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Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The complete solution to the three-dimensional Lamb’s problem, the 
problem of determining the elastic disturbance resulting from a point 
force in a half space, is derived using the Cagniard-de Hoop method. 
In addition, spatial derivatives of this solution with respect to both the 
source co-ordinates and the receiver co-ordinates are derived. The 
solutions are quite amenable to numerical calculations and a few results 
of such calculations are given. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. Introduction 

Since the classic paper of Lamb (1904) the problem of the elastic displacements 
resulting from a point force in a half space has been the subject of numerous studies. 
A partial list of authors who have treated the three-dimensional problem includes 
Cagniard (1939), Dix (1954), Pinney (1954), Pekeris (1955a, b), Pekeris zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Lifson 
(1957), de Hoop (1961) ,and Aggarwal & Ablow (1967). More recently, Kawasaki. 
Suzuki & Sat0 (1972a, b) and Sat0 (1972) have solved for the surface displacements 
resulting from a double-couple source in a half space. Solutions, or at least clear 
outlines of how the solutions are to be obtained, can be found in the literature for 
most of the various cases which comprise the general problem. However, it seems 
that nowhere are all of these solutions collected together with a uniform notation 
and in a form suitable for numerical calculations. This is one of the purposes of this 
paper. 

The solutions of Lamb’s problem can be thought of as the Green’s function for 
the elastic wave equation in a uniform half space, and as such it is the starting point 
for the consideration of sources more complicated than the simple point force. For 
instance, such a Green’s function is a basic ingredient in the Knopoff-de Hoop 
representation theorem (Burridge & Knopoff 1964), which is one of the more elegant 
approaches to the problem of modelling an earthquake. However, in most cases 
the boundary conditions at an earthquake source are specified in terms of displace- 
ments, and we find that it is not the Green’s function itself but rather the spatial 
derivatives of the Green’s function which are required. Thus a second purpose of 
this paper is to present formulas for these spatial derivatives. 

In this paper we consider only the three-dimensional problem. The solution to 
the two-dimensional problem can be obtained by integrating the three-dimensional 
solution over one spatial dimension, although it is just as easy to derive it from first 
principles using the methods outlined in this paper. 
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2. Statement of the problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for the conservation of linear momentum can be written 

For a uniform elastic material and a Cartesian co-ordinate system the equation 

(1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2 

at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 7 u(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f(x, t )+  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp) V(VU(X, t ) )+ pvz u(x, t )  

where t is time, x is the location vector, u is the displacement, f is the force which is 
the source of the elastic disturbance, p is the density, and 1 and p are the Lam6 
constants. The vector equation (1) can be separated into three scalar equations, and 
thus we actually have three independent problems to solve. In what follows it will 
be convenient to derive the solutions to these three problems simultaneously, but it 
should be kept in mind that we are actually doing three independent problems at the 
same time. 

We consider a half space with x3 = 0 defining the free surface and positive x3 
pointing into the half space (Fig. 1). Initially we will formulate the problem in 
Cartesian co-ordinates but later on the cylindrical and spherical co-ordinates which 
are also shown in Fig. 1 will be useful. 

The stresses on any plane of constant x3 are 

I a a a a 
T3,(x, t )  = 1 - ul(x, t ) +  - u2(x, t )+  - u3(x, t )  +2p- u3(x, t )  

(ax1 8x2 ax3 1 8x3 

The basic problem is to solve equation (1) subject to the condition that the stresses 
of equation (2) vanish when x3 = 0. 

We will consider the case where the source function is localized in both time and 
space. 

f(x, t) = (f, ~ , + f i ~ , + f 3 E t 3 ) 6 ( x 1 - ~ f 1 ) 8 ( ~ 2 - ~ f Z ) B ~ ~ 3 - x f 3 ) B ( t - t ’ ) .  (3) 

For such a source we will refer to the displacement solution as a Green’s function and 
use the standard notation 

u(x, t )  = g(x, t ;  x‘, t ’ )  

For the problem being considered there is no loss in generality if we take X ’ ~  = xf2 = 
t = 0 as implied by Fig. 1. 

3. The solution in the transform domain 

We now proceed to solve equation (1) with the particular source given by equation 
(3). This differential equation can be reduced to the following set of algebraic equa- 
tions (written in matrix form) by taking Laplace transforms with respect to t, x , ,  
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FIG. 1. The geometry of the problem. The displacement u at the position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(xl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx z ,  x 3 )  resulting from the force f at the position (0, 0, x ’~ )  is to be determined. 

The plane x 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 is a free surface. 

FIG. 1. The geometry of the problem. The displacement u at the position 
(xl, x z ,  x 3 )  resulting from the force f at the position (0, 0, x ’~ )  is to be determined. 

The plane x 3  = 0 is a free surface. 

x2, and x3. The corresponding transform variables are s, tl, t2,  and t3, 

Note that the Laplace transform with respect to t is the ordinary one-sided Laplace 
transform while those with respect to x,, x2, and x3 are the generalized two-sided 
Laplace transforms. In the above equations we have used the following definitions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8 =  ($)+ 

K, S/o! KVg = S I P  

Re{(Kaz-tl2)*} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 

v, = (~.Z-t~’- t~~)* 
vb = (ica2-<12-tz2)* 

Re{(KVg2-t12)f} 2 0 

Re{v,} 2 0 

Re{vVg} 2 0 

(7) 
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102 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Johnson 

The following conditions insure convergence of the transforms and thus define the 
region of the transform space in which our solutions are valid. 

Obtaining the solution of equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  is simply a matter of algebra. Doing this 
and also performing the inverse transform of the (x3 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt3) pair leads to the general 
solution. 

The first two terms represent the solution to the inhomogeneous problem while the 
last two terms with the nine arbitrary constants a,, a2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc3 are solutions to the 
homogeneous problem that remain bounded as x3 goes to positive infinity. 

