Czechoslovak Mathematical Journal

James R. Wall
Green's relations for stochastic matrices

Czechoslovak Mathematical Journal, Vol. 25 (1975), No. 2, 247-260

Persistent URL:
http://dml.cz/dmlcz/101315

Terms of use:

© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

GREEN'S RELATIONS FOR STOCHASTIC MATRICES

J. R. Wall, Auburn
(Received December 13, 1973)

A real nonnegative $m \times n$ matrix A is stochastic if the sum of all the entries in each row is 1 . If A^{T}, the transpose of A, is also stochastic, then A is doubly stochastic. The set $S_{n}\left[D_{n}\right]$ of all $n \times n$ stochastic [doubly stochastic] matrices forms a compact Hausdorff semigroup under matrix multiplication with the $n \times n$ identity matrix I as identity element.

An element a of a semigroup S is regular if $a x a=a$ for some $x \in S$. For A and B regular elements of $S_{n}\left[D_{n}\right]$, we obtain necessary and sufficient conditions for each of the systems

$$
\begin{equation*}
A X=B, \quad B Y=A, \quad X, Y \in S_{n}\left[D_{n}\right] \tag{1}
\end{equation*}
$$

and dually,

$$
\begin{equation*}
X A=B, \quad Y B=A, \quad X, Y \in S_{n}\left[D_{n}\right] \tag{2}
\end{equation*}
$$

to be consistent.

1. Preliminaries, idempotents. Certain definitions and results from the theory of semigroups will be useful. The algebraic facts summarized below may be found in [2, Chapter 2] and those requiring compactness in [6].

Let S be a semigroup with identity, and let $a, b \in S$. The relation $\mathscr{R}[\mathscr{L}, \mathscr{J}]$ is defined on S by $a \mathscr{R} b[a \mathscr{L} b, a \mathscr{J} b]$ if a and b generate the same principal right [left, two-sided] ideal of S. The relation \mathscr{D} is defined as the join of \mathscr{R} and \mathscr{L}, and the relation \mathscr{H} as the intersection of \mathscr{R} and \mathscr{L}. These relations are called Green's relations on S, and each is an equivalence relation on S.

Equivalently, $a \mathscr{R} b[a \mathscr{L} b]$ if and only if $a x=b$ and $b y=a[x a=b, y b=a]$ for some $x, y \in S$. Thus the problem of solving matrix equations (1) in S_{n} may be stated in two other ways: first, as the problem of characterizing \mathscr{R} on S_{n}; and second, of finding all matrices B in S_{n} which lie in the same \mathscr{R}-equivalence class with a given A in S_{n}. Similar remarks hold for \mathscr{L} and for D_{n}.

If a \mathscr{D}-class D of a semigroup S contains one regular element, then every element of D is regular. Each \mathscr{R}-class and each \mathscr{L}-class of S contained in D contains an
idempotent. The \mathscr{H}-classes of S which contain an idempotent are just the maximal subgroups of S.

Since $S_{n}\left[D_{n}\right]$ is compact, $\mathscr{D}=\mathscr{J}$ on $S_{n}\left[D_{n}\right]$. Every compact semigroup S contains a unique minimal two-sided ideal called the kernel of S. The kernel of $S_{n}\left[D_{n}\right]$ is described in the following theorem, which also identifies the idempotents in $S_{n}\left[D_{n}\right]$ of rank 1 .

Theorem 1.1. (Schwarz [10]) (a) An idempotent element of $S_{n}\left[D_{n}\right]$ has rank 1 if and only if it has constant columns. Every such idempotent is a right zero element of S_{n}, and S_{n} contains no left zeros. The only rank 1 idempotent in D_{n} is the matrix having each entry equal to $1 / n$, and it is the zero element of D_{n}.
(b) The kernel K of the semigroup $S_{n}\left[D_{n}\right]$ is the set of all rank 1 idempotents in $S_{n}\left[D_{n}\right]$. Each maximal subgroup contained in K contains only one element. Thus each \mathscr{L}-class of K is a singleton, and K contains only one \mathscr{R}-class.

The next two results identify all idempotents in $S_{n}\left[D_{n}\right]$. In the sequel the term "canonical idempotent" in $S_{n}\left[D_{n}\right]$ will refer to an idempotent which is expressed exactly in the form and with the notation of these results.

Theorem 1.2. (Doob [3]) Let E be an idempotent in S_{n} with rank k. Then there exists an $n \times n$ permutation matrix P such that

$$
P E P^{T}=\left(\begin{array}{ccccc}
E_{1} & 0 & \ldots & 0 & 0 \\
0 & E_{2} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & . \\
0 & 0 & \ldots & E_{k} & 0 \\
F_{1} & F_{2} & \ldots & F_{k} & 0
\end{array}\right)
$$

where each E_{i} is a positive $n_{i} \times n_{i}$ stochastic matrix of rank 1 ; each F_{i} is an $n_{k+1} \times n_{i}$ matrix of the form $F_{i}=D_{i} E_{i}^{\prime}$ with each F_{i} an $n_{k+1} \times n_{k+1}$ nonnegative diagonal matrix such that $D_{1}+\ldots+D_{k}=I$, and each E_{i}^{\prime} consists of n_{k+1} rows each equal to a row of $E_{i} ; n_{1}+\ldots+n_{k+1}=n ; n_{1} \geqq \ldots \geqq n_{k} \geqq n_{k+1} \geqq 0 ;$ and $n_{k} \geqq 1$.

It is understood here and in similar situations in what follows that the columns of zeros on the right of $P E P^{T}$ or the blocks F_{1}, \ldots, F_{k} may not appear.

