Green's generic syzygy conjecture for curves of even genus lying on a $K 3$ surface

Claire Voisin
Institut de mathématiques de Jussieu, CNRS,UMR 7586

1 Introduction

If C is a smooth projective curve of genus g and K_{C} is its canonical bundle, the theorem of Noether asserts that the multiplication map

$$
\mu_{0}: H^{0}\left(C, K_{C}\right) \otimes H^{0}\left(C, K_{C}\right) \rightarrow H^{0}\left(C, K_{C}^{\otimes 2}\right)
$$

is surjective when C is non hyperelliptic.
The theorem of Petri concerns then the ideal I of C in its canonical embedding, assuming C is not hyperelliptic. It says that I is generated by its elements of degree 2 if C is neither trigonal nor a plane quintic.

In [7], M. Green introduced and studied the Koszul complexes
$\bigwedge^{p+1} H^{0}(X, L) \otimes H^{0}\left(X, L^{q-1}\right) \xrightarrow{\delta} \bigwedge^{p} H^{0}(X, L) \otimes H^{0}\left(X, L^{q}\right) \xrightarrow{\delta} \bigwedge^{p-1} H^{0}(X, L) \otimes H^{0}\left(X, L^{q+1}\right)$
for X a variety and L a line bundle on X. Denoting by $K_{p, q}(X, L)$ the cohomology at the middle of the sequence above, one sees immediately that the surjectivity of the map μ_{0} is equivalent to $K_{0,2}\left(C, K_{C}\right)=0$, and that if this is the case, the ideal I is generated by quadrics if and only if $K_{1,2}\left(C, K_{C}\right)=0$. On the other hand, C being non hyperelliptic is equivalent to the fact that the Clifford index Cliff C is strictly positive, where
CliffC $:=\operatorname{Min}\left\{d-2 r, \exists L \in \operatorname{Pic} C, d^{0} L=d, h^{0}(L)=r+1 \geq 2, h^{1}(L) \geq 2\right\}$.
Similarly, C is neither hyperelliptic, nor trigonal nor a plane quintic if and only if $C l i f f C>1$.

Green's conjecture on syzygies of canonical curves generalizes then the theorems of Noether and Petri as follows

Conjecture 1 [7] For a smooth projective curve C in characteristic 0, the condition Cliff $C>l$ is equivalent to the fact that $K_{l^{\prime}, 2}\left(C, K_{C}\right)=0, \forall l^{\prime} \leq l$.

The interest of this formulation of Noether and Petri's theorems is already illustrated in [9], where these theorems are given a modern proof, using geometric technics of computation of syzygies.

For our purpose, and as is done in [7], it is convenient to use the duality (cf [7])

$$
K_{p, 2}\left(C, K_{C}\right) \cong K_{g-p-2,1}\left(C, K_{C}\right)^{*}
$$

to reformulate the conjecture as follows
Conjecture 2 [7] For a smooth projective curve C of genus g in characteristic 0 , the condition Cliff $C>l$ is equivalent to the fact that $K_{g-l^{\prime}-2,1}\left(C, K_{C}\right)=$ $0, \forall l^{\prime} \leq l$.

If C is now a generic curve, the theorem of Brill-Noether (cf [2], [11]) implies that

$$
\text { Cliff } C=\text { gon } C-2
$$

where the gonality gon $C:=\operatorname{Min}\left\{d, \exists L \in \operatorname{Pic} C, d^{0} L=d, h^{0}(L) \geq 2\right\}$, and that

$$
\begin{aligned}
& \text { gon } C=\frac{g+3}{2}, \text { if } g \text { is odd, } \\
& \text { gon } C=\frac{g+2}{2}, \text { if } g \text { is even. }
\end{aligned}
$$

Hence we arrive at the following conjecture (the generic Green conjecture on syzygies of a canonical curve) :

Conjecture 3 Let C be a generic curve of genus g. Then if $g=2 k+1$ or $g=2 k$, we have $K_{k, 1}\left(C, K_{C}\right)=0$.

Remark 1 The actual conjecture is $K_{l, 1}\left(C, K_{C}\right)=0, \forall l \geq k$; but it is easy to prove that

$$
K_{k, 1}\left(C, K_{C}\right)=0 \Rightarrow K_{l, 1}\left(C, K_{C}\right)=0, \forall l \geq k .
$$

Notice that in the appendix to [7], Green and Lazarsfeld prove the conjecture 1 in the direction \Leftarrow (i. e. they produce non zero syzygies from special linear systems.) Hence the conjecture above cannot be improved, namely, under the assumptions above, we have $K_{k-1,1}\left(C, K_{C}\right) \neq 0$.

Teixidor [16] has recently proposed an approach to the conjecture 3. Her method uses a degeneration to a tree of elliptic curves and the theory of limit linear series of Eisenbud and Harris [6], adapted to vector bundles of higher rank. It is very likely that her method will lead to a proof of the generic Green conjecture.

We propose here a completely different approach, which at the moment works only for curves of even genus, but provides further evidence for Green's conjecture 1 (cf Corollaries 1 and 2).

Recall from [11] that if S is a $K 3$ surface endowed with a ample line bundle L such that L generates Pic S and $L^{2}=2 g-2$, the smooth members $C \in|L|$ are generic in the sense of Brill-Noether, so that in particular they have the same Clifford index as a generic curve. Hence conjecture 1 predicts that their syzygies vanish as stated in conjecture 3. This is indeed what we prove here, in the case where the genus is even.

Theorem 1 The pair (S, L) being as above, with $g=2 k$, we have

$$
K_{k, 1}\left(C, K_{C}\right)=0
$$

for $C \in|L|$.
Remark 2 The hyperplane restriction theorem [7] says that

$$
\begin{equation*}
K_{k, 1}\left(C, K_{C}\right)=K_{k, 1}(S, L) \tag{1.1}
\end{equation*}
$$

whenever C is a hyperplane section of a K3 surface S (note that $K_{C}=L_{\mid C}$ in this case). What we prove in fact is the equality

$$
\begin{equation*}
K_{k, 1}(S, L)=0 . \tag{1.2}
\end{equation*}
$$

The body of the paper will be devoted to the proof of (1.2). We state and prove here the following corollaries.

Corollary 1 Let C be a generic curve of genus $g=2 k-1$; then

$$
K_{k, 1}\left(C, K_{C}\right)=0
$$

Notice that the generic Green conjecture predicts in fact that $K_{k-1,1}\left(C, K_{C}\right)=$ 0.

Proof of Corollary 1. The $K 3$ surface S being as above, let X be a member of $|L|$ with exactly one node as singularity. Let C be the normalization of X. Then the genus of C is equal to $2 k-1$. Let $p, q \in C$ be the two points which are identified in X via the normalization map : $n: C \rightarrow X$. Then we have

$$
n^{*} K_{X}=K_{C}(p+q)
$$

and an isomorphism

$$
\begin{equation*}
H^{0}\left(X, K_{X}\right)=H^{0}\left(C, K_{C}(p+q)\right) \tag{1.3}
\end{equation*}
$$

The hyperplane restriction theorem can be applied to $X \subset S$, and together with (1.2), it gives

$$
K_{k, 1}\left(X, K_{X}\right)=0
$$

But the isomorphism (1.3) shows that this implies

$$
K_{k, 1}\left(C, K_{C}(p+q)\right)=0
$$

Now one shows that the natural map

$$
K_{k, 1}\left(C, K_{C}\right) \rightarrow K_{k, 1}\left(C, K_{C}(p+q)\right)
$$

is injective. Indeed in general consider the Koszul differential

$$
\delta: \bigwedge^{l} H^{0}(Y, \mathcal{L}) \rightarrow H^{0}(Y, \mathcal{L}) \otimes \bigwedge^{l-1} H^{0}(Y, \mathcal{L})
$$

Then if

$$
\wedge: H^{0}(Y, \mathcal{L}) \otimes \bigwedge^{l-1} H^{0}(Y, \mathcal{L}) \rightarrow \bigwedge^{l} H^{0}(Y, \mathcal{L})
$$

is the wedge product map, one has

$$
\begin{equation*}
\wedge \circ \delta= \pm l I d \tag{1.4}
\end{equation*}
$$

Consider now the inclusion

$$
j: H^{0}\left(C, K_{C}\right) \otimes \bigwedge^{k} H^{0}\left(C, K_{C}\right) \rightarrow H^{0}\left(C, K_{C}(p+q)\right) \otimes \bigwedge^{k} H^{0}\left(C, K_{C}(p+q)\right)
$$

Let $\alpha \in H^{0}\left(C, K_{C}\right) \otimes \bigwedge^{k} H^{0}\left(C, K_{C}\right)$ such that $\delta \alpha=0$ and $j(\alpha)=\delta \beta$. Then (1.4) gives

$$
\begin{aligned}
j(\alpha) & =\delta \beta= \pm \frac{1}{k+1} \delta(\wedge \circ \delta \beta) \\
& = \pm \frac{1}{k+1} \delta(\wedge(j(\alpha))) .
\end{aligned}
$$

But $\wedge(j(\alpha)) \in \wedge^{k+1} H^{0}\left(C, K_{C}\right)$, so that α is in fact exact.
Corollary 2 For any $\delta \leq \frac{k}{2}$, the generic curve of genus $2 k-\delta$ which is $k+1-\delta$ gonal satisfies

$$
K_{k, 1}\left(C, K_{C}\right)=0
$$

Notice that this result is optimal and exactly predicted by Green's conjecture 1 , since the Clifford index of such curve is equal to $k-1-\delta$.

Proof of Corollary 2. Again let (S, L) be as above. A generic member X of $|L|$ is $k+1$-gonal. As in section 2, and following [11], it follows that there is a stable vector bundle E on S with $\operatorname{det} E=L, c_{2}(E)=k+1$, and $h^{0}(E)=k+2$. The zero set of a generic section of E is a generic member of a g_{k+1}^{1} of a generic curve $X \in|L|$.

Now let $x_{1}, \ldots, x_{\delta}$ be generic points of S. The space

$$
H_{x .}=H^{0}\left(S, E \otimes \mathcal{I}_{x_{1}} \otimes \ldots \otimes \mathcal{I}_{x_{\delta}}\right)
$$

has rank at least 2 . One checks that for α, β generic in this space, the curve X defined by the equation

$$
\operatorname{det}(\alpha \wedge \beta) \in H^{0}(S, \operatorname{det} E)=H^{0}(S, L)
$$

is nodal with nodes exactly as the x_{i} 's. On the other hand, the two sections α, β generate a rank 1 subsheaf of the restriction $E_{\mid X}$. Let now

$$
n: C \rightarrow X
$$

be the normalization. The rank 1 subsheaf introduced above induces a subline bundle

$$
D \subset n^{*} E
$$

with two sections, and it is obvious that the moving part of this linear system on C is of degree $k+1-\delta$, since the sections $\lambda \alpha+\mu \beta$ of E vanish at the x_{i} 's, so that the moving part of their zero sets is of degree $k+1-\delta$. Hence C is $k+1-\delta$-gonal. It remains to show that

$$
\begin{equation*}
K_{k, 1}\left(C, K_{C}\right)=0 \tag{1.5}
\end{equation*}
$$

This is proven exactly as in the proof of Corollary 1, using the fact that

$$
\begin{equation*}
K_{k, 1}\left(X, K_{X}\right)=0 \tag{1.6}
\end{equation*}
$$

Notice that it is not true for $\delta \geq 2$ that

$$
n^{*}: H^{0}\left(X, K_{X}\right) \rightarrow H^{0}\left(C, K_{C}\left(\sum_{i} p_{i}+q_{i}\right)\right)
$$

is an isomorphism, but it is injective onto a subspace which contains $H^{0}\left(C, K_{C}\right)$, and this is enough to deduce (1.5) from (1.6).

We conclude this introduction with a sketch of the main ideas in the proof of (1.2). The very starting point is the following observation : denote by $S^{[l]}$ the Hilbert scheme parametrizing 0 -dimensional length l subschemes of S. Let $I_{l} \subset S \times S^{[l]}$ be the incidence subscheme and

$$
\begin{array}{ccc}
I_{l} & \xrightarrow{\pi_{l}} & S^{[l]} \\
q \downarrow & & \\
S & &
\end{array}
$$

be the incidence correspondence. Let

$$
\mathcal{E}_{L}:=R^{0} \pi_{l *} q^{*} L
$$

and $L_{l}:=\operatorname{det} \mathcal{E}_{L}$. Then we have
Fact. $K_{l-1,1}(S, L)=0$ if and only if

$$
H^{0}\left(I_{l}, \pi_{l}^{*} L_{l}\right)=\pi_{l}^{*} H^{0}\left(S^{[l]}, L_{l}\right)
$$

Our strategy will be then to construct a subvariety Z of $S^{[k+1]}$, such that

$$
H^{0}\left(\tilde{Z}, \pi_{l}^{*} L_{l}\right)=\pi_{l}^{*} H^{0}\left(Z, L_{l}\right)
$$

where $\tilde{Z}:=\pi_{l}^{-1}(Z)$, and the restriction map

$$
H^{0}\left(I_{l}, \pi_{l}^{*} L_{l}\right) \rightarrow H^{0}\left(\tilde{Z}, \pi_{l}^{*} L_{l}\right)
$$

is injective.
As in the papers [11], [8], the key role in constructing our variety Z and verifying the conditions above will be played by the vector bundles on S associated with base-point free linear systems on smooth members of $|L|$.

Terminology. In this paper, we shall say that a Zariski open subset $U \subset X$ is large if the complementary closed subset $Z=X-U$ has codimension non smaller that 2 in X. In the considered cases, the variety X will be normal, and we will use freely the fact that for a line bundle \mathcal{L} on X

$$
H^{0}(X, \mathcal{L}) \cong H^{0}\left(U, \mathcal{L}_{\mid U}\right)
$$

for U a large open subset of X.

2 Strategy of the proof

We start with the following observation : Let X be a smooth projective variety. Denote by $X_{c u r v}^{[k]}$ the Hilbert scheme parametrizing curvilinear 0-dimensional subschemes of X of length $k . X_{c u r v}^{[k]}$ is smooth, and if X is a curve or a surface, it is a large open set in the Hilbert scheme $X^{[k]}$ which is smooth.

Let

be the incidence correspondence. For a line bundle L on X denote by \mathcal{E}_{L} the vector bundle on $X_{c u r v}^{[k]}$ defined by $\mathcal{E}_{L}=R^{0} \pi_{k *} q^{*} L$, and let

$$
L_{k}:=\operatorname{det} \mathcal{E}_{L} .
$$

We have
Lemma 1 There is a natural isomorphism

$$
K_{k, 1}(X, L) \cong H^{0}\left(I_{k+1}, \pi_{k+1}^{*} L_{k+1}\right) / \pi_{k+1}^{*} H^{0}\left(X_{\text {curv }}^{[k+1]}, L_{k+1}\right) .
$$

In particular, $K_{k, 1}(X, L)=0$ is equivalent to

$$
H^{0}\left(I_{k+1}, \pi_{k+1}^{*} L_{k+1}\right)=\pi_{k+1}^{*} H^{0}\left(X_{\text {curv }}^{[k+1]}, L_{k+1}\right)
$$

Proof. Recall that $K_{k, 1}(X, L)$ is the cohomology at the middle of the sequence

$$
\begin{equation*}
\bigwedge^{k+1} H^{0}(X, L) \xrightarrow{\delta} H^{0}(X, L) \otimes \bigwedge^{k} H^{0}(X, L) \xrightarrow{\delta} H^{0}\left(X, L^{\otimes 2}\right) \otimes \bigwedge^{k-1} H^{0}(X, L) . \tag{2.7}
\end{equation*}
$$

Now note that there is a natural morphism

$$
\begin{equation*}
\tau: I_{k+1} \rightarrow X \times X_{c u r v}^{[k]} \tag{2.8}
\end{equation*}
$$

which to $(x, z), x \in \operatorname{Supp} z$ associates $\left(x, z^{\prime}\right)$, where z^{\prime} is the residual scheme of x in z. This morphism is well defined because we are working with curvilinear schemes.