The next step is to apply the stress boundary conditions at the free surface. Trans- 
forming equations (2) into the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ti, t2, x 3 ,  s) domain, substituting in the solution of 
equation (9) for u, and requiring that the stresses vanish when x3 = 0 leads to a set 
of algebraic equations which can be solved for the nine constants a,, a,, ..., c3. 
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where 

and 

Now if the expressions of equation (10) are substituted into equation (9) we have 
the complete solution to the problem in the transform domain. It is convenient to 
write the results in the form 

FIG. 2. The components of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGH(2,0,  0, t ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10,O). All components not shown 
are identically zero. For a force of 1 dyne a division on the vertical scale is equal 

to cm. 
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where 

212 exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(- v, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ’ ~  - V, x3) 
p s 2  d 

As the notation indicates, the six different terms of the solution in equation (13) 
consist of the direct P wave, the direct S wave, the reflected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPP wave, the reflected 
S S  wave, the reflected PS wave, and the reflected S P  wave. 
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Green’s function for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALamb’s problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA105 

4. The solution at the free surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For most seismological problems we require only the solution at the free surface, 

and in that case the solution is a little more compact than in the general case. We 
will carry through the details for this particular case in the present section, and in 
the following section the results for the more general case will be presented. 

Upon setting x3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(13)  the solution simplifies to the extent that 
it can be written in the form 

The next step is to perform the inverse xI and x2 transforms. 

By a series of substitutions it is possible to transform the right-hand side of this 
equation into a form such that the inverse s transform can be solved by inspection. 
This general approach is commonly referred to as the Cagniard method, but the 
particular method to be followed here is a modification of the Cagniard method due 
to de Hoop (1960, 1961). The method is thoroughly expounded in the papers by 
de Hoop so we will only list the essential steps of the method as applied to the present 
problem. 

( 1 )  Make the following substitutions (see Fig. 1 ) :  

x1 = R cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

R = r sin (0) 

x2 = R sin (4) 

x ’ ~  = r cos (0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR = (Xl2+xz2)* 

r = (R’+X’,~)*. 
] (18)  

(2) Change the variables of integration from t1 and t2 to q and p through the 
substitutions: 

t1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsq cos (4) - isp sin (4) 

t2  = sq sin ($ )+ isp  cos (4) . 
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106 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. R. Johnson 

(3) Note that only the terms of the integrand which are even in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp will contribute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(4) Note that the integrand is symmetric about the real q axis so only the imaginary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 5 )  In the first term of the integrand of equation (17) let 

so discard the odd parts. 

part of the integration with respect to q has to be retained. 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, = -qr sin (0) + qa r cos (0) 

= (a- ’+p’-q2)* Re{qa} > 0 

and in the second term let 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, = -qr sin (0) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqp r cos (0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q, = (f l - ’+p’-q’)* Re{q,} > 0. 

(6) Handling the two terms of the integrand of equation (17) separately, deform 
the path of integration in the q plane onto paths such that z, and T, are positive real. 

(7) Change the variable of integration from q to za in the first term and from q to 
zp in the second term. 

(8) Interchange the order of the za or 7, integration with the p integration. 
At this point the integral of equation (17) has been manoeuvred into the general form 

m 

G ( x , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx’, 0, S ;  0, 0, x t3 ,  0) = J w,(c~, p ,  0, r,, x r 3 )  s exp (-SZ,)~Z, 

0 
m 

In the present case the actual results are 

xRe[q ,a- ’ ( ( t / r ) ’ -a - ’ -p ’ ) - *M(q ,p ,O,  t , ~ ’ ~ ) ]  Fdp 

x R e [ q , ~ - ~ ( ( f / r ) ’ - ~ - ’ - p ’ ) - *  N ( q , p , O ,  t , ~ ’ ~ ) ]  Fdp (26) 

where H ( t )  is the unit step function and 

sin (0) < fl/u 
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Green's function for Lamb's problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA107 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= qs2+p2-q2 (29) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fY = y2+4rl4rl&I2-p2). (30) 

In the first integral of equation (26) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq is given by the expression 

q = - t / r  sin (e) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi( ( t / r )2  - u - ~  -p2)+ cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e) 

q = - t/r sin (0) + i( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(t/r12 - p-2  -p2))f cos (0). 

(31) 

while in the second integral it is given by 

(32) 

Finally, the expressions for the individual elements of the three-by-three matrices 
M and N are as follows: 

FIG. 3. The components of OH(lO,O, 0, t ;  0, 0,2,0). All components not shown 
are identically zero. For a force of 1 dyne a division on the vertical scale is equal 

to cm. 
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108 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The physical interpretation of the various parts of equation (26) is straight- 
forward. The first integral represents that part of the solution which results from the 
compressional waves generated at the source, while the second integral is that part 
which results from the shear waves generated at the source. The time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt2 (equation 
(28)) is the arrival time of the direct shear wave when sin (6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB/u and when 
sin (0) > /I/. it is the arrival time of the diffracted S P  wave which was first pointed 
out for the two-dimensional case by Nakano (1925). The expression denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 
(equation (30)) is the equivalent of Rayleigh’s equation in this problem. 

As written in equation (26) the Green’s function G consists of the three com- 
ponents of displacement (equations (6) and (4)) which result from the application 
of the three components of force represented by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF (equations (6) and (3)). Viewed 
in a less compact form, each component of F by itself gives rise to three components 
of displacement and thus there are a total of nine such displacements which add up 
to give G. These nine displacements have a one-to-one correspondence with the 
elements of the matrices M and N (equations (33) and (34)). If we follow the usual 
convention and let g i j ( x l ,  x,, 0, t ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 0, x ’ ~ ,  0) denote the displacement in the i 
direction at the receiver (xl, x2,  0, t )  due to a unit force in the j direction at the 
source (0, 0, x ’ ~ ,  0), then g i j  is the result of equation (26) when only the M i j  and N ,  
terms are included in the integrals. While representing the Green’s function as a 
matrix G is convenient for illustrating the development of the solution, a representa- 
tion in terms of the individual components g i j  is usually more convenient when it 
comes to computing and using the Green’s function. 

