £ L)(−∆)) = Ker H0(S, L)⊗H0(S, L) → H0(S, 2L)).

Hence 4 is proven.

Coming back to the Koszul resolution of IW ′ ⊗ pr∗2O(k) induced by (4.22),
we see that in order to prove the vanishing (4.21), it suffices to show :

a) H1(S̃ × S × P(H0(E)), Ẽ∗
2 £O(k − 1)) = 0.

b) The interior product with σ

int(σ) : H2(S̃ × S × P(H0(E)),
2∧

Ẽ∗
2 £O(k − 2))

→ H2(S̃ × S × P(H0(E)), Ẽ∗
2 £O(k − 1))

is injective.

c) H3(S̃ × S × P(H0(E)),
∧3 Ẽ∗

2 £O(k − 3)) = 0.
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d) The interior product with σ

int(σ) : H4(S̃ × S × P(H0(E)),
4∧

Ẽ∗
2 £O(k − 4))

→ H4(S̃ × S × P(H0(E)),
3∧

Ẽ∗
2 £O(k − 3))

is injective.
The conditions a) and c) have been established in proposition 6. We now

dualize property b) as follows : by proposition 6 we have

H2(S̃ × S×P(H0(E)),
2∧

Ẽ∗
2£O(k−2)) = (pr∗1H

2(S,−L)⊕pr∗2H
2(S,−L))⊗Sk−2H0(S, E)∗,

and

H2(S̃ × S×P(H0(E)), Ẽ∗
2£O(k−1)) = (pr∗1H

2(S, E∗)⊕pr∗2H
2(S, E∗))⊗Sk−1H0(S, E)∗.

Dualizing, we get

H2(S̃ × S×P(H0(E)),
2∧

Ẽ∗
2£O(k−2))∗ = (H0(S, L)⊕H0(S, L))⊗Sk−2H0(S, E),

and

H2(S̃ × S×P(H0(E)), Ẽ∗
2£O(k−1))∗ = (H0(S, E)⊕H0(S,E))⊗Sk−1H0(S,E).

It is then immediate to check that the transpose of the map int(σ) is the map
∧σ, so that b) translates into the condition that

∧σ : (H0(S, E)⊕H0(S, E))⊗Sk−1H0(S, E) → (H0(S, L)⊕H0(S, L))⊗Sk−2H0(S,E)

is surjective.
Now retracing through the isomorphisms given by proposition 6, one checks

that the map ∧σ is up to sign equal to the direct sum of two copies of the
composed map

µ : H0(S,E)⊗ Sk−1H0(S,E) → H0(S, E)⊗H0(S, E)⊗ Sk−2H0(S, E)

det⊗id→ H0(S, L)⊗ Sk−2H0(S,E).

Similarly statement d) dualizes as follows : by proposition 6, the space

H4(S̃ × S,

4∧
Ẽ∗

2 £O(k − 4)) ∼= H4(S̃ × S,

4∧
Ẽ∗

2)⊗ Sk−4H0(S, E)∗

is dual to

Ker (H0(S, L)⊗H0(S, L) → H0(S, 2L))⊗ Sk−4H0(S,E).
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Next, we know by proposition 6, 4, that

H4(S̃ × S,

3∧
Ẽ∗

2 £O(k − 3)) ∼= H4(S̃ × S,

3∧
Ẽ∗

2)⊗ Sk−3H0(S, E)∗

admits a quotient which is dual to the direct sum of two copies of

Ker (H0(S,E)⊗H0(S, L) → H0(S,E ⊗ L))⊗ Sk−3H0(S,E).

Denoting by QE,L := Ker (H0(S, E) ⊗ H0(S, L) → H0(S,E ⊗ L)), QL,E :=
Ker (H0(S, L) ⊗ H0(S, E) → H0(S,E ⊗ L)) and QL,L = Ker (H0(S, L) ⊗
H0(S, L) → H0(S, 2L)), we have an inclusion

(QL,E ⊕QE,L)⊗ Sk−3H0(S, E) ⊂ H4(S̃ × S,

3∧
Ẽ∗

2 £O(k − 3))∗

and to prove d) it suffices to show that the map dual to int(σ) restricts on this
subspace to a surjection

∧σ : (QL,E ⊕QE,L)⊗ Sk−3H0(S, E) → QL,L ⊗ Sk−4H0(S, E).

