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ling) must be considered.

INTRODUCTION

ve propagation in narrow channels of variable width
has been the subject of analysis for more than 150
e of the first major results was that of Green [1837],
n Green's functions were named. Green's Law states
ave amplitude § in a frictionless channel with slowly
ection varies as b2k, where b is the width (more
; width of the momentum-conveying flow or stream
h is the depth below a mean tidal datum. Tidal
D varies as b*Y24*", All tidal channel flows are
ctional, most are short relative to the tidal wavelength
topographic scale L is often much less than the
e channel. Green's Law is therefore not directly
to tidal flows. Most subsequent treatments of wave
i have at least implicitly followed Green and assumed
graphic variation (L > A). Only Lighthill [1978] and
hd Rahman [1980] have explicitly considered the
f the topographic convergence rate on wave propaga-
former, however, treated inviscid waves exclusively,
d waves do not exist in the strong topography limit.
1964), Parker [1984], and Godin [1991] have all
the role of frictional nonlinearities in tidal propaga-
ertide generation. LeBlond [1978) and C. Friedrichs
en (manuscript in preparation, 1991) have examined
ve'" behavior of strongly frictional waves in a chan-
depth and width. The latter included tidal flats in
. None of these studies explored the very different
frictional wave propagation over strong topography
ction of topography and friction.

ent analysis then focuses on understanding the princi-
e propagation in typical river estuaries and narrow
. Friction is important in these systems, and topogra-
along the length of a single estuary on scales from
an to much greater than a tidal wavelength. The
onal wave equation goveming finite-amplitude
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Green's Law states that tidal long-wave elevation { and tidal trans @ vary with width & and depth 4
according to { =521 and @ =5*12+14, This solution is of Emila[:io:l.ility eckudrl et oo i
cid, infinitesimal waves m channels with no mean flow and weak topography (those with topographic scale L »
wavelength 1). An analytical perturbation model including finite-amplitde effects, river flow, and tidal flats has
been l.ls&:‘i 1o show ﬂ_ml (1) wave behavior 10 lowest order is a function of only two nondimensional parameters
mpmlmqng. respectively, the strength of friction at the bed and the rate of topographic convergence/divergence;
(2) two different wave equations with nearly constant coefficients can be derived that together cover most physi-
cally relevant values of these parameters, even very strong topography; (3) a single, incident wave in a strongly
convergent or divergent geometry may mimic a standing wave by having a = %0° phase difference between Q
and [ and a very large phase speed, without the presence of a reflected wave; (4) channels with strong friction
and/or strong topography (L <) show very large deviations from Green's Law; and (5) these deviations arise
because both frictional damping and the direct dependence of 1@ | and 1%l on topography (topographic funnel-

long-wave propagation in channels is nonlinear and has not been
solved exactly, but two approximate solutions are derived herein.
Both include river flow, finite amplitude, friction, and topogra-
phy. Together, these solutions are adequate to represent wave
propagation through narrow channels with arbitrarily strong (but
smooth) depth and width variation. One, the ‘‘standard solu-
tion,”" is a generalization of Green's solution. It has asymptoti-
cally constant coefficients in two circumstances. Either friction
and acceleration effects on the wave number are both weak rela-
tive to topography (strong topography), or friction and topogra-
phy are weak relative to acceleration effects (weak topography).
The other, the ‘‘critical solution,’’ represents wave propagation
when the flow is dominated by bed friction. This solution
becomes exact (constant coefficient) at a particular, critical con-
vergence rate where acceleration and topographic effects are
equal and of opposite sign in the wave equation. Critical con-
vergence is also the greatest possible convergence rate for invis-
cid waves. Above critical convergence (in the supercritical
range), inviscid disturbances damp exponentially rather than
propagate [Lighthill, 1978). Thus friction must be included in
any representation of long-wave propogation over strong topog-
raphy.

Both of these solutions are derived from a perturbation expan-
sion analysis of the long-wave equation. The strength of finite-
amplitude nonlinearities (those that give rise to overtide and resi-
dual circulations and increase wave propagation speed) in this
equation is scaled by the barotropic nonlinearity parameter
g={H, the ratio of wave amplitude to mean depth [Stokes,
1847]. In the presence of bed friction, finite-amplitude effects
appear ot only in the convective acceleration term in the wave
equation, but also in the friction term itself [Parker, 1984].
Although it may approach unity in very shallow systems, € is
small but finite in most systems and is thus appropriate as a per-
turbation expansion parameter for finite-amplitude effects. The
other likely form of analysis for this problem, that based on
characteristics, is not particularly appropriale, because at critical
convergence the wave equation is diffusive, not hyperbolic, in
the terminology of Whitham [1974] and LeBlond [1978].

Finite amplitude is not the only source of nonlinearity in
long-wave propagation. Polynomial representation of the bed
stress term ¢p WU U (where c¢p = 0(3%x107%) is the drag
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coefficient and U is along-channel velocity) gives rise to terms
as high as cubic in U [Dronkers, 1964] or even quintic [Godin
and Gutierrez, 1986]. River flow acts through the convective
accelerations to slow movement of the incident, landward pro-
pagating wave and speed that of the reflected, seaward propagat-
ing wave in a convergent channel. It also greatly augments the
linear and nonlinear effects of friction. Finally, tidal flats adja-
cent 1o a channel cause nonlinear effects through the convective
acceleration term in the wave equation [Speer and Aubrey, 1985;
Friedrichs and Aubrey, 1988]. Momentum is lost on the rising
tide as water pours out over flats and decelerates because of
strong friction. A further loss occurs on the falling tide as water
with essentially zero momentum returns to the channel and must
be accelerated. It is thus essential to distinguish between the
momentum-conveying width b and the total width By, which
also includes the tidal flats.

It will be shown that the primary effects of all these non-
linearities are proportional to €. Representation of all major
nonlinearities in long-wave propagation by a perturbation expan-
sion in a single parameter allows this problem to be carried to
O(g) in a consistent and straightforward way. Conversely,
without carrying representation of the tidal wave itself (and not
just the overtide and residual flows) to O (g), it is impossible to
represent vital features such as finite amplitude and river flow
effects on phase speed. The computational version of this per-
turbation model is one-dimensional, cross-sectionally integrated,
and harmonic. It calculates, in addition to river flow and the
basic tidal flow, the Stokes drift and tidal residual transport and
elevation related thereto, though these are not discussed here.