As mentioned earlier, the fact that we have obtained a solution for x1 = x2 = 
t = 0 is no restriction upon the generality of the results. Because the problem is 
invariant with respect to a translation in either the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy direction it is obvious that 

g i j ( x l ,  x2,0,  t ;  x’1, x’2, x’3, t ’ )  = g i j (x l  -x’1, x2-x ’2 ,0,  t - t ‘ ;  o,o, x’3,O). (35) 

In this section we have solved the problem of a source at depth and a receiver at 
the free surface, but the same solution can be used for the problem of a source at the 
free surface and a receiver at depth. Starting with the general reciprocal relation for 
Green’s functions (Burridge & Knopoff 1964) 

(36) g i j (x ,  t ;  x’, t ’) = gji(x’ ,  - t ’ ;  x,  - t )  

we can use equation (35) to show that 

gij(x1, ~ 2 ,  ~ 3 ,  2; O,O, 070) = gj i ( -x I ,  - x 2 , 0 ,  2; 030, ~ 3 ,  0). (37) 

Finally, note that equation (26) is the Green’s function for a source which is a 
delta function in time (equation (3)). Should we prefer the solution corresponding 
to a source which is a step function in time, then the result is identical to equation 
(26) except that the differentiation with respect to time is omitted. 
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Green’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfunction for Lamb’s problem 109 

5. The solution within the half space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In the previous section the solution at the free surface due to a source at depth 

was derived. By reciprocity arguments it was shown that this is equivalent to the 
problem where the source is at the surface and the receiver is at depth. While this 
solution is sufficient for many seismological problems, on occasions it is necessary 
to consider the problem where both the source and receiver are at depth. The solution 
to this problem is presented in the present section. 

We begin with the general solution in the transform domain given by equations 
(13) and (14). The present task is to transform this solution back to the physical 
domain where it can be written in the form 

The six individual terms of this solution will be derived in turn in the remainder of 
this section. All of the terms can be obtained using the Cagniard-de Hoop method 
which was outlined in the previous section, so, aside from pointing out a couple of 
slight modifications in the method, we will only list the final results. 

For the direct zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and S waves the solutions are easily obtained using the method 
outlined in section (4). Moreover, the final integrals with respect to the variable p 
(see for example equation (26)) can be evaluated analytically to yield the following 
solutions. 

i a  
8npr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat 

P(xl,  x2, x3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx r 3 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= --H(t-r/a) D(xl ,  x2, x3, t ,  x’,) 

The quantities I’ and 0 now have the more general definitions 

r = ( R 2 + ( ~ ’ 3 - x 3 ) 2 ) *  

whereas R and 4 remain the same as defined earlier in equation (1 8). D and E are 
three-by-three matrices with the following individual elements. 

D, = (3(t/r)’ - a - 2 )  sin2(0) cos’(4) - ((r/r)’ - a-’ )  

D12 = (3( t / r )2-~-2)  sin2(0) sin (4) cos (4) 
D 1 3  = -(3(t/r)2-a-’) sin (0) cos (0) cos (4) 

D,, = (3(r/r)2 - a - 2 )  sin2(B) sin2 (4) - (( r/r)2 -a-  ’) 
D23 = -(3(t/r)’-a-’) sin (0) cos (0) sin (4 )  

D21 = D12 

D 3 1  = O13 
D32 = D23 

D3 = (3(r/r) ’  - a-2 )  cos2(e) - ( (t /r)2 - a-’) 
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110 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Johnson 

El zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - (3(f/r)’ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb-2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsin2(@ cos2(4) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r/r)2 + B - 2  
E,, = -(3(t/r)2-fi8-2) sin2(@ sin (4) cos (4) 
E13 = (3(t/r)’- f l - 2 )  sin (e) cos (e) cos (4) 
E21 = El2 
E,, = -(3(t/r)2-/?p-2) sin2(@ sin2(4)+ ( t / r )2  + b-2 
E23 = (3(r/r)2- a-’) sin (e) cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e) sin (4) 
E31 = E13 

E 3 2  = E23 

E3, = (3(t/r)’- / ? - 2 )  ~in’(0)-2((f/r)~ - /?-’). 

It is worth noticing that these solutions for the direct zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and S waves taken 

The reflected PP and SS waves can also be obtained by a straightforward applica- 
together represent the Green’s function for a homogeneous elastic whole space. 

tion of the method of Section 4. The results for the P P  wave follow. 

( ( f / r ’ ) z  - a - 2) 1 12 

i a  
P P ( x , ,  x2, s3, t ,  x’,) = ~ 

H(t-r ‘ /a)  
2 x 2 p r ‘  at 
x Re {o -1 ( ( t / r ’ ) z - - cc -2 -p2 ) - f  I(q, p ,  x3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, x’,))dp. (44) 

We have introduced the new variables 

but R and 4 are the same as defined in equation (1 8). For q we have the expression 

q = -t/r’sin (e ’ )+ i ( ( r / r ’ ) 2 -o r -2 -p2 )~  cos (0’) (46) 

while the expressions for qu, qs, y ,and o are the same as defined in equations (21), 
(23), (27) and (30). The individual elements of the three-by-three matrix I are listed 
below. 

The results for the reflected SS wave are obtained in a similar manner. 

SS(X1, x,, x3, t, X f 3 )  = -~ - 

x Re {o-1((t/r’)2 - /?-2-p2)-*  J(q,  p ,  x g ,  t, x ‘ ~ ) )  dp .  (48) 
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Green’s function for Lamb’s problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The definitions and remarks following equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(44) apply here also except that now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

q = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt / r r  sin (W)+i((t/r’) ’ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp-2  -p’)* cos (0’) (49) 

and we have the two additional definitions 

sin (0’) < j / u  

sin (0’) > p/a. 
(51) 

r‘/a sin (O’ )+r ’ (p-2-aC(-2)+ cos (0’) 
t’2 = 

The individual elements of the three-by-three matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ follow. 