Corollary 1.3. (Doob [3], Schwarz [11]) Let E be an idempotent in D_{n} with rank k. Then there exists an $n \times n$ permutation matrix P such that

$$
P E P^{T}=E_{1} \oplus E_{2} \oplus \ldots \oplus E_{k}
$$

where each E_{i} is the $n_{i} \times n_{i}$ matrix having each entry equal to $1 / n_{i} ; n_{1}+\ldots+n_{k}=$ $=n ;$ and $n_{1} \geqq n_{2} \geqq \ldots \geqq n_{k} \geqq 1$.
2. Green's relation \mathscr{R} for S_{n}. We begin by characterizing those elements of S_{n} which lie in the same \mathscr{R}-class with a canonical idempotent E. The form of such a matrix A depends upon the way E is partitioned into blocks of rows, that is, upon the numbers n_{i}, and upon the diagonal matrices D_{i}. In the course of the proof, a method for constructing solutions to the system (1) will be indicated for the case where B is idempotent.

Theorem 2.1. Let E be a canonical idempotent in S_{n} with rank k, and let $A \in S_{n}$. Then the following statements are equivalent.
(a) $A \mathscr{R} E$; that is, the system $A X=E, E Y=A, X, Y \in S_{n}$, is consistent.
(b) There exists an $n \times n$ permutation matrix P such that

$$
A P=\left(\begin{array}{lllll}
A_{1} & 0 & \ldots & 0 & 0 \tag{3}\\
0 & A_{2} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & . \\
0 & 0 & \ldots & A_{k} & 0 \\
U_{1} & U_{2} & \ldots & U_{k} & 0
\end{array}\right)
$$

where each A_{i} is an $n_{i} \times t_{i}$ stochastic matrix of rank 1 , and $U_{i}=D_{i} A_{i}^{\prime}$ with each row of A_{i}^{\prime} equal to a row of A_{i}.
(c) The rows of A can be partitioned into the form

$$
A=\left(\begin{array}{c}
M_{1} \\
\ldots \\
M_{k} \\
M_{k+1}
\end{array}\right)
$$

where each M_{i} is an $n_{i} \times n$ stochastic matrix of rank 1 ; the matrices M_{1}, \ldots, M_{k} are mutually orthogonal; and $M_{k+1}=D_{1} M_{1}^{\prime}+\ldots+D_{k} M_{k}^{\prime}$ where each row of M_{i}^{\prime} is a row of M_{i}.

Proof. Assume (a) holds. Partition A by

$$
A=\left(\begin{array}{c}
M_{1} \\
\ldots \\
M_{k} \\
M_{k+1}
\end{array}\right)
$$

where each M_{i} is $n_{i} \times n$. Since $E A=A, E_{i} M_{i}=M_{i}$ for $i=1, \ldots, k$, and $F_{1} M_{1}+\ldots$ $\ldots+F_{k} M_{k}=M_{k+1}$. Thus $\operatorname{rank}\left(M_{i}\right) \leqq \operatorname{rank}\left(E_{i}\right)=1$, so $\operatorname{rank}\left(M_{i}\right)=1$ for $i=$ $=1, \ldots, k$. Since M_{i} is stochastic, the columns of M_{i} are constant for $i=1, \ldots, k$.

Partition X by

$$
X=\left(X_{1}, \ldots, X_{k}, X_{k+1}\right)
$$

where each X_{i} is $n \times n_{i}$. Then $A E=E$ implies

$$
\begin{aligned}
M_{i} X_{i} & =E_{i} \quad \text { for } \quad i=1, \ldots, k \\
M_{i} X_{j} & =0 \quad \text { for } \quad i \neq j, i, j=1, \ldots, k \\
M_{i} X_{k+1} & =0 \quad \text { for } \quad i=1, \ldots, k+1
\end{aligned}
$$

and

$$
M_{k+1} X_{j}=F_{j} \quad \text { for } \quad j=1, \ldots, k
$$

For $k>1$, suppose $M_{i}>0$ for some $i=1, \ldots, k$. Then, for any $j \neq i, j=1, \ldots, k$, $M_{i} X_{j}=0$, so $X_{j}=0$. But then $E_{j}=M_{j} X_{j}=0$, contrary to $E_{j}>0$. Therefore M_{i} has at least one column of zeros for $i=1, \ldots, k$. Let t_{i} be the number of nonzero columns of $M_{i}, i=1, \ldots, k$. If $k=1$, it may be that $t_{1}=n$; in this case $A=$ $=M_{1}=A_{1}$.

Now assume $t_{1}<n$. Let P_{1} be an $n \times n$ permutation matrix such that the first t_{1} columns of $M_{1} P_{1}$ are nonzero. Then, for $j=2, \ldots, k=1,0=M_{1} X_{j}=M_{1} P_{1} P_{1}^{T} X_{j}$, so the first t_{1} rows of $P_{1}^{T} X_{j}$ are zero. Thus

$$
A P_{1}=\left(\begin{array}{ll}
A_{1} & 0 \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{1} is an $n_{1} \times t_{1}$ stochastic matrix of rank 1 , and .

$$
P_{1}^{T} X=\left(\begin{array}{ll}
X_{11} & 0 \\
X_{21} & X_{22}
\end{array}\right)
$$

where X_{11} is a $t_{1} \times n_{1}$ stochastic matrix with

$$
P_{1}^{T} X_{1}=\binom{X_{11}}{X_{21}} .
$$

If $k=1$, then $A P_{1}$ has the form

$$
A P_{1}=\left(\begin{array}{ll}
A_{1} & 0 \\
U_{1} & 0
\end{array}\right)
$$

Assume now that $k>1$, and, for $j=2, \ldots, k$, let $M_{j} P_{1}=\left(B_{j}, C_{j}\right)$ where B_{j} is $n_{j} \times t_{1}$. Then

$$
0=M_{j} X_{1}=B_{j} X_{11}+C_{j} X_{21}
$$

so $B_{j} X_{11}=0$. Thus, if B_{j} has a positive column, then the corresponding row of $X_{1,}$ is a zero row, which is impossible since X_{11} is stochastic. Hence $B_{j}=0$ for $j \approx$ $=2, \ldots, k$.