The topography of most estuaries is sufficiently complex that
any realistic representation thereof requires division of the estu-
ary into segments. Each segment may, after the fashion of a
finite difference model, be taken constant in width and depth fol-
lowing Dronkers [1964] and many subsequent investigators.
Unfortunately, this procedure eliminates the very large effect of
convergence/divergence in b and h on the complex wave
number ¢ and thus on wave speed c. Therefore b and h in an
analytical model must be represented by some simple mathemat-
ical function; linear, geometric, and exponential functions have
been used in the past. Linear or geometric functions allow
development of a wave equation that can be transformed to a
Bessel's equation [Perroud, 1958; Dorrestein, 1961; and Pran-
dle and Rahman, 1980]. This method has not been used in part
because it does not allow inclusion of all relevant features. A
transformation of the wave equation using an exponential
representation of b, by, and h (where by is the total mean
width, or stream width plus mean tidal flat width) within each
segment is used instead. This approach includes all important
nonlinearities, and the resulting wave equation is more accessi-
ble to qualitative interpretation than with a Bessel's equation
approach. The effects of variations in both b and A on wave
propagation may be expressed in a single parameter, just as with
a Bessel’s equation transformation [Prandle and Rahman, 1980].

The analysis that follows includes derivation of a wave equa-
tion, determination of a dispersion relationship, and an analysis
of the effects of friction and topography on tidal long-wave pro-
pagation, culminating in a more general form for Green's law.
Results show that the commonly observed =45° phase
difference between surface elevation { and transport Q in rivers
and estuaries may be due to near-critically convergent channel
width. That is, the rate of channel convergence is such that the
acceleration contribution to complex wave number ¢ is canceled
by the convergence effect, so that the sum of these two terms is
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small relative to the fricion term. In
convergent/divergent channels, the phase difference
incident wave alone may approach 90°, and wave cele;
impedance / (the ratio of { to Q) become large.
strong topography, an incident wave alone (ie.,
reflected wave) mimics a standing wave with i
reflected waves of equal amplitude. The model also s
Green's Law is greatly modified by the presence d
and/or strong topography. Finally, finite amplitude
wave celerity by a factor of 1 + (3&/2)(br/b). This
the classical result of 1 + (3&/2) [Lamb, 1932] for by e

Application of this model to actual estuarine topog
not discussed because multiple tidal constituents and
are vital to tidal predictions and because the intricaci
topographies would obscure rather than illuminate
features of wave behavior. This analysis concentrates i
a very general analysis of the response of the fundame;
alone to topography and friction. The overtide wa
included in an extended version of the model) exhi
complex behavior because of its nonlinear forcing. Noi
a careful comparison has been made of the present
dictions for the geometry of the Columbia River estua
tidal height observations and results from a multic
model [Giese and Jay, 1989] for three river flow |
neap, spring, and mean tides. The performance of
model for M, is systematically better than that of Giese
primarily because finite-amplitude and topographic effe
wave number have been included here.

GOVERNING EQUATIONS

Derivation of a Wave Equation

The first step in any analysis of wave propagation in t
nels is to derive a one-dimensional wave equation fron
ally integrated expressions for conservation of mass &
channel momentum. Use of sectionally integrated equ
justified because channel curvature, the ratio of width
wavelength, and the Kelvin number (width divided by
Rossby radius) are all small in the channels considere
The tidal flow is nearly two-dimensional in the along-chi
and vertical (z) directions, allowing cross-channel integ
the continuity and momentum equations, Tidal transpor
is a “‘natural”’ variable in a stratified tidal flow in a wa
velocity U(x, z, t) is not, because of the large flood/ebt
in vertical distribution of the horizontal tidal flow tha
many systems [Jay, 1991]. Thus a vertically integrated
in which only O and elevation {(x, ¢) are calculated is
ate. The cross-sectionally integrated dimensional equd
conservation of mass and along-channel momentum are

—BQ-+52;;:=0

ox ot
2

Qg‘l’i i +8A‘§;'+6T5=0

ot 0i| A ox
where
f'_ along-channel distance, positive landward;
r time;
A channel cross-section, equal to bt + )
2 acceleration due to gravity;

T,  bed stress divided by water density.

A circumflex indicates a dimensional variable.



al flats in a one-dimensional analysis requires
e modified to account for the momentum flux to
 flats. This can be accomplished using the ideas
Speer assumed that no momentum is conveyed
by flow over these flats. Water moving over the
tide loses its momentum to bed friction, so that
e channel as the water level falls, its velocity is
be accelerated to the ambient flow velocity,
ssipation over the flats is assumed to be small
thich occurs in the channels. Clearly, these two
pme inconsistent if the area of tidal flats is too

ecause velocities are typically smaller along the
that feed water to the tidal flats than in midchan-
analysis will allow the tidal flats at each % to be
channel itself. C. Friedrichs and O. Madsen
reparation, 1991) have considered the effects of
tidal flats in a channel of constant width and
 friction. This analysis, which they refer 1o as
zero inertia,”’ corresponds roughly to the criti-
case in a channel with uniform (in #) width and
vide tidal flats; € is modified by the presence of

e effects of tidal flats on conservation of mass
define the time-varying total width Br(%,1) as
tant (in time) stream width 5 (%) and a tidal flat
hat varies with the elevation of the tide (Figure
t is obvious that the along-channel divergence of
and not b, because the surface elevation { rises
idth, not just the stream width. More formally
ie presence of tidal flats causes an additional
, =AB9{/ot. Adding the additional momentum
p a linear tidal flat profile, conservation of mass

5% -2 L amaGh |,

of 218l o
= & +5r£§.-

where I@I is the tidal amplitude. Tidal flats
tcts on mass conservation. First, by rather than
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b appears as the multiplier of 8¢/, and second, a new nonlinear
term has appeared that is associated with the tidal cycle variation
in tidal flat width. The latter term is important to overtide genera-
tion but will not influence the basic tidal motion. Friedrichs
et al. [1990] have argued that, for a wide tidal flat, the form of
the tidal flat profile is important because this profile changes the
amount of storage over the flats. Any of several different tidal flat
profiles could be incorporated in the present analysis. Use of the
simplest possible (linear) profile herein minimizes algebraic com-
plexity and is consonant with the generally poor knowledge of
tidal flat profiles in most estuaries.