For the cases of the reflected P S  and S P  waves we can once again follow the 
general method of solution outlined in Section 4. An additional complication is 
encountered with regard to determining the point where the reflection occurs, but 
Cagniard (1962, Chapter 5 and Appendix I) gives a technique for handling this 
difficulty. The results for the PS wave are 

PI 
i a  

2 2 p  at PS(X, ,  x2, x3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, X l 3 )  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 H(t-13) 
0 

The quantities R ,  4, qa, qs, y, and a are the same as defined earlier, and we now intro- 
duce R,  and R, which are defined as the pair of quantities that satisfy the two 
relations 

I Ra+Rs = R 

( R + X ‘ ~ ~ I R ~ + X , ~ / R ~ ) ~ F J  = t 
(54) 
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112 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. R. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJohnsoll 

FIG. 4. The components of OH(lO, 0, 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ;  0, 0, ‘2,O). All components not shown 
are identically zero. For a force of 1 dyne a division on the vertical scale is equal 

to 10-19cm. 

where 

p - 2  (;)2(1+ (2)2) (2)2(1+ ( : )2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
($- (2)2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ p 2 ] *  (55 )  I 

The expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq is now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u-2+p2 

q = - m + i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[d- 
1 + (X ’3 /Ra) ’  

The upper limit of integration p 3  is defined as the value of p for which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a-2  + p 2  

1 (X ‘3 /Rm) ’  
m2 = (57) 
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Green’s function for Lamb’s problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA113 

K12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4y‘If?(42+P2) sin (4) cos (4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K22 = 4Y’If?((42+P2) sin2(4)-pZ) 

13 = 44Y‘Ia zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘If? cos (4) 
K 2 1  = K l 2  

K23 = 44Y‘Ia ‘If? sin (4) 
K3 1 = 44Y(42 -Pz) cos (4) 
K32 = 4qY(qz-Pz) sin (4) 
K 3 3  = 4~‘1a(q’-~’)* I 

> 

Re { i ~ - ’ ( ~ + 4 ( ~ 3 / ’ 1 a + x ’ 3 / ‘ 1 f ? ) ) - ’  L(q, P, ~ 3 ,  t, ~ ’ 3 ) )  dp. (59) 

In this integral we use relations identical to equations (54) through (57) except that 
the positions of x3 and xr3 are interchanged. The individual terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL follow. 

6. Spatial derivatives of the solutions 

As mentioned in the introduction, there are many situations in seismology where 
we need the spatial derivatives of the Green’s function. For instance, if the Knopoff- 
de Hoop representation theorem (Burridge & Knopoff 1964) is applied to the case 
of a simple shear dislocation in a uniform elastic medium it can be shown that the 
resulting displacement at any point can be written in the form 

where [u,] is the dislocation in displacement which is specified over the surface Z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n, is the unit normal to this surface, and repeated indices imply summation. Note 
that gli ,  k t  indicates partial differentiation with respect to the source co-ordinates 

H 
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114 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Johnson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this section we show that these spatial derivatives of the Green's function can 

be derived in the same manner that the Green's function itself was derived. 
To illustrate the method let us consider the spatial derivatives with respect to the 

source co-ordinates of the solution at the free surface. From equation (35) it is easy 
to see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

gij, k'(X, f; f') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -gij, k(X, f; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf f )  (63) 

so long as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is restricted to the 1 and 2 directions. With this relation we can return 
to equation (17) and differentiate beneath the integral sign to get, for example 

with expressions of a similar form for G ,  2 r  and G ,  3,. From this point on the pro- 
cedure is identical to that followed for the Green's function itself except that an 
extra differentiation with respect to time appears in the answer. The equivalent of 
equation (26) becomes 

~ R e ( ? , o - ' ( ( f / r ) ~ - a ~ ~ - p ~ ) - ~ M , , . ( q , p ,  0, f , x ' , ) }  Fdp 

P2 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 2  

7~ p r  at2 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI H(r-r2) 

0 

and equations (21), (23), and (27) to (30) all apply here. The individual terms 
of M , k ,  and NPkt are listed below. 
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Green’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfunction for Lamb’s problem 

H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 933 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

115 

I , 1 

FIG. 5. The components of Q”(lO,O, 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ;  0, 0,2,0). All components not shown 
are identically zero. For a force of 1 dyne a division on the vertical scale is equal 

to cm. 
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I16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Johnson 

Nij, 3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- q p  Nij. (71) 

With the foregoing formulas the spatial derivatives of the Green's function with 
respect to the source co-ordinates can be obtained with a degree of difficulty that is 
no greater than that required to obtain the Green's function itself. One can think 
of these spatial derivatives as the solution to the problem where the source is a force 
couple with unit moment rather than a simple force. Furthermore, the solution to 
the problem where the source is a double couple without moment can be obtained 
by combining two of the spatial derivatives as indicated in the integral of equation 
(61). 

The solution for a Doint source of dilatation, such as a symmetric exdosion, can 
also be obtained quite easily from the spatial 'derivatives df the Green's function. 
The solution for a unit source of dilatation is 

In the process of combining the spatial derivatives to obtain MA there is a significant 
simplification and the individual terms turn out to be 
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Green’s function for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALamb’s problem 117 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
There are times when we also need the spatial derivatives of the Green’s function 

with respect to the receiver co-ordinates. For the derivatives with respect to x1 and 
x2 the problem is already done because, as indicated by equation (63), in these cases 
the spatial derivative with respect to the receiver co-ordinate is just the negative of 
the spatial derivative with respect to the source co-ordinate. For the spatial derivative 
with respect to x3 the problem is not quite so simple. We must return to equation (13) 
where the value of x3 has not yet been set equal to zero, take the derivative with 
respect to x3 at this point, and then follow through the analysis of Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. The 
net result is that the solution for G, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is identical in form with the solution for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG ,  k’ 

(equation (65)) with M, k and N, replacing M, k, and N, k’. The individual terms of 
these new matrices are given below. 