But retracing through the isomorphisms of proposition 6 and recalling the
definition of σ, one checks easily that the first component

∧σ1 : QL,E ⊗ Sk−3H0(S, E) → QL,L ⊗ Sk−4H0(S,E)

of the map above is the following composite

µ′ : QL,E ⊗ Sk−3H0(S, E) ⊂ H0(S, L)⊗H0(S, E)⊗ Sk−3H0(S, E) →

H0(S, L)⊗H0(S, E)⊗H0(S,E)⊗Sk−4H0(S, E)
id⊗det⊗id→ H0(S, L)⊗H0(S, L)⊗Sk−4H0(S,E),

which takes obviously value in QL,L⊗Sk−4H0(S, E), while the second compo-
nent is equal to the first composed with the permutation exchanging factors
on both sides.

To conclude then that

∧σ : (QL,E ⊕QE,L)⊗ Sk−3H0(S, E) → QL,L ⊗ Sk−4H0(S, E)

is surjective, it suffices to show that

µ′− : QL,E ⊗ Sk−3H0(S, E) → Q−
L,L ⊗ Sk−4H0(S, E)

and
µ′+ : QL,E ⊗ Sk−3H0(S, E) → Q+

L,L ⊗ Sk−4H0(S, E)

are surjective, where Q+
L,L, (resp. Q−

L,L) are the symmetric, resp. antisym-
metric part of QL,L and µ′+ (resp. µ′−) are the composition of µ′ with the
projections on the symmetric (resp. antisymmetric) part of QL,L.

In conclusion, the theorem 2 will be a consequence of the following propo-
sitions
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Proposition 7 The composed map

µ : H0(S,E)⊗ Sk−1H0(S,E) → H0(S, E)⊗H0(S, E)⊗ Sk−2H0(S, E)

det→ H0(S, L)⊗ Sk−2H0(S,E)

is surjective.

Proposition 8 a) The map

µ′− : QL,E ⊗ Sk−3H0(S, E) → Q−
L,L ⊗ Sk−4H0(S, E)

defined above is surjective.
b) The map

µ′+ : QL,E ⊗ Sk−3H0(S, E) → Q+
L,L ⊗ Sk−4H0(S, E)

defined above is surjective.

Proof of proposition 7. Let α, β ∈ H0(S,E) and γ ∈ H0(S, L) such that

γ = det(α ∧ β).

Then we observe first that if D ⊂ H0(S, E) is the rank 2 vector subspace
generated by α and β, we have

γ ⊗ Sk−2D ⊂ Im µ

since the composite

D ⊗ Sk−1D → D ⊗D ⊗ Sk−2D →
2∧

D ⊗ Sk−2D

is surjective.
Recall now that the map det determines a morphism

d : G2 → PH0(S, L)

which is surjective and finite since both spaces are of the same dimension 2k.
The fiber d−1(γ) is then a finite subscheme Zγ ⊂ G2 which is the complete
intersection of a space W of hyperplane sections of the Grassmannian G2.

Now by the above observation, and since d is surjective, it suffices to show
that the subspaces Sk−2D for D ∈ Zγ generate Sk−2H0(S, E). If we dualize,
this is equivalent to say that the dual map

Sk−2H0(S,E)∗ → ⊕D∈ZγS
k−2D∗

is injective. But this map identifies to the restriction

H0(G2, S
k−2E) → H0(Zγ, S

k−2E|Zγ ),
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at least for a reduced Zγ, which will be the case for a generic γ.
Hence it suffices to show that

H0(G2, S
k−2E ⊗ IZγ ) = 0. (4.28)

Now we use the Koszul resolution

0 →
2k∧

W ⊗ L−2k → . . . → W ⊗ L−1 → IZγ → 0

The vanishing (4.28) will then follow from the vanishing

H i(G2, S
k−2E ⊗ L−i−1), i = 0, 2k − 1

which is proved in proposition 9 of the appendix.

Proof of proposition 8, a). Notice first that the natural composed map

3∧
H0(S, E) →

2∧
H0(S,E)⊗H0(S,E)

det⊗id→ H0(S, L)⊗H0(S,E)

has its image contained in QL,E. Hence it suffices to show that the following
composite

µ′′ :
3∧

H0(S, E)⊗ Sk−3H0(S, E) →
2∧

H0(S,E)⊗H0(S,E)⊗ Sk−3H0(S,E)

det⊗µ→ H0(S, L)⊗H0(S, L)⊗ Sk−4H0(S, E) →
2∧

H0(S, L)⊗ Sk−4H0(S,E)

is surjective.
Now note that for α1, α2, α3 ∈ H0(S, E)

µ′′(α1 ∧ α2 ∧ α3 ⊗ αk−3
3 ) = 2(k − 3)det(α2 ∧ α3) ∧ det(α1 ∧ α3)⊗ αk−4

3 .(4.29)

Fix now γ ∈ H0(S, L) and consider the set of couples (α1, α3) such that det(α1∧
α3) = γ. For any α2 and any such (α1, α3), we have

µ′′(α1 ∧ α2 ∧ α3 ⊗ αk−3
3 ) = 2(k − 3)det(α2 ∧ α3) ∧ γ ⊗ αk−4

3 .