The effect of the momentum flux associated with flow of water
on and off tidal flats in the along-channel momentum equation is
the product of change in velocity <0 /A as water moves onto the
flats times the tidal flat momentum flux 4, [Speer, 1984]. With
some further manipulation and taking AB/By = Ab /by, (2) may

be written
30 | 2% - ba[iJ-’;’,";Qi[Q_]
by ox | A

or b 3%

LA B S @)
ax

Thus as one intuitively expects, the momentum flux associated
with the presence of tidal flats modifies the convective accelera-
tion terms in the equation of motion.

The above two first-order differential equations in @ and §
representing conservation of mass and momentum, (3) and (4),
may be combined by cross differentiation to form a second-order
wave equation in one variable. In principle, it is immaterial
whether this wave equation is in Q or C However, the approxi-
mate form of the bed stress term to be used herein is much
simpler if the wave equation is formed in @. Thus /0% of (3) is
subtracted from 9/9¢ of (4), and (3) is used to express the pressure
gradient in terms of O . Several bilinear pressure gradient terms
are neglected because they do not effect the tidal motion before
0 (e?). At the same time, two simplifications are made in the con-
vective accelerations. First, the only tidal-frequency terms in the
bilinear convective accelerations are those involving g Q/A =
Ur O, where O is the river flow transport and Uy is the river

y

, with MWL as mean water level, HW as high
r, AB (x, 1) as time-variable tidal flat width, Ab(x)
, b as momentum conveying width, by as

width, h as mean depth, and { as tidal elevation. The positive x direction
is landward.



20,588

flow velocity. River flow is assumed steady and enters the system
only at the upstream end, so that Oy is invariant with £ and ?.
Second, because the convective accelerations will ultimately scale
as O (), A = hb rather than A = bA (1 + /&) may be used in the
convective accelerations. The neglected terms in {/A are O (€)
relative to the remaining terms and are thus only O (g%).

The resulting dimensional wave equation is

i’g._..l_.i@;ég. 4 M[}Ri@_

o%" by di % A oxdl

A @9 b _ (5

The first term on the left-hand side of (5) arises from the pressure
gradient, the second is from the pressure gradient and topography,
the following two are convective accelerations, the next is the
acceleration term and the last is the bed stress.

Scaling the Wave Equation

The most important issue in scaling the wave equation (5) is
to determine the magnitude of 3Q/3% = AdU/0%. For weak
topography and no tidal flats this is customarily done from (3)
under the assumption that the scale for X is the inverse wave
number { = M(2x). The result is that the along-channel velocity
scale U is ec = e(gh)"2. Intuitively, one would expect that topog-
raphy of a scale L < [ would cause 3U/9% to increase. How-
ever, the magnitude of 9/ /3% in a channel flow is constrained
by that of 3¢/af which is fixed by the tidal frequency (equation
(3)). Thus while topography creates turbulence and may
enhance overtide generation, the velocity U, associated with
topography of scale L at any given tidal frequency must vary
with as L/IU so that 90 /9% is independent of L/I. The scaling
used in the weak topography limit (L = [) is thus appropriate
for all L; ie., 9U/3% = U/l. The velocity for the n* overtide
will then scale as €"U in the usual manner. A simple
modification of the above scaling is needed to take account for
the presence of tidal flats. From (3) and the spreading of wave
crests over the tidal flats:

12
B
co= [RB_;H"]

(6)
12
B B
v =g, - g[gﬁim

where Bro, Bo, and Hy are the total width, width, and depth
scales. This choice of cq will also be justified a posteriori,

That 90 /0% in a channel flow scales with the integral scale [
regardless of the topography is in marked contrast to the situa-
tion in wide estuaries. In these systems, 0U/9% may be bal-
anced by 9V /@ (where V is the velocity in the cross-channel or
y direction) and is not constrained by 9{/dt [Jay, 1990]. Velo-
city gradients in wide estuaries with small-scale topography may
become sufficiently large that the customary series representation
of the Stokes drift in terms of particle displacements and velo-
city gradients [Longuet—Higgins, 1969] does not converge; par-
ticle drifts become chaotic [Zimmerman, 1978, 1986]. The
present analysis cannot be applied to such systems.

The scaling used to nondimensionalize (4) is

JAY: GREEN'S LAW AND TIDAL WAVE PROPAGATION

0 =UBHQ Ug =UrUs
b=Bp  h=Hoh br=
:f’b =CDU2T5

X =1y

where R=cp/(UH). The nondimensional number
plying the two convective acceleration terms can
€Ug/U, indicating that the convective acceleration
tive to the remaining terms. The ratio R/ is a §
relative strength of friction and acceleration in
tion. This varies with the frequency of tidal wal
but is typically O (1) for the major tidal constitu
present scaling differs from that of LeBlond [19
acceleration terms were taken to be small. None
be shown that friction often dominates wave prop:
estuaries because the effects of acceleration on
are balanced by those of channel convergence.
this form of the wave equation should give Q for
motion correct to O (g).

The next step in the analysis is representatis
stress. The harmonic model formulated herein ré
quadratic stress term T}, = cp U |U be replaced bs
imate form that avoids the need to determine
zero crossings of U. A number of schemes ha
this purpose, as reviewed by Godin [1991]. Mo
Fourier dEVElOpmﬂ'll introduced by Proud
approach suffers from the shortcomings that it
duce even overtides (Mg and the like) and |
represent the river flow. The Tschebysc
approach of Dronkers [1964] is used here beca
to represent river flow effects. The stress is give

RbraTs_Rbra[lqu

® h ot © h ot
Rbr3ll & :
g [[1 h]“}”f}ﬂ + 0(
_Rbrag Ue R O ¢

® Ap ot cp O Ap? O

Rt=

ENE"]