One shows easily that τ identifies I_{k+1} to a large open subset of the blow-up of $X \times X_{c u r v}^{[k]}$ along the incidence subscheme I_{k}. Furthermore, if $D \subset I_{k+1}$ is the exceptional divisor one has

$$
\begin{equation*}
\pi_{k+1}^{*} L_{k+1}=\tau^{*}\left(L \boxtimes L_{k}\right)(-D) \tag{2.9}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
H^{0}\left(I_{k+1}, \pi_{k+1}^{*} L_{k+1}\right)=\operatorname{Ker}\left(H^{0}(X, L) \otimes H^{0}\left(X_{\text {curv }}^{[k]}, L_{k}\right) \xrightarrow{\text { rest }} H^{0}\left(I_{k}, L \boxtimes L_{k \mid I_{k}}\right)\right) \tag{2.10}
\end{equation*}
$$

On the other hand one checks easily that the natural map

$$
\begin{equation*}
\bigwedge^{l} H^{0}(X, L) \rightarrow H^{0}\left(X_{c u r v}^{[l]}, L_{l}\right) \tag{2.11}
\end{equation*}
$$

induced by the evaluation map

$$
H^{0}(X, L) \otimes \mathcal{O}_{X_{\text {curv }}^{[k]}} \rightarrow \mathcal{E}_{L}
$$

are isomorphisms for any l.
We now apply the description above to I_{k} : we note that denoting by $p_{i}, i=$ 1,2 , the compositions of the projections with the inclusion $I_{k} \hookrightarrow X \times X_{c u r v}^{[k]}$, we have

$$
p_{2}=\pi_{k}, p_{1}=p r_{1} \circ \tau
$$

where

$$
\tau: I_{k} \rightarrow X \times X_{\text {curv }}^{[k-1]}
$$

is defined as in (2.8). Hence applying formula (2.9), we get

$$
L \boxtimes L_{k \mid I_{k}}=\tau^{*}\left(L^{2} \boxtimes L_{k-1}\right)(-D) .
$$

So we conclude that there is a natural inclusion

$$
i: H^{0}\left(I_{k}, L \boxtimes L_{k \mid I_{k}}\right) \subset H^{0}\left(X, L^{\otimes 2}\right) \otimes \bigwedge^{k-1} H^{0}(X, L)
$$

Hence we have an exact sequence
$0 \rightarrow H^{0}\left(I_{k+1}, \pi_{k+1}^{*} L_{k+1}\right) \xrightarrow{j} H^{0}(X, L) \otimes H^{0}\left(X_{\text {curv }}^{[k]}, L_{k}\right) \xrightarrow{i \circ \text { rest }} H^{0}\left(X, L^{\otimes 2}\right) \otimes H^{0}\left(X_{\text {curv }}^{[k-1]}, L_{k-1}\right)$.
To conclude, it remains to show that the maps $j \circ \pi_{k+1}^{*}$ and $i \circ$ rest identify via the isomorphisms (2.11) for $l=k+1, k, k-1$ to the differentials δ of the sequence (2.7). This is quite easy for the first one, working on the open set U of $X^{[k+1]}$ parametrizing reduced subschemes. The second follows similarly.

We consider now a $K 3$ surface S endowed with an ample line bundle L generating Pic S and satisfying

$$
L^{2}=2 g-2, g=2 k, k>1
$$

As mentioned in the introduction, Green's conjecture 1 together with Lazarsfeld's work [11] implies that

$$
K_{k, 1}\left(C, K_{C}\right)=0
$$

for a smooth member $C \in|L|$ or equivalently that

$$
K_{k, 1}(S, L)=0
$$

We now explain our strategy to prove this. Assume we have a subscheme $T \subset S^{[k+1]}$ such that, if \tilde{T} denotes the subvariety $\pi_{k+1}^{-1}(T)$ of I_{k+1}, the following conditions are satisfied : (Here we use the notation π for π_{k+1}.)

1. We have an isomorphism

$$
H^{0}\left(\tilde{T}, \pi^{*} L_{k+1}\right)=\pi^{*} H^{0}\left(T, L_{k+1}\right)
$$

2. The restriction map

$$
H^{0}\left(I_{k+1}, \pi^{*} L_{k+1}\right) \rightarrow H^{0}\left(\tilde{T}, \pi^{*} L_{k+1}\right)
$$

is injective.
Then we claim that $K_{k, 1}(S, L)=0$.
Indeed we have the trace maps

$$
\begin{array}{r}
\operatorname{tr}: H^{0}\left(I_{k+1}, \pi^{*} L_{k+1}\right) \rightarrow H^{0}\left(S_{\text {curv }}^{[k+1]}, L_{k+1}\right) \\
\qquad \operatorname{tr}_{T}: H^{0}\left(\tilde{T}, \pi_{k+1}^{*} L_{k+1}\right) \rightarrow H^{0}\left(T, L_{k+1}\right)
\end{array}
$$

which commute with the restriction maps and which compose to $(k+1) I d$ with the pull-back maps. If $\sigma \in H^{0}\left(I_{k+1}, \pi^{*} L_{k+1}\right)$, the section

$$
\sigma^{\prime}=\sigma-\pi^{*}\left(\frac{1}{k+1} \operatorname{Tr} \sigma\right)
$$

vanishes on \tilde{T} by property 1 , hence it is zero by property 2 . Hence

$$
H^{0}\left(I_{k+1}, \pi^{*} L_{k+1}\right)=\pi^{*} H^{0}\left(S_{\text {curv }}^{[k+1]}, L_{k+1}\right)
$$

and this proves our claim, using lemma 1.
We will have to weaken the assumptions above as follows : Suppose we have a normal scheme Z together with a morphism

$$
j: Z \rightarrow I_{k+1}
$$

such that $\pi \circ j$ is generically one to one on its image, which is not contained in the branch locus of π. Suppose also that we have a normal scheme Z^{\prime} together
with a proper degree k morphism $\pi^{\prime}: Z^{\prime} \rightarrow Z$ and a morphism $j^{\prime}: Z^{\prime} \rightarrow I_{k+1}$ satisfying the conditions that

$$
\pi \circ j^{\prime}=j \circ \pi^{\prime}
$$

and the union $j(Z) \cup j^{\prime}\left(Z^{\prime}\right)$ is equal set theoretically to $\pi^{-1}(\pi \circ j(Z))$. Finally assume there are subschemes $Z_{1}^{\prime} \subset Z^{\prime}, Z_{1} \subset Z$ such that

$$
\pi_{\mid Z_{1}^{\prime}}^{\prime}=: \phi: Z_{1}^{\prime} \rightarrow Z_{1}
$$

is a birational isomorphism and $j \circ \phi=j_{\mid Z_{1}^{\prime}}^{\prime}$.
(Hence roughly speaking, and up to birational maps, $\pi^{-1}(\pi \circ j(Z))$ is the scheme obtained by gluing Z^{\prime} and Z along $Z_{1}^{\prime} \cong Z_{1}$.)

Assume now that they satisfy the following set (H) of hypotheses

1. The map

$$
\pi^{\prime *}: H^{0}\left(Z,(\pi \circ j)^{*} L_{k+1}\right) \rightarrow H^{0}\left(Z^{\prime},\left(\pi \circ j^{\prime}\right)^{*} L_{k+1}\right)
$$

is an isomorphism.
2. The restriction map

$$
H^{0}\left(Z,(\pi \circ j)^{*} L_{k+1}\right) \rightarrow H^{0}\left(Z_{1},(\pi \circ j)^{*} L_{k+1 \mid Z_{1}}\right)
$$

is injective.
3. The restriction map

$$
j^{*}: H^{0}\left(I_{k+1}, \pi^{*} L_{k+1}\right) \rightarrow H^{0}\left(Z,(\pi \circ j)^{*} L_{k+1}\right)
$$

is injective.
Then we claim that $K_{k, 1}(S, L)=0$.
Indeed by Lemma 1 we have to show that

$$
H^{0}\left(I_{k+1}, \pi^{*} L_{k+1}\right)=\pi^{*} H^{0}\left(S_{\text {curv }}^{[k+1]}, L_{k+1}\right)
$$

Now if $\sigma \in H^{0}\left(I_{k+1}, \pi^{*} L_{k+1}\right)$, by hypothesis H1, $j^{\prime *} \sigma=\pi^{\prime *} \alpha$ for some $\alpha \in$ $H^{0}\left(Z,(\pi \circ j)^{*} L_{k+1}\right)$. We show now that $j^{*} \sigma=\alpha$. Indeed, by property H2, it suffices to show that this is true on Z_{1}, and since $\phi: Z_{1}^{\prime} \rightarrow Z_{1}$ is dominating, it suffices to show that

$$
\phi^{*}\left(\alpha_{\mid Z_{1}}\right)=\phi^{*}\left(j^{*} \sigma_{\mid Z_{1}}\right) .
$$

But this follows from $j \circ \phi=j_{\mid Z_{1}^{\prime}}^{\prime}$ and from $j^{\prime *} \sigma=\pi^{\prime *} \alpha$, with $\phi=\pi_{\mid Z_{1}^{\prime}}^{\prime}$.
Finally it follows from the equality $\alpha=j^{*} \sigma$ that

$$
\sigma^{\prime}=\sigma-\pi^{*}\left(\frac{1}{k+1} \operatorname{Tr} \sigma\right)
$$

satisfies the condition $j^{*} \sigma^{\prime}=0$. Hence it vanishes by hypothesis H3. This concludes the proof of our claim.

We conclude this section with the description of the schemes Z, Z^{\prime} we will be considering.

Recall from [8], [11], [12], that there is a unique stable bundle E of rank 2 on S which satisfies the following properties:

$$
\operatorname{det} E=L, c_{2}(E)=k+1, h^{0}(E)=k+2
$$

Such vector bundle is obtained by choosing a line bundle D on a generic member C of $|L|$, such that $h^{0}(D)=2$ and $d^{0} D=k+1$. Such a line bundle exists by Brill-Noether theory, and it is generated by global sections since C does not carry a g_{k}^{1} by Lazarsfeld [11]. Then we have a vector bundle F on S defined by the exact sequence

$$
\begin{equation*}
0 \rightarrow F \rightarrow H^{0}(D) \otimes \mathcal{O}_{S} \rightarrow D \rightarrow 0 \tag{2.12}
\end{equation*}
$$

and E is defined as the dual of F. The stability of E follows from the fact that Pic $S=\mathbb{Z} L$ and $H^{0}(S, E(-L))=0$. The uniqueness of such E follows then from the fact that $\chi\left(E, E^{\prime}\right)=2$ for any other vector bundle E^{\prime} with the same numerical properties, so that either $\operatorname{Hom}\left(E, E^{\prime}\right) \neq 0$ or $\operatorname{Hom}\left(E^{\prime}, E\right) \neq 0$. But then by stability, $E=E^{\prime}$.

The property $h^{0}(S, E)=k+2$ follows from the sequence dual to (2.12)

$$
\begin{equation*}
0 \rightarrow H^{0}(D)^{*} \otimes \mathcal{O}_{S} \rightarrow E \rightarrow K_{C}-D \rightarrow 0 \tag{2.13}
\end{equation*}
$$

and from Riemann-Roch which gives $h^{0}\left(K_{C}-D\right)=k$.
Another way to construct the bundle E is via Serre's construction. By Riemann-Roch the divisors D of degree $k+1$ on smooth members C of $|L|$ which satisfy $h^{0}(C, D)=2$ are exactly the subschemes z of degree $k+1$ on S contained in a smooth member C of $|L|$ and satisfying the condition that the restriction map

$$
H^{0}(S, L) \rightarrow H^{0}\left(L_{\mid z}\right)
$$

is not surjective. Note that since the curves C are general in the sense of BrillNoether, the corank of this map is exactly 1 and furthermore for any $z^{\prime} \subsetneq z$ the restriction map

$$
H^{0}(S, L) \rightarrow H^{0}\left(L_{\mid z^{\prime}}\right)
$$

is surjective. Hence, since K_{S} is trivial, to such z corresponds a vector bundle E together with a section σ_{z} vanishing on z. This E is an extension

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{S} \xrightarrow{\sigma_{z}} E \rightarrow \xrightarrow{\wedge \sigma_{z}} \mathcal{I}_{z}(L) \rightarrow 0 . \tag{2.14}
\end{equation*}
$$

Computing the numerical invariants of this bundle E, and arguing as before by stability, we see that this bundle is isomorphic to the one constructed above. Notice that each g_{k+1}^{1}, D on a smooth member $C \in|L|$ provides by (2.13) a rank 2 subspace of sections of E, and that the zero sets of these sections identify to the members of $|D|$, as subschemes of S.

It follows from the exact sequence (2.14) twisted by E that $h^{0}\left(S, E \otimes \mathcal{I}_{z}\right)=1$ for any z as above. Hence the morphism

$$
\mathbb{P}\left(H^{0}(S, E)\right) \rightarrow S^{[k+1]}
$$

which to σ associates its zero set, is in fact an embedding. One sees easily that the open set $\mathbb{P}\left(H^{0}(S, E)\right)_{\text {curv }}$ corresponding to curvilinear subschemes is large in $\mathbb{P}\left(H^{0}(S, E)\right)$.

Let now $W:=\pi^{-1}\left(\mathbb{P}\left(H^{0}(S, E)\right)_{\text {curv }}\right) \subset I_{k+1}$. W is easily shown to be smooth. There is a natural morphism

$$
\psi: W \rightarrow S_{c u r v}^{[k]}
$$

defined as the restriction of $p r_{2} \circ \tau$ to W. This ψ can be shown to be generically of degree one on its image.

Consider the blow-up $\widetilde{S \times W}$ of $S \times W$ along $K:=(I d, \psi)^{-1}\left(I_{k}\right)$. It admits a morphism $\widetilde{(I d, \psi)}$ to the blow-up of $S \times S_{c u r v}^{[k]}$ along I_{k}, and the later contains I_{k+1} as a large open set. One verifies that $\widetilde{(I d, \psi)}^{-1}\left(I_{k+1}\right)$ is a large open set of $\widetilde{S \times W}$. This will be our scheme Z. The morphism $j: Z \rightarrow I_{k+1}$ will be simply the restriction to Z of $\widetilde{(I d, \psi)}$.

Again one can show (using now the assumption that $k>1$) that the morphism $\pi \circ j: Z \sim S^{[k+1]}$ is generically of degree one on its image.

Next let $\pi^{\prime \prime}: \tilde{W} \rightarrow W$ be the degree k cover obtained by completing the Cartesian diagram

$$
\begin{array}{ccc}
\tilde{W} & \rightarrow & I_{k} \\
\pi^{\prime \prime} \downarrow & & \pi_{k} \downarrow \\
W & \xrightarrow{\psi} & S_{c u r v}^{[k]}
\end{array} .
$$

Consider the rational map

$$
j^{\prime}: S \times \tilde{W}--->I_{k+1}
$$

which to $\left(s, s_{1}, w\right) s_{1} \in \operatorname{Supp} \psi(w)$ associates $\left(s_{1}, s \cup \psi(w)\right)$. This morphism becomes well defined after blowing-up $K^{\prime}:=\left(I d, \pi^{\prime \prime}\right)^{-1}(K)$ and restricting to a large open subset. Our scheme Z^{\prime} will be this large open set. The morphism $\pi^{\prime}: Z^{\prime} \rightarrow Z$ is the restriction to Z^{\prime} of the morphism $B l_{K^{\prime}}(S \times \tilde{W}) \rightarrow B l_{K}(S \times Z)$ induced by $\left(I d, \pi^{\prime \prime}\right)$. The morphism $j^{\prime}: Z^{\prime} \rightarrow I_{k+1}$ is induced by the rational map j^{\prime} above. It is obvious that $\pi^{-1}(\pi \circ j(Z))$ is equal to $j(Z) \cup j^{\prime}\left(Z^{\prime}\right)$. Indeed, the fiber over $s \cup \psi(w) \in \pi \circ j(Z)$ consists in choosing one point in the scheme $s \cup \psi(w)$. This point may be s in which case we are in $j(Z)$, or may be contained in $\psi(w)$ in which case it determines a point of \tilde{W} over w, and we are then in $j^{\prime}\left(Z^{\prime}\right)$.

Remark 3 The scheme Z is non necessarily smooth, but one can show that K is reduced, so that its singular locus is of codimension at least two in $S \times W$. The same thing is true for Z^{\prime} and K^{\prime}. If one wants to work with smooth
schemes Z_{0} and Z_{0}^{\prime} (so as to be exactly in the conditions (H) described above), it suffices to restrict to the blowing-ups of $S \times W-K_{\text {sing }}$ along $K-K_{\text {sing }}$ and $S \times W-K_{\text {sing }}^{\prime}$ along $K^{\prime}-K_{\text {sing }}^{\prime}$. All what follows will be true for these subschemes.

To conclude, it remains now to construct Z_{1} and Z_{1}^{\prime}. Z_{1} will be the exceptional divisor of Z (recall that Z is a large open set in $B l_{K}(S \times W)$). Hence Z_{1} is the inverse image under the blow-up map $Z \rightarrow S \times W$ of $K=\{(s, w) \in$ $S \times W, s \in \operatorname{Supp} \psi(w)\}$.

We now construct a generic lifting of Z_{1} in Z^{\prime}, the closure of the image of which will be Z_{1}^{\prime}. By definition of Z^{\prime} as a large open set of $B l_{K^{\prime}}(S \times \tilde{W})$, it suffices to construct a lifting of K to a component of K^{\prime} in $S \times \tilde{W}$. But if $(s, w) \in K$, we have $s \in \operatorname{Supp} \psi(w)$ so that (s, w) identifies to an element \tilde{w} of \tilde{W}. Our lifting sends simply (s, w) to (s, \tilde{w}).

It remains finally to see that the morphisms j^{\prime} and $j \circ \pi^{\prime}$ agree on Z_{1}^{\prime}. Since I_{k+1} is contained in $S \times S_{\text {curv }}^{[k+1]}$, it suffices to prove that $p r_{1} \circ j^{\prime}$ and $p r_{1} \circ j \circ \pi^{\prime}$ agree on Z_{1}^{\prime} and that $p r_{2} \circ j^{\prime}$ and $p r_{2} \circ j \circ \pi^{\prime}$ agree on Z_{1}^{\prime}, with $p r_{2}=\pi$ on I_{k+1}. For the first one this is obvious since both maps factor through the contraction $Z_{1}^{\prime} \rightarrow K^{\prime}$, and are equal on $K^{\prime} \subset S \times \tilde{W}$ to the first projection on S, as follows from the definition of the lifting $K \rightarrow K^{\prime}$.

