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Abstract: Green space is any green infrastructure consisting of vegetation. Green space is linked
with improving mental and physical health, providing opportunities for social interactions and
physical activities, and aiding the environment. The quality of green space refers to the condition
of the green space. Past machine learning-based studies have emphasized that littering, lack of
maintenance, and dirtiness negatively impact the perceived quality of green space. These methods
assess green spaces and their qualities without considering the human perception of green spaces.
Domain-based methods, on the other hand, are labour-intensive, time-consuming, and challenging to
apply to large-scale areas. This research proposes to build, evaluate, and deploy a machine learning
methodology for assessing the quality of green space at a human-perception level using transfer
learning on pre-trained models. The results indicated that the developed models achieved high
scores across six performance metrics: accuracy, precision, recall, F1-score, Cohen’s Kappa, and
Average ROC-AUC. Moreover, the models were evaluated for their file size and inference time to
ensure practical implementation and usage. The research also implemented Grad-CAM as means of
evaluating the learning performance of the models using heat maps. The best-performing model,
ResNet50, achieved 98.98% accuracy, 98.98% precision, 98.98% recall, 99.00% F1-score, a Cohen’s
Kappa score of 0.98, and an Average ROC-AUC of 1.00. The ResNet50 model has a relatively moderate
file size and was the second quickest to predict. Grad-CAM visualizations show that ResNet50 can
precisely identify areas most important for its learning. Finally, the ResNet50 model was deployed on
the Streamlit cloud-based platform as an interactive web application.

Keywords: green space; quality; machine learning; image classification; ResNet50

1. Introduction

Green space is defined as green infrastructure containing vegetated areas, including
grass, lawn, flowers, trees, parks, gardens, and forests [1,2]. Green space plays a vital
role in aspects of daily life. Firstly, green space is associated with humans’ improved
physical and mental health. Secondly, it provides opportunities for social interactions and
encourages physical activities such as walking. Thirdly, green space helps the environment
by improving air quality, increasing urban biodiversity, and assisting in microclimate
regulation [3–7]. Thus, the monitoring, analysis, and evaluation of the quality of green
spaces are critical.

Green space at the human perception level represents how people perceive and ex-
perience green space [8]. The survey conducted by [9] found that the visual appearance
of green space was the most crucial aspect of green space users’ satisfaction. Paper [10]
demonstrated that green space quality tends to serve as a determinant of people’s desire to
utilize green space and the benefits they derive from doing so, which assesses the quality
of green space seen at the human perception level of utmost importance.
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The quality of green space refers to the condition of the green space. It measures how
well the site is maintained and the amenities it provides to make it safe, appealing, and
inviting to visitors [11]. According to the survey by [12], cleanliness, maintenance, quietness,
and safety were the essential qualities of green space. Other studies have confirmed that
cleanliness, maintenance, and safety are the essential qualities of green space [13–16]. There
is convincing evidence that poor, or a lack of, maintenance, such as littering, vandalism
and dirtiness, may negatively affect green space usage. Appearance, concerns about safety,
and the social setting of green space are crucial to its desirability to users [11]. According
to [17], the maintenance of green space is costly and requires hard labour. The maintenance
tasks of green space include removing litter, watering the trees and plants, raking leaves,
removing old and dying trees and plants, and planting new ones. Central Park in New York
City spent approximately 22 million US dollars on staff, maintenance, and other operations
in 2021 [18]. With the advancements in Machine Learning (ML), recent studies proposed
building ML models to analyze and assess green space, which could be used to automate
some of the maintenance or monitoring tasks—saving time and reducing costs and labour
required as a result [19].

One of the most prevalent approaches for evaluating green space is based on remote
sensing data such as the Normalized Difference Vegetation Index (NDVI), which assesses
the quantity of green space on satellite images [5,20]. There would be flaws if this method
were employed to assess the quality of green space. Firstly, remote sensing data are still
incapable of identifying small changes in quality-related variables [21]. Furthermore, satellite
images are low resolution and provide a two-dimensional view of objects’ top surface, which
“may significantly differ from surrounding green space at the eye level” [2,20,22]. Secondly,
as [23] suggested, green space quality is more important than green space quantity to
people’s health. Questionnaires and observations are the other way to assess the quality of
green space. Both approaches are labour-intensive, time-consuming, and challenging to
apply to a vast study area [23]. Hence, this research aims to assess the quality of green space
using a machine learning approach on green space images captured at eye level by building
an image classification model and evaluating its performance to ensure correct classification
capability. Furthermore, this research aims to ensure that the proposed methodology can
be helpful to the public by deploying it as an interactive web application.

Despite the relationship between green space and health being discussed in this paper,
it will only focus on building, evaluating, and deploying a methodology encompassing
image classification models to assess the quality of green space in Kuala Lumpur, Malaysia.

1.1. Research Motivation

As we discussed earlier, the quality of green space is an essential determinant of its
usage. Upon conducting a literature review to explore the existing methods to assess
the quality of green space, we discovered that most of the literature focuses on assessing
the quantity of green space visible within manually collected or street view images using
machine learning. Given the lack of studies conducted to assess the quality of green space,
we proposed conducting a study to assess the quality of green space using machine learning,
specifically, an image classification approach.

1.2. Research Contributions

The main aims of this study are as follows:

• Construct a green space image dataset comprising three classes: contaminated, healthy,
and dried.

• Perform image augmentation techniques to balance the green space image dataset.
• Develop nine image classification models using transfer learning to classify green

space images.
• Evaluate the learning performance of developed models using Grad-CAM.
• Deploy the best-performing image classification model on the Streamlit cloud-based

framework for public use.
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1.3. Section Organization

The organization of the remaining portion of the paper is as follows: Section 2 covers
literature related to green spaces and the traditional and machine learning approaches used
to evaluate their quality, Section 3 presents the proposed methodology and accompanying
discussions, Section 4 displays the results and discussions of the experiments, and finally,
the paper concludes in Section 5.

2. Literature Review

Green spaces are described as the ground that is partially or entirely covered with some
form of vegetation [24]. Green space has the potential to contribute favourably to several of
the most critical urban goals, including social inclusion, health, sustainability, and urban
revitalization. Green space plays a crucial part in the day-to-day lives of residents. Envi-
ronmental improvement through maintaining and expanding green space systems makes
places more aesthetically pleasing and hospitable. It contributes to biodiversity preserva-
tion, promoting inward investment and increasing land values. Green spaces can catalyze
broader communal and economic effects in a way that other neighbourhood facilities or
structures cannot achieve. The fact that parks give free, open, non-discriminatory access
24 h a day, seven days a week and are apparent indicators of the quality of a neighbourhood
were cited as significant aspects of their unique function [25].