By repeating the process k times, we obtain an $n \times n$ permutation matrix $P=$ $=P_{1} P_{2} \ldots P_{k}$ such that

$$
A P=\left(\begin{array}{lllll}
A_{1} & 0 & \ldots & 0 & 0 \\
0 & A_{2} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right) .
$$

where each A_{i} is an $n_{i} \times t_{i}$ stochastic matrix of rank 1 . At each stage the matrix P_{i} is chosen so that it fixes the first $t_{1}+\ldots+t_{i-1}$ columns of $A P_{1} \ldots P_{i-1}$. Also $P^{T} X$ has the form

$$
P^{T} X=\left(\begin{array}{llll}
X_{11} & \ldots & 0 & 0 \\
\ldots & \cdots & \cdots & \cdots
\end{array}\right) .
$$

where each $X_{i i}$ is a $t_{i} \times n_{i}$ stochastic matrix.
Now consider the block

$$
U=\left(U_{1}, \ldots, U_{k}, U_{k+1}\right) .
$$

Now the rank of $A_{1} \oplus \ldots \oplus A_{k}$ is $k=\operatorname{rank}(A)$, so each row of U is a linear combination of the first $n-n_{k+1}$ rows of $A P$. Hence, since $A P$ is stochastic, $U_{k+1}=0$, and $U_{j}=G_{j} A_{j}^{\prime}$ for $j=1, \ldots, k$, where each A_{j}^{\prime} consists of n_{k+1} rows each equal to a row of A_{j}, each G_{j} is an $n_{k+1} \times n_{k+1}$ diagonal matrix, and $G_{1}+\ldots+G_{k}=I$. Thus, for $j=1, \ldots, k$,

$$
D_{j} E_{j}^{\prime}=F_{j}=M_{k+1} P P^{T} X_{j}=U_{j} X_{j j}=G_{j} A_{j}^{\prime} X_{j j}=G_{j} M_{j}^{\prime} X_{j}=G_{j} E_{j}^{\prime}
$$

But $E_{j}^{\prime}>0$ and $D_{j}-G_{j}$ is diagonal, so $D_{j}=G_{j}$. Hence $U_{j}=D_{j} A_{j}^{\prime}$ for $j=1, \ldots, k$. This completes the proof that (a) implies (b).

Assume now that (b) holds. Let Y be the $n \times n$ stochastic matrix

$$
Y=Y_{1} \oplus \ldots \oplus Y_{k} \oplus Z
$$

where each Y_{i} is the $t_{i} \times n_{i}$ stochastic matrix having each row equal to a row of E_{i}, and Z is any stochastic matrix of appropriate size. Then $A P Y=E$. But $E A P=A P$, so $A P \mathscr{R} E$. Now $A P \mathscr{R} A$ and \mathscr{R} is transitive, so $A \mathscr{R} E$. Thus (a) holds.

That (b) and (c) are equivalent is clear, which completes the proof of the theorem.
The first of the following corollaries removes the restriction that the idempotent E be canonical, while the second gives necessary and sufficient conditions for two canonical idempotents to be \mathscr{R}-equivalent. For the proof, note that $A \mathscr{R} B$ if and only if $Q A Q^{T} \mathscr{R} Q B Q^{T}$ for Q any permutation matrix.

Corollary 2.2. Let F be an idempotent in S_{n} and let $A \in S_{n}$. Then $A \mathscr{R} F$ if and only if for some $n \times n$ permutation matrices P and $Q, Q A Q^{T} P$ has the form (3) and $Q F Q^{T}$ is a canonical idempotent.

Corollary 2.3. Two canonical idempotents in S_{n} are \mathscr{R}-equivalent if and only if their corresponding blocks have the same dimensions and the diagonal matrices which determine the last n_{k+1} rows of each are identical.

Since there are uncountably many choices for the row in E_{i} whenever $n_{i} \geqq 2$, Corollary 2.3 shows that any \mathscr{R}-class of S_{n} which contains one canonical idempotent E must contain uncountably many, provided only that at least one block E_{i} of E has order 2 or greater.

As a result of the next theorem, if a stochastic matrix A itself has the form (3), then this is sufficient for A to be regular. The matrix

$$
A=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

is regular, since A is idempotent, but not of the form (3), so the condition is not necessary. Indeed, A cannot be put in the form (3) by any column permutation.

Theorem 2.4. Let $A \in S_{n}$. If A has the form (3), then there exists a canonical idempotent E in S_{n} such that $A \mathscr{R} E$. Consequently, A is regular.

Proof. Use the matrix Y introduced at the end of the proof of Theorem 2.1 with each Y_{i} having each entry equal to $1 / n_{i}$.

The following corollary gives necessary and sufficient conditions for two regular stochastic matrices to lie in the same \mathscr{R}-class, and hence for the system (1) to be consistent. Regularity does not need to be assumed for the sufficiency.