Note that the vector α3 for such pairs takes arbitrary value in some of the lines
D ∈ Zγ, where the notations are as in the previous proposition.

Now we have the map

µ′′′ : H0(S,E)⊗ Sk−3H0(S, E) → H0(S, L)⊗ Sk−4H0(S,E)

analogous to µ and the formula above shows that

µ′′(α1 ∧ α2 ∧ α3 ⊗ αk−3
3 ) = 2γ ∧ µ′′′(α2 ⊗ αk−3

3 ).

With the same proof as in the previous proposition, one shows now that the
Sk−3D, D ∈ Zγ generate Sk−3H0(S, E) and that µ′′′ is surjective. Hence the
α2⊗αk−3

3 , α3 ∈ D, D ∈ Zγ generate H0(S, E)⊗Sk−3H0(S, E) and the µ′′′(α2⊗
αk−3

3 ), α3 ∈ D, D ∈ Zγ generate by the surjectivity of µ′′′ the space H0(S, L)⊗
Sk−4H0(S, E). Hence Im µ′′ contains γ ∧H0(S, L)⊗ Sk−4H0(S,E), and since
γ was generic, we conclude that µ′′ is surjective.
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Proof of proposition 8, b). We want to prove that

µ′+ : QL,E ⊗ Sk−3H0(S, E) → Q+
L,L ⊗ Sk−4H0(S, E)

is surjective. Denote similarly, for C a generic member of | L |,

QKC ,E := Ker (H0(C, KC)⊗H0(C,E|C) → H0(C, E ⊗KC)),

Q+
KC ,KC

:= Ker (S2H0(C,KC) → H0(C, K⊗2
C )).

Then we can define similarly

µ′+,C : QKC ,E ⊗ Sk−3H0(C, E|C) → Q+
KC ,KC

⊗ Sk−4H0(C,E|C)

as the composite

QKC ,E ⊗ Sk−3H0(C,E|C) ⊂ H0(C,KC)⊗H0(C, E|C)⊗ Sk−3H0(C,E|C)

→ H0(C, KC)⊗H0(C,E|C)⊗H0(C, E|C)⊗ Sk−4H0(C,E|C)
id⊗det⊗id→

H0(C, KC)⊗H0(C, KC)⊗Sk−4H0(C, E|C) → S2H0(C, KC)⊗Sk−4H0(C, E|C).

Now the restriction map H0(S,E) → H0(C,E|C) is an isomorphism, and the
restriction map H0(S, L) → H0(C, KC) is surjective with kernel σC . Hence
the restrictions induce a surjection

QL,E → QKC ,E

and an isomorphism
Q+

L,L
∼= Q+

KC ,KC
,

and it suffices to show that µ′+,C is surjective. A fortiori it suffices to show
that the composite

µ′C : QKC ,E ⊗ Sk−3H0(C, E|C) ⊂ H0(C, KC)⊗H0(C,E|C)⊗ Sk−3H0(C, E|C)

→ H0(C,KC)⊗H0(C, E|C)⊗H0(C,E|C)⊗ Sk−4H0(C,E|C)

id⊗det⊗id→ H0(C, KC)⊗H0(C,KC)⊗ Sk−4H0(C, E|C)

which takes value in QKC ,KC
:= Ker (H0(C,KC)⊗2 → H0(C, K⊗2

C )), is surjec-
tive on this last space.