Plants can indirectly influence the microbiome of the environment to which humans
are exposed. Humans derive essential health advantages from the gut microbiome by
controlling immunological balance and preventing chronic inflammation [24,26]. There is
compelling evidence that higher accessibility to green space was linked to lower exposure
to air pollution. Decreased exposure to air pollution and high accessibility to green space
has proven to affect the cognitive development of children [24,27] positively. Increased
exposure to green space has shown several physical health benefits, such as reducing the
likelihood of cardiovascular and respiratory diseases in men, improved life expectancy,
restoration of the brain’s cognitive functionality, increased newborn babies’ weight, lower
risk of preterm birth, and higher self-reported health [24,27,28]. In addition, green space is
proven to benefit mental wellbeing by improving mood and self-esteem, reducing stress
levels, and reducing the risk of depression and anxiety [24,27–29].

Green space creates a communal area accessible to all segments of society. It can serve
as the focal point of a community by providing numerous chances for social interaction,
leisure, and recreational purposes. Few studies have shown the direct relationship between
green space and health by improving social interaction [24,25,30]. Gardens can be a place
for people to interact with each other; parks facilitate physical activities and leisure, and
forests can be used for recreational activities. Isolated individuals are typically less healthy
and more susceptible to stress, depression, and cardiovascular disease [30].

According to [31], urban green spaces help the conservation of biodiversity, making
them an essential component of environmental protection. They provide various beneficial
ecosystem services, including moderating climate extremes and reducing pollution by
carbon sequestration. Carbon sequestration is the process of transferring and storing
carbon dioxide in carbon pools [32]. Furthermore, green spaces help the environment by
filtering dust, dirt, soot, smoke and liquid droplets, protecting the ozone layer against the
ultraviolet (UV) radiation, lowering the impact of fierce winds, preventing erosion and
pollution, and having beneficial effects on the natural water cycle, constraining storm-water
runoff, protecting rivers from pollution, and reducing noise. They are necessary for the
long-term sustainability of the environment [25,31]. According to [33], green space has
been proven to help reduce the temperature in parks to lower than that in non-green areas.

2.1. Green Space Quality Analysis Using Traditional Methods

In a study conducted by [34], the authors proposed to find the relationship between the
quality of green space and the frequency and duration of self-reported physical activities
and self-reported stress, mental and physical health. The study surveyed 420 people
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in Aydin, Turkey’s parks and urban greenways. The study considered several quality
factors: the distance to green space, aesthetics, cleanliness, size, maintenance, shaded
areas, lighting, and openness/visibility. The results of the survey were analyzed using
multivariate linear regression. The first finding of this study showed that distance to green
space was negatively correlated to the number of users and frequency of physical activities.
Secondly, cleanliness and maintenance were positively associated with the frequency of
physical activities in green spaces. Finally, the size of green space was associated with
less stress, and open/visible green space was associated with better physical health. In
the research by [35], the authors conducted a study to evaluate the quality of Bucharest’s
green spaces. The study surveyed 51 citizens about the five parks under investigation
using questionnaires with ten questions in the city of Bucharest. The study evaluated
the parks based on the following criterion: green space placement (pollution, distance
from home, and territory expansion), green space use (existence of recreational facilities
and working places), environment (presence of water sources, shades, and space for pets)
and biodiversity (diversity of vegetation and bird species). The weight of each criterion
was determined using the Analytic Hierarchy Process (AHP) method. Each criterion
was assessed using a five-point Likert scale. The study’s initial findings showed that the
five parks evaluated in this study were polluted to some extent. Two parks were in the
city centre, making them reachable. However, only three of the parks had the freedom
to expand their territory. Subsequently, all the parks offered recreational facilities and
working places within their territory. Furthermore, a water source and special pet space
were available in all the parks. However, only two parks offered areas covered with trees
(shaded areas). Finally, the species and habitats were not diverse in the assessed parks. The
author conducted a study to evaluate the aesthetic quality of green space while considering
a human multi-sensory perspective and presented a systematic way to capture green space
images to estimate near-view scenic beauty. The study surveyed a random selection of
178 people by using photo panels and a questionnaire at different sites in the Hangzhou
Flower Garden in Hangzhou City, China. The study considered the following criteria for
assessing the aesthetic quality of green space: visual, auditory, tactile, and olfactory. The
study took the quantitative holistic approach to assess the landscape aesthetic. The authors
captured 420 photos of bonsais and flowers and grouped them into panels with 12 photos
per panel. The garden visitors were shown panels at the sites where the photos were taken.
Then, they were asked to rank the 12 photos on a scale of 1–10 on their ability to represent
the site. Subsequently, the five best-representing photos were selected from each panel
and randomly assigned to 14 panels with 12 photos per panel. The 14 photo panels were
randomly shown to the respondents, who were asked to rank ten photos in each panel
from best to worst in terms of visual quality. The study’s findings demonstrated that scenic
beauty could offer an environment for relaxation for garden users. In addition, the findings
showed that green space offered various aesthetic qualities, such as: auditory, olfactory,
tactile, and visual. Firstly, green space provided auditory diversity, which is not offered in
urban environments. Secondly, green space offered natural fragrances, which respondents
admired. Thirdly, respondents appreciated some elements of the green space more when
they touched them due to their tactile qualities. Finally, a defined way of taking, selecting,
and presenting photos in a panel could eliminate bias and professional inability. In a recent
study conducted by [12] to analyze the association between different features of green space
and perception of green space qualities using the results of a survey and GIS-based spatial
metrics. The study surveyed respondents in the form of an online and on-site questionnaire
to assess the perceived importance of green space qualities in Brussels between 2015 and
2016. The survey yielded 371 responses, of which 349 were complete and valid. The green
space types studied in this paper were 19th-century formal green spaces, public areas of
housing projects, gardens, and spaces for community activities. The study considered
nature and biodiversity, quietness, historical and cultural value, spaciousness, facilities,
cleanliness and maintenance, and safety as quality factors under study. The survey results
showed that cleanliness and maintenance, quietness, and safety are perceived as the most