Corollary 2.3. Let $A, B \in S_{n}$. Then A and B are regular and $A \mathscr{R} B$ if and only if there exist $n \times n$ permutation matrices P_{1}, P_{2}, and Q such that $Q A Q^{T} P_{1}$ and $Q B Q^{T} P_{2}$ each have the form (3) with corresponding blocks having the same dimensions and with identical diagonal matrices determining the last n_{k+1} rows of each.

Proof. Assume A and B are regular, and $A \mathscr{R} B$. Then there exists an $n \times n$ permutation matrix Q such that $Q A Q^{T}$ and $Q B Q^{T}$ are both in the same \mathscr{R}-class as some canonical idempotent E of S_{n}. Thus there exist $n \times n$ permutation matrices P_{1} and P_{2} such that $Q A Q^{T} P_{1}$ and $Q B Q^{T} P_{2}$ each have the form (3). The converse follows by using the canonical idempotent E of Theorem 2.4.
3. Green's relation \mathscr{L} for S_{n}. We again begin by characterizing those elements A in S_{n} which lie in the same \mathscr{L}-class with a canonical idempotent E. The result is similar to that for \mathscr{R}, but here the form of A depends upon the matrices E_{i} as well as the way in which E is partitioned into blocks of columns.

Theorem 3.1. Let E be a canonical idempotent in S_{n} with rank k, and let $A \in S_{n}$. Then the following statements are equivalent.
(a) A $\mathscr{L} E$; that is, the system $X A=E, Y E=A, X, Y \in S_{n}$ is consistent.
(b) There exists an $n \times n$ permutation matrix P such that $P A$ has the form

$$
P A=\left(\begin{array}{lllll}
A_{1} & 0 & \ldots & 0 & 0 \tag{4}\\
0 & A_{2} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & . \\
0 & 0 & \ldots & A_{k} & 0 \\
U_{1} & U_{2} & \ldots & U_{k} & 0
\end{array}\right)
$$

where each A_{i} is a $t_{i} \times n_{i}$ stochastic matrix of rank 1 having each row equal to a row of E_{i}; and where $U_{i}=G_{i} A_{i}^{\prime}$, where each A_{i}^{\prime} consists of $t=n-t_{1}-\ldots-t_{k}$ rows of A_{i}, each G_{i} is a $t \times t$ diagonal matrix, and $G_{1}+\ldots+G_{k}=I$.

Proof. Assume (a) holds. Partition A by

$$
A=\left(M_{1}, \ldots, M_{k}, M_{k+1}\right)
$$

where each M_{i} is $n \times n_{i}$. Since $A E=A, M_{k+1}=0$, and $M_{i} E_{i}=M_{i}$ for $i=1, \ldots, k$. Partition X by

$$
X=\left(\begin{array}{l}
X_{1} \\
\cdots \\
X_{k} \\
X_{k+1}
\end{array}\right)
$$

where each X_{i} is $n_{i} \times n$. Then $X A=E$ implies

$$
\begin{array}{ll}
X_{i} M_{i}=E_{i} & \text { for } \quad i=1, \ldots, k \\
X_{i} M_{j}=0 & \text { for } \quad i \neq j, \quad i, j=1, \ldots, k
\end{array}
$$

and

$$
X_{k+1} M_{j}=F_{j} \quad \text { for } \quad j=1, \ldots, k .
$$

Now $M_{i} E_{i}=M_{i}$ and E_{i} positive imply that if M_{i} has a zero in any row, then that entire row must be a row of zeros. Thus a row of M_{i} must be either positive or a row of zeros. Now $M_{i} \neq 0$, so $\operatorname{rank}\left(M_{i}\right)=1$ for $i=1, \ldots, k$.

If $k=1$, then $M_{1}>0$ since $A=\left(M_{1}, 0\right)$ is stochastic. In this case $M_{1} E_{1}=M_{1}$ implies each row of M_{1} is a row of E_{1}. Thus A itself has the form (4) where $A_{1}=M_{1}$ and the block U_{1} is missing.

Now assume $k>1$. If $M_{i}>0$ for some $i=1, \ldots, k$, then, for any $j \neq i, X_{j} M_{i}=0$ implies $X_{j}=0$. Thus $E_{j}=X_{j} M_{j}=0$, a contradiction. Hence each M_{i} has zero entries, thus rows of zeros. Let u_{i} be the number of positive rows in each M_{i}.

Let P_{1} be an $n \times n$ permutation matrix such that the first u_{1} rows of $P_{1} M_{1}$ are nonzero. Then, for $i=2, \ldots, k, 0=X_{i} M_{1}=X_{i} P_{1}^{T} P_{1} M_{1}$, so the first u_{1} columns of $X_{1} P_{1}^{T}$ are zero columns. Thus

$$
P_{1} A=\left(\begin{array}{lll}
A_{1}^{*} & A_{12} & 0 \\
0 & A_{22}^{*} & 0
\end{array}\right)
$$

where A_{1}^{*} is $u_{1} \times n_{1}, A_{22}^{*}$ is $u_{1} \times\left(n-n_{1}-n_{k+1}\right)$; and

$$
X P_{1}^{T}=\left(\begin{array}{ll}
X_{11} & X_{12} \\
0 & X_{22} \\
X_{31} & X_{32}
\end{array}\right)
$$

where X_{11} is $n_{1} \times u_{1}$, and X_{31} is $n_{k+1} \times u_{1}$. For $j=2, \ldots, k$, let