Let us now consider the following diagram of exact sequences

0 → QKC ,E ⊗ Sk−3H0(C, E|C) → H0(C, KC)⊗H0(C, E|C)⊗ Sk−3H0(C,E|C)
µ′C ↓ id⊗ µC ↓

0 → QKC ,KC
⊗ Sk−4H0(C, E|C) → H0(C,KC)⊗H0(C, KC)⊗ Sk−4H0(C,E|C)

→ H0(C, E ⊗KC)⊗ Sk−3H0(C, E|C) → 0
µC,KC

↓
→ H0(C, K⊗2

C )⊗ Sk−4H0(C, E|C) → 0
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One checks easily the surjectivity of the multiplication maps on the left.
The vertical maps µC and µC,KC

are defined in a way similar to µ e.g µC is
the composite

H0(C,E|C)⊗ Sk−3H0(C, E|C) ⊂ H0(C, E|C)⊗H0(C, E|C)⊗ Sk−4H0(C,E|C)

det⊗id→ H0(C, KC)⊗ Sk−4H0(C,E|C),

and µC,KC
is defined similarly with a twist by KC .

The proof of proposition 7 shows as well that µC is surjective, as is µC,KC

by the commutativity of the diagram above. Hence the surjectivity of µ′C will
follow by diagram chasing from the surjectivity of the induced multiplication
map

H0(C, KC)⊗Ker µC → Ker µC,KC
. (4.30)

In what follows we will use again the notation H0(E) for H0(S,E) = H0(C,E|C).
Define the vector bundle Q on C as the kernel of the surjective composite mor-
phism of vector bundles

Sk−3H0(E)⊗ E ⊂ Sk−4H0(E)⊗H0(E)⊗ E
id⊗det→ Sk−4H0(E)⊗KC .

Then we clearly have

Ker µC = H0(C,Q), Ker µC,KC
= H0(C,Q⊗KC)

so that the surjectivity of the map (4.30) is equivalent to the surjectivity of
the multiplication map

H0(C,Q)⊗H0(C, KC) → H0(C,Q⊗KC). (4.31)

Now we proceed as follows : let σ ∈ H0(S, L) be the defining equation for C.
Recall the finite reduced subscheme Zσ = d−1(σ) ⊂ G2 made of the rank 2
vector subspaces D of H0(S, E) such that detD = σ. For each such D there
is a subline bundle LD of E on C, of degree k + 1 with two sections without
common zeroes (see section 2). The space D identifies naturally to H0(C, LD).

Clearly the image of the inclusion

Sk−3H0(C,LD)⊗ LD ⊂ Sk−3H0(E)⊗ E

is contained in Q.
Let now

N := ⊕D∈ZσSk−3D ⊗ LD.

Then by the observation above we have a morphism

α : N → Q.

The surjectivity of 4.31 will follow from the following three lemmas :
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Lemma 4 The morphism α is surjective.

Denoting M := Ker α we also prove

Lemma 5 The vector bundle M is generated by its sections.

Lemma 6 The space H0(C,M) is generated by the subspaces H0(C,M(−x)), x ∈
C.

We explain first how these three lemmas imply our result. Using the exact
sequence

0 →M→N → Q→ 0

given by lemma 4, we see that the map (4.31) will be surjective if the multi-
plication map

H0(C,N )⊗H0(C, KC) → H0(C,N ⊗KC)

is surjective, and H1(C,M⊗KC) = 0.
The first condition is easy to check. Indeed N is a direct sum of line

bundles LD corresponding to g1
k+1’s on C, and the result is easy to prove for

each of them. As for the second condition, it is equivalent to H0(C,M∗) = 0
by Serre’s duality. But since M is generated by sections by lemma 5, we have
an inclusion

H0(C,M∗) ⊂ H0(C,M)∗.

The image of this inclusion obviously vanishes on each subspace H0(C,M(−x)),
hence it must be 0 since we know by lemma 6 that these subspaces generate
H0(C,M).

To conclude the proof of 8,b) it remains only to prove these three lemmas.
Proof of lemma 4. First of all we note that the bundle Q is generated

by its sections, since there is a natural surjection

Sk−2H0(E)⊗OC → Q→ 0.

Hence it suffices to show that the map

H0(C,N ) → H0(C,Q)

is surjective.
But by definition

H0(C,Q) = Ker (H0(E)⊗ Sk−3H0(E)
µC→ H0(C, KC)⊗ Sk−4H0(E))

and
H0(C,N ) = ⊕D∈ZσD ⊗ Sk−3D.