Sustainability 2023, 15, 7782 5 of 25

important qualities of green space, followed by adequate facilities and spaciousness. The
research by [36] examined neighborhood residents’ perceptions of the quality and useful
purposes of green spaces concerning neighborhood satisfaction and wellbeing. The study
surveyed two neighborhoods (De Hoogte and Corpus-Noord) in Groningen, Netherlands,
using a paper-mailed questionnaire in June 2014. Out of the 2750 questionnaires distributed,
only 276 were returned, and 223 were completed. The survey results were analyzed using
statistical, mediation, and linear regression methods. The 95% confidence interval was
calculated using the Monte Carlo method. The quality factors studied in this paper were
recreational facilities, amenities for a picnic, good natural features, the absence of litter,
easy accessibility, and maintenance. The study results showed that residents with easy
accessibility and usable green space were more content with their neighborhood. A study
by [37] aimed to address the limitations of existing methods for assessing street greenery,
such as questionnaires and field audits. The study aimed to use Google Street View (GSV)
images to assess street greenery’s eye-level quantity and quality. The study focused on
the street greenery and evaluated the greenery, absence of litter, maintenance, and general
condition by using a five-point scale. The data collection method was GSV images and field
observation by a trained researcher. The study included a total of 240 streets in Hong Kong,
China. The results indicated that the average quality of street greenery is 3.21 on a scale
out of 5, indicating a relatively high quality. Furthermore, the findings showed that the
quality of street greenery was linked to higher levels of physical activity in green spaces.
The paper by [3] addresses the scarcity of existing multi-dimensional quality assessment
tools for urban green spaces by developing and implementing the RECITAL tool. The
study’s objective was to assess the quality of green space and evaluate the reliability and
internal consistency of the tool. The study focused on municipalities and urban areas. The
quality factors assessed included surroundings, access, facilities, amenities, aesthetics and
attractions, incivilities, potential usage, land covers, and animal and bird biodiversity. The
study was conducted in Barcelona, Spain, where eight technicians conducted fieldwork,
visiting between three and five green spaces per day, and completed a questionnaire for each
space using the RECITAL tool. The study results showed that the tool was reliable, with
an overall intraclass correlation coefficient (ICC) of 0.84, indicating a good reliability. The
paper by [38] presented a study to create a tool to evaluate the quality of local green spaces
known as “neighbourhood” green spaces. The study recognized that the current techniques
for evaluating the quality of green spaces may not be suitable for smaller, local green spaces
because these areas had different functions compared to the larger green spaces that people
visit. The study’s objective is to create a straightforward method to analyze and evaluate
the quality of local green spaces, referred to as “neighbourhood” green spaces. The study
focuses on neighborhood green spaces, and the quality factors assessed were appearance,
maintenance, and the quality of various features. The data collection method used in
the study was a survey conducted in Stoke-on-Trent, in the United Kingdom. The study
was divided into three phases: phase 1 included four focus groups with 35 adults to gain
opinions about local green space, phase 2 included a survey using a five-point scale on
635 adults to determine the appropriate weighting for various domain factors based on their
relative significance, followed by testing for feasibility and reliability, and phase 3 included
two researchers separately evaluating 28 local green spaces that met the established criteria
for inclusion in the study. The study results showed that, according to survey participants,
incivilities such as litter, dog waste, and vandalism were consistently deemed the most
critical factors in determining the use of green spaces. The study by [39] aimed to analyze
the relationship between physical activity and the access to high-quality urban green spaces.
The study was conducted in Norwich, England and collected data from a questionnaire
on self-reported physical activity levels of 4950 residents. The quality factors assessed
included accessibility, maintenance, recreational facilities, amenity provision, signage and
lighting, landscape, usage, and atmosphere. The study used multiple regression models to
determine the relationship but found a lack of clear connections between leisure activities
and green spaces. The paper by [40] aimed to investigate the relationship between the
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quality of green spaces and prosocial behavior in children over time. The study focused
on the quality of green spaces such as parks, playgrounds, and play spaces and assessed
the quality factor of availability using a questionnaire and a Likert scale. The study’s
results showed that the quality of green spaces had a positive relationship with prosocial
behavior in children. This research addressed the lack of conclusive evidence regarding the
connection between neighborhood green spaces and prosocial behavior in children.

Table 1 summarises the literature review, outlining the type of green space studied,
the quality factors assessed, and the method of assessment of the said quality factor.

Table 1. Summary of the literature review on Green Space Quality Analysis using traditional methods.

Paper Green Space Type Quality Factors Assessed Method of Assessment

[41] Bonsais and flowers Aesthetic quality Quantitative holistic
technique

[39] Green space
Accessibility, maintenance, recreational facilities,

amenity provision, signage and lighting,
landscape, usage, and atmosphere.

Regression models

[12] Green space, public areas
Nature and biodiversity, quietness, historical and

cultural value, spaciousness, facilities,
cleanliness and maintenance, safety.

Perception of green space
users

[3] Municipality and urban areas

Surroundings, access, facilities, amenities,
aesthetics and attractions, incivilities, potential

usage, land covers, animal biodiversity and
birds’ biodiversity.

Five-point Likert scale

[36] Neighborhood
Recreation facilities, amenities for a picnic,

natural features, absence of incivilities,
accessibility, maintenance.

Statistical analyses

[38] Neighborhood Appearance, maintenance, and the presence of
quality of various features -

[35] Park Green space placement, green space use,
environment, biodiversity Five-point Likert scale

[40] Park, playground Availability Likert scale

[34] Park, urban greenway
Distance to green space, aesthetic, cleanliness,
largeness, maintenance, shaded areas, lights,

openness/visibility

Series of multivariate linear
regression analyses

[37] Street Greenery, absence of litter, maintenance, general
condition Five-point Likert scale