$$
P_{1} M_{j}=\binom{B_{j}}{C_{j}}
$$

where B_{j} is $u_{1} \times n_{j}$. Then

$$
0=X_{1} M_{j}=X_{11} B_{j}+X_{12} C_{j}
$$

so $X_{11} B_{j}=0$. If B_{j} has a positive row, then the corresponding column of X_{11} is a column of zeros. If each of the u_{1} rows of $A_{12}=\left(B_{2}, \ldots, B_{k}\right)$ has positive entries, then each column of X_{11} is a column of zeros. Thus $E_{1}=X_{11} A_{1}^{*}=0$, a contradiction. Hence A_{12} has at least one row of zeros. Let t_{1} be the number of rows of zeros in A_{12}. Let Q_{1} be an $n \times n$ permutation matrix such that the first t_{1} rows of the matrix

$$
Q_{1}=\binom{A_{12}}{A_{22}^{*}}
$$

are rows of zeros, and the last $u_{1}-t_{1}$ rows are the rows of A_{12} which contain positive entries. Then

$$
Q_{1} P_{1} A=\left(\begin{array}{lll}
A_{1} & 0 & 0 \\
0 & A_{22} & 0 \\
U_{1}^{*} & A_{32} & 0
\end{array}\right)
$$

where A_{1} is a $t_{1} \times n_{1}$ stochastic matrix and U_{1}^{*} is $\left(u_{1}-t_{1}\right) \times n_{1}$. If $t_{1}=u_{1}$, then $U_{1}^{*}=0$. Now

$$
Q_{1} P_{1} M_{1}=\left(\begin{array}{l}
A_{1} \\
0 \\
U_{1}^{*}
\end{array}\right)
$$

so, since $M_{1} E_{1}=M_{1}, A_{1} E_{1}=A_{1}$. Thus each row of A_{1} is a row of E_{1}. Furthermore, $\operatorname{rank}\left(Q_{1} P_{1} M_{1}\right)=\operatorname{rank}\left(M_{1}\right)=1$, so $U_{1}^{*}=G_{1}^{*} A_{1}^{\prime \prime}$ where G_{1}^{*} is a $\left(u_{1}-t_{1}\right) \times$ $\times\left(u_{1}-t_{1}\right)$ nonnegative diagonal matrix and $A_{1}^{\prime \prime}$ consists of $\left(u_{1}-t_{1}\right)$ rows each equal to a row of A_{1}.

By repeating this process we obtain $n \times n$ permutation matrices P_{1}, \ldots, P_{k}, Q_{1}, \ldots, Q_{k} such that $P A$ has the form (4) with $P=Q_{k} P_{k}, \ldots, Q_{1} P_{1}$. For $i=2, \ldots, k$, the number t_{i} is the number of rows of zeros in the submatrix at the i-th step which is analogous to A_{12}. If $t_{i}=u_{i}$ for some i, then $U_{i}=0$ and so $G_{i}=0$. Thus (b) holds.

Conversely, let Y be the $n \times n$ stochastic matrix

$$
Y=\left(\begin{array}{cccc}
Y_{1} & \ldots & 0 & 0 \\
\ldots & \ldots & & \\
0 & \ldots & Y_{k} & 0 \\
Z_{1} & \ldots & Z_{k} & 0
\end{array}\right)
$$

where each Y_{i} is any $n_{i} \times t_{i}$ stochastic matrix of rank 1 ; and where $Z_{i}=D_{i} Y_{i}^{\prime}$ with each Y_{i}^{\prime} consisting of n_{k+1} rows each equal to a row of Y_{i}. Then, for $i=1, \ldots, k$, $Y_{i} E_{i}=A_{i}$ and

$$
Z_{i} A_{i}=D_{i} Y_{i}^{\prime} A_{i}=D_{i} A_{i}^{\prime}=D_{i} E_{i}^{\prime}=F_{i}
$$

so YPA=E. But also $P A E=P A$, so $P A \mathscr{L} E$. Now $A \mathscr{L} P A$ and the relation \mathscr{L} is transitive, so $A \mathscr{L} E$. This completes the proof.

The remaining results in this section are analogous to those at the end of the previous section. The proofs are similar to these previous results, and hence are omitted.

Corollary 3.2. Let F be an idempotent in S_{n}, and let $A \in S_{n}$. Then $A \mathscr{L} F$ if and only if there exist $n \times n$ permutation matrices P and Q such that $P Q A Q^{T}$ has the form (4) and $Q F Q^{T}$ is a canonical idempotent.

Corollary 3.3. Two canonical idempotents in S_{n} are \mathscr{L}-equivalent if and only if their corresponding blocks E_{i} are identical.

Since there are uncountably many choices for the diagonal matrices D_{i} in the canonical form whenever the blocks F_{i} appear and $k \geqq 2$, Corollary 3.3 shows that an \mathscr{L}-class of S_{n} which contains one canonical idempotent must contain uncountably many canonical idempotents or else no other canonical idempotent except E.

The next theorem provides a sufficient condition for an element A of S_{n} to be regular. Again the matrix A given just before Theorem 2.4 is regular, but not of the form (4), so the condition is not necessary. In fact, no row permutation will bring A into the form (4).

Theorem 3.4. Let $A \in S_{n}$. If A has the form (4), then there exists a canonical idempotent E in S_{n} such that $A \mathscr{L}$ E. Consequently A is regular.

As a corollary we obtain necessary and sufficient conditions for two regular elements of S_{n} to be in the same \mathscr{L}-class. Again, regularity is not required for the sufficiency.