M11, 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= M31. 1‘ 

M12, 3 = M32, 1’ 

M13, 3 = M33, 1’ 

M21.3 = M12.3 

M22.3 = M32.2’ 

M23, 3 = M33, 1‘ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
LA 

M33.3 = - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtta -P2) A+2p 

N1l ,  3 = N31, 1’ 

N12, 3 = N32, 1’ 

N13, 3 = N33, 1’ 

N21.3 = N12.3 

N22, 3 = N32.2‘ 

N23, 3 = N33.2’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

N33.3 = - A + 2 p  Y(42-P2). 

(79) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/3
7
/1

/9
9
/6

7
8
3
2
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



118 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 3  - 
H 

- 933 

L. R. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJohnson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r I I 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

1 I 
3 4 * t, sec 1 

FIG. 6. The components of @(lo, 0,4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ;  0, 0,2,0) .  All components not shown 
are identically zero. For a force of 1 dyne a division on the vertical scale is equal 

to 10-19cm. 

With the foregoing results for the spatial derivatives of the Green’s function 
with respect to the receiver co-ordinates one can compute the stresses and strains 
at the receiver directly. Also note that because the normal stress on the free surface 
vanishes, the dilatation at the receiver is simply (- 2p/A)g3,, 3(xI, x2, 0, r ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 0, x’~, 0). 

The spatial derivatives of the solution within the half space can also be obtained 
following the procedure outlined in this section. The results can be written as 

G ,  k(X1, XZ, X3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ;  0, 0, X’3, 0) = p, k(x1, XZ, X3, t ,  X‘3) F+S, k(x1, X2r X3, 1, X’,) F 

+pp, k(X1, x2, x3, 2, x’3) F+ss, k(x1, x2, x3, 1, x‘3) 

PS, k(x1, X Z ,  X3, t ,  X’j) F+ SP, k(xI, XZ, X3, 1, X’3) F (82) 
where 

1 a 2  

8npr at2 
s, k(X1, x2, x3, 4 x ’ ~ )  = - - H(t-r/B) E, k(X1, x2, x3, t, x ’ ~ )  (84) 
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Green’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfunction for Lamb’s problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA119 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D ,  1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r/r)[(5(t/r)2-3a-2) sin2(@ co~~(4)-3(( t / r )~-a-~)]  sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) cos ($)I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D I 2 ,  = - (t/r)[(5(t/r)2-3a-2) sin2@) co~~(~)-(( t / r>’-a-~)]  sin (@sin (4) 
D13, = (t/r)[(5(t/r)2-3a-2) sin2(0) c o ~ ~ ( ~ ) - ( ( t / r ) ~ - a - ~ ) ]  cos (0) 

D Z 2 ,  = -(t/r)[(5(t/r)2-3a-2) sin2@) ~in~($)-(( t / r )~-a-~)]  sin (0) cos (4) 
DZ3,  = ( f / r ) (5( f / r ) ’ -  3a-2) sin2(B) cos (0) sin (4) cos (4) 

D21,l = Dl2, 1 

O 3 1 ,  1 = D13,  1 

O 3 2 .  1 = D23,  1 

D 3 3 ,  = - (t/r)[(5(t/r)2-3a-2) cos2(0)-((r/r)2-a-2)] sin (0) cos (4) I’ 

(89) 

Dl l ,  2 = Dl2, 1 

0 1 2 . 2  = D22.1 

D21,2 = D12.2 

D Z 2 ,  = -(t/r)[(5(r/r)2-3a-2) sinZ(@ ~in~(4)-3((t/r)’-a-~)] sin (0) sin (4) 
D23, = (t/r)[(5(t/r)2-3a-2) sin2(e) ~ in~(4)- ( ( t / r )~-a-~) ]  cos (e) 

O 1 3 . 2  = D23,  1 

D31,  2 = O13, 2 

O32.2  = D 2 3 , 2  

(90) 

D 1 2 . 3  = 4 3 . 2  

D j 3 . 3  = D 3 3 . 1  

O 2 2 . 3  = D 2 3 . 2  

O21, 3 = D12, 3 

D 2 3 ,  3 = D 3 3 ,  2 

O31,3 = D 1 3 , 3  

D32,  3 = D23,  3 

’ (91) 

The expressions above yield the spatial derivatives with respect to the receiver 
co-ordinates, and k can be replaced everywhere by k’ to obtain the spatial derivatives 
with respect to the source co-ordinates. All of the definitions and conventions of 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 apply here also, and, aside from the fact that the matrices are different, the 
only difference between the form of the solution in that section and in this one is the 
extra time differentiation that appears in equations (83)-(88). Expressions for the 
new matrix elements are given in the following paragraphs. 

The spatial derivatives of the direct P wave (equation (83)) involve the following 
matrix elements. 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(84) for the spatial derivatives of the direct zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS wave involves the follow- 

ing matrix elements. 