Uz
pi1+paUp + ¥ e Ug
f



he amplitude of U, and the time-varying area
ite amplitude nonlinearity. The p; are Tschebys-
s. They are functions of the ratio Up/U and
along the channel. For Up/U =0, py=0 and
Proudman’s [1953] linearization. Far upriver
Nt never reverses because the river flow is greater
low and Up/U 21, py=p3=0 and p, =7 so
ikU. The ps3 term is responsible for the O(1)
dal constituents. Each additional transport Q, for
idds to R'/® a term of the form UZp4/2, where
pcity amplitude for constituent k. The present
nilar to that of Godin and Gutierrez [1986] for
suggest for  analytical purposes
+ 1/mU?) with m = 0.7 as an approximation to
ing form that also contains a term in U°,
lutions

solutions to the wave equation (8) with the stress
(9) can be found by assuming a harmonic form
nsport: Q = Re [P (x)e™). The resulting ordinary
ation is, dropping the overbar on A,

P'n' * T(X}P‘, + G(x)P =0

br iR 1 Up Up dA
a[ '7;';*2":7:;” e

fipt following a comma indicates differentiation.
o (10) will be developed here to span the range
ations from strong to weak topography. The first
and strong convergence (m = 1, the standard
the second is appropriate to the intermediate,
ated regime (m = 2, the critical solution). Both
method first developed by Green [1837]:
the independent and then the dependent variable.
| along-channel distance £ by the inviscid wave
50 that an inviscid, infinitesimal amplitude wave
ual distances in the distorted coordinate system in
gardless of depth. Because the inviscid wave
by the presence of tidal flats and friction, a new
iable y is defined here as §,, = #/(gb/brh™ )2
tbrh™ )2 in nondimensional variables), with
andard solution and m = 2 for the critical solu-
below, taking m = 1 causes the acceleration
e terms in (10) to have constant coefficients.
gives Green's Law in the inviscid, weak-
Taking m = 2 causes the friction and conver-
) have nearly constant coefficients. Both of the
d here exist over the entire range of topographic
either could be used alone, but the changes in
portance of the acceleration, friction, and topo-
in the wave equation as the topographic scale
terations in solution behavior that are best
hg two separate solutions. The transformation of
an [1980] (y = (1 - iR’ /®)"*x in the present
borates both acceleration and friction effects on
is not used here for several reasons. First a fac-
ssented explicitly in (9) was included by Prandle
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and Rahman in R. Because of the explicit presence of this fac-
tor of 7k, use of their transformation would not in the present
analysis lead 1o a constant coefficient equation. Second, such a
transformation defines a solution that does not vary smoothly
from weak to strong topography. It has a singular point at the
intermediate point of critical convergence (defined below), and
yet this critically convergent case is precisely where friction is
most important. Third, and more physically, topography, not
friction, is the primary factor altering the wave speed from its
inviscid value. Recognition of the role of convergence/ diver-
gence in controlling the nature of the solution suggests the use
of two transformations defined here.

The change of independent variable causes the wave equation
to take the form

Poy +TaPy +GaP =0 m=1,2

e (i i man], Ve U
o2 [[brd? b &y hdy.] h
2m ‘

[Mb,- ] [3:’ 1+-§bl,]] an
i

The change of dependent variable then yields

Pym) = Zm)V () (12)
Vs + SmOm)V =0 (13)
T3
5u0m) = Gan) - §7200) - 772020 4)
Z(m) = exp[—%jr. (O wy..] (15)

where m =1 and 2 refer to the standard and critical solutions
and (15) is the transformed wave equation. Note that (11) o
(15) are still general in that no assumption has been made con-
cerning the form of the opography, other than that the channel
is narrow. Further progress can only be made by specifying by,
b, and h. These may be approximated by exponentials:

br = Broe”' ™ by =e"'’n
b= ng“" o= e”,

b (16)
h =Hg¢”" h=e'lm

with the convergence lengths o, P and y chosen to best approxi-
mate the topography of the system in question. Irregular topog-
raphy may be dealt with by use of a model with multiple seg-
ments, each having different topographic characteristics. Substi-
tution of (16) into (14) gives, after some algebra,
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2
I R
Su Oul) - [h.l!l-l - [AuT] e I'R;k;h]

12
; ]

.Up Up
ol pae=

c h

x[—%[ﬂ!+%]+[a_l+(3—2m)ﬂ]

gy Bt
o Mz{oﬂ+ 2 +

[2 + ”‘2;1]71}] +0() a7

where A, [ = 1/2(a. + B + my)l.

The transformed wave equation (15) does not have constant
coefficients for either the standard or critical solutions unless A
is constant. Even then, along-channel variability of R’ and thus
S (y) is caused by along-channel changes in river flow and tidal
velocity. Still, the O(1) part of (17) is nearly constant
coefficient for m = 1 when the topographic scale L>» [, and, as
is discussed below, it also has constant coefficients asymptoti-
cally as L goes to zero. For m =2, (17) will be shown below
to have constant coefficients to O (1) near critical convergence.
Thus it is appropriate to derive an approximate solution by
dividing our model estuary into segments much less than a
wavelength long. Within each of these segments, (15) with (16)
and (17) can be used to approximate the true solution. More
specifically, because of the strong effect of river flow on R /o,
we require that the segment length L, be less than the e -folding
length of the topography, i.e., that L, < minimum (1/a, 1/B, 1/y).

The dimensionless, complex wave number g,/ is simply
SA”1. The dimensional wave number g,, and wave celerity c,,
in the undistorted coordinate system are given by

m = (ke + ir) = 2517
Co
172
2.1 -6h™ (0]
Cm = —
br | ke

where k,,, the real part of g,,, corresponds to the usual inviscid
wave number and r,,, the imaginary part of g,,, is the damping
modulus [Dronkers, 1964]. V(y,) and Z(y,,) are then

(18)

V() = Ae "™ 4 g m'm (19)
Zm) = [brbh"'] et om Im (20)

where A and B are coefficients determined from the boundary
conditions and &, is a real O (g) correction to k,! that is pro-
portional to Up and emerges from integration of the O (g) part of
T(yw) in (15). It serves to retard the incident wave and
accelerate the reflected wave in proportion to the strength of the
river flow.

The complete form of the solutions for Q and £ is
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QOm. 1) = Re|(brbhm)
X [Ae“"‘_a"'m" + Be " m 48"'M"‘] e“]

=R, [[Aec*"" + Be‘—’"]ea]
C(¥m.t) = R, |i(brbA™ )14
X [A c+eﬂqr,_—5_ W b Bc‘eﬂ-("" 4 ‘m”’,.] e“}
= Re["[A‘"f‘*"‘ + Bc"e‘-,"] e"‘]
e [% +i(gm — 5_)];

' [% - s a.)]:

using continuity to determine £ from Q.