2.2. Green Space Quality Analysis Using Machine Learning

A study by [22] presented a novel methodology for classifying urban green spaces
using a two-level system. The study aimed to improve upon existing methods for quan-
tifying vegetation, such as NDVI, which lacked the resolution to detect smaller details
like the presence of trash. The study’s objective was to classify the land’s health level and
the presence of contamination in the green space. The quality factors used in the study
were “Healthy”, “Healthy Contaminated”, “Dry”, “Dry Contaminated” “Unhealthy”, “Un-
healthy Contaminated”, “No Vegetation”, and “No Vegetation Contaminated”. The data
for the study was collected using a DJI Phantom 4 drone, which captured 9901 aerial
images from parks, university campuses, suburban neighbourhoods, and forested areas.
The images were taken from ground level at 20–30 m. There were 9001 images used for
training, and 901 images were used for testing. The study’s authors designed their deep
neural network consisting of a convolutional neural network for extracting features from
the images and a multilayer perceptron acting as a classifier. The performance metrics used
were accuracy, precision, recall, and an F1-score. The study results showed that the test
accuracy, precision, and recall was 72%, while the F1-score was 71%. The research by [8]
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aimed to develop a system for assessing the quality of urban street-level greenery using
street-view images and deep learning. The key limitation with the existing methods, such
as satellite and aerial imagery, was that they accurately quantified large-scale greenery but
were weak at showing street-level greenery, including contours and features of ground
plants. This research aimed to create a method for calculating and displaying the amount of
visible greenery in urban areas at the street level. The researchers introduced the Panoramic
View Green View Index (PVGVI) to do this. The research focused on parks and gardens,
and assessed the quality factors like the visibility of greenery. The data source used in
this research was the Cityscapes dataset, which contained recorded videos of streets from
50 different cities to benchmark the performance of their proposed method. Google Street
View images were used to apply their proposed method to the study area. A total of
24,920 Google Street View images (1000 × 1000 pixels) were used in the study, which was
conducted in Suita, Osaka, Japan. The algorithm used in this research was DeepLabV3+.
The performance of the proposed method was evaluated using the mean intersection over
union (mIoU), the root-mean-square error (RMSE), and the mean absolute error (MAE).
The research results showed that the proposed method achieved an mIoU of 78.37%, an
RMSE of 2.75%, and an MAE of 2.28%. The study by [23] presented a new machine-learning
approach for evaluating the quality of street green space using street view images from
Guangzhou, China. The study aimed to address the limitations of the current research
methods for assessing green space quality, which was labour-intensive and time-consuming.
Two thousand images were randomly selected for training purposes and were scored based
on a 10-point scale of quality attributes by trained investigators. A random forest model
was trained to automatically rate the images based on the proportion of 151 elements in the
image segmentations. Two validation methods were used to evaluate the performance of
the model, first the comparison of the automated scores with manually assessed images,
and second by physical visits to residential neighbourhoods by three observers. The meth-
ods showed good consistency, whereby a Pearson correlation of more than 0.90 and an
agreement percentage of over 85% was achieved. The study by [42] aimed to address the
problem of urban planning practices overlooking the accessibility and visibility of street
greenery. The study proposed to use Google Street View images to quantify street greenery
and evaluated the discrepancy between visible greenery and street accessibility using space
syntax. The study also evaluated the similarity between street greenery measurements,
including visible and accessible greenery, and urban green cover obtained from satellite
images. The study was conducted in Singapore using Google Street View images, a support
vector machine (SVM) algorithm, and the scoring method of two urban planning experts to
evaluate the results. Comparing the judgements of experts and the SVM showed a high
level of accuracy with Cohen’s Kappa coefficient values of 0.910 and 0.925. The study
authored by [43], aimed to investigate the relationship between urban greenery and the
time spent walking by pedestrians. The study specifically looked at the Green View Index
(GVI), which measures the visibility of greenery from a specific position in neighbourhood
streets. The study used a fully convolutional neural network for semantic segmentation
(FCN-8s) to segment Google Street View (GSV) images, which were then used to calculate
GVI. The model was trained on the Cityscapes dataset, with 22,973 images for training and
500 for validation. The study found that the model had a validation accuracy of 84.56%.
The study by [44] examined the association between exposure to green and blue spaces in
residential areas and geriatric depression in Beijing, China. The study aimed to address
a gap in the knowledge about the relationship between the access to green and blue spaces
and mental health in non-Western countries and the limitations of current methods for
measuring exposure to these spaces. The study used deep learning techniques, specifically
a fully convolutional neural network (FCN-8s), to segment street view images and compare
the data to satellite imagery. The study trained the model using the ADE20K labelled image
dataset and achieved a training accuracy of 81.4% and a test accuracy of 76.8%. In the
study authored by [45], the problem addressed was that informal green spaces in urban
areas, such as those used for recreation and forestry, are often small and not easily detected
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through aerial surveys. As a result, these spaces were often overlooked by government
and city planners during surveys and planning. The study’s main objective was to test the
feasibility of using machine learning to detect informal green spaces in Google Street View
photos by applying the method in the study area of Ichikawa, Japan and Ho Chi Minh
City, Vietnam. The study used 24,553 Green Space View panoramic images from Ichikawa,
Japan and Ho Chi Minh, Vietnam, and 1000 manually labelled pictures were used to train
the model. The DeepLabV3+ model was employed to classify and detect green areas in
the GSV images, and the model’s accuracy was 65%. The paper by [46] aimed to develop
models that could predict the health of turf grass from aerial images as a solution to the
limitations of visual examination, which may be subjective and influenced by personal
biases. The study used 187 images, collected using a camera mounted on an unmanned
aerial vehicle (UAV), and the quality factors evaluated were hue, texture, colour, leaf blade
width, and uniformity. Three deep learning models were used for the prediction, AlexNet,
GoogleNet, and Inception-V3. The performance was measured using accuracy and loss,
and the results showed that Inception-V3 had the highest average accuracy of 73.35% and
the lowest loss of 40.25%. The paper by [47] aimed to address the challenge of measuring
the relationship between people’s perceptions of the built environment and their health.
The study focused on green space in the form of streets and the quality factors of nature
quality, beauty, relaxation, and safety. The researchers used a dataset called PlacePulse 2.0,
which contained 1.1 million images, and applied a SIAMESE CNN network. The results
showed an average accuracy of 70.53%. The study by [2] focused on developing a natural
language processing (NLP) application and text mining tool to evaluate the quality of urban
green spaces. The data source used in the study contained 16,613 TripAdvisor reviews of
St. Stephen’s Green Park in Dublin, Ireland. The model used was a support vector machine
(SVM). The performance of the model was measured using the area under the curve (AUC),
precision, recall, and an F1-score, which showed a high performance with an AUC of 97.2%,
a precision of 97.1%, a recall of 99.7%, and an F1-score of 98.3%.

Table 2 summarises the literature review, outlining the quality factors assessed by
previous research, best-performing machine learning (ML) models, and their respective
performance results.

Table 2. Summary of literature review on Green Space Quality Analysis using ML.

Paper Green Space Type Quality Factors Assessed ML Model Results

[45] Forest, park, cityscape - DeepLabV3+ Accuracy: 65%

[2] Park - SVM AUC: 97.2%, precision: 97.1%,
recall: 99.7%, F1-score: 98.3%

[8] Park, garden Visibility of greenery DeepLabV3+ mIoU: 78.37%, RMSE: 2.75%,
MAE: 2.28%

[23] Street

Accessibility, maintenance, variation,
naturalness, colorfulness, clear

arrangement, shelter, absence of litter,
safety, general impression

Random Forest Pearson’s correlation
coefficient: 0.90

[42] Street Pedestrian and commuting accessibility,
street greenery SVM Cohen’s Kappa coefficient:

0.925

[43] Street Visibility of greenery FCN-8s Accuracy: 84.56%

[44] Street - FCN-8s Accuracy: 76.8%

[47] Street Nature quality, beauty, relaxation, safety CNN Accuracy: 70.53%

[22] Terrain Health, contamination Deep Neural Network Accuracy: 72%, precision: 72%,
recall: 72%, F1-score: 71%

[46] Turfgrass Hue, texture, color, leaf blade width,
uniformity Inception-V3 Accuracy: 73.35%, loss: 40.25%
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Based on the summary of literature shown in Table 1, most past literature assessed the
aesthetic qualities of green space using traditional methods. On the other hand, machine
learning-based approaches assessed the quantity of visible green space, as presented in
Table 2. Therefore, we proposed to assess green space’s visual (aesthetic) quality using
machine learning models in this research.

3. Methodology

The cross-industry standard process for data mining (CRISP-DM) is an iterative pro-
cess model often depicted as a lifecycle model of projects [48,49]. This research adopted
CRISP-DM as its methodology, as shown in Figure 1. First and foremost, the research
problem was deduced from reviewing and analyzing past literature. Following that, the
green space images were collected to be used as input to train the image classification
models to address the problem determined. The performance of the trained models were
evaluated using performance metrics such as accuracy, precision, recall and an F1-score.
Finally, the best-performing model was be deployed as an interactive web application.

Figure 1. Flowchart of proposed methodology of this research.

Although CRISP-DM is a methodology commonly used with data mining projects, we
used it for this research as it contains phases that coincide with the tasks we performed to
carry out this research. Table 3 presents the tasks performed in each phase of the CRISP-DM
methodology [50]. The particular tasks carried out in this research are discussed starting
from Section 3.1.

Table 3. Description of each phase of the CRISP-DM Methodology.

Phase Description

Business Understanding
The project objectives and requirements are defined in this stage, and a preliminary plan is developed
to address the business problem. This stage involves understanding the goals and objectives of the

project and how the data mining solution will be used to solve the business problem.