As for the second one, it follows from the fact that, by construction, $\pi \circ j^{\prime}$ and $\pi \circ j \circ \pi^{\prime}$ agree on Z^{\prime}.

3 Proof of the assumptions H2 and H3

We start with the proof of hypothesis H 2 .
Proposition 1 Let

$$
Z_{1} \subset Z \xrightarrow{\pi \circ j} S^{[k+1]}
$$

be as in the previous section. Then the restriction map

$$
H^{0}\left(Z,(\pi \circ j)^{*} L_{k+1}\right) \rightarrow H^{0}\left(Z_{1},(\pi \circ j)^{*} L_{k+1 \mid Z_{1}}\right)
$$

is injective.
The proof will be obtained by restricting the construction to a generic smooth member $C \in|L|$. Indeed, recall that Z is a large open set in the blow-up of $S \times W$ along the incidence subscheme $K=(i d, \psi)^{-1}\left(I_{k}\right)$, where

$$
W=\left\{(x, \sigma) \in S \times \mathbb{P}\left(H^{0}(S, E)\right)_{c u r v}, \sigma(x)=0\right\}
$$

and $\psi: W \rightarrow S^{[k]}$ sends (x, σ) to the residual scheme of x in $V(\sigma)$. Now since $k \geq 1$, the generic element $z=V(\sigma)$ is supported in a pencil of elements of $|L|$, the generic member being smooth. It follows that a generic element of $S \times W$ is of the form $\left(s_{1}, s_{2}, z\right), z=V(\sigma), \sigma\left(s_{2}\right)=0$ and there exists a smooth
member $C \in|L|$ such that s_{1}, s_{2}, z are supported on C. Hence it suffices to prove the analogue of proposition 1 with Z replaced by Z_{C}, the proper transform of $C \times W_{C}$ in $Z \subset B l_{K}(S \times W)$, where

$$
W_{C}:=\left\{(c, \sigma) \in C \times \mathbb{P}\left(H^{0}(S, E)\right), \sigma(c)=0, V(\sigma) \subset C\right\},
$$

and Z_{1} is replaced by $Z_{1, C}:=Z_{1} \cap Z_{C}$.
Proposition 2 The restriction map

$$
H^{0}\left(Z_{C},(\pi \circ j)^{*} L_{k+1 \mid Z_{C}}\right) \rightarrow H^{0}\left(Z_{1},(\pi \circ j)^{*} L_{k+1 \mid Z_{1, C}}\right)
$$

is injective.
Proof. By the description of the bundle E given in the previous section, we note that the set

$$
\left\{\sigma \in \mathbb{P}\left(H^{0}(S, E)\right), V(\sigma) \subset C\right\}
$$

identifies by the map $\sigma \mapsto V(\sigma)$ to the disjoint union of the $\mathbb{P}^{1} \subset C^{(k+1)}$ corresponding to g_{k+1}^{1} 's on C. If D is such a g_{k+1}^{1} on C, D gives a morphism of degree $k+1$

$$
\phi_{D}: C \rightarrow \mathbb{P}^{1}
$$

or a line bundle L_{D} on C of degree $k+1$ with two sections. By definition, W_{C} identifies (via ψ) to the disjoint union of copies C_{D} of C contained in $C^{(k)}$, where the map

$$
\psi_{D}: C \cong C_{D} \rightarrow C^{(k)}
$$

is given by $c \mapsto$ the unique effective divisor equivalent to $D-c$.
Finally Z_{C} identifies to a disjoint union of surfaces $Z_{C, D}$ isomorphic to $C \times C$, since the pull-back Δ_{D} to $C \times C_{D}$ of the incidence scheme in $C \times C^{(k)}$ is of pure codimension 1 .

Recall now that

$$
(\pi \circ j)^{*} L_{k+1}=L \boxtimes \psi^{*} L_{k}\left(-Z_{1}\right) .
$$

We have $L_{\mid C}=K_{C}$ and in the sequel we will use the notation H_{D} for the line bundle $K_{C^{(k)} \mid C_{D}}$. (It will be shown that $H_{D} \equiv k L_{D}$ but this will not be used now.) We have to show that for each D the restriction map

$$
H^{0}\left(C \times C, K_{C} \boxtimes H_{D}\left(-\Delta_{D}\right)\right) \rightarrow H^{0}\left(\Delta_{D}, K_{C} \boxtimes H_{D}\left(-\Delta_{D}\right)_{\mid \Delta_{D}}\right)
$$

is injective, where $\Delta_{D}:=Z_{1} \cap\left(C \times C_{D}\right)$. In other words we want to show that

$$
\begin{equation*}
H^{0}\left(C \times C, K_{C} \boxtimes H_{D}\left(-2 \Delta_{D}\right)=0\right. \tag{3.15}
\end{equation*}
$$

Now, since Δ_{D} is the restriction to $C \times C_{D}$ of the incidence scheme, and since C_{D} parametrizes the effective divisors of the form $L_{D}-x, x \in C$, it is clear that

$$
\Delta_{D}=\left(\phi_{D}, \phi_{D}\right)^{-1}\left(\operatorname{diag}\left(\mathbb{P}^{1}\right)\right)-\operatorname{diag}(C)
$$

Hence we have

$$
\Delta_{D} \equiv L_{D} \boxtimes L_{D}-\operatorname{diag}(C)
$$

in $C \times C$. Hence we have

$$
K_{C} \boxtimes H_{D}\left(-2 \Delta_{D}\right) \equiv\left(K_{C}-2 L_{D}\right) \boxtimes\left(H_{D}-2 L_{D}\right)+2 \operatorname{diag} C .
$$

Now we have the equality

$$
\begin{equation*}
H^{0}\left(C, K_{C}-2 L_{D}\right)=0, \tag{3.16}
\end{equation*}
$$

which is proven in [11], since C is generic in S. (Indeed for a base point free pencil, $\left|L_{D}\right|$, the condition that the μ_{0}-map

$$
H^{0}\left(C, L_{D}\right) \otimes H^{0}\left(C, K_{C}-L_{D}\right) \rightarrow H^{0}\left(C, K_{C}\right)
$$

is injective is equivalent by the base-point free pencil trick to the condition

$$
H^{0}\left(C, K_{C}-2 L_{D}\right)=0
$$

The equality (3.15) follows now from (3.16) and from the fact that the map $H^{0}\left(C, 2 L_{D}\right) \rightarrow H^{0}\left(2 L_{D \mid 2 x}\right)$ is surjective for generic x in C. Hence by RiemannRoch, $H^{0}\left(C, K_{C}-2 L_{D}\right)=0$ implies $H^{0}\left(C, K_{C}-2 L_{D}+2 x\right)=0$ for generic $x \in C$. It follows that

$$
H^{0}\left(C \times C,\left(K_{C}-2 L_{D}\right) \boxtimes\left(H_{D}-2 L_{D}\right)+2 \operatorname{diag} C\right)=0,
$$

which proves the proposition 2, and hence proposition 1 is proven.
We turn now to the proof of hypothesis H3.
Proposition 3 The morphism $Z \xrightarrow{j} I_{k+1}$ being defined as in the previous section, the pull-back map

$$
j^{*}: H^{0}\left(I_{k+1}, \pi^{*} L_{k+1}\right) \rightarrow H^{0}\left(Z,(\pi \circ j)^{*} L_{k+1}\right)
$$

is injective.
The proof proceeds in several steps, and occupies the remainder of this section. Recall that I_{k+1} is a large open set in the blow-up of $S \times S^{[k]}$ along the incidence subscheme I_{k} and that we have the following formula

$$
\pi^{*} L_{k+1}=\tau^{*}\left(L \boxtimes L_{k}\right)(-D),
$$

where D is the exceptional divisor and τ is the blowing-up map. Since Z is a large open set in the proper transform of this blowing-up under the morphism $(I d, \psi): S \times W \rightarrow S \times S^{[k]}$, it suffices to prove

Proposition 4 The restriction map

$$
\psi^{*}: H^{0}\left(S^{[k]}, L_{k}\right) \rightarrow H^{0}\left(W, \psi^{*} L_{k}\right)
$$

is injective.

In order to prove this proposition, we first show
Lemma 2 Denoting by $\pi: W \rightarrow \mathbb{P}\left(H^{0}(S, E)\right)$ the restriction of the morphism $\pi_{k+1}: I_{k+1} \rightarrow S^{[k+1]}$, we have the formula

$$
\psi^{*} L_{k}=\pi^{*} \mathcal{O}_{\mathbb{P}\left(H^{0}(S, E)\right)}(k)
$$

Proof. By definition, $\psi^{*} L_{k}=\operatorname{det} \psi^{*} \mathcal{E}_{L, k}$, where the bundle $\mathcal{E}_{L, k}$ has for fiber $H^{0}\left(L_{\mid z}\right)$ at a point $z \in S^{[k]}$. Now, if $z \in W$, the scheme $z^{\prime}=\psi(z)$ has length k, hence the restriction map

$$
H^{0}(S, L) \rightarrow H^{0}\left(L_{\mid z^{\prime}}\right)
$$

is surjective. On the other hand if $z^{\prime \prime}=\pi(z)$, we have $z^{\prime} \subset z^{\prime \prime}$ and the restriction map

$$
H^{0}(S, L) \rightarrow H^{0}\left(L_{\mid z^{\prime \prime}}\right)
$$

is not surjective. Hence we have

$$
H^{0}\left(S, L \otimes \mathcal{I}_{z^{\prime}}\right)=H^{0}\left(S, L \otimes \mathcal{I}_{z^{\prime \prime}}\right)
$$

and the fiber of $\psi^{*} \mathcal{E}_{L, k}$ at z is canonically isomorphic to $H^{0}(S, L) / H^{0}(S, L \otimes$ $\left.\mathcal{I}_{\pi(z)}\right)$. Hence we have

$$
\psi^{*} L_{k}=-\pi^{*} \operatorname{det} \mathcal{F}
$$

where the bundle \mathcal{F} on $\mathbb{P}\left(H^{0}(S, E)\right)$ is the bundle with fiber $H^{0}\left(S, L \otimes \mathcal{I}_{z}\right)$ at $\sigma, z=V(\sigma)$. Now recall that for each σ we have the exact sequence

$$
0 \rightarrow \mathcal{O}_{S} \xrightarrow{\sigma} E \xrightarrow{\wedge \sigma} \mathcal{I}_{z}(L) \rightarrow 0 .
$$

This induces the exact sequence

$$
0 \rightarrow<\sigma>\rightarrow H^{0}(S, E) \xrightarrow{\wedge \sigma} H^{0}\left(S, \mathcal{I}_{z}(L)\right) \rightarrow 0 .
$$

We conclude immediately from this that \mathcal{F} fits into the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}\left(H^{0}(S, E)\right)}(-2) \rightarrow H^{0}(S, E) \otimes \mathcal{O}_{\mathbb{P}\left(H^{0}(S, E)\right)}(-1) \rightarrow \mathcal{F} \rightarrow 0
$$

Since $\operatorname{rank} H^{0}(S, E)=k+2$, it follows that $\operatorname{det} \mathcal{F}=\mathcal{O}_{\mathbb{P}\left(H^{0}(S, E)\right)}(-k)$.
It follows from this lemma that we have a natural inclusion

$$
\begin{equation*}
S^{k} H^{0}(S, E)^{*} \hookrightarrow H^{0}\left(W, \psi^{*} L_{k}\right) . \tag{3.17}
\end{equation*}
$$

(It will be proven in the next section that this inclusion is in fact an isomorphism, but we shall not need this here.)

Our strategy to prove proposition 4 will be first to construct an isomorphism

$$
\begin{equation*}
H^{0}\left(S^{[k]}, L_{k}\right)=\wedge^{k} H^{0}(S, L) \cong S^{k} H^{0}(S, E)^{*} \tag{3.18}
\end{equation*}
$$

and then to show that composed with the inclusion (3.17), it is equal, up to a coefficient, to the pull-back map ψ^{*}.

Construction of the isomorphism (3.18).

We note first that the determinant map

$$
\operatorname{det}: \bigwedge^{2} H^{0}(S, E) \rightarrow H^{0}(S, \operatorname{det} E)=H^{0}(S, L)
$$

does not vanish on any element of rank 2. Indeed, such element of rank 2 is given by a subspace W of rank 2 of $H^{0}(S, E)$, and if its determinant would vanish this would imply that W generates a rank 1 subsheaf of E with at least two sections. But since PicS is generated by L and $H^{0}(S, E(-L))=0$ this is impossible. Hence det provides a morphism

$$
d: G_{2} \rightarrow \mathbb{P}\left(H^{0}(S, L)\right),
$$

where G_{2} is the Grassmannian of rank two vector subspaces of $H^{0}(S, E)$, or dually a base-point free linear system

$$
K:=H^{0}(S, L)^{*} \stackrel{d^{*}}{\hookrightarrow} H^{0}\left(G_{2}, \mathcal{L}\right)=\wedge^{2} H^{0}(S, E)^{*},
$$

where \mathcal{L} is the Plücker polarization on G_{2}. Notice that rank $K=2 k+1$. Since K is base-point free, we have the exact Koszul complex on G_{2}

$$
0 \rightarrow \bigwedge^{2 k+1} K \otimes \mathcal{L}^{-(2 k+1)} \rightarrow \ldots \rightarrow K \otimes \mathcal{L}^{-1} \rightarrow \mathcal{O}_{G_{2}} \rightarrow 0
$$

We can now tensor this sequence with $S^{k} \mathcal{E}$, where the rank 2 vector bundle \mathcal{E} on G_{2} is dual to the tautological rank two subbundle and satisfies $H^{0}\left(G_{2}, S^{k} \mathcal{E}\right)=$ $S^{k} H^{0}(S, E)^{*}$.

This provides the exact complex

$$
\begin{equation*}
0 \rightarrow \bigwedge^{2 k+1} K \otimes \mathcal{L}^{-(2 k+1)} \otimes S^{k} \mathcal{E} \rightarrow \ldots \rightarrow K \otimes \mathcal{L}^{-1} \otimes S^{k} \mathcal{E} \rightarrow S^{k} \mathcal{E} \rightarrow 0 \tag{3.19}
\end{equation*}
$$

In this complex \mathcal{K}, the term $S^{k} \mathcal{E}$ is put in degree 0 . The hypercohomology $\mathbb{H}^{0}\left(G_{2}, \mathcal{K}^{\cdot}\right)$ vanishes. Now we have a spectral sequence

$$
E_{1}^{p, q}=H^{q}\left(G_{2}, \mathcal{K}^{p}\right) \Rightarrow \mathbb{H}^{p+q}\left(G_{2}, \mathcal{K}\right)
$$

It is obvious for degree reasons that all differentials d_{r} starting from the term $E_{r}^{0,0}$ vanish. On the other hand the terms $E_{1}^{p, q}$ with $p+q=-1$ are of the form

$$
H^{q}\left(G_{2}, \bigwedge^{q+1} K \otimes \mathcal{L}^{-q-1} \otimes S^{k} \mathcal{E}\right)
$$

Using the proposition 9 proven in the appendix, we see that these terms are all 0 , except for

$$
E_{1}^{-k-1, k}=H^{k}\left(G_{2}, \bigwedge^{k+1} K \otimes \mathcal{L}^{-k-1} \otimes S^{k} \mathcal{E}\right)
$$

which is equal to $\bigwedge^{k+1} K$. It follows that there is only one non zero differential which arrives in some $E_{r}^{0,0}$, namely

$$
d_{k+1}: E_{k+1}^{-k-1, k} \rightarrow E_{k+1}^{0,0} .
$$

This implies that

$$
E_{k+1}^{0,0}=E_{1}^{0,0}=H^{0}\left(G_{2}, S^{k} \mathcal{E}\right)=S^{k} H^{0}(S, E)^{*}
$$

and that the differential d_{k+1} above is surjective, since the spectral sequence abuts to 0 . Hence we have build a surjective map d_{k+1} from a subquotient of $E_{1}^{-k-1, k}=\bigwedge^{k+1} K$ to $S^{k} H^{0}(S, E)^{*}$. Since $\operatorname{dim} \bigwedge^{k+1} K=\operatorname{dim} S^{k} H^{0}(S, E)^{*}$ this subquotient must in fact be equal to $\bigwedge^{k+1} K$ and the map d_{k+1} has to be an isomorphism. Finally, since $\operatorname{rank} K=2 k+1$,

$$
\bigwedge^{k+1} K=\left(\bigwedge^{k} K\right)^{*}=\bigwedge^{k} H^{0}(S, L)
$$

Hence we have constructed our isomorphism

$$
d_{k+1}: \bigwedge^{k} H^{0}(S, L) \rightarrow S^{k} H^{0}(S, E)^{*}
$$

To conclude the proof of proposition 4 , it remains only to show :
Proposition 5 The map d_{k+1} constructed above identifies up to a coefficient to the map

$$
\psi^{*}: H^{0}\left(S^{[k]}, L_{k}\right) \rightarrow H^{0}\left(W, \psi^{*} L_{k}\right)
$$

which takes values in $S^{k} H^{0}(S, E)^{*} \subset H^{0}\left(W, \psi^{*} L_{k}\right)$.
Proof. First of all it is clear that ψ^{*} takes values in $\pi^{*} H^{0}\left(\mathbb{P}\left(H^{0}(S, E)\right), \mathcal{O}(k)\right)=$ $S^{k} H^{0}(S, E)^{*}$. Indeed, this map is the pull-back map associated to the morphism

$$
\begin{array}{r}
W \rightarrow \operatorname{Grass}\left(k+1, H^{0}(S, L)\right) \\
z \mapsto H^{0}\left(S, L \otimes \mathcal{I}_{z^{\prime}}\right), z^{\prime}=\psi(z)
\end{array}
$$

But as mentioned in the proof of lemma 2, this morphism factors through $\pi: W \rightarrow \mathbb{P}\left(H^{0}(S, E)\right)$.