The (bbg )" = exp(Al/2)y,, and (bbp )™ = exp(~
dependences of Q and { for the standard solution (m
for b = by the same as seen in Green's Law, but thi
topographic dependence or topographic funneling is m
the presence of friction by the damping modulus 7, w
depends on the topography. As is discussed below, to
dependence through r,,/ often dominates over topogra
neling. It is only in the inviscid, weak topography limit
standard solution reduces to Green's Law. The critical
differs from the standard solution not only in the fo
direct topographic dependence of @ and , but also in
gml.

The final step in solution of the wave equation (11) is
tion of boundary conditions to determine the constants
in (19), which are, respectively, the complex coefficien
reflected and incident waves for each segment. Each co
specifies an amplitude and phase. Division of the syste
segments complicates application of the boundary ¢
because there are then 2n constants for the n incid
reflected waves. These 2n constants must be determin
two boundary conditions and 2n —2 matching
between segments by a Gaussian elimination procedure
in this context by Dronkers [1964]. The matching
are linear and guarantee the continuity of Q and § betw
ments. This suffices to guarantee conservation of ener
[Lighthill, 1978]. One boundary condition (amplitude
of the wave at the estuary entrance) is applied at x =
while the other is applied at the upstream end. There
possibilities at the upstream boundary, Either the wave
uniformly at large y,, or complete reflection occurs
finite y,,.

WAVE NUMBER AND WAVE SPEED

O (1) Properties
P (), the spatial part of Q, depends only on Y, &m!
topographic funneling), ¢,,/, and §,,1; 8,/ is proportion



of g, depends only on three O (1)
 order, g,,1 is given by

12
] +0e) (22

‘comes from the acceleration term in the
orm width and depth with by = b and
al long-wave results for the dimen-
celerity g =k =/gh)"? and ¢ =
inate system. (Henceforth, explicit
and critical solutions by subscript
essary for clarity. The subscript m on
dropped.) In the presence of tidal flats,
(6). Inclusion of bed stress in (5)
tto gl that arises from the right-hand
part of gl is negative for R" > 0.
kl >0 leads to rl <0. Thus both
-damp in their respective directions of
term of gl in (22) is a correction to gl
ce/divergence. It always decreases

that the O (1) part of ¢/ is a function of
l parameters, R’ /o and Al. However,
determining the standard and critical
the O (1) part of each solution appears
not dominant, and because model seg-
(1). Therefore the O (1) behavior
y governed in both models by the two
“Jw and Al are respectively the
importance of friction and topo-
e to acceleration in the wave equa-
and Rahman [1980] is controlled by
numbers.

f the behavior of gl and the incident
. a function of the two major
can be obtained from Figures 2 to 5.
using the complete form of § from

Al is identical; only the definition of Al
divergent geometries also differ only at
real and imaginary parts of ¢/, kI and rl
' z the scaling of (7), R"/@ is O (1) for
< 1 for overtides and O (10) for tidal
and shelf wave-forced oscillations.
ant with frequency, because R’ for all
primarily by the strongest tidal
if this is large.
gl = (1-iR'/w)"? = 2 (cos T8 +
From Figure 2a, kI is O(1) in this
kly variable over the frequency range of
1 the strong-friction (or low frequency)
pases (wave speed decreases) rapidly
long waves are at least weakly
f friction. The damping modulus 7!
le at the weak-friction (high fre-
nues to increase slowly with R'/o as
approached (Figure 2b ).
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Fig. 2. Components of the complex wave number gl = (k + ir )l for con-
vergent geometry as functions of the logs (1o the base 10 here and hen-
ceforth) of R'/w and —Al, the two nondimensional numbers that control
O (1) wave behavior. R’/ is the nondimensional bed friction parameter,
and Al is the topographic convergence parameter. Figure 2 and other simi-
lar plots were constructed for convergent geometry with € = 0.1, river flow
Ug=0.1m s}, and by =b. The dﬁm is constant, so that Al = al/2. In
figure 2a, M is the wave number in the usual sense, and 7! in Figure 2b is
the damping modulus, which vanishes in the inviscid limit as R’/

ches zero. Critical convergence occurs when &l = —rl. Other pro-
perties are discussed in the text.

The quadratic dependence of gl on changes in total width and
depth (the Al term in (22)) suggest that strong topography, if
present, should play a very important role in determining g/ and
thus ¢. From (22) it can be seen that with Uy =0 and m = 1, the
acceleration and convergence terms cancel for |All=2. This I
have called critical convergence. (Inclusion of O(g) effects
causes critical convergence to be a function of Uy and to occur
for |All somewhat less than 2 in Figures 2a and 2b.) As 1ALl
increases beyond critical convergence (supercritical convergence),
Al increasingly dominates k/ and rl. Thus both friction and chan-
nel convergence are important in determining wave speed.

The effects of friction and convergence on wave speed for the
incident and reflected waves are seen in Figures 3a and 3b.
(Subscripts i and r indicate here and henceforth the incident and
reflected waves.) As long as convergence is subcritical
(lall < 2), friction controls ¢/cq for both incident and reflected
waves. For R'/w < 1, c/cy is slightly greater than 1 because of
the effect of finite amplitude in accelerating the wave, as is dis-
cussed below. For R'/® O (1) the frictional retardation of the
tidal wave is less than 10%. This is the same order and opposite



20,592

JAY: GREEN'S LAW AND TIDAL WAVE PROPAGATION

g g ey ;
R/AW

(=

Fig. 3. Log of nondimensional wave celerity c/cy for convergent
gmeuz'for the (a) incident and (b ) reflected waves as a function of the
logs of R/w and —Al, with solution properties as in Figure 2. River flow
and channel y cause the reflected wave to travel faster in the
strong-convergence limit. Strong friction slows incident and reflected
waves equally,

sign as the effect of finite amplitude. Thus the small-amplitude
inviscid wave speed cg is a good estimate of ¢, the actual wave
speed for a tide in a channel of uniform width and depth. Increas-
ing friction (R"/w > 1) slows the wave, but the effect is not
dramatic. For weak friction the wave speed ¢ /cq changes drasti-
cally at critical convergence. As R’/ increases, changes in c/cg
are spread out over a larger range of Al, a typical effect of fric-
tion. Because of the influence of 81, c,/cq > c;/cy, but this effect
is subtle unless the convergence and/or river flow are strong.