Data Understanding
In this stage, data sources are identified, and data is collected, explored, and described. This stage

involves getting familiar with the available data, its quality, and its limitations, and identifying any
data issues that need to be addressed.

Data Preparation
Data is cleansed, transformed, and pre-processed in this stage to prepare for modeling. This stage

involves selecting the relevant data, creating new variables, handling missing values, and addressing
other data quality issues.

Modelling
In this stage, various modeling techniques are applied to the prepared data. This stage involves
selecting and applying appropriate modeling techniques, evaluating model performance, and

selecting the best model.

Evaluation
In this stage, the model is evaluated to determine whether it meets the business objectives. This stage

involves assessing the model’s performance, comparing it to other models, and assessing its
generalizability and applicability.

Deployment In this stage, the model is deployed into a production environment. This stage involves
implementing the model, monitoring its performance, and making necessary adjustments.
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3.1. Description of Dataset

The green space images of Kuala Lumpur, Malaysia, were captured in July and August
2022. The location has a mean annual temperature of 25.8 ◦C and an annual precipitation
of 2981 mm. The images were captured using the rear camera of the Apple iPhone XR. The
specific configuration settings of the capture device and their purpose is shown in Table A1.
Initially, the image dataset contained a total of 944 images of green space split into three
different classes: Healthy, Dried, and Contaminated. The Healthy class contained images
of green space in excellent condition that showed no signs of drying and no litter in its
vicinity. The Dried class contained green space images that showed signs of dryness, and
the Contaminated class contained green space images with litter in their vicinity. Figure 2
shows a sample of images from each class in the green space image dataset. The image
dataset and codes can be found at: https://github.com/jaloliddin-rus/gsqualityanalysis
(accessed on 15 February 2023).

Figure 2. Sample images from the green space image dataset.

3.2. Exploratory Data Analysis

Figure 3 shows a bar chart of the initial number of images for each class in the green
space image dataset. The exploratory data analysis indicated that the proportion of Dried
and Contaminated images was less than the Healthy images. Due to the tropical rainforest
conditions of Malaysia, it was more difficult to find green spaces that belonged to the Dried
class than the Healthy class. Hence, the imbalance between classes.

https://github.com/jaloliddin-rus/gsqualityanalysis
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Figure 3. Bar chart of class balance pre-augmentation.

3.3. Data Pre-Processing

As shown in Figure 3, the Dried class had fewer images than the Healthy and Con-
taminated classes. Using the Albumentations library (version: 1.2.1) within the Jupyter
Notebook, image augmentation was carried out to increase the number of images in the
Dried and Contaminated classes to balance the number of images in each class to reduce
the likelihood of bias and overfitting [51]. The images were augmented using transfor-
mation techniques presented in Table 4 with a 50% probability (p = 0.5) of applying the
transformation.

Table 4. Image augmentation transformation applied.

Transformation
Technique Parameter Description

HorizontalFlip p = 0.5 Flips the supplied image horizontally.
RandomBrightnessContrast p = 0.5 Randomly alters the brightness and contrast of the image supplied.
RandomRotate90 p = 0.5 Randomly rotates the image supplied by 90 degrees zero or more times.

CLAHE p = 0.5 Applies Contrast Limited Adaptive Histogram Equalisation (CLAHE) to
the image, enhancing an image’s or video’s visibility level [52].

Figure 4 presents a bar chart of the number of each green space image per class after
performing image augmentation. As shown in Figure 4, the number of images per class
is similar.

Figure 4. Bar chart of class balance post-augmentation.
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3.4. Model Training

The total number of images in the dataset post-image augmentation was 986. The
image dataset was split into 70% training and 20% testing, and 10% validation data. The
distribution of the green space images dataset is presented in Table 5. Before training
the models, the green space images were resized to 224 × 224 pixels, the input size for
all the models. The resizing is performed to lower the computational cost and does not
significantly impact the models’ accuracy [53].

Table 5. Dataset distribution for model training.

Dataset Features Value

Total observations 986
Total training data 710

Total validation data 78
Total testing data 197

Number of classes 3

A transfer learning strategy was utilized for this research, and the following ImageNet
weights were employed to train the models: ResNet50, ResNet101, DenseNet201, VGG-16,
VGG-19, XCeption, MobileNet, InceptionResNetV2 and EfficientNetB7. Table 6 summarises
the relevant hyperparameters set during model training. All algorithms and models were
developed and implemented using the deep learning framework TensorFlow 2.9.0 with
Keras API. The Categorical Cross-entropy loss function was used to train the model to
measure its efficacy based on the probability of the truth. In addition, an Adam optimizer
with a learning rate of 0.001 was utilized to minimize the loss function. We implemented an
Early Stopping algorithm based on validation accuracy to ensure the model performance
improved with each epoch. EarlyStopping would stop the training after four epochs of
no improvement in validation accuracy. In addition, we utilized ReduceLROnPlateau,
which decreased the learning rate if the validation accuracy was not improving after
two epochs with no improvement. We used validation accuracy as a metric to monitor
the two regularisation algorithms, as validation accuracy is calculated in each epoch
from the dataset aside from the training dataset. The regularisation algorithms check the
performance of the model after each epoch. Therefore, it is best to check the performance of
a metric which is calculated in each epoch. A dense layer was built using SoftMax activation
in the preceding layers to provide probability distributions for the Healthy, Dried, and
Contaminated classes.

Table 6. Training hyperparameters.

Parameter Value

Data split Training: 70%, Testing: 20%, Validation Split: 10%
Image size 224 × 224 × 3
Weight ImageNet
Epochs 50
Batch size 32
Optimization algorithm Adam (learning rate: 0.001)

Regularization algorithm ReduceLROnPlateau (patience: 2, factor: 0.1), Early
Stopping (patience: 4)

Loss function Categorical Cross-entropy

3.5. Transfer Learning

Transfer learning (TL) employs prior knowledge acquired from a source domain and
task to enhance the performance of a model for a “similar” target domain and task, as
contrasted to training just on the target domain and task from random initialization. While
TL approaches are advantageous in many learning contexts, they excel when sufficient
training data are unavailable in the target domain. However, equivalent source data may
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be acquired from knowledge about the target domain. Therefore, TL allows for improved
performance with fewer training data and trained models without retraining. For instance,
it has been demonstrated that large datasets produce the best results, but large datasets
take a long to obtain and are labour-intensive. Using prior knowledge from synthetic,
augmented, or other captured training datasets, TL may enable equivalent performance
with fewer captured training datasets [54].

3.6. Classification Models

CNN is mainly used for image classification as it can extract features by combining
convolutional and pooling layers accompanied by fully connected layers and a SoftMax
layer. The number of layers of the CNN dictates the ability to extract features, and the
lower number of layers means a weaker ability to learn complex features [55,56].

Residual Network (ResNet) is a CNN-based model proposed by Kaiming He in 2015.
ResNet50 and ResNet101 only differ by the number of layers they contain. As the name
suggests, ResNet50 has 50 layers, whereas ResNet101 contains 101 layers. ResNet comprises
convolutional, max pooling, average pooling, fully connected and SoftMax layers. ResNet
model skips layers to ensure the gradient in the previous layer’s performance does not
reduce [57]. As CNN models tend to overfit when they go deeper in terms of layers,
ResNet’s architecture allows it to retain its performance regardless of the depth of the
layers [58].