Next, we note that, with the same spectral sequence argument, and replacing $K=H^{0}(S, L)^{*} \subset \bigwedge^{2} H^{0}(S, E)^{*}$ by the base point free linear system $K^{\prime}=\bigwedge^{2} H^{0}(S, E)^{*}$ on G_{2}, we could have constructed more generally a surjective map

$$
D_{k+1}: \bigwedge^{k+1}\left(\bigwedge^{2} H^{0}(S, E)^{*}\right) \rightarrow S^{k} H^{0}(S, E)^{*}
$$

whose restriction to $\bigwedge^{k+1} K$ is equal to d_{k+1}.

On the other hand, we already noticed that the restriction map

$$
\psi^{*}: \wedge^{k} H^{0}(S, L) \rightarrow S^{k} H^{0}(S, E)^{*}
$$

corresponds to the morphism

$$
\begin{gathered}
\mathbb{P}\left(H^{0}(S, E)\right) \rightarrow \operatorname{Grass}\left(k+1, H^{0}(S, L)\right) \\
\sigma \mapsto \operatorname{det}\left(\sigma \wedge H^{0}(S, E)\right)
\end{gathered}
$$

But this morphism is the composition of the morphism

$$
\begin{aligned}
\beta: \mathbb{P}\left(H^{0}(S, E)\right) & \rightarrow G \operatorname{Grass}\left(k+1, \bigwedge^{2} H^{0}(S, E)\right) \\
\sigma & \mapsto \sigma \wedge H^{0}(S, E)
\end{aligned}
$$

and of the rational map induced by the determinant

$$
\operatorname{det}: \operatorname{Grass}\left(k+1, \bigwedge^{2} H^{0}(S, E)\right) \rightarrow \operatorname{Grass}\left(k+1, H^{0}(S, L)\right)
$$

Hence proposition 5 will follow from the following
Lemma 3 The maps D_{k+1} and β^{*} from $\bigwedge^{k+1}\left(\bigwedge^{2} H^{0}(S, E)^{*}\right)$ to $S^{k} H^{0}(S, E)^{*}$ coincide up to a coefficient.
Proof. We could argue by $S l(k+2)$-equivariance. A more direct way to prove this is to note the following : If $W \subset \bigwedge^{2} H^{0}(S, E)^{*}$ is a rank $k+1$ vector subspace in general position, it defines a codimension $k+1$ subvariety G_{W} of G_{2}. Consider the incidence correspondence

$$
\begin{aligned}
P & \xrightarrow{\pi} \\
p \downarrow & \mathbb{P}\left(H^{0}(S, E)\right) \\
G_{2} &
\end{aligned}
$$

Then we have an hypersurface $X_{W}=\pi\left(p^{-1}\right)\left(G_{W}\right)$ of $\mathbb{P}\left(H^{0}(S, E)\right)$, which is easily proven to be of degree k. It is clear that

$$
H^{0}\left(G_{2}, S^{k} \mathcal{E} \otimes \mathcal{I}_{G_{W}}\right)=H^{0}\left(\mathbb{P}\left(H^{0}(S, E)\right), \mathcal{O}_{\mathbb{P}\left(H^{0}(S, E)\right)}(k)\left(-X_{W}\right)\right)
$$

On the other hand, from the linear system W we can construct a Koszul complex which is a resolution of $\mathcal{I}_{G_{W}}$. Hence it is clear that

$$
D_{k+1}\left(\bigwedge^{k+1} W\right) \subset H^{0}\left(G_{2}, S^{k} \mathcal{E} \otimes \mathcal{I}_{G_{W}}\right)
$$

In other words, if η is a generator of $\bigwedge^{k+1} W, D_{k+1}(\eta)$ is a defining equation of X_{W} or 0 . It remains then only to prove that $\beta^{*} \eta$ also vanishes on X_{W}. But by definition

$$
X_{W}=\left\{x \in \mathbb{P}\left(H^{0}(S, E)\right), \exists 0 \neq \gamma \in \mathbb{P}\left(H^{0}(S, E) /<x>\right), x \wedge \gamma \perp W\right\}
$$

This means that for $x \in X_{W}$, the composed map

$$
W \hookrightarrow \bigwedge^{2} H^{0}(S, E)^{*} \rightarrow\left(x \wedge H^{0}(S, E)\right)^{*}
$$

is not an isomorphism, hence its determinant vanishes. But this determinant is equal to $\beta^{*} \eta(x)$.

4 Proof of the assumption H1

Recall that we have a Cartesian diagram

$$
\begin{array}{ccc}
Z^{\prime} & \xrightarrow{\pi^{\prime}} & Z \\
\tau^{\prime} \downarrow & & \tau \downarrow \\
S \times \tilde{W} & \xrightarrow{\pi^{\prime \prime}} & S \times W
\end{array}
$$

where the vertical maps τ, τ^{\prime} are blow-ups and the degree k morphism $\pi^{\prime \prime}$ fits into the Cartesian diagram

$$
\begin{array}{ccc}
\tilde{W} & \rightarrow & I_{k} \\
\pi^{\prime \prime} \downarrow & & \pi_{k} \downarrow \\
W & \xrightarrow{\psi} & S_{c u r v}^{[k]}
\end{array} .
$$

We have the morphisms

$$
j^{\prime}: Z^{\prime} \rightarrow I_{k+1}, j: Z \rightarrow I_{k+1}
$$

such that $\pi \circ j^{\prime}=\pi \circ j \circ \pi^{\prime}$ and the formula

$$
(\pi \circ j)^{*} L_{k+1}=\tau^{*}\left(L \boxtimes \psi^{*} L_{k}\right)(-D)
$$

where D is the exceptional divisor of τ. Similarly we have

$$
\left(\pi \circ j^{\prime}\right)^{*} L_{k+1}=\tau^{\prime *}\left(L \boxtimes(\psi \circ r)^{*} L_{k}\right)\left(-D^{\prime}\right)
$$

Since $D^{\prime}=\pi^{\prime-1}(D)$ and π^{\prime} is surjective, we conclude that in order to prove H1, that is the fact that the pull-back map

$$
\pi^{\prime *}: H^{0}\left(Z,(\pi \circ j)^{*} L_{k+1}\right) \rightarrow H^{0}\left(Z^{\prime},\left(\pi \circ j^{\prime}\right)^{*} L_{k+1}\right)
$$

is surjective, it suffices to show that the pull-back map

$$
\pi^{\prime \prime *}: H^{0}\left(W, \psi^{*} L_{k}\right) \rightarrow H^{0}\left(\tilde{W},\left(\psi \circ \pi^{\prime \prime}\right)^{*} L_{k}\right)
$$

is surjective.
Now recall that we have a morphism

$$
\pi: W \rightarrow \mathbb{P}\left(H^{0}(S, E)\right)
$$

such that (cf lemma 2)

$$
\psi^{*} L_{k}=\pi^{*} \mathcal{O}_{\mathbb{P}\left(H^{0}(S, E)\right)}(k) .
$$

Denoting by $\beta:=\pi \circ \pi^{\prime \prime}: \tilde{W} \rightarrow \mathbb{P}\left(\left(H^{0}(S, E)\right)\right.$, we shall prove the following stronger statement

Theorem 2 The pull-back map

$$
\begin{equation*}
\beta^{*}: H^{0}\left(\mathbb{P}\left(H^{0}(S, E)\right), \mathcal{O}_{\mathbb{P}\left(H^{0}(S, E)\right)}(k)\right) \rightarrow H^{0}\left(\tilde{W},(\psi \circ r)^{*} L_{k}\right) \tag{4.20}
\end{equation*}
$$

is surjective.
The end of this section will be devoted to the proof of this theorem, which proceeds in several steps. In what follows, we shall use the notation $H^{0}(E)$ for $H^{0}(S, E)$.

Notice to begin with that \tilde{W} is a large open set in the subscheme

$$
W^{\prime} \subset \widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right)
$$

where $\widetilde{S \times S}$ is the blow-up of $S \times S$ along the diagonal, defined as

$$
W^{\prime}:=\left\{(x, y, \eta, \sigma), \sigma_{\mid \eta=0},\{x\},\{y\} \subset \eta\right\}
$$

(Here η is a subscheme of length 2 of S, and we see elements of $\widetilde{S \times S}$ as elements (x, y) of $S \times S$ together with a schematic structure η of length 2 on $\{x\} \cup\{y\}$.)

The map β is just the restriction to W^{\prime} of the second projection. Hence we have

$$
H^{0}\left(\tilde{W},(\psi \circ r)^{*} L_{k}\right)=H^{0}\left(W^{\prime}, p r_{2}^{*} \mathcal{O}_{\mathbb{P}\left(H^{0}(E)\right)}(k)\right)
$$

and the surjectivity of (4.20) is equivalent to the condition

$$
\begin{equation*}
H^{1}\left(\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right), p r_{2}^{*} \mathcal{O}(k) \otimes \mathcal{I}_{W^{\prime}}\right)=0 \tag{4.21}
\end{equation*}
$$

Now notice that there is a vector bundle \tilde{E}_{2} on $\widetilde{S \times S}$ such that W^{\prime} is the zero set of a section σ of $\tilde{E}_{2} \boxtimes \mathcal{O}_{\mathbb{P}\left(H^{0}(E)\right)}(1)$. Indeed it suffices to take for \tilde{E}_{2} the vector bundle with fiber $H^{0}\left(E_{\mid \eta}\right)$ at the point (x, y, η) of $\widetilde{S \times S}$. Then the section σ takes the value $\tau_{\mid \eta}$ at the point (x, y, η, τ) of $\widehat{S \times S} \times \mathbb{P}\left(H^{0}(E)\right)$. One checks easily that W^{\prime} is reduced of codimension 4. Hence we have a Koszul resolution of $\mathcal{I}_{W^{\prime}}$

$$
\begin{equation*}
0 \rightarrow \bigwedge^{4} \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(-4) \rightarrow \ldots \rightarrow \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(-1) \rightarrow \mathcal{I}_{W^{\prime}} \rightarrow 0 \tag{4.22}
\end{equation*}
$$

Our first goal will be to compute the cohomology groups of $\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right)$ with value in $\bigwedge^{i} \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-i)$. Since $k \geq 2, i \leq 4, \mathcal{O}(k-i)$ has no higher cohomology on $\mathbb{P}\left(H^{0}(E)\right)=\mathbb{P}^{k+1}$. Hence we have
$H^{l}\left(\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right), \bigwedge^{i} \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-i)\right)=H^{l}\left(\widetilde{S \times S}, \bigwedge^{i} \tilde{E}_{2}^{*}\right) \otimes S^{k-i} H^{0}(S, E)^{*}$.
We have now the following proposition

Proposition 6 1. $H^{2}\left(\widetilde{S \times S}, \tilde{E}_{2}^{*}\right)=p r_{1}^{*} H^{2}\left(S, E^{*}\right) \oplus p r_{2}^{*} H^{2}\left(S, E^{*}\right)$ and

$$
\left.H^{1}\left(\widetilde{S \times S}, \tilde{E}_{2}^{*}\right)\right)=0
$$

2. $H^{2}\left(\widetilde{S \times S}, \bigwedge^{2} \tilde{E}_{2}^{*}\right)=p r_{1}^{*} H^{2}(S,-L) \oplus p r_{2}^{*} H^{2}(S, E-L)$.
3. $H^{4}\left(\widetilde{S \times S}, \bigwedge^{4} \tilde{E}_{2}^{*}\right)$ is dual to $\operatorname{Ker}\left(H^{0}(S, L) \otimes H^{0}(S, L) \rightarrow H^{0}(S, 2 L)\right)$.
4. $H^{3}\left(\widetilde{S \times S}, \bigwedge^{3} \tilde{E}_{2}^{*}\right)=0$ and $H^{4}\left(\widetilde{S \times S}, \bigwedge^{3} \tilde{E}_{2}^{*}\right)$ admits as a quotient $H^{4}\left(\widetilde{S \times S}, \tau^{*}\left(p r_{1}^{*} E^{*} \otimes p r_{2}^{*}(-L)\right)(2 \Delta)\right) \oplus H^{4}\left(\widetilde{S \times S}, \tau^{*}\left(p r_{1}^{*}(-L) \otimes p r_{1}^{*} E^{*}\right)(2 \Delta)\right)$, which is dual to the direct sum of two copies of

$$
\operatorname{Ker} H^{0}(S, E) \otimes H^{0}(S, L) \rightarrow H^{0}(S, E \otimes L)
$$

(Here $\Delta \subset \widetilde{S \times S}$ is the exceptional divisor.)

Proof.

1. The bundle \tilde{E}_{2} fits into the exact sequence

$$
\begin{equation*}
0 \rightarrow \tilde{E}_{2} \rightarrow \tau^{*}\left(p r_{1}^{*} E \oplus p r_{2}^{*} E\right) \rightarrow \tau^{\prime *} E \rightarrow 0 \tag{4.23}
\end{equation*}
$$

where $\tau: \widetilde{S \times S} \rightarrow S \times S$ is the contraction, and where $\tau^{\prime}: \Delta \rightarrow \operatorname{Diag} S$ is its restriction to the exceptional divisor.

Dualizing, we get the following exact sequence

$$
\begin{equation*}
0 \rightarrow \tau^{*}\left(p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E^{*}\right) \rightarrow \tilde{E}_{2}^{*} \rightarrow \tau^{\prime *} E^{*} \otimes \mathcal{O}_{\Delta}(\Delta) \rightarrow 0 \tag{4.24}
\end{equation*}
$$

Now $R^{0} \tau_{*}^{\prime} \mathcal{O}_{\Delta}(\Delta)=R^{1} \tau_{*}^{\prime} \mathcal{O}_{\Delta}(\Delta)=0$ hence the sheaf on the right has no cohomology. It follows that

$$
\begin{gathered}
H^{i}\left(\widetilde{S \times S}, \tilde{E}_{2}^{*}\right)=H^{i}\left(\widetilde{S \times S}, \tau^{*}\left(p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E\right)\right) \\
=H^{i}\left(S \times S, p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E\right)
\end{gathered}
$$

Since E^{*} has no odd dimensional cohomology, nor \mathcal{O}_{S}, it follows from Künneth formula that the same is true for $p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E$ on $S \times S$. Finally we have

$$
H^{2}\left(S \times S, p r_{1}^{*} E^{*}\right)=H^{2}\left(S, E^{*}\right)
$$

since $H^{0}\left(S, E^{*}\right)=0$. This proves 1 .
2. From (4.24) we deduce that $\bigwedge^{2} \tilde{E}_{2}^{*}$ has a filtration whose successive terms are

$$
\bigwedge^{2} \tau^{*}\left(p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E^{*}\right), \tau^{*}\left(p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E^{*}\right) \otimes \tau^{\prime *} E^{*} \otimes \mathcal{O}_{\Delta}(\Delta), \bigwedge^{2} \tau^{\prime *} E^{*} \otimes \mathcal{O}_{\Delta}(2 \Delta)
$$

The sheaf $\left(p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E^{*}\right) \otimes \tau^{\prime *} E^{*} \otimes \mathcal{O}_{\Delta}(\Delta)$ has no cohomology, since $\mathcal{O}_{\Delta}(\Delta)$ has no cohomology along the fibers of τ^{\prime}. Hence we have an exact sequence

$$
\begin{gathered}
H^{1}\left(\Delta, \bigwedge^{2} \tau^{\prime *} E^{*} \otimes \mathcal{O}_{\Delta}(2 \Delta)\right) \rightarrow H^{2}\left(\widetilde{S \times S}, \tau^{*} \bigwedge^{2}\left(p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E^{*}\right)\right) \rightarrow H^{2}\left(\widetilde{S \times S}, \bigwedge^{2} \tilde{E}_{2}^{*}\right) \\
\rightarrow H^{2}\left(\Delta, \bigwedge^{2} \tau^{\prime *} E^{*} \otimes \mathcal{O}_{\Delta}(2 \Delta)\right) \ldots
\end{gathered}
$$