El l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( t / r ) [ ( 5 ( t / r ) 2 - 3 p - 2 )  sin2(8) c 0 ~ ~ ( $ ) - ( 3 ( t / r ) ~ - p - ~ ) ]  sin (0) cos(4) 
E12, = (t/r)[(5(2/r)2-3/?-2) sin2(@ c o ~ ~ ( ~ ) - ( ( t / r ) ~ - ~ ~ ’ ) ]  sin (6) sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 
E 1 3 ,  = - ( t / r ) [ ( 5 ( t / r ) 2 - 3 p - 2 )  sin2(@ cos2(~)-((r/r)2-B-2)] cos (e) 
E 2 1 , l  = E12,l 

E Z 2 ,  = (t/r)[(5(f/r)2-3D-2) sin2(@ ~ i n ~ ( 4 ) - ( ( t / r ) ~ + p - ~ ) ]  sin (0) cos (4) 
~ 2 3 ,  = - (t /r)(s(t/r) ’-  3 p W 2 )  sin2(8) cos (e) sin (4) cos (4) 
E31, 1 = E13, 1 

E 3 2 ,  1 = E23, 1 

E 3 3 ,  = ( t / r ) [ ( 5 ( t / r ) 2 - 3 p - 2 )  cos2(e)-((t/r)2+B-2)] sin (0) cos (4) 

E l l ,  = ( t / r ) [ (5( t / r )2-338-2)  sin2(@ co~~(4) - ( ( t / r )~+ /?-~) ]  sin (0) sin (4)  
E12, = ( t / r ) [ ( 5 ( t / r ) 2 - 3 p - 2 )  sin2(B) sin’(d)-((t/r)’- p-’)] sin (0) cos (4) 
E13, 2 = E 2 3 ,  1 

E21.2 = E l , , ,  

EZ2,  = (t/r)[(5(t/r)’-3p-’) sin2@) ~ in~(Q))- (3( t / r )~-p-~) ]  sin (0) sin (4) 
E 2 3 ,  = - ( t / r ) [ ( 5 ( r / r ) 2 - 3 p - 2 )  sin2(@ sin2(4)-((t/r)2-Q-z)] cos (e) 
E31, 2 = E13, 2 

E32. 2 = E23, 2 

E33, = ( t / r ) [ ( 5 ( t / r ) 2 - 3 p - 2 )  c o ~ ~ ( O ) - ( ( t / r ) ~ + ~ - ~ ) ]  sin (0) sin (4) 

E ~ ~ ,  = - ( t / r ) [ ( s ( t / r ) ’ - 3 ~ - ~ )  sin2(8) c o ~ ~ ( 4 ) - ( ( t / r ) ~ + 8 - ~ ) ]  cos (e) 

~ 1 3 ,  = ( t / r ) [ ( 5 ( t / r ) 2 - 3 ~ - 2 )  co~~(e ) - ( ( t / r )~ -p -~ ) ]  sin (e) cos (4) 
E21, 3 = E n ,  3 

E Z 2 ,  = - ( t / r ) [ (5 ( t / r )2 -3p -2 )  sin2(@ ~ i n ~ ( 4 ) - ( ( t / r ) ~ + p - ~ ) ]  cos (0) 
~ 2 3 ,  = ( t / r ) [ ( ~ ( r / r ) ~ - 3 p - ~ )  cos2(e)-((~/r)2-p8-2)] sin (e) sin (4) 

E12, 3 = E23. 1 

E31, 3 = E13, 3 

E 3 2 ,  3 = E23, 3 

E ~ ~ ,  = - ( t / r ) [ ( 5 ( t / r ) 2 - 3 p - 2 )  cos2(e)-(3(t/r)2- p-71 cos (e) 

(95) 

’ (96) 

(97) 

Eij, 3 p  = -Eij, 3. (1W 

The following matrix elements are required for the spatial derivatives of the 
reflected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPP wave (equation (85)). 
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Green’s function for Lamb’s problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA121 

FIG. 7. The components of OH,i,(lO, 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,r;  0,0,2,0). Allcomponents not shown 
are identically zero. For a couple of 1 dyne-cm a division on the vertical scale is 
equal to 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lo-’* cm and the spike on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg H Z 2 , , .  attains a value of 46.9 x cm. 
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122 L. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Johnson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

For the spatial derivatives of the reflected zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASS wave (equation (86)) we have the 
following matrix elements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

) (107) 

' (108) 

The spatial derivatives of the reflected PS wave (equation (87)) involve the 
following matrix elements. 
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Green's function for Lamb's problem 123 

FIG. 8. The components of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ",2e(10, 0, 0, I; 0,0,2,0). The component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgH,,.,. is 
identical to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgH21,2. and all other components not shown are identically zero. For a 
couple of 1 dyne-cm a division zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the vertical scale is equal to 10-2scm. 
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1 24 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Johnson 

FIG. 9. The components of QH,3.(10, 0, 0, r; 0, 0,2,0). All components not shown 
are identically zero. For a couple of 1 dyne-cm a division on the vertical scale is 
equal to 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX cm and the spike on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg”22,3 ,  attains a value of-94.2 X lO-”cm. 

As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAone might expect the matrix elements for the spatial derivatives of the reflected 
S P  wave (equation (88)) are closely related to those of the PS wave. 

L l l ,  1 = Kl l ,  1 

L12.1 = K12,l 

L21,l = L12.1 

L22,l = K22,l 

L13, 1 = -K31 ,  1 

L23, 1 = -K32,  1 

L31, 1 = -K13,  1 

L32, 1 = -K23,  1 

L33,l = K33, I 

L11,2 = K11.2 

L12.2 = K12,2 

L21,2 = L 1 2 , 2  

L22,2 = K22.2 

L13, 2 = -K31 ,  2 

L23. 2 = - K32, 2 

L31 ,  2 = -K13,  2 

L32. 2 = - K23,  2 

L33.2  = K33,2 
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Green’s function for Lamb’s problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ij. 3 Va Lij 

The solution within the half space for a point source of dilatation can be obtained 
by combining the spatial derivatives of the Green’s function in the same manner as 
in equations (72)-(75). The result is 

and the column matrices D,, I,, and K, have the following elements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I D1A = 2a-’(t/r) sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) cos (4) 

D,, = 2a-’(t/r) sin (0) sin (4) 
D3, = -2a-,(t/r) cos (0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i 
K,, = -4a-’qyqs cos (4) 
K,, = -4a-2qyq, sin (4) 
K3, = -4~r-~y(q’-p~). 
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126 L. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Johnson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1 1 

FIG. 10. The components of Q A H ( l O , O ,  0, t ;  0, 0,2,0).  The component gZAH is 
identically zero. For a unit dilatation a division on the vertical scale is equal to 
2 x crn cm and the spikes on g , A H  and &?,AH attain values of 82.5 x 

and -31.2 x cm, respectively. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Finally, we note that in principle any of the higher-order spatial derivatives of 

the Green’s function can be obtained by following the method outlined in this 
section. In practice the algebra increases at a rather moderate rate, so it would be 
relatively easy to derive a solution such as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,k,,, the strain resulting from a force 
couple. 