DenseNet201 contains 201 deep layers within its structure. As the name suggests,
it features dense connections so that the ith layer comprises i connections rather than
a single connection from the preceding layer, as in a conventional feed-forward network.
As a result, it eliminates the vanishing gradient problem, promotes feature propagation,
enhances feature reuse, and considerably decreases the number of parameters [59].

The VGG-16 model achieved 92.77% accuracy with the ImageNet database consisting
of fourteen million images and one thousand classes. VGG-16 is a CNN comprising
16 layers [60]. In addition, the VGG-16 has an input image size of 224 × 224 and consists
of 13 convolutional layers and three fully connected layers, followed by max pooling
and SoftMax [61]. VGG-19 is a modified version of VGG-16 which consists of 19 layers,
including 16 convolutional layers, two fully connected layers, a single classification layer,
and five max-pooling layers [62].

XCeption is short for extreme Inception [59]. It is an improvement over the traditional
Inception model. Furthermore, it includes thirty-six convolutional layers and is the foun-
dation for the feature extraction block. A residual network separates the convolutional
layers and connects them [63]. The XCeption model implemented depth-wise separable
convolution, which can significantly lower the cost of the convolution process [64].

MobileNet is an efficient CNN model for mobile and embedded systems, and it is
a depthwise separable convolution model emphasizing reducing latency. Furthermore, it is
a small network [59].

InceptionResNetV2 is a 164-layer CNN based on InceptionV3 and ResNet [65]. Resid-
ual connection is used because it eliminates degradation problems during deep structure
and provides precise feature information such as texture, size, color, and placement. Multi-
ple convolutions, pooling layers, and all feature maps that are concatenated into a single
vector in the output section comprise the inception module. Typically, the module’s filter
sizes are 5 × 5, 3 × 3, and 1 × 1 for extracting local and global features from input im-
ages. ResNet is recognized for its shortcut connection, which efficiently summarizes the
characteristics of the previous and subsequent layers [66].

EfficientNet is a pre-trained CNN-based model. It consists of eight variants, ranging
from B0 to B7, with the higher the number, the greater the number of parameters. It
comprises a minimal number of parameters to maintain accuracy. By consistently scaling
and balancing the three parameters of neural network depth, width, and resolution, the
EfficientNet model is typically more efficient and accurate than other CNN. It scales up to
deep block layers instead of building a new CNN model from scratch [67].
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Table 7 shows the comparison between the classification models used in this study in
terms of the number of layers, a rough estimate of the time taken to predict (using an image
size of 224 × 224 and a batch size of 1), model file size, presence of skip connections, and
architectural complexity.

Table 7. Comparison between classification models used in this study.

Model Depth
(no. of Layers)

Time Taken to
Predict (ms) Model File Size Skip Connections Architectural

Complexity

MobileNet 27 1–2 Small Yes Simple
XCeption 71 3–4 Small Yes Simple
DenseNet201 201 10–11 Small Yes Complex
ResNet50 50 2–3 Medium Yes Simple
ResNet101 101 7–8 Medium Yes Complex
InceptionResNetV2 164 8–9 Medium Yes Complex
VGG-16 16 5–6 Large No Simple
VGG-19 19 6–7 Large No Simple
EfficientNetB7 813 25–30 Large Yes Complex

3.7. Evaluation Metrics

Evaluation metrics are used to assess the performance of the machine learning models.
There are four categories in the evaluation metric to compare the actual result and predicted
result: False Negative (FN), False Positive (FP), True Negative (TN), and True Positive (TP).
Numerous evaluation metrics can be used to assess the performance of machine learning
models [57]. This research uses the following four evaluation metrics: accuracy, precision,
recall, and the F1-Score.

Accuracy measures all cases that correctly classified observations against total obser-
vations [57]. The accuracy of classification is determined using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision measures the number of cases in the positive observations predicted correctly
against the total observations [57].

Precision =
TP

TP + FP
(2)

Recall measures the number of cases of correctly predicted positive observations
against all observations in the actual class [57].

Recall =
TP

TP + FN
(3)

The F1-Score shows the weighted average value of precision and recall providing
values that cannot be classified by accuracy. It takes both false positives and false negatives
into account [57].

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

Cohen’s Kappa is employed in classification to evaluate the level of agreement between
observed and predicted classes. Cohen’s Kappa score of 0 implies complete disagreement,
whereas a score of 1 depicts total agreement [68].

K = 1 − 1 − P0

1 − Pe
(5)

The ROC curve shows how well a binary classifier can predict outcomes at different
threshold values. The AUC measures the classifier’s overall performance across all possible
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thresholds, with a score of 1 indicating perfect accuracy and 0 indicating complete inac-
curacy. The AUC determines the likelihood of the model performing better than random
chance [69].

Gradient-weighted class activation mapping (Grad-CAM) provides an assessment
and illustration. Grad-CAM utilizes the gradients of a given target concept to produce
a rough localization map that accentuates significant areas for image classification [70].

3.8. Deployment

An interactive web application was developed to deploy the trained CNN model to
assess the quality of green space. It was developed to facilitate the immediate usage of
CNN models in practical applications. The interactive web application was developed
using Python programming language and Streamlit syntax on PyCharm and deployed
on Streamlit for public use. Streamlit is an open-source Python-based framework for
developing web applications for machine learning and data science [71]. The interactive
web application works on mobile phones and computers. The interactive online application
enables the user to either capture an image using the mobile phone’s camera or select an
image from the device’s storage. The interactive web application feeds the image to the
CNN model, which then classifies the image. Accordingly, the user gets prompted with the
classification result and suggests an action be taken based on the classification result.

3.9. Tools

The computer’s hardware configuration employed to train the machine learning
models is shown in Table 8.

Table 8. Hardware configuration.

Component Brand and Model

Operating System (OS) Windows 10 Professional Edition (Version 21H2,
Build 19044.1826)

Central Processing Unit (CPU) AMD Ryzen 7 5800X
Graphical Processing Unit (GPU) Nvidia GTX 1080 Ti 11GB GDDR5
Random Access Memory (RAM) 32GB @ 3800 MHz

The models were developed by coding using the Python (version: 3.7) programming
language on a Jupyter Notebook (version: 6.4.12) using the Anaconda environment (version:
2.0.3). Furthermore, the models were trained using the TensorFlow library (version 2.9.0),
CUDA Toolkit (version 11.2) and CUDA Deep Neural Network (cuDNN) (version 8.1.0).,
This research used Streamlit (version 1.11.1) and JetBrains PyCharm (version: 2022.1.3) to
deploy the interactive web application. Mendeley (version: 1.19.8) was used as a reference
manager to maintain the references used in this research.