But since

$$
R^{1} \tau_{*}^{\prime}\left(2 \Delta_{\mid \Delta}\right)=\mathcal{O}_{S}, R^{0} \tau_{*}^{\prime}\left(2 \Delta_{\mid \Delta}\right)=0,
$$

the term on the left is equal to $H^{0}\left(S, \bigwedge^{2} E^{*}\right)=0$ and the term on the right is equal to $H^{1}\left(S, \bigwedge^{2} E^{*}\right)=0$. Hence we have
$H^{2}\left(\widetilde{S \times S}, \bigwedge^{2} \tilde{E}_{2}^{*}\right)=H^{2}\left(\widetilde{S \times S}, \tau^{*} \bigwedge^{2}\left(p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E^{*}\right)\right)=H^{2}\left(S \times S, \bigwedge^{2}\left(p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E^{*}\right)\right)$
Finally

$$
\bigwedge^{2}\left(p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E^{*}\right)=p r_{1}^{*} \bigwedge^{2} E^{*} \oplus E^{*} \boxtimes E^{*} \oplus p r_{2}^{*} \bigwedge^{2} E^{*}
$$

The central term has no cohomology in degree 2 by Künneth formula, because $H^{1}\left(S, E^{*}\right)=H^{0}\left(S, E^{*}\right)=0$, and we have

$$
H^{2}\left(S \times S, p r_{1}^{*} \bigwedge^{2} E^{*}\right)=H^{2}\left(S, \bigwedge^{2} E^{*}\right)=H^{2}(S,-L)
$$

This proves 2.
3. We have $\operatorname{det} \tilde{E}_{2}^{*}=\tau^{*}((-L) \boxtimes(-L))(2 \Delta)$ by the exact sequence (4.23). Hence

$$
\begin{equation*}
\bigwedge^{3} \tilde{E}_{2}^{*}=\tilde{E}_{2} \otimes \operatorname{det} \tilde{E}_{2}^{*}=\tilde{E}_{2} \otimes \tau^{*}((-L) \boxtimes(-L))(2 \Delta) \tag{4.25}
\end{equation*}
$$

The exact sequence (4.23) gives now the long exact sequence

$$
\begin{aligned}
& H^{2}\left(\Delta, \tau^{\prime *}(E(-2 L))\left(2 \Delta_{\mid \Delta}\right)\right) \rightarrow H^{3}\left(\widetilde{S \times S}, \bigwedge^{3} \tilde{E}_{2}^{*}\right) \\
\rightarrow & H^{3}\left(\widetilde{S \times S}, \tau^{*}\left(\left(p r_{1}^{*} E \oplus p r_{2}^{*} E\right) \otimes \tau^{*}((-L) \boxtimes(-L))(2 \Delta)\right) .\right.
\end{aligned}
$$

Since $R^{0} \tau_{*}^{\prime} \mathcal{O}_{\Delta}(2 \Delta)=0, R^{1} \tau_{*}^{\prime} \mathcal{O}_{\Delta}(2 \Delta)=\mathcal{O}_{S}$, the left hand side is equal to $H^{1}(S, E(-2 L))$, which is easily seen to be 0 .

Next we have $K_{\widetilde{S \times S}}=\mathcal{O}_{\widetilde{S \times S}}(\Delta)$, hence $H^{3}\left(\widetilde{S \times S}, \tau^{*}\left(p r_{1}^{*} E \oplus p r_{2}^{*} E\right) \otimes\right.$ $\left.\tau^{*}((-L) \boxtimes(-L))(2 \Delta)\right)$ is dual to

$$
\begin{equation*}
H^{1}\left(\widetilde{S \times S}, \tau^{*}\left(p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E^{*}\right) \otimes \tau^{*}(L \boxtimes L)(-\Delta)\right) \tag{4.26}
\end{equation*}
$$

But one checks easily that the multiplication map

$$
H^{0}(S, E) \otimes H^{0}(S, L) \rightarrow H^{0}(S, E \otimes L)
$$

is surjective, and it follows that the group (4.26) is 0 since $H^{1}\left(S \times S,\left(p r_{1}^{*} E^{*} \oplus\right.\right.$ $\left.\left.p r_{2}^{*} E^{*}\right) \otimes L \boxtimes L\right)=0$. (We use here the equality $E^{*} \otimes L=E$.)

Finally the equality (4.25) and the exact sequence (4.23) also show that $H^{4}\left(\widetilde{S \times S}, \bigwedge^{3} \tilde{E}_{2}^{*}\right)$ admits $H^{4}\left(\widetilde{S \times S}, \tau^{*}\left(\left(p r_{1}^{*} E \oplus p r_{2}^{*} E\right) \otimes((-L) \boxtimes(-L))\right)(2 \Delta)\right)$ as a quotient. By Serre's duality this space is dual to

$$
\begin{equation*}
H^{0}\left(\widetilde{S \times S}, \tau^{*}\left(\left(p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E^{*}\right) \otimes(L \boxtimes L)\right)(-\Delta)\right) \tag{4.27}
\end{equation*}
$$

But this is equal to

$$
H^{0}\left(S \times S,\left(p r_{1}^{*} E^{*} \oplus p r_{2}^{*} E^{*}\right) \otimes(L \boxtimes L) \otimes \mathcal{I}_{\text {Diag }}\right)
$$

We use then the fact that

$$
p r_{1}^{*} E^{*} \otimes(L \boxtimes L)=E \boxtimes L
$$

to conclude that (4.27) is equal to the sum of two copies of

$$
\operatorname{Ker} H^{0}(S, E) \otimes H^{0}(S, L) \rightarrow H^{0}(S, E \otimes L)
$$

4. We already noticed that

$$
\bigwedge_{4}^{4} \tilde{E}_{2}^{*}=\operatorname{det} \tilde{E}_{2}^{*}=\tau^{*}((-L) \boxtimes(-L))(2 \Delta)
$$

It follows then from Serre's duality and $K_{\widetilde{S \times S}}=\mathcal{O}_{\widetilde{S \times S}}(\Delta)$ that $H^{4} \widetilde{\left(\widetilde{S \times S}, \Lambda^{4} \tilde{E}_{2}^{*}\right)}$ is dual to

$$
\left.H^{0}\left(\widetilde{S \times S}, \tau^{*}(L \boxtimes L)(-\Delta)\right)=\operatorname{Ker} H^{0}(S, L) \otimes H^{0}(S, L) \rightarrow H^{0}(S, 2 L)\right)
$$

Hence 4 is proven.

Coming back to the Koszul resolution of $\mathcal{I}_{W^{\prime}} \otimes p r_{2}^{*} \mathcal{O}(k)$ induced by (4.22), we see that in order to prove the vanishing (4.21), it suffices to show :
a) $H^{1}\left(\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right), \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-1)\right)=0$.
b) The interior product with σ

$$
\begin{aligned}
& \operatorname{int}(\sigma): H^{2}\left(\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right), \bigwedge^{2} \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-2)\right) \\
& \rightarrow H^{2}\left(\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right), \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-1)\right)
\end{aligned}
$$

is injective.
c) $H^{3}\left(\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right), \bigwedge^{3} \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-3)\right)=0$.
d) The interior product with σ

$$
\begin{aligned}
& \operatorname{int}(\sigma): H^{4}\left(\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right), \bigwedge^{4} \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-4)\right) \\
& \quad \rightarrow H^{4}\left(\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right), \bigwedge^{3} \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-3)\right)
\end{aligned}
$$

is injective.
The conditions a) and c) have been established in proposition 6 . We now dualize property b) as follows : by proposition 6 we have
$H^{2}\left(\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right), \bigwedge^{2} \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-2)\right)=\left(p r_{1}^{*} H^{2}(S,-L) \oplus p r_{2}^{*} H^{2}(S,-L)\right) \otimes S^{k-2} H^{0}(S, E)^{*}$,
and
$H^{2}\left(\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right), \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-1)\right)=\left(p r_{1}^{*} H^{2}\left(S, E^{*}\right) \oplus p r_{2}^{*} H^{2}\left(S, E^{*}\right)\right) \otimes S^{k-1} H^{0}(S, E)^{*}$.
Dualizing, we get
$H^{2}\left(\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right), \bigwedge^{2} \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-2)\right)^{*}=\left(H^{0}(S, L) \oplus H^{0}(S, L)\right) \otimes S^{k-2} H^{0}(S, E)$,
and
$H^{2}\left(\widetilde{S \times S} \times \mathbb{P}\left(H^{0}(E)\right), \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-1)\right)^{*}=\left(H^{0}(S, E) \oplus H^{0}(S, E)\right) \otimes S^{k-1} H^{0}(S, E)$.
It is then immediate to check that the transpose of the map $\operatorname{int}(\sigma)$ is the map $\wedge \sigma$, so that b) translates into the condition that
$\wedge \sigma:\left(H^{0}(S, E) \oplus H^{0}(S, E)\right) \otimes S^{k-1} H^{0}(S, E) \rightarrow\left(H^{0}(S, L) \oplus H^{0}(S, L)\right) \otimes S^{k-2} H^{0}(S, E)$
is surjective.
Now retracing through the isomorphisms given by proposition 6, one checks that the map $\wedge \sigma$ is up to sign equal to the direct sum of two copies of the composed map

$$
\begin{gathered}
\mu: H^{0}(S, E) \otimes S^{k-1} H^{0}(S, E) \rightarrow H^{0}(S, E) \otimes H^{0}(S, E) \otimes S^{k-2} H^{0}(S, E) \\
\stackrel{\text { det®id }}{\rightarrow} H^{0}(S, L) \otimes S^{k-2} H^{0}(S, E) .
\end{gathered}
$$

Similarly statement d) dualizes as follows : by proposition 6 , the space

$$
H^{4}\left(\widetilde{S \times S}, \bigwedge^{4} \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-4)\right) \cong H^{4}\left(\widetilde{S \times S}, \bigwedge^{4} \tilde{E}_{2}^{*}\right) \otimes S^{k-4} H^{0}(S, E)^{*}
$$

is dual to

$$
\operatorname{Ker}\left(H^{0}(S, L) \otimes H^{0}(S, L) \rightarrow H^{0}(S, 2 L)\right) \otimes S^{k-4} H^{0}(S, E)
$$

Next, we know by proposition 6,4 , that

$$
H^{4}\left(\widetilde{S \times S}, \bigwedge_{\bigwedge}^{3} \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-3)\right) \cong H^{4}\left(\widetilde{S \times S}, \bigwedge^{3} \tilde{E}_{2}^{*}\right) \otimes S^{k-3} H^{0}(S, E)^{*}
$$

admits a quotient which is dual to the direct sum of two copies of

$$
\operatorname{Ker}\left(H^{0}(S, E) \otimes H^{0}(S, L) \rightarrow H^{0}(S, E \otimes L)\right) \otimes S^{k-3} H^{0}(S, E)
$$

Denoting by $Q_{E, L}:=\operatorname{Ker}\left(H^{0}(S, E) \otimes H^{0}(S, L) \rightarrow H^{0}(S, E \otimes L)\right), Q_{L, E}:=$ $\operatorname{Ker}\left(H^{0}(S, L) \otimes H^{0}(S, E) \rightarrow H^{0}(S, E \otimes L)\right)$ and $Q_{L, L}=\operatorname{Ker}\left(H^{0}(S, L) \otimes\right.$ $H^{0}(S, L) \rightarrow H^{0}(S, 2 L)$), we have an inclusion

$$
\left(Q_{L, E} \oplus Q_{E, L}\right) \otimes S^{k-3} H^{0}(S, E) \subset H^{4}\left(\widetilde{S \times S}, \bigwedge^{3} \tilde{E}_{2}^{*} \boxtimes \mathcal{O}(k-3)\right)^{*}
$$

and to prove d) it suffices to show that the map dual to $\operatorname{int}(\sigma)$ restricts on this subspace to a surjection

$$
\wedge \sigma:\left(Q_{L, E} \oplus Q_{E, L}\right) \otimes S^{k-3} H^{0}(S, E) \rightarrow Q_{L, L} \otimes S^{k-4} H^{0}(S, E)
$$

But retracing through the isomorphisms of proposition 6 and recalling the definition of σ, one checks easily that the first component

$$
\wedge \sigma_{1}: Q_{L, E} \otimes S^{k-3} H^{0}(S, E) \rightarrow Q_{L, L} \otimes S^{k-4} H^{0}(S, E)
$$

of the map above is the following composite

$$
\begin{gathered}
\mu^{\prime}: Q_{L, E} \otimes S^{k-3} H^{0}(S, E) \subset H^{0}(S, L) \otimes H^{0}(S, E) \otimes S^{k-3} H^{0}(S, E) \rightarrow \\
H^{0}(S, L) \otimes H^{0}(S, E) \otimes H^{0}(S, E) \otimes S^{k-4} H^{0}(S, E) \xrightarrow{i d \otimes \text { det } \otimes i d} H^{0}(S, L) \otimes H^{0}(S, L) \otimes S^{k-4} H^{0}(S, E),
\end{gathered}
$$

which takes obviously value in $Q_{L, L} \otimes S^{k-4} H^{0}(S, E)$, while the second component is equal to the first composed with the permutation exchanging factors on both sides.

To conclude then that

$$
\wedge \sigma:\left(Q_{L, E} \oplus Q_{E, L}\right) \otimes S^{k-3} H^{0}(S, E) \rightarrow Q_{L, L} \otimes S^{k-4} H^{0}(S, E)
$$

is surjective, it suffices to show that

$$
\mu_{-}^{\prime}: Q_{L, E} \otimes S^{k-3} H^{0}(S, E) \rightarrow Q_{L, L}^{-} \otimes S^{k-4} H^{0}(S, E)
$$

and

$$
\mu_{+}^{\prime}: Q_{L, E} \otimes S^{k-3} H^{0}(S, E) \rightarrow Q_{L, L}^{+} \otimes S^{k-4} H^{0}(S, E)
$$

are surjective, where $Q_{L, L}^{+}$, (resp. $Q_{L, L}^{-}$) are the symmetric, resp. antisymmetric part of $Q_{L, L}$ and μ_{+}^{\prime} (resp. μ_{-}^{\prime}) are the composition of μ^{\prime} with the projections on the symmetric (resp. antisymmetric) part of $Q_{L, L}$.

In conclusion, the theorem 2 will be a consequence of the following propositions

Proposition 7 The composed map

$$
\begin{gathered}
\mu: H^{0}(S, E) \otimes S^{k-1} H^{0}(S, E) \rightarrow H^{0}(S, E) \otimes H^{0}(S, E) \otimes S^{k-2} H^{0}(S, E) \\
\xrightarrow{\text { det }} H^{0}(S, L) \otimes S^{k-2} H^{0}(S, E)
\end{gathered}
$$

is surjective.
Proposition 8 a) The map

$$
\mu_{-}^{\prime}: Q_{L, E} \otimes S^{k-3} H^{0}(S, E) \rightarrow Q_{L, L}^{-} \otimes S^{k-4} H^{0}(S, E)
$$

defined above is surjective.
b) The map

$$
\mu_{+}^{\prime}: Q_{L, E} \otimes S^{k-3} H^{0}(S, E) \rightarrow Q_{L, L}^{+} \otimes S^{k-4} H^{0}(S, E)
$$

defined above is surjective.
Proof of proposition 7. Let $\alpha, \beta \in H^{0}(S, E)$ and $\gamma \in H^{0}(S, L)$ such that

$$
\gamma=\operatorname{det}(\alpha \wedge \beta)
$$

Then we observe first that if $D \subset H^{0}(S, E)$ is the rank 2 vector subspace generated by α and β, we have

$$
\gamma \otimes S^{k-2} D \subset \operatorname{Im} \mu
$$

since the composite

$$
D \otimes S^{k-1} D \rightarrow D \otimes D \otimes S^{k-2} D \rightarrow \bigwedge^{2} D \otimes S^{k-2} D
$$

is surjective.
Recall now that the map det determines a morphism

$$
d: G_{2} \rightarrow \mathbb{P} H^{0}(S, L)
$$

which is surjective and finite since both spaces are of the same dimension $2 k$. The fiber $d^{-1}(\gamma)$ is then a finite subscheme $Z_{\gamma} \subset G_{2}$ which is the complete intersection of a space W of hyperplane sections of the Grassmannian G_{2}.