Corollary 3.5. Let $A, B \in S_{n}$. Then A and B are regular and $A \mathscr{L} B$ if and only if there exist $n \times n$ permutation matrices P_{1}, P_{2}, and Q such that $P_{1} Q A Q^{T}$ and $P_{2} Q B Q^{T}$ each have the form (4), where the corresponding blocks A_{i} on the main diagonals are identical.
4. Maximal subgroups of S_{n}. We now apply the results of the last two sections to obtain a new proof of the theorem of Schwartz [10] that the maximal subgroups of S_{n} are isomorphic to full symmetric groups. Since the maximal subgroups containing the idempotents E and $P E P^{T}$, for any permutation matrix P, are isomorphic, it is sufficient to consider only those maximal subgroups H_{E} where E is a canonical idempotent.

Theorem 4.1. Let E be a canonical idempotent in S_{n} with rank k, and let $A \in S_{n}$. Then $A \mathscr{H} E$ if and only if A has the form

$$
A=\left(\begin{array}{cccc}
M_{11} & \ldots & M_{1 k} & 0 \tag{5}\\
\ldots & \ldots & \cdots & \\
M_{k 1} & \ldots & M_{k k} & 0 \\
W_{1} & \ldots & W_{k} & 0
\end{array}\right)
$$

where each $M_{i j}$ is $n_{i} \times n_{j}$; for each i and each j there is exactly one $M_{i j}$ which is nonzero, and each row of this $M_{i j}$ is a row of E_{j}; and where $W_{j}=D_{i} M_{i j}^{\prime}$, where $M_{i j}^{\prime}$ consists of n_{k+1} rows of the nonzero block $M_{i j}$.

Proof. Assume $A \mathscr{H} E$. Then $A \mathscr{L} E$ and $A \mathscr{R} E$, so there exist $n \times n$ permutation matrices P and Q such that $A P$ has the form (3) and $Q A$ has the form (4). Partition A according to (5) where, for the moment, each $M_{i j}$ is $n_{i} \times n_{j}$, and observe that the last n_{k+1} columns of A must be zero since $A E=A$. In the form (3), the block A_{1} is positive, so

$$
\left(M_{11}, \ldots, M_{1 k}, 0\right)=\left(A_{1}, 0, \ldots, 0\right) P^{T}
$$

has nonzero columns. Let $M_{i j}$ be a block having a nonzero column. Then

$$
Q M_{j}=Q\left(\begin{array}{l}
M_{1 j} \\
\cdots \\
M_{k j} \\
W_{j}
\end{array}\right)
$$

is the j-th column of blocks in the form (4). Since $Q M_{j} E_{j}=Q M_{j}, M_{1 j} E_{j}=M_{1 j}$, so each row of $M_{1 j}$ is a row of E_{j}. Thus $M_{1 i}=0$ for all $i \neq j$.
Similarly, for each $i=1, \ldots, k$, exactly one block $M_{i j}$ of $\left(M_{i 1}, \ldots, M_{i k}, 0\right)$ is positive, and all the rest are zero blocks. Further, each row of this $M_{i j}$ is a row of E_{j}. If, for some $t \neq i, M_{t j}$ is also positive, then $\left(M_{i 1}, \ldots, M_{i k}, 0\right) P$ and $\left(M_{t 1}, \ldots, M_{t k}, 0\right) P$ both have nonzero blocks in the j-th position of the block form (3), which is impossible. Hence, for each i and each j, exactly one $M_{i j}$ is nonzero.
Moreover, since $A P$ has the form (3), if $M_{i j}$ is positive, then $M_{i j}$ is the block A_{i} in $A P$, so

$$
W_{j}=U_{i}=D_{i} A_{i}^{\prime}=D_{i} M_{i j}^{\prime}
$$

where $M_{i j}^{\prime}$ consists of n_{k+1} rows of $M_{i j}$.

Conversely suppose A has the form (5). Let $P=\left(P_{i j}\right), i, j=1, \ldots, k+1$, where the size of the block $P_{i j}$ is determined as follows: $P_{i j}$ is $n_{i} \times n_{i}$ whenever $M_{j i} \neq 0$, for $i=1, \ldots, k$, and $P_{k+1, j}$ is $n_{k+1} \times n_{j}$ for $j=1, \ldots, k+1$. Let $P_{i j}=I$ if $P_{i j}$ is square. Otherwise set $P_{i j}=0$. Then P is an $n \times n$ permutation matrix such that $A P$ has the form (3). Thus $A \mathscr{R} E$. Similarly there exists an $n \times n$ permutation matrix Q such that $Q A$ has the form (4), so $A \mathscr{L} E$. Thus $A \mathscr{H} E$, which completes the proof.

For each $i=1, \ldots, k$, the mapping $i \rightarrow j$ if $M_{i j} \neq 0$ is a permutation of the set $\{1, \ldots, k\}$. Such a mapping may be defined for each $A \in H_{E}$, and there are precisely k ! such mappings. Thus we obtain the following corollary.

Corollary 4.2. (Schwarz) Let E be an idempotent in S_{n} with rank k. Then the maximal subgroup H_{E} of S_{n} having E as identity element is isomorphic to the full symmetric group on k letters.
5. Green's relations for regular elements of D_{n}. In this section Theorems 2.1 and 3.1 are used to characterize Green's relations for regular elements of D_{n}. These results have been obtained in another way by Montague and Plemmons [7] who were able to remove the restriction of regularity. The section concludes with several necessary and sufficient conditions for an element of D_{n} to be regular.
The first two lemmas, which are dual, characterize \mathscr{R}-classes and \mathscr{L}-classes of D_{n} containing canonical idempotents.

Lemma 5.1. Let E be a canonical idempotent in D_{n} with rank k, and let $A \in D_{n}$. Then $A \mathscr{R} E$ if and only if there exists an $n \times n$ permutation matrix P such that $A P=E$.