4. Results and Discussion

This section gives the results of several experiments on the green space image dataset
with nine transfer learning networks, namely, DenseNet201, EfficientNetB7, Inception-
ResNetV2, MobileNet, ResNet50, ResNet101, VGG-16, VGG-19, and XCeption. First, we
evaluated the performance of these models using the performance metrics discussed in
Section 3.7. Following, we compared the inference time and file size of the models to assist
us in choosing the overall best-performing model for deployment. Finally, we discussed the
details of the deployment stage and the challenges and limitations we faced in this research.

All the models in this study were developed using the same hyperparameters as
shown in Table 6. The accuracy metric results are presented in Figure 5, showing that
EfficientNetB7 had the highest accuracy among all the models. However, the difference
between EfficientNetB7, ResNet101, and VGG-19 was minimal. Therefore, we evaluated
the models using other performance metrics mentioned in Section 3.7.
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Figure 5. Bar chart of accuracy metric of models.

Table 9 shows the evaluation of all the models using the performance metrics. The
results showed that all the models that were developed had performed exceptionally. Even
the model with the lowest accuracy, XCeption, achieved an accuracy of 92.13%. Despite
the small margin of difference between the results, EfficientNetB7 was the best-performing
model as it achieved the highest values in the evaluation process. It achieved accuracy,
recall, precision, and an F1-Score of 99.75%, Cohen’s Kappa score of 1.00, and ROC-AUC of
1.00. As discussed in Section 3.7, Cohen’s Kappa score and the ROC-AUC of 1.00 translated
to the model being a perfect classifier. However, we did not conclude that EfficientNetB7
was the model to be deployed as we evaluated the models regarding inference time and
file size. These were critical factors to consider before deployment, as they could affect the
user experience and performance of the device.

Table 9. Performance metrics of models.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Kappa ROC-AUC

XCeption 92.13 92.13 92.13 92.12 0.88 0.98
InceptionResNetV2 94.92 94.96 94.92 94.93 0.92 1.00
VGG-16 95.43 95.43 95.43 95.43 0.93 0.99
MobileNet 95.69 95.81 95.69 95.70 0.94 0.99
DenseNet201 98.22 98.24 98.22 98.23 0.97 1.00
ResNet50 98.98 99.00 98.98 98.98 0.98 1.00
ResNet101 99.49 99.49 99.49 99.49 0.99 1.00
VGG-19 99.24 99.24 99.24 99.24 0.99 1.00
EfficientNetB7 99.75 99.75 99.75 99.75 1.00 1.00

Next, we compared the file size of the models and accuracy as the file size was
one of the crucial factors to consider when building and deploying models. The detailed
comparison results are presented in Table A2 in the Appendix A.

These models were trained using a computer with a hardware configuration more
powerful than the average smartphone. As a result, a larger model file size may reduce
the inference time while using the model on a smartphone or a weaker device. If the
model were to be integrated into a mobile application, the model would have to be shipped
together with the application, which takes up storage space [72]. As shown in Figure 6, the
file size of the MobileNet model was the smallest, as it was made to develop mobile-friendly
models whereby file size and architectural complexity were of utmost concern. On the
other hand, the file size of the EfficientNetB7 model was the largest, most likely due to its
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architectural complexity and number of layers. As discussed in Section 4, EfficientNetB7
achieved the highest results when evaluated using performance metrics mentioned in
Section 3.7. However, the file size of the EfficientNetB7 was not optimal for cloud-based
platforms such as Streamlit due to limitations on computational resources. Next, we
evaluated the inference time of the developed models.

As good as a model can perform during evaluation, the optimal inference time (time
taken to perform the image classification) should be short. This is because taking a longer
time has a negative impact on the user experience. Therefore, we evaluated each developed
model’s average time taken for image classification. Referring to Figure 7, MobileNet
performed the image classification quickly, while VGG-16 and 19 took the longest. VGG-16
and 19 required more computational resources to make predictions due to their large
number of parameters, rendering them less efficient than other models developed in this
study [73–75].

Figure 6. Comparison of accuracy against file size of the models.

On the other hand, MobileNet was the quickest due to its architectural design, which
uses depthwise separable convolutions. MobileNet reduced the number of computations
required in each layer by using depthwise separable layers, which resulted in faster predic-
tions. Furthermore, it used fewer parameters than other CNN architectures like VGG and
ResNet, reducing the computational cost of the model [76,77].

Figure 7. Comparison of accuracy against inference times of the models.
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In order to understand how a machine learning model learns from different types of
data, it is crucial to evaluate the effectiveness of its training. As a result, in our experiments,
we showcased the learning performance of the developed models using Grad-CAM heat
maps. The images selected from the dataset for Grad-CAM visualization are presented
in Figure 8. Figures 9–11 show the learning performance of the models for each class,
along with heat maps on the images. The areas which were considered most important
were highlighted with a yellow color. These figures show that EfficientNetB7, ResNet50,
and ResNet101 models could precisely identify and learn from areas unique to each class.
Additional Grad-CAM visualizations are included in Appendix B.

Figure 8. Images selected from the dataset for the Grad-CAM visualization.

Figure 9. Grad-CAM visualization of classification of the Contaminated class.

Figure 10. Grad-CAM visualization of classification of the Dried class.

Figure 11. Grad-CAM visualization of classification of the Healthy class.

Based on our findings, we could observe that EfficientNetB7, ResNet101, and ResNet50
performed exceptionally well during our evaluation. However, the file size and inference
time of EfficientNetB7 and ResNet101 were not optimal for the cloud-based interactive
application. Therefore, we chose to deploy the ResNet50 model on the interactive web ap-
plication as it performed exceptionally well during evaluation. It had a relatively moderate
file size and was the second quickest to predict, with a 98.98% accuracy.

4.1. Deployment

The proposed model was deployed using the Streamlit framework as an interactive
web application. The web application can be accessed using a computer or smartphone.
Users can capture an image using the camera and upload or use an image in the device’s
storage. The step-by-step manual guide on operating the web application is shown in
Figures A4 and A5 in Appendix C.

Figure 12 shows a partial screenshot of the interactive web application interface
and classification result. The image of dried leaves captured in real-time through any
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device with internet browser capabilities was uploaded to the web application, and the
classification of the uploaded image was displayed as a result. Furthermore, the web
application also showed the prediction breakdown, which showed the probability of
each class.

Figure 12. Screenshot of interactive web application.

4.2. Challenges and Limitations

Firstly, healthy green space, which has a similar color to dried green space, impacts the
classification performance. For example, the sun shines light directly onto the healthy green
space and the color of the healthy green space changes to yellowish green, a feature of dried
green space. Secondly, image classification is performed on the whole image, regardless
of the presence of green space, image-to-visible green space ratio, or similarity of green
space with other objects. Assessing the quality of green space using object detection or
image segmentation could be a better approach as it would allow the observation of these
unnoticed features within an image.