Now by the above observation, and since d is surjective, it suffices to show that the subspaces $S^{k-2} D$ for $D \in Z_{\gamma}$ generate $S^{k-2} H^{0}(S, E)$. If we dualize, this is equivalent to say that the dual map

$$
S^{k-2} H^{0}(S, E)^{*} \rightarrow \oplus_{D \in Z_{\gamma}} S^{k-2} D^{*}
$$

is injective. But this map identifies to the restriction

$$
H^{0}\left(G_{2}, S^{k-2} \mathcal{E}\right) \rightarrow H^{0}\left(Z_{\gamma}, S^{k-2} \mathcal{E}_{\mid Z_{\gamma}}\right)
$$

at least for a reduced Z_{γ}, which will be the case for a generic γ.
Hence it suffices to show that

$$
\begin{equation*}
H^{0}\left(G_{2}, S^{k-2} \mathcal{E} \otimes \mathcal{I}_{Z_{\gamma}}\right)=0 \tag{4.28}
\end{equation*}
$$

Now we use the Koszul resolution

$$
0 \rightarrow \bigwedge^{2 k} W \otimes \mathcal{L}^{-2 k} \rightarrow \ldots \rightarrow W \otimes \mathcal{L}^{-1} \rightarrow \mathcal{I}_{Z_{\gamma}} \rightarrow 0
$$

The vanishing (4.28) will then follow from the vanishing

$$
H^{i}\left(G_{2}, S^{k-2} \mathcal{E} \otimes \mathcal{L}^{-i-1}\right), i=0,2 k-1
$$

which is proved in proposition 9 of the appendix.
Proof of proposition 8, a). Notice first that the natural composed map

$$
\begin{gathered}
\bigwedge^{3} H^{0}(S, E) \rightarrow \bigwedge^{2} H^{0}(S, E) \otimes H^{0}(S, E) \\
\xrightarrow{\text { det } \otimes i d} H^{0}(S, L) \otimes H^{0}(S, E)
\end{gathered}
$$

has its image contained in $Q_{L, E}$. Hence it suffices to show that the following composite

$$
\begin{aligned}
\mu^{\prime \prime} & : \bigwedge^{3} H^{0}(S, E) \otimes S^{k-3} H^{0}(S, E) \rightarrow \bigwedge^{2} H^{0}(S, E) \otimes H^{0}(S, E) \otimes S^{k-3} H^{0}(S, E) \\
& \xrightarrow{d e t \otimes \mu} H^{0}(S, L) \otimes H^{0}(S, L) \otimes S^{k-4} H^{0}(S, E) \rightarrow \bigwedge^{2} H^{0}(S, L) \otimes S^{k-4} H^{0}(S, E)
\end{aligned}
$$

is surjective.
Now note that for $\alpha_{1}, \alpha_{2}, \alpha_{3} \in H^{0}(S, E)$

$$
\begin{equation*}
\mu^{\prime \prime}\left(\alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3} \otimes \alpha_{3}^{k-3}\right)=2(k-3) \operatorname{det}\left(\alpha_{2} \wedge \alpha_{3}\right) \wedge \operatorname{det}\left(\alpha_{1} \wedge \alpha_{3}\right) \otimes \alpha_{3}^{k-4} \tag{4.29}
\end{equation*}
$$

Fix now $\gamma \in H^{0}(S, L)$ and consider the set of couples $\left(\alpha_{1}, \alpha_{3}\right)$ such that $\operatorname{det}\left(\alpha_{1} \wedge\right.$ $\left.\alpha_{3}\right)=\gamma$. For any α_{2} and any such $\left(\alpha_{1}, \alpha_{3}\right)$, we have

$$
\mu^{\prime \prime}\left(\alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3} \otimes \alpha_{3}^{k-3}\right)=2(k-3) \operatorname{det}\left(\alpha_{2} \wedge \alpha_{3}\right) \wedge \gamma \otimes \alpha_{3}^{k-4} .
$$

Note that the vector α_{3} for such pairs takes arbitrary value in some of the lines $D \in Z_{\gamma}$, where the notations are as in the previous proposition.

Now we have the map

$$
\mu^{\prime \prime \prime}: H^{0}(S, E) \otimes S^{k-3} H^{0}(S, E) \rightarrow H^{0}(S, L) \otimes S^{k-4} H^{0}(S, E)
$$

analogous to μ and the formula above shows that

$$
\mu^{\prime \prime}\left(\alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3} \otimes \alpha_{3}^{k-3}\right)=2 \gamma \wedge \mu^{\prime \prime \prime}\left(\alpha_{2} \otimes \alpha_{3}^{k-3}\right)
$$

With the same proof as in the previous proposition, one shows now that the $S^{k-3} D, D \in Z_{\gamma}$ generate $S^{k-3} H^{0}(S, E)$ and that $\mu^{\prime \prime \prime}$ is surjective. Hence the $\alpha_{2} \otimes \alpha_{3}^{k-3}, \alpha_{3} \in D, D \in Z_{\gamma}$ generate $H^{0}(S, E) \otimes S^{k-3} H^{0}(S, E)$ and the $\mu^{\prime \prime \prime}\left(\alpha_{2} \otimes\right.$ $\left.\alpha_{3}^{k-3}\right), \alpha_{3} \in D, D \in Z_{\gamma}$ generate by the surjectivity of $\mu^{\prime \prime \prime}$ the space $H^{0}(S, L) \otimes$ $S^{k-4} H^{0}(S, E)$. Hence Im $\mu^{\prime \prime}$ contains $\gamma \wedge H^{0}(S, L) \otimes S^{k-4} H^{0}(S, E)$, and since γ was generic, we conclude that $\mu^{\prime \prime}$ is surjective.

Proof of proposition 8, b). We want to prove that

$$
\mu_{+}^{\prime}: Q_{L, E} \otimes S^{k-3} H^{0}(S, E) \rightarrow Q_{L, L}^{+} \otimes S^{k-4} H^{0}(S, E)
$$

is surjective. Denote similarly, for C a generic member of $|L|$,

$$
\begin{gathered}
Q_{K_{C}, E}:=\operatorname{Ker}\left(H^{0}\left(C, K_{C}\right) \otimes H^{0}\left(C, E_{\mid C}\right) \rightarrow H^{0}\left(C, E \otimes K_{C}\right)\right), \\
Q_{K_{C}, K_{C}}^{+}:=\operatorname{Ker}\left(S^{2} H^{0}\left(C, K_{C}\right) \rightarrow H^{0}\left(C, K_{C}^{\otimes 2}\right)\right)
\end{gathered}
$$

Then we can define similarly

$$
\mu_{+, C}^{\prime}: Q_{K_{C}, E} \otimes S^{k-3} H^{0}\left(C, E_{\mid C}\right) \rightarrow Q_{K_{C}, K_{C}}^{+} \otimes S^{k-4} H^{0}\left(C, E_{\mid C}\right)
$$

as the composite

$$
\begin{gathered}
Q_{K_{C}, E} \otimes S^{k-3} H^{0}\left(C, E_{\mid C}\right) \subset H^{0}\left(C, K_{C}\right) \otimes H^{0}\left(C, E_{\mid C}\right) \otimes S^{k-3} H^{0}\left(C, E_{\mid C}\right) \\
\rightarrow H^{0}\left(C, K_{C}\right) \otimes H^{0}\left(C, E_{\mid C}\right) \otimes H^{0}\left(C, E_{\mid C}\right) \otimes S^{k-4} H^{0}\left(C, E_{\mid C}\right) \xrightarrow{i d \otimes \operatorname{det} \otimes i d} \\
H^{0}\left(C, K_{C}\right) \otimes H^{0}\left(C, K_{C}\right) \otimes S^{k-4} H^{0}\left(C, E_{\mid C}\right) \rightarrow S^{2} H^{0}\left(C, K_{C}\right) \otimes S^{k-4} H^{0}\left(C, E_{\mid C}\right) .
\end{gathered}
$$

Now the restriction map $H^{0}(S, E) \rightarrow H^{0}\left(C, E_{\mid C}\right)$ is an isomorphism, and the restriction map $H^{0}(S, L) \rightarrow H^{0}\left(C, K_{C}\right)$ is surjective with kernel σ_{C}. Hence the restrictions induce a surjection

$$
Q_{L, E} \rightarrow Q_{K_{C}, E}
$$

and an isomorphism

$$
Q_{L, L}^{+} \cong Q_{K_{C}, K_{C}}^{+}
$$

and it suffices to show that $\mu_{+, C}^{\prime}$ is surjective. A fortiori it suffices to show that the composite

$$
\begin{gathered}
\mu_{C}^{\prime}: Q_{K_{C}, E} \otimes S^{k-3} H^{0}\left(C, E_{\mid C}\right) \subset H^{0}\left(C, K_{C}\right) \otimes H^{0}\left(C, E_{\mid C}\right) \otimes S^{k-3} H^{0}\left(C, E_{\mid C}\right) \\
\rightarrow H^{0}\left(C, K_{C}\right) \otimes H^{0}\left(C, E_{\mid C}\right) \otimes H^{0}\left(C, E_{\mid C}\right) \otimes S^{k-4} H^{0}\left(C, E_{\mid C}\right) \\
\xrightarrow{i d \otimes \text { det } \otimes i d} H^{0}\left(C, K_{C}\right) \otimes H^{0}\left(C, K_{C}\right) \otimes S^{k-4} H^{0}\left(C, E_{\mid C}\right)
\end{gathered}
$$

which takes value in $Q_{K_{C}, K_{C}}:=\operatorname{Ker}\left(H^{0}\left(C, K_{C}\right)^{\otimes 2} \rightarrow H^{0}\left(C, K_{C}^{\otimes 2}\right)\right)$, is surjective on this last space.

Let us now consider the following diagram of exact sequences

$$
\begin{aligned}
& 0 \rightarrow Q_{K_{C}, E} \otimes S^{k-3} H^{0}\left(C, E_{\mid C}\right) \\
& \mu_{C}^{\prime} \downarrow \rightarrow H^{0}\left(C, K_{C}\right) \otimes H^{0}\left(C, E_{\mid C}\right) \otimes S^{k-3} H^{0}\left(C, E_{\mid C}\right) \\
& i d \otimes \mu_{C} \downarrow \\
& 0 \rightarrow Q_{K_{C}, K_{C}} \otimes S^{k-4} H^{0}\left(C, E_{\mid C}\right) \\
& \rightarrow H^{0}\left(C, K_{C}\right) \otimes H^{0}\left(C, K_{C}\right) \otimes S^{k-4} H^{0}\left(C, E_{\mid C}\right) \\
& \rightarrow H^{0}\left(C, E \otimes K_{C}\right) \otimes S^{k-3} H^{0}\left(C, E_{\mid C}\right) \rightarrow 0 \\
& \mu_{C, K_{C}} \downarrow \\
& \rightarrow H^{0}\left(C, K_{C}^{\otimes 2}\right) \otimes S^{k-4} H^{0}\left(C, E_{\mid C}\right) \quad \rightarrow 0
\end{aligned}
$$

One checks easily the surjectivity of the multiplication maps on the left. The vertical maps μ_{C} and $\mu_{C, K_{C}}$ are defined in a way similar to μ e.g μ_{C} is the composite

$$
\begin{gathered}
H^{0}\left(C, E_{\mid C}\right) \otimes S^{k-3} H^{0}\left(C, E_{\mid C}\right) \subset H^{0}\left(C, E_{\mid C}\right) \otimes H^{0}\left(C, E_{\mid C}\right) \otimes S^{k-4} H^{0}\left(C, E_{\mid C}\right) \\
\stackrel{\text { det } \otimes i d}{ } \\
H^{0}\left(C, K_{C}\right) \otimes S^{k-4} H^{0}\left(C, E_{\mid C}\right)
\end{gathered}
$$

and $\mu_{C, K_{C}}$ is defined similarly with a twist by K_{C}.
The proof of proposition 7 shows as well that μ_{C} is surjective, as is $\mu_{C, K_{C}}$ by the commutativity of the diagram above. Hence the surjectivity of μ_{C}^{\prime} will follow by diagram chasing from the surjectivity of the induced multiplication map

$$
\begin{equation*}
H^{0}\left(C, K_{C}\right) \otimes \operatorname{Ker} \mu_{C} \rightarrow \operatorname{Ker} \mu_{C, K_{C}} \tag{4.30}
\end{equation*}
$$

In what follows we will use again the notation $H^{0}(E)$ for $H^{0}(S, E)=H^{0}\left(C, E_{\mid C}\right)$. Define the vector bundle \mathcal{Q} on C as the kernel of the surjective composite morphism of vector bundles

$$
S^{k-3} H^{0}(E) \otimes E \subset S^{k-4} H^{0}(E) \otimes H^{0}(E) \otimes E \xrightarrow{i d \otimes \operatorname{det}} S^{k-4} H^{0}(E) \otimes K_{C} .
$$

Then we clearly have

$$
\operatorname{Ker} \mu_{C}=H^{0}(C, \mathcal{Q}), \operatorname{Ker} \mu_{C, K_{C}}=H^{0}\left(C, \mathcal{Q} \otimes K_{C}\right)
$$

so that the surjectivity of the map (4.30) is equivalent to the surjectivity of the multiplication map

$$
\begin{equation*}
H^{0}(C, \mathcal{Q}) \otimes H^{0}\left(C, K_{C}\right) \rightarrow H^{0}\left(C, \mathcal{Q} \otimes K_{C}\right) \tag{4.31}
\end{equation*}
$$

Now we proceed as follows : let $\sigma \in H^{0}(S, L)$ be the defining equation for C. Recall the finite reduced subscheme $Z_{\sigma}=d^{-1}(\sigma) \subset G_{2}$ made of the rank 2 vector subspaces D of $H^{0}(S, E)$ such that $\operatorname{det} D=\sigma$. For each such D there is a subline bundle L_{D} of E on C, of degree $k+1$ with two sections without common zeroes (see section 2). The space D identifies naturally to $H^{0}\left(C, L_{D}\right)$.

Clearly the image of the inclusion

$$
S^{k-3} H^{0}\left(C, L_{D}\right) \otimes L_{D} \subset S^{k-3} H^{0}(E) \otimes E
$$

is contained in \mathcal{Q}.
Let now

$$
\mathcal{N}:=\oplus_{D \in Z_{\sigma}} S^{k-3} D \otimes L_{D}
$$

Then by the observation above we have a morphism

$$
\alpha: \mathcal{N} \rightarrow \mathcal{Q} .
$$

The surjectivity of 4.31 will follow from the following three lemmas :

Lemma 4 The morphism α is surjective.
Denoting $\mathcal{M}:=\operatorname{Ker} \alpha$ we also prove
Lemma 5 The vector bundle \mathcal{M} is generated by its sections.
Lemma 6 The space $H^{0}(C, \mathcal{M})$ is generated by the subspaces $H^{0}(C, \mathcal{M}(-x)), x \in$ C.

We explain first how these three lemmas imply our result. Using the exact sequence

$$
0 \rightarrow \mathcal{M} \rightarrow \mathcal{N} \rightarrow \mathcal{Q} \rightarrow 0
$$

given by lemma 4, we see that the map (4.31) will be surjective if the multiplication map

$$
H^{0}(C, \mathcal{N}) \otimes H^{0}\left(C, K_{C}\right) \rightarrow H^{0}\left(C, \mathcal{N} \otimes K_{C}\right)
$$

is surjective, and $H^{1}\left(C, \mathcal{M} \otimes K_{C}\right)=0$.
The first condition is easy to check. Indeed \mathcal{N} is a direct sum of line bundles L_{D} corresponding to g_{k+1}^{1} 's on C, and the result is easy to prove for each of them. As for the second condition, it is equivalent to $H^{0}\left(C, \mathcal{M}^{*}\right)=0$ by Serre's duality. But since \mathcal{M} is generated by sections by lemma 5 , we have an inclusion

$$
H^{0}\left(C, \mathcal{M}^{*}\right) \subset H^{0}(C, \mathcal{M})^{*}
$$

The image of this inclusion obviously vanishes on each subspace $H^{0}(C, \mathcal{M}(-x))$, hence it must be 0 since we know by lemma 6 that these subspaces generate $H^{0}(C, \mathcal{M})$.