Proof. Assume $A \mathscr{R} E$. Since E is a canonical idempotent in D_{n}, E is also a canonical idempotent in S_{n}. Thus, by Theorem 2.1, there exists an $n \times n$ permutation matrix P such that

$$
A P=A_{1} \oplus \ldots \oplus A_{k}
$$

where each A_{i} is an $n_{i} \times t_{i}$ stochastic matrix of rank 1. But each A_{i} is doubly stochastic, so $n_{i}=t_{i}$ and $A_{i}=E_{i}$. Thus $A P=E$. The converse is obvious.

Lemma 5.2. Let E be a canonical idempotent in D_{n} with rank k, and let $A \in D_{n}$. Then $A \mathscr{L} E$ if and only if there exists an $n \times n$ permutation matrix Q such that $Q A=E$.

As a result of the next three theorems, we obtain a characterization of the relations \mathscr{R} and \mathscr{L} for regular elements of D_{n}. The characterizations of the relations \mathscr{H} and \mathscr{D} follow as corollaries.

Theorem 5.3. Let A be a regular element of D_{n}. Then there exists a unique idempotent E in D_{n} such that $A P=E$ for some $n \times n$ permutation matrix P.

Proof. Since A is regular, $A \mathscr{R} E$ for some idempotent E in D_{n}. If also $A \mathscr{R} F$ and $F^{2}=F$, then $E F=F$ and $F E=E$ since an idempotent is a left identity for its \mathscr{R}-class. But then $E=E^{T}=(F E)^{T}=E^{T} F^{T}=E F=F$, so E is unique. Now $G=Q E Q^{T}$ is a canonical idempotent for some $n \times n$ permutation matrix Q. Also $Q A Q^{T} \mathscr{R} G$, so, by Lemma 5.1, there exists an $n \times n$ permutation matrix P_{1} such that $Q A Q^{T} P_{1}=G=Q E Q^{T}$. Thus $A Q^{T} P_{1} Q=E$, so $A P=E$ where $P=$ $=Q^{T} P_{1} Q$.

Theorem 5.4. Let A be a regular element of D_{n}. Then there exists a unique idempotent F in D_{n} such that $Q A=F$ for some $n \times n$ permutation matrix Q.

Theorem 5.5. Let A, B be regular elements of D_{n}. Then $A \mathscr{R} B[A \mathscr{L} B]$ if and only if $B=A P[B=Q A]$ for some $n \times n$ permutation matrix $P[Q]$.

Proof. Assume $A \mathscr{R} B$. By Theorem 5.3 there exists a unique idempotent E in D_{n} such that $A P_{1}=E$ for some $n \times n$ permutation matrix P_{1}. Now $B \mathscr{R} E$, so, by Lemma 5.1, there exists an $n \times n$ permutation matrix P_{2} such that $B P_{2}=E$. Thus $B=E P_{2}^{T}=A P_{1} P_{2}^{T}=A P$, where $P=P_{1} P_{2}^{T}$. The converse is obvious.

Corollary 5.6. Let A, B be regular elements of D_{n}. Then $A \mathscr{H} B$ if and only if $B=Q A=A P$ for some $n \times n$ permutation matrices P and Q.

Proof. The corollary is an immediate consequence of Theorem 5.5 and the definition of \mathscr{H}.

Corollary 5.7. Let A, B be regular elements of D_{n}. Then $A \mathscr{D} B$ if and only if $B=Q A P$ for some $n \times n$ permutation matrices P and Q.

Proof. Assume $A \mathscr{D} B$. Then there exists X in D_{n} such that $A \mathscr{R} X$ and $X \mathscr{L} B$ [2, Lemma 2.1]. Now $X=A P=Q^{T} B$ for some $n \times n$ permutation matrices P and Q, so $B=Q A P$. The converse is obtained by reversing steps.

We conclude this section with several necessary and sufficient conditions for an element of D_{n} to be regular. A number of other conditions may be found in [7].

Theorem 5.8. Let $A \in D_{n}$. Then the following statements are equivalent.
(1) A is regular.
(2) $Q A P$ is idempotent for some $n \times n$ permutation matrices P and Q.
(3) $Q_{1} A$ is idempotent for some $n \times n$ permutation matrix Q_{1}.
(4) $A P_{1}$ is idempotent for some $n \times n$ permutation matrix P_{1}.
(5) $A A^{T} \mathscr{R} A$; that is, $A A^{T}=A P$ for some $n \times n$ permutation matrix P.
(6) $A^{T} A \mathscr{L} A$; that is, $A^{T} A=Q A$ for some $n \times n$ permutation matrix Q.

Proof. The equivalence of the first four statements follows from Theorems 5.3 and 5.4 and Corollary 5.7. If (4) holds, then $A=E P_{1}^{T}$, where $E^{2}=E$, so $A A^{T}=$ $=E P_{1}^{T} P_{1} E=E=A P_{1}$, so $A A^{T} \mathscr{R} A$, proving (5). We now show (5) implies (1), which will complete the proof since (6) is dual to (5). Assume $A A^{T}=A P$. Now $A A^{T}=\left(A A^{T}\right)^{T}=(A P)^{T}=P^{T} A^{T}$, so $A=A A^{T} P^{T}=P^{T} A^{T} P^{T}$. Thus

$$
A A^{T} A=A P A=A P P^{T} A^{T} P^{T}=A A^{T} P^{T}=A,
$$

so A is regular.
6. Maximal subgroups of D_{n}. In this section we give a new proof of the characterization of the maximal subgroups of D_{n} which was first found independently by Schwarz [11] and Farahat [4]. Every regular \mathscr{D}-class of D_{n} contains a canonical idempotent, and every idempotent element of D_{n} is permutationally similar to a canonical idempotent. Thus it suffices to consider only those maximal subgroups H_{E} of D_{n} having a canonical idempotent E as identity element, since all other maximal subgroups will be isomorphic to one of these.