Hence we need to show that the sequence

⊕D∈ZσD ⊗ Sk−3D → H0(E)⊗ Sk−3H0(E)
µC→ H0(C, KC)⊗ Sk−4H0(E)
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is exact at the middle. Again this will follow from a cohomological computa-
tion on the Grassmannian G2. Indeed, the notations being as in the proof of
Propositions 4 and 7, the sequence above dualizes as

IZσ(L)⊗ Sk−4H0(G2, E) → H0(G2, E)⊗ Sk−3H0(G2, E)

→ H0(E ⊗ Sk−3E|Zσ), (4.32)

where the map

IZσ(L)⊗ Sk−4H0(G2, E) → H0(G2, E)⊗ Sk−3H0(G2, E)

is composed of the inclusion

IZσ(L)⊗Sk−4H0(G2, E) ⊂ H0(G2,L)⊗Sk−4H0(G2, E) ∼= ∧2H0(G2, E)⊗Sk−4H0(G2, E)

and of the (Koszul) map

∧2H0(G2, E)⊗ Sk−4H0(G2, E) → H0(G2, E)⊗ Sk−3H0(G2, E).

One checks easily that H0(G2, E)⊗Sk−3H0(G2, E) ∼= H0(G2, E⊗Sk−3E). Hence
the kernel in the middle identifies to H0(G2, E ⊗ Sk−3E ⊗ IZσ). Furthermore
Sk−4H0(G2, E) ∼= H0(G2, S

k−4E) identifies to H0(G2, E ⊗Sk−3E ⊗L−1) via the
(Koszul) inclusion

Sk−4E ⊗ L = Sk−4E ⊗
2∧
E ⊂ E ⊗ Sk−3E .

Hence the exactness at the middle of the sequence 4.32 will follow from the
equality

H0(G2, E ⊗ Sk−3E ⊗ IZσ) = H0(G2, E ⊗ Sk−3E ⊗ L−1)⊗ IZσ(L). (4.33)

Now let W := IZσ(L). The Koszul resolution of IZσ

0 →
2k∧

W ⊗ L−2k → . . . → W ⊗ L−1 → IZσ → 0

twisted by E ⊗ Sk−3E shows that the equality (4.33) will hold if we know that

H i(G2, E ⊗ Sk−3E ⊗ L−i−1) = 0, 1 ≤ i < 2k.

Since we have the exact sequence

0 → Sk−4E ⊗ L → E ⊗ Sk−3E → Sk−2E → 0,

it suffices to know that

H i(G2, S
k−4E ⊗ L−i) = 0, 1 ≤ i < 2k,

and
H i(G2, S

k−2E ⊗ L−i−1) = 0, 1 ≤ i < 2k.

This is proved in Proposition 9.
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Proof of lemma 5. The bundles N and Q are generated by global sec-
tions. To prove that M is generated by global sections, it suffices to prove that
for any x ∈ C, the restriction map H0(C,N (−x)) → H0(C,Q(−x)) is surjec-
tive. For each g1

k+1 LD on C, denote by σD,x ∈ H0(C, LD) ∼= D a generator
for H0(C,LD(−x)). We need to show the exactness of the sequence

⊕D∈ZσσD,x ⊗ Sk−3D → H0(C, E(−x))⊗ Sk−3H0(E)
µC→ H0(C,KC(−x))⊗ Sk−4H0(E) (4.34)

Denote by Kx ⊂ H0(E) the subspace H0(C, E(−x)). Note that via the iden-
tification H0(C, LD) = D, σD,x becomes a generator of the one-dimensional
vector space D ∩Kx. Furthermore, Kx determines a section τx ∈

∧2 H0(E)∗

up to a coefficient. Clearly τx ∈ H0(C, KC)∗ ⊂ ∧2 H0(E)∗ identifies also to
the linear form on H0(C, KC) defining H0(C, KC(−x)). Let Gx ⊂ G2 be the
hyperplane section defined by τx. The scheme Zσ is a complete intersection of
hyperplane sections of Gx. The variety Gx admits a desingularization Px

p→ Gx

defined as
Px = {(u, ∆) ∈ P(Kx)×G2, u ∈ ∆ ∩Kx}.

Note that if
P

p→ G2

π ↓
P(H0(E))

is the incidence variety, Px can also be defined as π−1(P(Kx)) ⊂ P .
Since each line D parametrized by Zσ meets Kx along a one dimensional

vector space, the scheme Zσ can also be seen as the complete intersection in
Px of hypersurfaces in | p∗L |.