To conclude the proof of $8, \mathrm{~b}$) it remains only to prove these three lemmas.
Proof of lemma 4. First of all we note that the bundle \mathcal{Q} is generated by its sections, since there is a natural surjection

$$
S^{k-2} H^{0}(E) \otimes \mathcal{O}_{C} \rightarrow \mathcal{Q} \rightarrow 0
$$

Hence it suffices to show that the map

$$
H^{0}(C, \mathcal{N}) \rightarrow H^{0}(C, \mathcal{Q})
$$

is surjective.
But by definition

$$
H^{0}(C, \mathcal{Q})=\operatorname{Ker}\left(H^{0}(E) \otimes S^{k-3} H^{0}(E) \xrightarrow{\mu_{C}} H^{0}\left(C, K_{C}\right) \otimes S^{k-4} H^{0}(E)\right)
$$

and

$$
H^{0}(C, \mathcal{N})=\oplus_{D \in Z_{\sigma}} D \otimes S^{k-3} D
$$

Hence we need to show that the sequence

$$
\oplus_{D \in Z_{\sigma}} D \otimes S^{k-3} D \rightarrow H^{0}(E) \otimes S^{k-3} H^{0}(E) \xrightarrow{\mu_{C}} H^{0}\left(C, K_{C}\right) \otimes S^{k-4} H^{0}(E)
$$

is exact at the middle. Again this will follow from a cohomological computation on the Grassmannian G_{2}. Indeed, the notations being as in the proof of Propositions 4 and 7 , the sequence above dualizes as

$$
\begin{array}{r}
I_{Z_{\sigma}}(\mathcal{L}) \otimes S^{k-4} H^{0}\left(G_{2}, \mathcal{E}\right) \rightarrow H^{0}\left(G_{2}, \mathcal{E}\right) \otimes S^{k-3} H^{0}\left(G_{2}, \mathcal{E}\right) \\
\rightarrow H^{0}\left(\mathcal{E} \otimes S^{k-3} \mathcal{E}_{\mid Z_{\sigma}}\right), \tag{4.32}
\end{array}
$$

where the map

$$
I_{Z_{\sigma}}(\mathcal{L}) \otimes S^{k-4} H^{0}\left(G_{2}, \mathcal{E}\right) \rightarrow H^{0}\left(G_{2}, \mathcal{E}\right) \otimes S^{k-3} H^{0}\left(G_{2}, \mathcal{E}\right)
$$

is composed of the inclusion
$I_{Z_{\sigma}}(\mathcal{L}) \otimes S^{k-4} H^{0}\left(G_{2}, \mathcal{E}\right) \subset H^{0}\left(G_{2}, \mathcal{L}\right) \otimes S^{k-4} H^{0}\left(G_{2}, \mathcal{E}\right) \cong \wedge^{2} H^{0}\left(G_{2}, \mathcal{E}\right) \otimes S^{k-4} H^{0}\left(G_{2}, \mathcal{E}\right)$
and of the (Koszul) map

$$
\wedge^{2} H^{0}\left(G_{2}, \mathcal{E}\right) \otimes S^{k-4} H^{0}\left(G_{2}, \mathcal{E}\right) \rightarrow H^{0}\left(G_{2}, \mathcal{E}\right) \otimes S^{k-3} H^{0}\left(G_{2}, \mathcal{E}\right)
$$

One checks easily that $H^{0}\left(G_{2}, \mathcal{E}\right) \otimes S^{k-3} H^{0}\left(G_{2}, \mathcal{E}\right) \cong H^{0}\left(G_{2}, \mathcal{E} \otimes S^{k-3} \mathcal{E}\right)$. Hence the kernel in the middle identifies to $H^{0}\left(G_{2}, \mathcal{E} \otimes S^{k-3} \mathcal{E} \otimes \mathcal{I}_{Z_{\sigma}}\right)$. Furthermore $S^{k-4} H^{0}\left(G_{2}, \mathcal{E}\right) \cong H^{0}\left(G_{2}, S^{k-4} \mathcal{E}\right)$ identifies to $H^{0}\left(G_{2}, \mathcal{E} \otimes S^{k-3} \mathcal{E} \otimes \mathcal{L}^{-1}\right)$ via the (Koszul) inclusion

$$
S^{k-4} \mathcal{E} \otimes \mathcal{L}=S^{k-4} \mathcal{E} \otimes \bigwedge^{2} \mathcal{E} \subset \mathcal{E} \otimes S^{k-3} \mathcal{E}
$$

Hence the exactness at the middle of the sequence 4.32 will follow from the equality

$$
\begin{equation*}
H^{0}\left(G_{2}, \mathcal{E} \otimes S^{k-3} \mathcal{E} \otimes \mathcal{I}_{Z_{\sigma}}\right)=H^{0}\left(G_{2}, \mathcal{E} \otimes S^{k-3} \mathcal{E} \otimes \mathcal{L}^{-1}\right) \otimes I_{Z_{\sigma}}(\mathcal{L}) \tag{4.33}
\end{equation*}
$$

Now let $W:=I_{Z_{\sigma}}(\mathcal{L})$. The Koszul resolution of $\mathcal{I}_{Z_{\sigma}}$

$$
0 \rightarrow \bigwedge^{2 k} W \otimes \mathcal{L}^{-2 k} \rightarrow \ldots \rightarrow W \otimes \mathcal{L}^{-1} \rightarrow \mathcal{I}_{Z_{\sigma}} \rightarrow 0
$$

twisted by $\mathcal{E} \otimes S^{k-3} \mathcal{E}$ shows that the equality (4.33) will hold if we know that

$$
H^{i}\left(G_{2}, \mathcal{E} \otimes S^{k-3} \mathcal{E} \otimes \mathcal{L}^{-i-1}\right)=0,1 \leq i<2 k .
$$

Since we have the exact sequence

$$
0 \rightarrow S^{k-4} \mathcal{E} \otimes \mathcal{L} \rightarrow \mathcal{E} \otimes S^{k-3} \mathcal{E} \rightarrow S^{k-2} \mathcal{E} \rightarrow 0
$$

it suffices to know that

$$
H^{i}\left(G_{2}, S^{k-4} \mathcal{E} \otimes \mathcal{L}^{-i}\right)=0,1 \leq i<2 k
$$

and

$$
H^{i}\left(G_{2}, S^{k-2} \mathcal{E} \otimes \mathcal{L}^{-i-1}\right)=0,1 \leq i<2 k
$$

This is proved in Proposition 9.

Proof of lemma 5. The bundles \mathcal{N} and \mathcal{Q} are generated by global sections. To prove that \mathcal{M} is generated by global sections, it suffices to prove that for any $x \in C$, the restriction map $H^{0}(C, \mathcal{N}(-x)) \rightarrow H^{0}(C, \mathcal{Q}(-x))$ is surjective. For each $g_{k+1}^{1} L_{D}$ on C, denote by $\sigma_{D, x} \in H^{0}\left(C, L_{D}\right) \cong D$ a generator for $H^{0}\left(C, L_{D}(-x)\right)$. We need to show the exactness of the sequence

$$
\begin{array}{rl}
\oplus_{D \in Z_{\sigma}} \sigma_{D, x} \otimes S^{k-3} & D \rightarrow H^{0}(C, E(-x)) \otimes S^{k-3} H^{0}(E) \\
\xrightarrow{\mu_{C}} H^{0}\left(C, K_{C}(-x)\right) \otimes S^{k-4} H^{0}(E) \tag{4.34}
\end{array}
$$

Denote by $K_{x} \subset H^{0}(E)$ the subspace $H^{0}(C, E(-x))$. Note that via the identification $H^{0}\left(C, L_{D}\right)=D, \sigma_{D, x}$ becomes a generator of the one-dimensional vector space $D \cap K_{x}$. Furthermore, K_{x} determines a section $\tau_{x} \in \bigwedge^{2} H^{0}(E)^{*}$ up to a coefficient. Clearly $\tau_{x} \in H^{0}\left(C, K_{C}\right)^{*} \subset \bigwedge^{2} H^{0}(E)^{*}$ identifies also to the linear form on $H^{0}\left(C, K_{C}\right)$ defining $H^{0}\left(C, K_{C}(-x)\right)$. Let $G_{x} \subset G_{2}$ be the hyperplane section defined by τ_{x}. The scheme Z_{σ} is a complete intersection of hyperplane sections of G_{x}. The variety G_{x} admits a desingularization $P_{x} \xrightarrow{p} G_{x}$ defined as

$$
P_{x}=\left\{(u, \Delta) \in \mathbb{P}\left(K_{x}\right) \times G_{2}, u \in \Delta \cap K_{x}\right\} .
$$

Note that if

is the incidence variety, P_{x} can also be defined as $\pi^{-1}\left(\mathbb{P}\left(K_{x}\right)\right) \subset P$.
Since each line D parametrized by Z_{σ} meets K_{x} along a one dimensional vector space, the scheme Z_{σ} can also be seen as the complete intersection in P_{x} of hypersurfaces in $\left|p^{*} \mathcal{L}\right|$.

We now dualize the sequence (4.34). The space $H^{0}\left(C, K_{C}(-x)\right)$ admits for dual the space $W \subset H^{0}\left(P_{x}, p^{*} \mathcal{L}\right)$ defining $Z_{\sigma} \subset P_{x}$. The vector space $<\sigma_{D, x}>^{*}$ identifies clearly to the fiber of the line bundle $\pi^{*} \mathcal{O}_{\mathbb{P}\left(K_{x}\right)}(1)$ at the point $D \in Z_{\sigma}$. Hence our sequence dualizes as

$$
\begin{array}{r}
W \otimes S^{k-4} H^{0}(E)^{*} \rightarrow \pi^{*} H^{0}\left(\mathbb{P}\left(K_{x}\right), \mathcal{O}(1)\right) \otimes H^{0}\left(P_{x}, p^{*} S^{k-3} \mathcal{E}\right) \\
\rightarrow H^{0}\left(S^{k-3} \mathcal{E} \otimes H_{x} \mid Z_{\sigma}\right), \tag{4.35}
\end{array}
$$

where $H_{x}:=p^{*} \mathcal{O}_{\mathbb{P}\left(K_{x}\right)}(1)$. The second space in this sequence identifies to $H^{0}\left(P_{x}, p^{*} S^{k-3} \mathcal{E} \otimes H_{x}\right)$ so that the kernel at the middle is equal to $H^{0}\left(P_{x}, p^{*} S^{k-3} \mathcal{E} \otimes\right.$ $\left.H_{x} \otimes \mathcal{I}_{Z_{\sigma}}\right)$. The first map in (4.35)is induced by the isomorphism

$$
S^{k-4} H^{0}(E)^{*} \cong H^{0}\left(P_{x}, p^{*} S^{k-4} \mathcal{E}\right)
$$

the multiplication

$$
W \otimes H^{0}\left(P_{x}, p^{*} S^{k-4} \mathcal{E}\right) \rightarrow H^{0}\left(P_{x}, p^{*}\left(S^{k-4} \mathcal{E} \otimes \mathcal{L}\right) \otimes \mathcal{I}_{Z_{\sigma}}\right)
$$

and by the composed bundle map

$$
p^{*} S^{k-4} \mathcal{E} \otimes \mathcal{L} \rightarrow p^{*} S^{k-3} \mathcal{E} \otimes \mathcal{E} \rightarrow p^{*} S^{k-3} \mathcal{E} \otimes H_{x}
$$

where the last map is induced by the natural surjective map $p^{*} \mathcal{E} \rightarrow H_{x}$.
The exactness of (4.35) will then follow from the surjectivity of

$$
\begin{equation*}
W \otimes H^{0}\left(P_{x}, p^{*} S^{k-3} \mathcal{E} \otimes H_{x} \otimes \mathcal{L}^{-1}\right) \rightarrow H^{0}\left(P_{x}, p^{*} S^{k-3} \mathcal{E} \otimes H_{x} \otimes \mathcal{I}_{Z_{\sigma}}\right) \tag{4.36}
\end{equation*}
$$

and from the equality

$$
\begin{equation*}
H^{0}\left(P_{x}, p^{*} S^{k-3} \mathcal{E} \otimes H_{x} \otimes \mathcal{L}^{-1}\right)=H^{0}\left(P_{x}, p^{*} S^{k-4} \mathcal{E}\right) \tag{4.37}
\end{equation*}
$$

This last equality is proved as follows : on P_{x} we have the exact sequence

$$
0 \rightarrow p^{*} \mathcal{L} \otimes H_{x}^{-1} \rightarrow p^{*} \mathcal{E} \rightarrow H_{x} \rightarrow 0
$$

which gives

$$
0 \rightarrow p^{*} S^{k-4} \mathcal{E} \otimes p^{*} \mathcal{L} \otimes H_{x}^{-1} \rightarrow p^{*} S^{k-3} \mathcal{E} \rightarrow H_{x}^{k-3} \rightarrow 0
$$

Tensoring this with $H_{x} \otimes \mathcal{L}^{-1}$ we get

$$
0 \rightarrow p^{*} S^{k-4} \mathcal{E} \rightarrow p^{*} S^{k-3} \mathcal{E} \otimes H_{x} \otimes \mathcal{L}^{-1} \rightarrow H_{x}^{k-2} \otimes p^{*} \mathcal{L}^{-1} \rightarrow 0
$$

But the right hand side has no non-zero sections since it is of negative degree on the fibers of π. Hence the equality (4.37).

Since $Z_{\sigma} \subset P_{x}$ is the complete intersection of the space W of sections of $p^{*} \mathcal{L}$, we have a Koszul resolution of $\mathcal{I}_{Z_{\sigma}}$, which takes the form

$$
0 \rightarrow \bigwedge^{2 k-1} W \otimes p^{*} \mathcal{L}^{-2 k-1} \rightarrow \ldots \rightarrow W \otimes p^{*} \mathcal{L}^{-1} \rightarrow \mathcal{I}_{Z_{\sigma}} \rightarrow 0
$$

We can tensor it with $p^{*} S^{k-3} \mathcal{E} \otimes H_{x}$, and the surjectivity of the map (4.36) will follow from the following vanishing

$$
\begin{equation*}
H^{i}\left(P_{x}, p^{*} S^{k-3} \mathcal{E} \otimes H_{x} \otimes p^{*} \mathcal{L}^{-i-1}\right)=0,1 \leq i<2 k-1=\operatorname{dim} P_{x} \tag{4.38}
\end{equation*}
$$

Recall now that $P_{x} \subset P$ is the complete intersection of two sections of $H=$ $\pi^{*} \mathcal{O}_{\mathbb{P}\left(H^{0}(E)\right)}(1)$, with $H_{x}=H_{\mid P_{x}}$. The vanishing (4.38) will then follow from

$$
\begin{gathered}
H^{i}\left(P, p^{*} S^{k-3} \mathcal{E} \otimes H \otimes p^{*} \mathcal{L}^{-i-1}\right)=0,1 \leq i<2 k-1 \\
H^{i+1}\left(P, p^{*} S^{k-3} \mathcal{E} \otimes p^{*} \mathcal{L}^{-i-1}\right)=0,1 \leq i<2 k-1 \\
H^{i+2}\left(P, p^{*} S^{k-3} \mathcal{E} \otimes \otimes p^{*} \mathcal{L}^{-i-1} \otimes H^{-1}\right)=0,1 \leq i<2 k-1 .
\end{gathered}
$$

The second equality follows immediately from the proposition 9 , and the third is obvious since H^{-1} has no cohomology on the fibers of p. The first equality is proven as follows : we have

$$
H^{i}\left(P, p^{*} S^{k-3} \mathcal{E} \otimes H \otimes p^{*} \mathcal{L}^{-i-1}\right)=H^{i}\left(G_{2}, S^{k-3} \mathcal{E} \otimes \mathcal{E} \otimes \mathcal{L}^{-i-1}\right)
$$

since $R^{0} p_{*} H=\mathcal{E}$. Now we have the exact sequence on G_{2}

$$
0 \rightarrow S^{k-4} \mathcal{E} \otimes \mathcal{L} \rightarrow S^{k-3} \mathcal{E} \otimes \mathcal{E} \rightarrow S^{k-2} \mathcal{E} \rightarrow 0
$$

Hence the needed equality will follow from the vanishings

$$
\begin{gathered}
H^{i}\left(G_{2}, S^{k-4} \mathcal{E} \otimes \mathcal{L}^{-i}\right)=0 \\
H^{i}\left(G_{2}, S^{k-2} \mathcal{E} \otimes \mathcal{L}^{-i-1}\right)=0
\end{gathered}
$$

for $1 \leq i<2 k-1$, which are proved in proposition (9). Hence lemma 5 is proven.

Proof of lemma 6. Let $x_{1}, \ldots, x_{2 k-1}$ be points of C in general position. We will show that the natural map

$$
\begin{equation*}
\oplus_{i} H^{0}\left(C, \mathcal{M}\left(-x_{i}\right)\right) \rightarrow H^{0}(C, \mathcal{M}) \tag{4.39}
\end{equation*}
$$

is surjective.
Recall that

$$
H^{0}(C, \mathcal{M})=\operatorname{Ker} \oplus_{D \in Z_{\sigma}} S^{k-3} D \otimes D \rightarrow S^{k-3} H^{0}(E) \otimes H^{0}(E)
$$

It follows from this that

$$
\begin{gathered}
H^{0}(C, \mathcal{M})^{*}=\operatorname{Coker} H^{0}\left(G_{2}, S^{k-3} \mathcal{E} \otimes \mathcal{E}\right) \rightarrow H^{0}\left(S^{k-3} \mathcal{E} \otimes \mathcal{E}_{\mid Z_{\sigma}}\right) \\
=H^{1}\left(G_{2}, S^{k-3} \mathcal{E} \otimes \mathcal{E} \otimes \mathcal{I}_{Z_{\sigma}}\right)
\end{gathered}
$$

Similarly

$$
H^{0}\left(C, \mathcal{M}\left(-x_{i}\right)\right)=K e r \oplus_{D \in Z_{\sigma}} S^{k-3} D \otimes \sigma_{D, x_{i}} \rightarrow S^{k-3} H^{0}(E) \otimes K_{x_{i}}
$$

which, with the notations of the previous proof, dualizes to

$$
\begin{gathered}
H^{0}\left(C, \mathcal{M}\left(-x_{i}\right)\right)^{*}=\operatorname{Coker}\left(H^{0}\left(P_{x_{i}}, p^{*} S^{k-3} \mathcal{E} \otimes H_{x_{i}}\right) \rightarrow H^{0}\left(Z_{\sigma}, S^{k-3} \mathcal{E} \otimes H_{x_{i}}\right)\right) \\
=H^{1}\left(P_{x_{i}}, p^{*} S^{k-3} \mathcal{E} \otimes H_{x_{i}} \otimes \mathcal{I}_{Z_{\sigma}}\right)
\end{gathered}
$$

where we view Z_{σ} as a subscheme of $P_{x_{i}}$ as well. Hence we have to show that the natural map (induced by the morphism $p^{*} \mathcal{E} \rightarrow H_{x_{i}}$ on $P_{x_{i}}$)

$$
\begin{equation*}
H^{1}\left(G_{2}, S^{k-3} \mathcal{E} \otimes \mathcal{E} \otimes \mathcal{I}_{Z_{\sigma}}\right) \rightarrow \oplus_{i} H^{1}\left(P_{x_{i}}, p^{*} S^{k-3} \mathcal{E} \otimes H_{x_{i}} \otimes \mathcal{I}_{Z_{\sigma}}\right) \tag{4.40}
\end{equation*}
$$

is injective.
Let $D \subset G_{2}$ be the curve complete intersection of the sections $\sigma_{x_{i}} \in$ $H^{0}\left(G_{2}, \mathcal{L}\right)$. We have first

Fact. The restriction map

$$
\left.H^{0}\left(G_{2}, S^{k-3} \mathcal{E} \otimes \mathcal{E}\right) \rightarrow H^{0}\left(D, S^{k-3} \mathcal{E} \otimes \mathcal{E}\right)_{\mid D}\right)
$$

is surjective.
Using the Koszul resolution of \mathcal{I}_{D} this is obtained by application of the proposition 9.