The rapid wave propagation that occurs in the presence of
strong convergence (or divergence) can be rationalized as follows.
As |All for a section becomes very large, the cross section
becomes nearly discontinuous. For a truly discontinuous change
in sectional area (i.e., at the end of a channel or the intersection of
a very large with a very small channel), incident and reflected
waves are essentially equal, and wave propagation occurs at an
apparently infinite speed; i.e., the wave phase is nearly constant
along the channel leading to the junction. As is discussed below,
a uniform, exponential change in cross section (even a supercriti-
cal one) does not excite a substantial reflected wave. Thus the
behavior of the incident wave alone must asymptotically approach
that for a standing wave at a discontinuous change of cross sec-
tion. Effectively instantaneous propagation can occur only if c/cg
becomes large.

The complex impedance function / (the ratic
mined by gl, 8/ and Al and reveals important
wave propagation. From (21), [; =ic™ and I,
weak convergence and friction, I/ is essential
incident wave (Figure 4) and for the reflected
shown). Not surprisingly, friction dominates |/
strong, while Al dominates when convergence:
strong. |/;| for the incident wave becomes ver
relative to &) as |A/l becomes large. In this
incident wave alone for the strong convergenc
mimics a standing wave.

The phase of / is the phase difference ¢ be
ure 5). Only in a deep channel (weak friction)
will ¢ for the incident wave approach zero, the
for an inviscid progressive wave. Nearly inviscic
5) and reflected waves (not shown) both have
critical convergence and ¢ =90° just above,
change at critical convergence. Increasing fricl
the phase change less abrupt, as was also the
speed (Figure 3). The range of typical values of
species is about 10° to 45° for Al = 0.

2

-A00

'
T

Fig. 4. Log of the im ce amplitude /1= 1T/
geometry and for the incident wave as a function of th
—Al, with solution rties as in Figure 2. |/] approa

cid, weak topography limit and becomes large above ¢
similar to a standing wave in a channel of uniform b an

2 ' ; - -

—Aﬂo

-2
3

Fig. 5. Impedance phase ¢, the phase difference bets
convergent geometry as a function of the logs of R’ /g
incident wave, ¢ is 0° in the inviscid, weak topography.
strong topography limit (as in a standing wave). It is
vergence and between 10° and 50° for typical incident



lly dominated, critical solu-
strong friction model of LeBlond
' resulted in the elimination

inate over acceleration. From

d by its imaginary part, K = —r,
en the values for inviscid progres-
‘dominates over acceleration in
:nce because the effects of
convergence/divergence. In
ant of Figure 5 is between
small throughout this quadrant,
low, the depth is small, or the
wave number is counteracted by
summary, friction commonly dom-
more because convergence and
er than because acceleration is

waves for which acceleration
“cannot be ignored (e.g., high over-
1 the interaction of acceleration and
y dominated and mimic the behavior of

1 waves in a channel of uniform

bases for the sharp changes in
convergence can be seen from the
complex plane as R"/® and Al
wvarying convergence rates (Fig-
2 imaginary part of § is always
ve opposite signs. For weak, sub-
R 1, the real and imaginary
! 6a). This yields a ¢ of =

jon and convergence/ diver-
' is almost purely imaginary

(23)

b)
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and ¢ is = 50°. If friction is strong, ¢ < ¢, but critical conver-
gence is also possible for weak friction, in which case ¢ may be
much greater than ¢y The boundaries between the standard and
critical solutions used in the model are also shown in Figure 6b.
These boundaries were chosen to be in areas where the
differences between the standard and critical solutions were rela-
tively small.

The effect of increasing |All into the supercritical convergence
regime is to cause § to approach the negative real axis and to
increase S| (Figure 6¢). This means that gl is essentially imag-
inary, with

(24)

i= 0.5lAll -
g [mlmlz

2Rl]

Because the real part of gl is small, the wave speed becomes
large (Figure 3), By the same token, a real value of { leads to a
largely imaginary value of Q. For R/ =0, the real part of
ql =irl, and the disturbance ceases to propagate. That is, a
supercritically convergent, inviscid wave is impossible, as was
noted by Lighthill [1978]. This emphasizes again the importance
of friction to any realistic analysis.

O () Properties

The O (g) properties of § stem from the conveclive accelera-
tions and nonlinear, finite-amplitude friction terms. The O (g)
parts of S and 8! are from (15) and (17) proportional to
Ug/ec = eUg/U and are influenced by five other nondimensional
parameters: br/b, Bl, al, yl, and R” /w. Because 8/ is real, it
modifies only kI and, as was discussed previously, serves to
slow the incident wave and accelerate the reflected wave.
Because gl varies as §'2, the O () terms in § contribute to both
kl and rl.

There is one O (g) feature of the circulation that the perturba-
tion solution presented above does not include: the increase in
wave celerity associated with finite amplitude. The classical
result [Lamb, 1932, article 187] for inviscid, small-amplitude
waves in a uniform channel without tidal flats is that
cleg=1+3€/2, or about a 15% increase in ¢ for e =0.1. In
the absence of overriding topographic effects, neglect of this
finite-amplitude correction could lead to an error in calculating
high water (even without overtide effects) of about an hour at a
distance of A from the ocean. This would more than compensate
for retardation caused by friction, assuming R'/o=1. An
approximate dispersion relation that accounts for this finite-

c)

Strong ]
Convergence. ~~
-~

-~
et

Critical
Convergence

the model.

complex plane for (a) weak convergence, (b) critical convergence/strong friction, and (c ) strong
in Figure 6b show boundaries between normal (for weak and strong convergence) and critical
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amplitude effect on ¢ can be derived as follows. The O (g)
effect in question arises from nonlinearities in the convective
accelerations, pressure gradient, and bed stress. Starting from a
dimensional wave equation including these effects, a waveform
is then assumed such that Q= exp(i(§£-&f)). A quasi-
linearization is used to deal with the nonlinear terms. Some
algebra then leads to a modified form of the O (1) part of § for
the standard solution