We now dualize the sequence (4.34). The space H0(C, KC(−x)) admits
for dual the space W ⊂ H0(Px, p

∗L) defining Zσ ⊂ Px. The vector space
< σD,x >∗ identifies clearly to the fiber of the line bundle π∗OP(Kx)(1) at the
point D ∈ Zσ. Hence our sequence dualizes as

W ⊗ Sk−4H0(E)∗ → π∗H0(P(Kx),O(1))⊗H0(Px, p
∗Sk−3E)

→ H0(Sk−3E ⊗Hx| Zσ), (4.35)

where Hx := p∗OP(Kx)(1). The second space in this sequence identifies to
H0(Px, p

∗Sk−3E⊗Hx) so that the kernel at the middle is equal to H0(Px, p
∗Sk−3E⊗

Hx ⊗ IZσ). The first map in (4.35)is induced by the isomorphism

Sk−4H0(E)∗ ∼= H0(Px, p
∗Sk−4E),

the multiplication

W ⊗H0(Px, p
∗Sk−4E) → H0(Px, p

∗(Sk−4E ⊗ L)⊗ IZσ)

and by the composed bundle map

p∗Sk−4E ⊗ L → p∗Sk−3E ⊗ E → p∗Sk−3E ⊗Hx,
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where the last map is induced by the natural surjective map p∗E → Hx.
The exactness of (4.35) will then follow from the surjectivity of

W ⊗H0(Px, p
∗Sk−3E ⊗Hx ⊗ L−1) → H0(Px, p

∗Sk−3E ⊗Hx ⊗ IZσ) (4.36)

and from the equality

H0(Px, p
∗Sk−3E ⊗Hx ⊗ L−1) = H0(Px, p

∗Sk−4E). (4.37)

This last equality is proved as follows : on Px we have the exact sequence

0 → p∗L ⊗H−1
x → p∗E → Hx → 0,

which gives

0 → p∗Sk−4E ⊗ p∗L ⊗H−1
x → p∗Sk−3E → Hk−3

x → 0.

Tensoring this with Hx ⊗ L−1 we get

0 → p∗Sk−4E → p∗Sk−3E ⊗Hx ⊗ L−1 → Hk−2
x ⊗ p∗L−1 → 0.

But the right hand side has no non-zero sections since it is of negative degree
on the fibers of π. Hence the equality (4.37).

Since Zσ ⊂ Px is the complete intersection of the space W of sections of
p∗L, we have a Koszul resolution of IZσ , which takes the form

0 →
2k−1∧

W ⊗ p∗L−2k−1 → . . . → W ⊗ p∗L−1 → IZσ → 0.

We can tensor it with p∗Sk−3E ⊗ Hx, and the surjectivity of the map (4.36)
will follow from the following vanishing

H i(Px, p
∗Sk−3E ⊗Hx ⊗ p∗L−i−1) = 0, 1 ≤ i < 2k − 1 = dimPx. (4.38)

Recall now that Px ⊂ P is the complete intersection of two sections of H =
π∗OP(H0(E))(1), with Hx = H|Px . The vanishing (4.38) will then follow from

H i(P, p∗Sk−3E ⊗H ⊗ p∗L−i−1) = 0, 1 ≤ i < 2k − 1

H i+1(P, p∗Sk−3E ⊗ p∗L−i−1) = 0, 1 ≤ i < 2k − 1

H i+2(P, p∗Sk−3E ⊗ ⊗p∗L−i−1 ⊗H−1) = 0, 1 ≤ i < 2k − 1.

The second equality follows immediately from the proposition 9, and the third
is obvious since H−1 has no cohomology on the fibers of p. The first equality
is proven as follows : we have

H i(P, p∗Sk−3E ⊗H ⊗ p∗L−i−1) = H i(G2, S
k−3E ⊗ E ⊗ L−i−1),

since R0p∗H = E . Now we have the exact sequence on G2

0 → Sk−4E ⊗ L → Sk−3E ⊗ E → Sk−2E → 0.

33



Hence the needed equality will follow from the vanishings

H i(G2, S
k−4E ⊗ L−i) = 0,

H i(G2, S
k−2E ⊗ L−i−1) = 0,

for 1 ≤ i < 2k − 1, which are proved in proposition (9). Hence lemma 5 is
proven.

Proof of lemma 6. Let x1, . . . , x2k−1 be points of C in general position.
We will show that the natural map

⊕iH
0(C,M(−xi)) → H0(C,M) (4.39)

is surjective.
Recall that

H0(C,M) = Ker ⊕D∈Zσ Sk−3D ⊗D → Sk−3H0(E)⊗H0(E).

It follows from this that

H0(C,M)∗ = Coker H0(G2, S
k−3E ⊗ E) → H0(Sk−3E ⊗ E|Zσ)

= H1(G2, S
k−3E ⊗ E ⊗ IZσ).