From this we conclude that the restriction map

$$
H^{1}\left(G_{2}, S^{k-3} \mathcal{E} \otimes \mathcal{E} \otimes \mathcal{I}_{Z_{\sigma}}\right) \rightarrow H^{1}\left(D, S^{k-3} \mathcal{E} \otimes \mathcal{E}_{\mid D} \otimes \mathcal{I}_{Z_{\sigma}}\right)
$$

is injective.
Consider now the inverse image \tilde{D} of D in the fibered product

$$
P \times_{G_{2}} \times \ldots \times_{G_{2}} P .
$$

Denote by $\tilde{p}: \tilde{D} \rightarrow D \subset G_{2}$ the natural morphism. One shows easily that the curve \tilde{D} is isomorphic to D excepted over the intersection of D with a Grassmannian of lines in $\mathbb{P}\left(K_{x_{i}}\right)$ for some i. Here D has nodes, which are replaced in \tilde{D} by lines.

This fact is obviously true set theoretically, and is proved scheme theoretically by the computation of the canonical bundles, which gives :

$$
K_{\tilde{D}}=\tilde{p}^{*} K_{D} .
$$

The zero set Z_{λ} is supported away of this singular locus. For each i we have a natural restriction map

$$
H^{1}\left(P_{x_{i}}, p^{*} S^{k-3} \mathcal{E} \otimes H_{x_{i}} \otimes \mathcal{I}_{Z_{\sigma}}\right) \rightarrow H^{1}\left(\tilde{D}, \tilde{p}^{*} S^{k-3} \mathcal{E} \otimes H_{x_{i}} \otimes \mathcal{I}_{Z_{\sigma}}\right),
$$

since

$$
\tilde{D}=P_{x_{1}} \times \times_{G_{2}} \ldots \times_{G_{2}} P_{x_{2 k-1}}
$$

admits a natural morphism to $P_{x_{i}}$. Next we have by the above description of \tilde{D} an isomorphism

$$
H^{1}\left(D, S^{k-3} \mathcal{E} \otimes \mathcal{E}_{\mid D} \otimes \mathcal{I}_{Z_{\sigma}}\right) \cong H^{1}\left(\tilde{D}, \tilde{p}^{*} S^{k-3} \mathcal{E} \otimes \mathcal{E} \otimes \mathcal{I}_{Z_{\sigma}}\right)
$$

and it follows that the injectivity of the map (4.40) will be a consequence of the injectivity of the map

$$
\begin{equation*}
H^{1}\left(\tilde{D}, \tilde{p}^{*} S^{k-3} \mathcal{E} \otimes \mathcal{E} \otimes \mathcal{I}_{Z_{\sigma}}\right) \rightarrow \oplus_{i} H^{1}\left(\tilde{D}, S^{k-3} \mathcal{E} \otimes H_{x_{i}} \otimes \mathcal{I}_{Z_{\sigma}}\right) \tag{4.41}
\end{equation*}
$$

induced by the morphisms $\tilde{p}^{*} \mathcal{E} \rightarrow H_{x_{i}}$ on \tilde{D}. Recall now that $Z_{\sigma} \subset D$ is defined by a section of \mathcal{L} so that similarly $Z_{\sigma} \subset \tilde{D}$ is defined by a section of $p^{*} \mathcal{L}$. Hence we have

$$
\mathcal{I}_{Z_{\sigma}} \cong \tilde{p}^{*} \mathcal{L}^{-1}
$$

Furthermore

$$
K_{\tilde{D}}=\tilde{p}^{*} K_{D}=\tilde{p}^{*}\left(K_{G_{2} \mid D} \otimes \mathcal{L}^{2 k-1}\right)=\tilde{p}^{*} \mathcal{L}^{k-3}
$$

Hence the map (4.41) dualizes by Serre's duality as the map

$$
\oplus_{i} H^{0}\left(\tilde{D}, \tilde{p}^{*} S^{k-3} \mathcal{E}^{*} \otimes H_{x_{i}}^{*} \otimes \tilde{p}^{*} \mathcal{L} \otimes \tilde{p}^{*} \mathcal{L}^{k-3}\right) \rightarrow H^{0}\left(\tilde{D}, \tilde{p}^{*} S^{k-3} \mathcal{E}^{*} \otimes \mathcal{E}^{*} \otimes \tilde{p}^{*} \mathcal{L} \otimes \tilde{p}^{*} \mathcal{L}^{k-\beta \psi} .42\right)
$$

given by the inclusions $H_{x_{i}}^{*} \subset \mathcal{E}^{*}$ on \tilde{D}. Since $\operatorname{det} \mathcal{E}=\mathcal{L}$, we have

$$
\mathcal{E}^{*} \otimes \mathcal{L} \cong \mathcal{E},
$$

Hence this rewrites as

$$
\begin{equation*}
\oplus_{i} H^{0}\left(\tilde{D}, p^{*} S^{k-3} \mathcal{E} \otimes H_{x_{i}}^{*} \otimes \mathcal{L}\right) \rightarrow H^{0}\left(\tilde{D}, p^{*} S^{k-3} \mathcal{E} \otimes \mathcal{E}\right) \tag{4.43}
\end{equation*}
$$

given by the inclusions

$$
H_{x_{i}}^{*} \otimes \mathcal{L} \subset p^{*} \mathcal{E}
$$

We want to show that (4.41) is injective, or that (4.43) is surjective. We already noticed that the restriction map

$$
\begin{aligned}
& H^{0}\left(G_{2}, S^{k-3} \mathcal{E} \otimes \mathcal{E}\right)=S^{k-3} H^{0}(E)^{*} \otimes H^{0}(E)^{*} \\
& \rightarrow H^{0}\left(D, S^{k-3} \mathcal{E} \otimes \mathcal{E}\right)=H^{0}\left(\tilde{D}, \tilde{p}^{*} S^{k-3} \mathcal{E} \otimes \mathcal{E}\right)
\end{aligned}
$$

is surjective. On the other hand, consider the subspace $H_{x_{i}}=K_{x_{i}}^{\perp} \subset H^{0}(E)^{*}$. It is obvious that it gives a section of

$$
\operatorname{Ker}\left(H^{0}\left(P_{x_{i}}, \mathcal{E}\right) \rightarrow H^{0}\left(P_{x_{i}}, H_{x_{i}}\right)\right)=H^{0}\left(P_{x_{i}}, p^{*} \mathcal{L} \otimes H_{x_{i}}^{*}\right) .
$$

Hence the surjective map

$$
S^{k-3} H^{0}(E)^{*} \otimes H^{0}(E)^{*} \rightarrow H^{0}\left(\tilde{D}, \tilde{p}^{*} S^{k-3} \mathcal{E} \otimes \mathcal{E}\right)
$$

sends $S^{k-3} H^{0}(E)^{*} \otimes H_{x_{i}}$ in $H^{0}\left(\tilde{D}, p^{*} S^{k-3} \mathcal{E} \otimes H_{x_{i}}^{*} \otimes \mathcal{L}\right)$.
Now since the x_{i} 's are generic, the spaces $H_{x_{i}}$ generate $H^{0}(E)^{*}$, hence the $S^{k-3} H^{0}(E)^{*} \otimes H_{x_{i}}$'s generate $S^{k-3} H^{0}(E)^{*} \otimes H^{0}(E)^{*}$. Hence we have shown that (4.43) is surjective.

5 Appendix

We consider the Grassmannian G_{2} of rank 2 vector subspaces of a $k+2$ dimensional vector space V. Let \mathcal{L} be the line bundle on G_{2} whose sections give the Plücker embedding. If \mathcal{E} is the dual of the tautological subbundle $\mathcal{S} \subset V \otimes \mathcal{O}_{G_{2}}$, we have $\mathcal{L}=\operatorname{det} \mathcal{E}$. The cohomology groups $H^{p}\left(G_{2}, \mathcal{L}^{-q} \otimes S^{q^{\prime}} \mathcal{E}\right)$ are described in the following proposition.

Proposition 9 For $q>0, q^{\prime}>0$, we have $H^{p}\left(G_{2}, \mathcal{L}^{-q} \otimes S^{q^{\prime}} \mathcal{E}\right)=0$ if $p \neq$ $k, 2 k$. Furthermore, for $p=k$, we have $H^{p}\left(G_{2}, \mathcal{L}^{-q} \otimes S^{q^{\prime}} \mathcal{E}\right)=0$ if $-q+q^{\prime}+1<$ 0 , and for $p=2 k$, we have $H^{p}\left(G_{2}, \mathcal{L}^{-q} \otimes S^{q^{\prime}} \mathcal{E}\right)=0$ if $-q+q^{\prime} \geq-k-1$.

Proof. Let

be the incidence variety. P is a \mathbb{P}^{1}-bundle over G_{2} and a \mathbb{P}^{k}-bundle over $\mathbb{P}(V)$. Let $H:=\pi^{*} \mathcal{O}_{\mathbb{P}(V)}(1)$ and let $L^{\prime}=p^{*} \mathcal{L}$. Then $\mathcal{E}=R^{0} p_{*} H$ and $S^{q^{\prime}} \mathcal{E}=$ $R^{0} p_{*}\left(q^{\prime} H\right)$. It follows that we have

$$
H^{p}\left(G_{2}, \mathcal{L}^{-q} \otimes S^{q^{\prime}} \mathcal{E}\right)=H^{p}\left(P,-q L^{\prime}+q^{\prime} H\right)
$$

Next the line bundle L^{\prime} restricts to $\mathcal{O}(1)$ on the fibers of π. It follows from this that

$$
K_{P}=-(k+1) L^{\prime}-2 H,
$$

and $K_{P / \mathbb{P}(V)}=-(k+1) L^{\prime}+k H$.
Now since $q>0$ we have $R^{l} \pi_{*}\left(-q L^{\prime}+q^{\prime} H\right)=0$ for $l<k$ and hence

$$
H^{p}\left(P,-q L^{\prime}+q^{\prime} H\right)=H^{p-k} R^{k} \pi_{*}\left(L^{\prime}+q^{\prime} H\right)
$$

By Serre's duality, we have
$R^{k} \pi_{*}\left(-q L^{\prime}+q^{\prime} H\right)=\left(R^{0} \pi_{*}\left(q L^{\prime}-q^{\prime} H-(k+1) L^{\prime}+k H\right)\right)^{*}=\left(R^{0} \pi_{*}\left((q-(k+1)) L^{\prime}+\left(k-q^{\prime}\right) H\right)\right)^{*}$.
Now we have $R^{0} \pi_{*}\left((q-(k+1)) L^{\prime}\right)=0$ if $q<k+1$, and

$$
\begin{equation*}
R^{0} \pi_{*}\left((q-(k+1)) L^{\prime}\right) \cong S^{q-k-1}\left(\Omega_{\mathbb{P}(V)}(2)\right) \tag{5.44}
\end{equation*}
$$

for $q \geq k+1$. The isomorphism (5.44) follows from the isomorphism

$$
H^{0}\left(P, L^{\prime}\right)=H^{0}\left(G_{2}, \mathcal{L}\right)=\bigwedge^{2} V^{*}=H^{0}\left(\mathbb{P}(V), \Omega_{\mathbb{P}(V)}(2)\right)
$$

and from the comparison of the kernels of the surjective evaluation maps

$$
H^{0}\left(P, L^{\prime}\right) \rightarrow H^{0}\left(\pi^{-1}(x), L^{\prime}\right)
$$

and

$$
H^{0}\left(\mathbb{P}(V), \Omega_{\mathbb{P}(V)}(2)\right) \rightarrow \Omega_{\mathbb{P}(V)}(2)_{x}
$$

Finally we conclude that

1. $H^{p}\left(P,-q L^{\prime}+q^{\prime} H\right)=0$ for $p<k$.
2. $H^{p}\left(P,-q L^{\prime}+q^{\prime} H\right)=0$ for $q<k+1$.
3. For $p \geq k, q \geq k+1$,

$$
H^{p}\left(P,-q L^{\prime}+q^{\prime} H\right)=H^{p-k}\left(\mathbb{P}(V), S^{q-k-1}\left(T_{\mathbb{P}(V)}(-2)\right)\left(q^{\prime}-k\right)\right)
$$

To conclude, consider the Euler exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}(V)}(-1) \rightarrow V \otimes \mathcal{O}_{\mathbb{P}(V)} \rightarrow T_{\mathbb{P}(V)}(-1) \rightarrow 0
$$

It induces the exact sequences

$$
\begin{aligned}
& 0 \rightarrow S^{q-k-2} V \otimes \mathcal{O}_{\mathbb{P}(V)}\left(-q+q^{\prime}\right) \rightarrow S^{q-k-1} V \otimes \mathcal{O}_{\mathbb{P}(V)}\left(-q+q^{\prime}+1\right) \\
& \rightarrow S^{q-k-1}\left(T_{\mathbb{P}(V)}(-1)\right)\left(-q+q^{\prime}+1\right) \rightarrow 0
\end{aligned}
$$

Hence we conclude that

$$
H^{p-k}\left(\mathbb{P}(V), S^{q-k-1}\left(T_{\mathbb{P}(V)}(-2)\right)\left(q^{\prime}-k\right)\right)=H^{p-k}\left(\mathbb{P}(V), S^{q-k-1}\left(T_{\mathbb{P}(V)}(-1)\right)\left(-q+q^{\prime}+1\right)\right)
$$

is equal to 0 for $p-k \neq 0, k$ (since $p \leq 2 k$), and that : for $p-k=0$ it is 0 if $-q+q^{\prime}+1<0$; for $p-k=k$ it is 0 if $-q+q^{\prime} \geq-k-1$.

References

[1] M. Aprodu. On the vanishing of higher syzygies of curves, preprint 2000.
[2] E. Arbarello, M. Cornalba, Ph. griffiths, J. Harris. Geometry of algebraic curves, Vol. 1, Grundlehren der Math. Wissenschaften 267, SpringerVerlag 1985.
[3] G. Danila. Sur la cohomologie d'un fibré tautologique sur le schéma de Hilbert d'une surface, Journal of algebraic geometry, 10 (2001), no. 2, p.247-280.
[4] S. Ehbauer. Syzygies of points in projective space and applications, in Proceedings of the international conference, Ravello 1992, edited by Orecchia and Chiantini, Walter de Gruyter (1994).
[5] L. Ein. A remark on the syzygies of the generic canonical curve, J. diff. Geom. 26 (1987), 361-365.
[6] D. Eisenbud, J. Harris. Limit linear series, basic theory, Invent. Math. 85 (1986), 337-371.
[7] M. Green. Koszul cohomology and the geometry of projective varieties, J. Diff. geom. 19, (1984) 125-171.
[8] M. Green, R. Lazarsfeld. Special divisors on curves on a $K 3$ surface, Inventiones Math. 89, 357-370 (1987).
[9] M. Green, R. Lazarsfeld. A simple proof of Petri's theorem on canonical curves, in Geometry today, Giornate di Geometria Roma (1984) PM 60, Birkhaüser, 129-142.
[10] A. Hirschowitz, S. Ramanan. New evidence for Green's conjecture on syzygies of canonical curves, Ann. Sci. Ecole Norm. sup., IV Série 31(4), 141-152 (1998).
[11] R. Lazarsfeld. Brill-Noether-Petri without degenerations, J. Diff. Geom. 23, 299-307 (1986).
[12] S. Mukai. Biregular classification of Fano threefolds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. U. S. A. 86 (1989) 3000-3002.
[13] S. Mukai. Symplectic structure on the moduli space of sheaves on an abelian or $K 3$ surface, Invent. Math. 77, 101-116 (1984).
[14] F.-O. Schreyer. Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), 105-137.
[15] F.-O. Schreyer. A standard basis approach to the syzygies of canonical curves, J. Reine und Angew. Math. 421 (1991), 83-123.
[16] M. Teixidor. Green's conjecture for the generic canonical curve, preprint 1999.
[17] C. Voisin. Sur l'application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri, Acta Mathematica , vol. 168 (1992) 249-272.
[18] C. Voisin. Courbes tétragonales et cohomologie de Koszul, J. Reine Angew. Math. 387 (1988).
[19] C. Voisin. Déformation des syzygies et théorie de Brill-Noether, Proc. London Math. Soc. 3 ,vol. 67 (1993) 493-515.