2
S Al iR (1-¢)
S—[(I K.e)- 2 = h ] (25)
leﬁg_zjjﬂ}
b 9o

where gg is g without finite amplitude correction as calculated
from (22). Finite amplitude thus decreases slightly the contribu-
tion of friction and acceleration to S. It is usually reasonable to
approximate K, = 3by/b, because the (y+ a)/go part of the
correction to the acceleration term is only important relative to
3br/b when acceleration is itself much smaller than the
convergence/divergence term. For a channel of uniform width
and depth, the inviscid wave speed is c/co = 1 + (3&/2)(br/b),
which reduces to Lamb’s [1932] result in the absence of tidal
flats. No corrections are needed to the O (g) terms of S (17),
because these corrections would be O (€)%,

Along-Channel Variability of the Wave Number

The validity of the solution presented above depends on,
among other factors, the validity of the assumption that the wave
number is nearly constant spatially. For weak friction, the topo-
graphic convergence rate Al alone determines the wave number,
and it is immaterial to O (1) what combination of al, !, and y!
makes up Al. The presence of friction, however, destroys this
symmetry between depth and width changes, because h appears
with different powers in the acceleration and friction terms, even
after the wave equation has been transformed by a change of
coordinate system. Thus several different types of geometry
must be considered in evaluating the variability of the wave
number. S (or its square root q/) is independent of y to O (1)
for h constant, except for along-channel changes in R’/.
Another important case occurs when b and by are constant and
equal, so that all topographic variability is caused by changes in
h. Figures 7a and 7b show the normalized along-channel vari-
ability of gl for the standard and critical solutions, with the
realm of use of each indicated, as in Figure 6b. Taking a nor-
malized gl variability less than 1 as adequate, then only flows
that are both strongly frictional and supercritically convergent/
divergent are inadequately represented by the solutions derived
above. Perhaps the worst case occurs when the change in width
is of opposite sign 1o the change of depth (br = b, B = -mY) so
that A =0. Even in this circumstance, along-channel variability
of gl is small, except in the extreme of very strong friction and
convergence. Variability in R’/ occurs in most geometries
because of along-channel changes in the tidal velocity and in
river flow Ug, altering both R* and the O (g) parts of §. This
variability is an important practical consideration only when Uy
is greater than U in the upper reaches of tidal rivers.

A GENERALIZED FORM OF GREEN'S LAW

The objective of this section is to determine for all values of
R’/® and Al the dependence Q and C on by, h, and x for both
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Fig. 7. Log of the normalized wave number variation
function of the logs of R’ /w and —y! for (a) normal
tions in a constant-width, convergent channel.
indicates a variation of 1, and the lines
between normal and critical solutions. Normalized v
or the other solution, except in the strong-friction, stro

frictional and standard solutions, that is, 1o g
Law. In this regard, we are interested only in
and I{ and not phase information contained i
Q and . Determination of the full topograp
IQ 1 and I§! requires inclusion of the topograp
rl as well as the effects of topographic funnelin
causes |Q | and I§! to depend on the damping
braic expressions for the normalized topograp
Q may be derived from (21):

br dlQ,!

LE_'Q*_'=[1 +:f_]

Qi1 abr |27 1) 1Q1 dby
= LIS L R
Q! dn ~ |4 " | IQ 1 dr

L g [£+,,] 130,
2

10;1 ox 10,1 ox

for by = b. The expressions in (26) for by a
Q give respectively 1/4 and 1/2 for the stand
and rl = 0. Deviations from these values indic
Green's Law.
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It is useful 1o begin interpretation of Figures 8 to 13 by noting
two asymptotic forms of r/. Consider first the case of weak con-
vergence. As defined in Figure 6a, weak convergence implies
that both convergence and friction are small relative to accelera-
tion, and the standard solution is used in the model. From (17), r!
is =—0.5R" /&(1 — 0.25A1%) or rl = -0.5R’ / for very weak con-
vergence. Topographic funneling dominates the topographic
response, and only a slight modification to Green's Law is seen,
as in the lower left comers of Figures 8 to 11 where the by varia-
tion of Q; and ; approaches +1/2 and the h variation approaches
+1/4; this is also the case for reflected waves.

The strong-topography asymtotic form of rl also causes the
normalized topographic variations of Q; and ; to have a simple
form, because from (24) rl =—IAl1/2. Topographic funneling and
damping are of the same magnitude. They may therefore either
cancel or reinforce one another, and the normalized variation of
IQ | and 1g| for by = b and Uy =0 accordingly approaches 0 or
+1 (top left corner of Figures 8 to 11). There is also, in the
absence of river flow, a symmetry between incident/reflected
waves in strongly divergent/convergent channels for @ and &
For example, §; in a convergent geometry and {, in a divergent
geometry with the same wave amplitude and value of Al will

/ // / e

1 &

Fig. 11. Normalized h varimonfammuw eometry of Q; from (26
;::ﬁMtnofﬂ:elogsd'R'Immd—N--fﬁ fsotam?\:ﬂlhhdlﬂl)
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Fig. 12. Normalized x variation for convergent geometry of {; from (26)
as a function of the logs of R’/w and —Al. As suggested by (26) and Table
(1), this plot may altematively be viewed as representing the x variation of

r

exhibit the same behavior, because both waves encounter the
same balance of topography and friction (Figures 12 and 13). The
same is true of Q; in divergent geometry in relation to @, in an
equivalent convergent geomeltry, as summarized in Table 1. This
symmetry is, of course, altered by river flow.

The strong friction by and h variations of 1Q | and Ig| are from
(26) dominated by damping rather than topographic funneling for
both incident and reflected waves, causing large deviations from
Green's Law (lower right-hand comer of Figures 8 to 11). This is
true below critical convergence even for R’ /o of 0 (107 to 1),
which corresponds to the behavior of tide and overtide waves in
typical, weakly convergent channels. Because r! enters incident
and reflected waves with opposite sign (equation (26)), the sign of
the topographic variations in reflected wave plots is opposite to
that in Figures 8 to 13.