Similarly

H0(C,M(−xi)) = Ker ⊕D∈Zσ Sk−3D ⊗ σD,xi
→ Sk−3H0(E)⊗Kxi

which, with the notations of the previous proof, dualizes to

H0(C,M(−xi))
∗ = Coker (H0(Pxi

, p∗Sk−3E ⊗Hxi
) → H0(Zσ, S

k−3E ⊗Hxi
))

= H1(Pxi
, p∗Sk−3E ⊗Hxi

⊗ IZσ),

where we view Zσ as a subscheme of Pxi
as well. Hence we have to show that

the natural map (induced by the morphism p∗E → Hxi
on Pxi

)

H1(G2, S
k−3E ⊗ E ⊗ IZσ) → ⊕iH

1(Pxi
, p∗Sk−3E ⊗Hxi

⊗ IZσ) (4.40)

is injective.
Let D ⊂ G2 be the curve complete intersection of the sections σxi

∈
H0(G2,L). We have first

Fact.The restriction map

H0(G2, S
k−3E ⊗ E) → H0(D, Sk−3E ⊗ E)|D)

is surjective.
Using the Koszul resolution of ID this is obtained by application of the

proposition 9.
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From this we conclude that the restriction map

H1(G2, S
k−3E ⊗ E ⊗ IZσ) → H1(D, Sk−3E ⊗ E|D ⊗ IZσ)

is injective.
Consider now the inverse image D̃ of D in the fibered product

P ×G2 × . . .×G2 P.

Denote by p̃ : D̃ → D ⊂ G2 the natural morphism. One shows easily that
the curve D̃ is isomorphic to D excepted over the intersection of D with a
Grassmannian of lines in P(Kxi

) for some i. Here D has nodes, which are
replaced in D̃ by lines.

This fact is obviously true set theoretically, and is proved scheme theoret-
ically by the computation of the canonical bundles, which gives :

KD̃ = p̃∗KD.

The zero set Zλ is supported away of this singular locus. For each i we have a
natural restriction map

H1(Pxi
, p∗Sk−3E ⊗Hxi

⊗ IZσ) → H1(D̃, p̃∗Sk−3E ⊗Hxi
⊗ IZσ),

since
D̃ = Px1 ×G2 . . .×G2 Px2k−1

admits a natural morphism to Pxi
. Next we have by the above description of

D̃ an isomorphism

H1(D, Sk−3E ⊗ E|D ⊗ IZσ) ∼= H1(D̃, p̃∗Sk−3E ⊗ E ⊗ IZσ)

and it follows that the injectivity of the map (4.40) will be a consequence of
the injectivity of the map

H1(D̃, p̃∗Sk−3E ⊗ E ⊗ IZσ) → ⊕iH
1(D̃, Sk−3E ⊗Hxi

⊗ IZσ) (4.41)

induced by the morphisms p̃∗E → Hxi
on D̃. Recall now that Zσ ⊂ D is

defined by a section of L so that similarly Zσ ⊂ D̃ is defined by a section of
p∗L. Hence we have

IZσ
∼= p̃∗L−1.

Furthermore

KD̃ = p̃∗KD = p̃∗(KG2 |D ⊗ L2k−1) = p̃∗Lk−3.

Hence the map (4.41) dualizes by Serre’s duality as the map

⊕iH
0(D̃, p̃∗Sk−3E∗ ⊗H∗

xi
⊗ p̃∗L ⊗ p̃∗Lk−3) → H0(D̃, p̃∗Sk−3E∗ ⊗ E∗ ⊗ p̃∗L ⊗ p̃∗Lk−3)(4.42)
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given by the inclusions H∗
xi
⊂ E∗ on D̃. Since det E = L, we have

E∗ ⊗ L ∼= E ,

Hence this rewrites as

⊕iH
0(D̃, p∗Sk−3E ⊗H∗

xi
⊗ L) → H0(D̃, p∗Sk−3E ⊗ E) (4.43)

given by the inclusions
H∗

xi
⊗ L ⊂ p∗E .

We want to show that (4.41) is injective, or that (4.43) is surjective. We
already noticed that the restriction map

H0(G2, S
k−3E ⊗ E) = Sk−3H0(E)∗ ⊗H0(E)∗

→ H0(D, Sk−3E ⊗ E) = H0(D̃, p̃∗Sk−3E ⊗ E)

is surjective. On the other hand, consider the subspace Hxi
= K⊥

xi
⊂ H0(E)∗.