7. Numerical results 

All of the Green’s functions and their spatial derivatives which have been pre- 
sented in the preceding sections have been programmed for evaluation on a digital 
computer. In this section we point out some of the more important considerations 
involved in the numerical calculations and then give a few examples of the results. 

With the exception of the portion of the solution arising from the direct P and S 
waves (equations (39) and (40)), all of the Green’s functions of this paper involve an 
integral that must be evaluated by numerical methods. The integrands contain a 
singularity at either zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA((rlr)’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-a-2)* or ( ( r / r )2 -  and, although it is an integrable 
singularity, it can lead to numerical problems. A simple transformation of the 
variable of integration helps avoid this problem. As an example, consider the first 
integral of equation (26) 

( ( t / r ) 2  - a  -2 )1 /2  

1 

Pr 
W a ( X 1 ,  x290, t ;  o,o, X ’ 3 , O )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH(t - r /a )  

x Re { r l .a - ’ ( ( t / r )2 -a-2-p2) - f  M(q, p ,  0, r ,  x’,)) Fdp.  (132) 
The substitution 

puts the above integral in the form 

p = ( ( r / r )2-acc2)*-uz (133) 
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127 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(11 , . - ’ [ 2 ( ( t / r )2 -~ -2 ) -2 -u2 ] - *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM(q, u, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxf3)) F d v  (134) 

which no longer contains a singularity. Note that other transformations such as 

achieve the same effect. 

After transformation into a form such as that of equation (134), the integrals can 
be readily evaluated with standard quadrature methods. We have achieved good 
success with the Romberg scheme but other methods would likely do just as well. 

Another possible source of trouble in the numerical integration is associated 
with the Rayleigh pole (the root of equation (30)) which occupies a position on the 
real axis of the p plane. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor values of 0 near to n/2, which correspond to lateral 
distances large compared to the depths of the source and receiver, the path of integra- 
tion passes very near to this pole and thus encounters fairly large values of the 
integrand. In order to maintain uniform numerical accuracy it is advisable to 
decrease the step size of the numerical integration procedure in the immediate 
vicinity of the Rayleigh pole. 

It is also apparent from the form of the Green’s functions in the previous sections 
that after the integral has been evaluated numerically it must be differentiated with 
respect to time at least once and sometimes twice. These time derivatives can be 
obtained by simple differences, but the numerical accuracy and stability of this 
approach are often unsatisfactory. Fortunately, this numerical differentiation of the 
Green’s function can usually be avoided. 

In most practical problems the desired solution is a combination of several factors 
of which the Green’s function is only one. For instance, if we let S ( t )  be the source 
time function, Z ( t )  be the instrument response, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a/&) W(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx’, t ’ )  be the Green’s 
function, then in a typical seismic problem the displacement on the seismogram can 
be represented in the form 

p = ( ( t / r )2- -a-2)*  sin (u )  (135) 

a 
at 

U ( X ,  t )  = - ~ ( x ,  t ;  x’, t ’ )  @ s(t) @ ~ ( r )  (1 36) 

where the symbol @ denotes convolution in time. In most cases either S ( t )  or Z ( t )  or 
both will be more band-limited in the frequency domain than W(x, t ;  x‘, r ’ ) ,  so from 
the viewpoint of numerical accuracy it is better to write equation (136) in the form 

or 

Often S ( t )  or Z ( t )  is a simple expression which yields to analytic differentiation. The 
most obvious example of this is when S ( t )  is a unit step function and then equation 
(137) is simply 

( 139) 

In other cases S ( t )  or Z ( t )  is specified in the frequency domain and the time differen- 
tiation can be applied as a simple multiplication by frequency before transforming 
back to the time domain. 

U ( X ,  t )  = W(x, r ;  x’, t ’ )  @ r ( t ) .  
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128 L. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. Johnson 

FIG. 11. Synthetic seismograms computed for a site l O h  north of a right-lateral 
point dislocation 2 km deep on a fault striking N30E. The dislocation is a step 
function in time. The seismographs are short-period Benioff systems with 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 
seismometers and 0.2 s galvonometers. For a seismic moment of 14.08 x 10" erg 
(1 mm of dislocation over an area of 0.02 kmz) and instruments having magnifica- 
tions of 25000 at 1 Hz a division on the vertical scale is equal to 1 cm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The case where equation (136) contains two differentiations with respect to time 
can be handled in a similar manner. The two differentiations can be applied to 
either zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ( t )  or I ( ? )  or distributed between them. 

It is obvious that the solution at the free surface (Section 4) is just a special case 
of the solution within the half space (Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5),  and thus could be regarded as 
superfluous. However, for numerical calculations of the solution at the free surface, 
the special solution of Section 4 is much more satisfactory than the more general 
solution of Section 5. This is because several parts of the solution tend to cancel each 
other at the free surface, and in the special solution this cancellation has been 
achieved analytically while in the general solution it must be achieved numerically. 

A total of 144 basic solutions have been presented in this paper, and each of these 
solutions exhibits markedly different behaviour in different azimuth and distance 
ranges. There is no practical way in which all of these results can be depicted in 
graphical form, so only a few representative results will be presented in the remainder 
of this section. 