The above considerations concerning the behavior of § and Q
with respect to b, h and x apply only to individual incident or
reflected waves, not to combinations thereof. Nonetheless, there
are numerous circumstances where reflected waves are small and
the total wave behavior is determined essentially by the incident

50—
1 -10~—-\\\'
410 = :
5] m -05 ]
-0.1 ]
) i |
23 i -1 0 1 2

R/

Fig. 13. Normalized x variation for convergent geometry of Q; from (26)
as a function of the logs of R"/w and —Al. As suggested by (26) and Table
(1), this plot may altematively be viewed as representing the x variation of
{; for strong divergence.
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TABLE 1. Strong-Topography Asymptotic W

Wave Property Strong Convergence
& (brbh)° (brbh) ™Y
& (brbh )12 = ¢!V
0; (brbh )2 = "I
o, (brbh)°

wave. These include tides in many rivers, wheri
inant, and very sharply convergent (in the |

gulfs and bays, where as per (26) friction @
together will sharply damp the reflected wave.
regard that an incident wave may have ar
between O and &, even 90° (Figure 5).

Two new solutions to the one-dimensic
equation for channel flows have been de:
effects of friction, smooth topography of
scale, finite amplitude, river flow and tidal
but do not convey momentum. The first,
has nearly constant coefficients when the e
and topographic convergence are dominant ¢
mining the wave number. This can occur !
convergence is either very strong or very
critical solution, has nearly constant coef]
controls the wave number. The behavi
determined (to O (1)) by two nondimensi
are the ratio of bed stress to acceleration
topographic convergence/divergence rate
an inviscid wave, it is immaterial what
and/or depth convergence goes into Al. Fi
tinction between width and depth conver;
small under most circumstances. Both so
at critical convergence, where |AIl=2.
exist in the strong topography realm abo
(JA1l > 2). Friction increasingly controls
cally convergent waves as R’ /o beco
present, greatly increases frictional dam

Topography influences tidal long wave
in several ways. First, there is the direct
on the amplitude of the wave, that is, topo
inviscid waves over weak topography
scale L is greater than the inverse wave
for by =b described by Green's Law:
width b and depth A according to Q= b
according to {=b"124"", It has been
flats modify topographic funneling so
convergence (the standard solution)
h =bi M p R4 where the total w
momentum conveying width b because «
flats. Strong friction (the critical solution,
of topographic funneling so that Q and & ¢
hi-lﬂ and hV2, |

Topographic funneling is, however, o
The amplitude of a propagating long wavi
ing of the wave as described by the i
number, that is, by the damping mo
function of the topography, but if topo
strong, the influence of damping on w.
inate over or balance that of topo
regard, three regimes may be distinguis




influence of damping is small, the
propriate, and Green’s Law is asymptoti-
L goes to zero. If friction effects are strong
, then the real and imaginary parts of the
proximately equal, both are proportional to

yminates over topographic funneling in
variation in wave amplitude. Very
s Law occur. Finally, if topographic
factor determining the wave number,
n of Al only. In this case, the damping
ide is of the same magnitude as the direct
, which it may either reinforce or cancel,
sign of Al. Again, the result differs greatly

S

theptm of tidal flats, finite amplitude
e n parameter £), and river flow all
rt of the wave number k! £ 8/ and the wave
. For weak friction and convergence, the
, in slowing the wave is often nearly balanced by
Mﬂﬂmﬂ thereof, but the effects of finite
1 scale as O (g), are otherwise smaller than the
f friction and topography. River flow modifies
'8l by accelerating the incident wave and
flected wave, but this effect is usually weak,

lly small relative o ¢. Tidal flats exercise an

% ‘wave crest advmces For subcritically con-
1 increasingly controls kI as R’/ becomes

m on speed ¢ of supercritically conver-
1o lAl Il(R'm). which may become

i mm'ws a standing wave in that the large
high water to be nearly simultaneous
ligh ater and slack water are coincident.

between @ and { cannot alone be used

Wiﬂlmﬂ'ﬂmﬂwpmsmoe or absence of a
example, the argument that ¢ = 90° implies
g wave with equal incident and reflected
¢ two reasons. First, friction is important in
'nnd dominant in most shallow estuaries.
reflection from a barrier in an estuary with
occurs, friction will cause incident and
ave different amplitudes except at the point of
ny ¢ between 0 and 90° can occur for the
without the presence of a reflected wave.
to avoid the mmpproprlale dichotomy of
standing” waves in discussing estuarine
wave has highly variable properties that
d to those of a progressive wave, which by
w=Al =0, Both incident and reflected waves
"most real topographies but will rarely be of
similar properties. The incident wave
y if friction is present.

also be made of the multiple semidiurnal
;. overtides, and tidal residual
considered here. Multiple tidal constit-
orated into the model at this time, but
ward, as they interact at O (1) only
that each constituent damps all oth-
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ers. As the effect on any given constituent is quadratic in the
other constituents, only the strongest constituent(s) and the river
flow (if strong) are of primary importance in this regard.

Any finite-amplituda long wave will steepen and distort as it
propagates, transferring energy at O (g) to both zero frequency
(the residual flow) and to higher harmonics (overtides). Tidal
waves of similar frequency will interact at O (€) to cause addi-
tional overtides and low-frequency motions. Godin [1991] and
Parker [1984] have emphasized the role of bed stress nonlineari-
ties in driving both overtides and residuals. There is, however, an
important distinction between the effects of strong
convergence/divergence on overtide versus residual flow genera-
tion. The Stokes drift (and therefore the compensating residual
elevation and transport) depend for channel flows on
05101 ICl cos ¢. Like a standing wave with ¢ = 90°, an incident
wave in a strongly divergent/convergent channel generates very
little Stokes drift or residual. This is by no means the case with
overtides in the same geometry, as these are quadratic in Q or §,
but do not depend on ¢. Strong convergence/divergence may be
expected to have an important effect on the phase of the overtide
relative to the basic tidal wave. In this regard, topography may
either augment or compete with the effects of tide flats. Speer
and Aubrey [1985] have demonstrated that the presence of broad
tidal flats changes the phase relationship between the basic tidal
wave and its first overtide, such that broad, shallow systems are
ebb dominant (overtide reinforces the ebb current) rather than
flood dominant, as is typically the case for narrow estuaries. C.
Friedrichs and O. Madsen (manuscript in preparation, 1991) have
interpreted long wave behavior in channels with tidal flats in
terms of a modified form of € (which becomes negative in the
presence of broad tidal flats) and a frictional length scale. This
behavior may also be understood by considering the additional
inhomogeneous forcing terms introduced into the overtide wave
equation by the presence of tidal flats. An extension of the
present model will consider this problem.
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