It is obvious that it gives a section of

Ker (H0(Pxi
, E) → H0(Pxi

, Hxi
)) = H0(Pxi

, p∗L ⊗H∗
xi

).

Hence the surjective map

Sk−3H0(E)∗ ⊗H0(E)∗ → H0(D̃, p̃∗Sk−3E ⊗ E)

sends Sk−3H0(E)∗ ⊗Hxi
in H0(D̃, p∗Sk−3E ⊗H∗

xi
⊗ L).

Now since the xi’s are generic, the spaces Hxi
generate H0(E)∗, hence the

Sk−3H0(E)∗ ⊗ Hxi
’s generate Sk−3H0(E)∗ ⊗ H0(E)∗. Hence we have shown

that (4.43) is surjective.

5 Appendix

We consider the Grassmannian G2 of rank 2 vector subspaces of a k + 2-
dimensional vector space V . Let L be the line bundle on G2 whose sections
give the Plücker embedding. If E is the dual of the tautological subbundle
S ⊂ V ⊗OG2 , we have L = det E . The cohomology groups Hp(G2,L−q⊗Sq′E)
are described in the following proposition.

Proposition 9 For q > 0, q′ > 0, we have Hp(G2,L−q ⊗ Sq′E) = 0 if p 6=
k, 2k. Furthermore, for p = k, we have Hp(G2,L−q⊗Sq′E) = 0 if −q+q′+1 <
0, and for p = 2k, we have Hp(G2,L−q ⊗ Sq′E) = 0 if −q + q′ ≥ −k − 1.

Proof. Let
P

p→ G2

π ↓
P(V )
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be the incidence variety. P is a P1-bundle over G2 and a Pk-bundle over
P(V ). Let H := π∗OP(V )(1) and let L′ = p∗L. Then E = R0p∗H and Sq′E =
R0p∗(q′H). It follows that we have

Hp(G2,L−q ⊗ Sq′E) = Hp(P,−qL′ + q′H).

Next the line bundle L′ restricts to O(1) on the fibers of π. It follows from
this that

KP = −(k + 1)L′ − 2H,

and KP/P(V ) = −(k + 1)L′ + kH.
Now since q > 0 we have Rlπ∗(−qL′ + q′H) = 0 for l < k and hence

Hp(P,−qL′ + q′H) = Hp−kRkπ∗(L′ + q′H).

By Serre’s duality, we have

Rkπ∗(−qL′+q′H) = (R0π∗(qL′−q′H−(k+1)L′+kH))∗ = (R0π∗((q−(k+1))L′+(k−q′)H))∗.

Now we have R0π∗((q − (k + 1))L′) = 0 if q < k + 1, and

R0π∗((q − (k + 1))L′) ∼= Sq−k−1(ΩP(V )(2)) (5.44)

for q ≥ k + 1. The isomorphism (5.44) follows from the isomorphism

H0(P, L′) = H0(G2,L) =
2∧

V ∗ = H0(P(V ), ΩP(V )(2))

and from the comparison of the kernels of the surjective evaluation maps

H0(P,L′) → H0(π−1(x), L′)

and
H0(P(V ), ΩP(V )(2)) → ΩP(V )(2)x.

Finally we conclude that

1. Hp(P,−qL′ + q′H) = 0 for p < k.

2. Hp(P,−qL′ + q′H) = 0 for q < k + 1.

3. For p ≥ k, q ≥ k + 1,

Hp(P,−qL′ + q′H) = Hp−k(P(V ), Sq−k−1(TP(V )(−2))(q′ − k)).

To conclude, consider the Euler exact sequence

0 → OP(V )(−1) → V ⊗OP(V ) → TP(V )(−1) → 0.

It induces the exact sequences

0 → Sq−k−2V ⊗OP(V )(−q + q′) → Sq−k−1V ⊗OP(V )(−q + q′ + 1)

→ Sq−k−1(TP(V )(−1))(−q + q′ + 1) → 0.

Hence we conclude that

Hp−k(P(V ), Sq−k−1(TP(V )(−2))(q′−k)) = Hp−k(P(V ), Sq−k−1(TP(V )(−1))(−q+q′+1))

is equal to 0 for p− k 6= 0, k (since p ≤ 2k), and that : for p− k = 0 it is 0 if
−q + q′ + 1 < 0; for p− k = k it is 0 if −q + q′ ≥ −k − 1.
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