In Section 2 we adopted the convention that a Green's function is the solution 
resulting from a source which is a delta function in both time and space. However, for 
pedagogical purposes it is better to consider the solution which results from a source 
which is a step function in time, because such a solution contains the permanent 
displacements which are not present in the ordinary Green's function. Thus all of 
the calculations that follow have been performed assuming a source which is a step 
function in time, and to denote this fact the solutions have been given the symbol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G R  in order to distinguish them from the ordinary Green's function G. 

All of the calculations illustrated in Cigs 2-1 1 are for a half space having a com- 
pressional velocity a of 8.00 km s-', a shear velocity b of 4.62 km s-l ,  and a density 
p of 3 + 3 0 g ~ m - ~ .  The solutions were calculated at points separated by 0.01 s in time 
and then linear interpolation was used to obtain continuous time traces. 
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Green’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfunction for Lamb’s problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA129 

In all of the calculations the geometry has been chosen so that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 component 
of the solution is transverse to the line joining the source and receiver. This means 
that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASH wave (the horizontally polarized S wave) should appear exclusively on 
this component, while the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, SV (the component of the S wave orthogonal to SH), 
and Rayleigh waves should appear on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx3 components of the solution. 

It is worth emphasizing that the solutions presented in this paper are complete 
solutions that contain all of the conventional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ far-field phases ’ such as the P, S,  and 
Rayleigh waves, plus the ‘ near-field phases ’ which attenuate with distance at a rate 
greater than the inverse distance to the first power. The fact that the solutions are 
sums of all these phases can be somewhat of a nuisance when it comes to investi- 
gating one particular phase, and in such instances the approximate first-motion 
method of Gilbert & Knopoff (1961) can be very useful. 

The Green’s function at  the free surface (which was derived in Section 4) 
exhibits a strong dependence on the ratio between the horizontal distance and the 
depth of the source. Results are shown in Figs 2, 3 and 4 for three different values 
of this ratio. In Fig. 2 this ratio is small (0.2) and the Green’s function consists 
primarily of direct P and S waves plus the near-field parts of the solution. The 
Rayleigh wave is not apparent. In Fig. 3 the ratio of horizontal distance to source 
depth has a moderate value (5.0). The P and SH waves are much the same as in 
Fig. 2, but the SV wave has become much smaller and now has a delta-like waveform 
rather than the step-like waveform that it had in Fig. 2. A new phase, the diffracted 
S P  wave, now arrives between the P and S waves at a time of 1.6s. The Rayleigh 
wave is now apparent following the S wave and is best developed on the solutions 
resulting from a vertical force, gIsH and g33H. In Fig. 4 we have an example where the 
ratio of horizontal distance to source depth is fairly large (50.0). The direct P wave 
is now quite small and is followed immediately by the more prominent diffracted 
S P  wave. The SH wave is still strong on the transverse component gZZH, but the SV 
wave is little more than a subtle change of slope on the other components. The 
Rayleigh wave is well developed and shows the classical waveform that is associated 
with the far-field Rayleigh wave on a uniform half space. 

Figs 5 and 6 show the Green’s function at two points within the half space (which 
was derived in Section 5 )  which are directly below the point on the free surface for 
which the solution of Fig. 3 was calculated. The presence of the various reflected 
phases accounts for the more complicated appearance of the solution within the 
half space. The fact that the amplitude of the Rayleigh wave decreases as the depth 
of the receiver increases is also apparent in these figures. 

Figs 7 ,8  and 9 show the spatial derivatives with respect to the source co-ordinates 
(which were derived in Section 6) for the solution shown in Fig. 3. These results can 
be thought of as the displacements resulting from a source which is a force couple. 
In calculating these results it was necessary to perform one numerical differentiation 
with respect to time. As one might expect, the solution due to a force couple behaves 
much like the derivative with respect to time of the solution due to a simple force. 
Thus the phases such as P, diffracted S P ,  and SH which have a step-like appearance 
in Fig. 3 take on a delta-like appearance in Figs 7 and 9. And phases such as SV 
which have a delta-like appearance in Fig. 3 look something like a differentiated delta 
function in Figs 7 and 9. Consistent with this generalization is the fact that phases 
which are identically zero in Fig. 3 have a step-like appearance in Fig. 8. Also note 
that while Figs 2-6 all have the same scale factors, Figs 7, 8 and 9 have different and 
varying scale factors. 

Fig. 10 represents the solution at a point on the free surface resulting from a point 
source of dilatation (equation (72)). The solution is dominated by the direct P wave, 
and, in the absence of S waves, the retrograde particle motion of the Rayleigh wave 
becomes fairly obvious. 

Finally, in Fig. 1 1  we show a typical seismological application of the Green’s 
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functions. Assuming that an earthquake can be modelled as a simple point disloca- 
tion, the representation theorem of equation (61) was used to calculate ground dis- 
placements, and these were convolved with the response function of a typical short- 
period seismograph to yield the synthetic seismograms that are shown. The most 
pronounced phase is SH on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEW component, but the P, diffracted SP, SV, and 
Rayleigh phases are also apparent. Using the numbers given in the figure caption 
and an approximate empirical relation between seismic moment and magnitude, the 
synthetic seismograms of Fig. 11 are appropriate for an earthquake with a magnitude 
between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.5 and 2.0 observed at an epicentral distance of 10 km. While the source 
model assumed for the purpose of calculating the results of Fig. 11 was extremely 
simple, it is clear that much more interesting sources that incorporate both finite 
dimensions and a propagation velocity can be handled merely by summing the 
contributions from point dislocations that are distributed in both time and space. 

In many cases the limitation upon the practical application of the results pre- 
sented in this paper will be the amount of computational time that is required. As a 
guideline to this aspect of the problem, the results shown in Fig. 11, which consist of 
three components of displacement calculated at 300 points in time with the local 
error of the integration algorithm set at required about 70 s of computational 
time on a CDC 6400 computer. 
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