Theorem 6.1. (Schwarz; Farahat) Let E be the canonical idempotent in D_{n} corresponding to $n=n_{1}+\ldots+n_{k}$, with $n_{1} \geqq n_{2} \geqq \ldots \geqq n_{k} \geqq 1$. Let m_{1}, \ldots, m_{t} be the distinct members of the sequence n_{1}, \ldots, n_{k}, with $m_{1}=n_{1}, m_{t}=n_{k}$, and $m_{1}>m_{2}>\ldots>m_{t}$. For $i=1, \ldots$, , let p_{i} be the multiplicity of m_{i} in the sequence n_{1}, \ldots, n_{k}. Then the maximal subgroup H_{E} of D_{n} is isomorphic to the group $S\left(p_{1}\right) \oplus$ $\oplus S\left(p_{2}\right) \oplus \ldots \oplus S\left(p_{t}\right)$ where, for $i=1, \ldots, t, S\left(p_{i}\right)$ is the full symmetric group on p_{i} letters.

Proof: Let $A \in D_{n}$. Then, by Corollary $5.6, A \in H_{E}$ if and only if there exist $n \times n$ permutation matrices P and Q such that $A=Q E=E P$; that is, $E=Q^{T} E P$. Thus $A \in H_{E}$ if and only if A can be obtained from E by a permutation of rows (or columns) which permutes the p_{i} blocks of E which have each entry equal to $1 / m_{i}$, $i=1, \ldots, t$, and which does not interchange blocks with entries $1 / m_{i}$ and $1 / m_{j}$ whenever $i \neq j$. For each $i=1, \ldots, t$, the set of all such permutations of blocks of E is isomorphic to the group $S\left(p_{i}\right)$. Thus H_{E} is isomorphic to the group $S(p)_{1} \oplus \ldots$ $\ldots \oplus S\left(p_{t}\right)$.
7. Generalized matrix inverses in D_{n}. Given any matrix \mathbf{A} over the complex field, Penrose [8] shows that there exists a unique complex matrix X such that $A X A=A$, $X A X=X$, and each of $A X$ and $X A$ is Hermitian. The matrix X is called the MoorePenrose inverse of A, and is denoted by A^{+}. It has applications in approximation theory and in numerical analysis; see, e.g., [1], [5]. A semi-inverse of A is a matrix X satisfying the equations $A X A=A$ and $X A X=X$.

In this section we give a new proof of the result of Plemmons and Cline [9] concerning the semi-inverse and the Moore-Penrose inverse of a regular doubly stochastic matrix. The stochastic case is considered in [12].

Theorem 7.1. (Plemmons and Cline) A regular element A of D_{n} has A^{T} as its unique semi-inverse in D_{n}. Moreover, A^{T} is the Moore-Penrose inverse of A.

Proof. Let A be a regular element of D_{n}. By Theorem 5.3 there exists a unique idempotent E in D_{n} such that $A \mathscr{R} E$, so $A=E P$ for some $n \times n$ permutation matrix P. Now $A^{T}=P^{T} E$, so

$$
A A^{T} A=E P P^{T} E E P=E P=A
$$

and

$$
A^{T} A A^{T}=P^{T} E E P P^{T} E=P^{T} E=A^{T},
$$

so A^{T} is a semi-inverse of A in D_{n}. Since E is the only idempotent such that $A \mathscr{R} E$ it follows [2, Theorem 2.18] that A^{T} is the unique semi-inverse of A in D_{n}. Since doubly stochastic idempotents are symmetric, A^{T} must be the Moore-Penrose inverse of A.

References

[1] A. Ben-Israel and A. Charnes, "Contributions to the theory of generalized inverses", J. Soc. Indust. Appl. Math., XI (1963), 667-699.
[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I, Math. Surveys No. 7, Amer. Math. Soc., Providence, 1961.
[3] J. L. Doob, "Topics in the theory of Markov chains", Trans. Amer. Math. Soc., 52 (1942), 37-64.
[4] H. K. Farahat, "The semigroup of doubly-stochastic matrices", Proc. Glasgow Math. Assoc., 7 (1966), 178-183.
[5] T. N. E. Greville, "Some applications of the pseudoinverse of a matrix", SIAM Rev., II (1960), 15-22.
[6] K. H. Hofmann and P. S. Mostert, Elements of Compact Semigroups, Charles E. Merrill, Columbus, 1966.
[7] J. S. Montague and R. J. Plemmons, "Convex matrix equations", Bull. Amer. Math. Soc., 78 (1972), 965-968.
[8] R. Penrose, "A generalized inverse for matrices", Proc. Cambridge Phil. Soc., 51 (1955), 406-413.
[9] R. J. Plemmons and R. E. Cline, "The generalized inverse of a nonnegative matrix", Proc. Amer. Math. Soc., 31 (1972), 46-50.
[10] S. Schwarz, "On the structure of the semigroup of stochastic matrices", Magyar Tud. Akad. Kutato Int. Kozl., (A) 9 (1964), 297-311.
[11] S. Schwarz, "A note on the structure of the semigroup of doubly stochastic matrices", Mat. Casopis Sloven. Akad. Vied., 17 (1967), 308-316.
[12] J. R. Wall, "Generalized inverses of stochastic matrices", Lin. Alg. Appl., to appear.

Author's address: Mathematics Department, Auburn University, Auburn, Alabama 36830, U.S.A.