5. Conclusions

In this research, an image classification model to assess the quality of green space was
proposed, trained, evaluated, and implemented. For this objective, an image dataset of 944
images was collected. The dataset consists of images of Healthy, Dried, and Contaminated
green spaces. For the data pre-processing, we performed image augmentation to increase
the number of images to balance all the classes. Given the small size of our dataset, we
employed transfer learning on the pre-trained models, including EfficientNetB7, ResNet50,
ResNet101, MobileNet, VGG-16, VGG-19, XCeption, InceptionResNetV2 and DenseNet201.
The results show that EfficientNetB7 achieved the highest result using six evaluation metrics
implemented in this study. However, the difference in the performance among the top
three models is very tiny. Since the model would be deployed on a cloud-based platform,
selecting the best-performing model based on evaluation using performance metrics is
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not ideal. Therefore, we evaluated the models by comparing their file size and inference
time. Our findings show that the ResNet50 model is the most suitable to deploy as it has
a moderate file size and the second fastest inference time with high accuracy of 98.98%.

For future work, we plan to develop a mobile application to assess the quality of
green space, allowing people to capture images of green space and report the image of
green space with the precise location to the respective authorities to take necessary action.
Furthermore, given the limitations of image classification, we would like to develop an
image segmentation model as it can provide a precise outline of the object within an image.
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Appendix A

The dimensions refer to the size of the image captured in pixels. The focal length
is the distance that separates the lens’s optical centre from the camera sensor; the F-stop
determines how much light enters the sensor. At the same time, exposure time measures
the duration of time that the camera’s shutter remains open to allow light to enter and
reach the camera’s sensor. ISO refers to the sensitivity of the sensor to light, and exposure
bias is the adjustment of the camera’s exposure settings to over- or under-expose the image.

Table A1. Capture device configuration.

Image Properties Value

Dimensions 3024 × 4032 pixels
Device Manufacturer & Model Apple iPhone XR
Focal Length 4.25 mm
F-Stop f/1.8
Exposure Time 1/500 s
ISO ISO 25
Exposure Bias 0
Flash Status No Flash

Table A2. Average inference time and file size of the developed models.

Model Avg. Inference Time (s) File Size (MB)

DenseNet201 11.84 74
EfficientNetB7 18.01 249
InceptionResNetV2 12.29 211
MobileNet 3.31 13
ResNet50 7.28 92
ResNet101 13.97 166
VGG-16 20.85 56
VGG-19 20.92 77
XCeption 11.37 82
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Appendix B

Figure A1. Additional Grad-CAM visualization of classification of the Contaminated class.

Figure A2. Additional Grad-CAM visualization of classification of the Dried class.

Figure A3. Additional Grad-CAM visualization of classification of the Healthy class.

Appendix C

The web application can be found at the following link: https://greenspace.streamlit.
app/ (accessed on 21 January 2023).

Figure A4. Screenshot of the upload module from interactive web application.

https://greenspace.streamlit.app/
https://greenspace.streamlit.app/
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Figure A5. Screenshot of the prediction module from interactive web application.

1. Select an image from the device’s storage or capture an image using the device’s camera.
2. Press the Classify button and wait for the result.
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31. Perković, D.; Opačić, V.T. Methodological approaches in research on urban green spaces in the context of coastal tourism

development. Geoadria 2020, 25, 53–89. [CrossRef]
32. Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 815–830. [CrossRef]
33. Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the

empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [CrossRef]
34. Akpinar, A. How is quality of urban green spaces associated with physical activity and health? Urban For. Urban Green. 2016, 16,

76–83. [CrossRef]
35. Colesca, S.E.; Alpopi, C. The quality of bucharest’s green spaces. Theor. Empir. Res. Urban Manag. 2011, 6, 45–59. Available online:

http://www.jstor.org/stable/24873301 (accessed on 25 January 2023).
36. Zhang, Y.; Van den Berg, A.E.; Van Dijk, T.; Weitkamp, G. Quality over Quantity: Contribution of Urban Green Space to

Neighborhood Satisfaction. Int. J. Environ. Res. Public Health 2017, 14, 535. [CrossRef]
37. Lu, Y. Using Google Street View to investigate the association between street greenery and physical activity. Landsc. Urban Plan.

2019, 191, 103435. [CrossRef]
38. Gidlow, C.J.; Ellis, N.J.; Bostock, S. Development of the Neighbourhood Green Space Tool (NGST). Landsc. Urban Plan. 2012, 106,

347–358. [CrossRef]
39. Hillsdon, M.; Panter, J.; Foster, C.; Jones, A. The relationship between access and quality of urban green space with population

physical activity. Public Health 2006, 120, 1127–1132. [CrossRef] [PubMed]
40. Putra, I.G.N.E.; Astell-Burt, T.; Cliff, D.P.; Vella, S.A.; Feng, X. Association between green space quality and prosocial behaviour:

A 10-year multilevel longitudinal analysis of Australian children. Environ. Res. 2021, 196, 110334. [CrossRef]
41. Chen, B.; Adimo, O.A.; Bao, Z. Assessment of aesthetic quality and multiple functions of urban green space from the users’

perspective: The case of Hangzhou Flower Garden, China. Landsc. Urban Plan. 2009, 93, 76–82. [CrossRef]
42. Helbich, M.; Yao, Y.; Liu, Y.; Zhang, J.; Liu, P.; Wang, R. Using deep learning to examine street view green and blue spaces and

their associations with geriatric depression in Beijing, China. Environ. Int. 2019, 126, 107–117. [CrossRef]
43. Ta, D.T.; Furuya, K. Google Street View and Machine Learning—Useful Tools for a Street-Level Remote Survey: A Case Study in

Ho Chi Minh, Vietnam and Ichikawa, Japan. Land 2022, 11, 2254. [CrossRef]
44. Phan, C.; Raheja, A.; Bhandari, S.; Green, R.L.; Do, D. A predictive model for turfgrass color and quality evaluation using deep

learning and UAV imageries. SPIE 2017, 10218, 102180. [CrossRef]

https://doi.org/10.1007/s11252-012-0285-9
https://doi.org/10.1016/j.eswa.2009.12.063
https://assets.centralparknyc.org/media/documents/AnnualReport_Digital_2021_FinalREV1.pdf
https://assets.centralparknyc.org/media/documents/AnnualReport_Digital_2021_FinalREV1.pdf
https://doi.org/10.1016/j.scitotenv.2021.147653
https://doi.org/10.1016/j.healthplace.2019.102198
https://doi.org/10.3390/s19235287
https://doi.org/10.1016/j.scs.2020.102664
https://doi.org/10.1007/978-3-319-74983-9_20
https://doi.org/10.2148/benv.29.2.94.54467
https://doi.org/10.1016/j.ecolind.2021.108292
https://doi.org/10.1016/j.ecolecon.2015.10.013
https://doi.org/10.3390/ijerph16030424
https://doi.org/10.1016/j.eiar.2014.08.007
https://doi.org/10.3390/ijerph16030452
https://doi.org/10.15291/geoadria.3159
https://doi.org/10.1098/rstb.2007.2185
https://doi.org/10.1016/j.landurbplan.2010.05.006
https://doi.org/10.1016/j.ufug.2016.01.011
http://www.jstor.org/stable/24873301
https://doi.org/10.3390/ijerph14050535
https://doi.org/10.1016/j.landurbplan.2018.08.029
https://doi.org/10.1016/j.landurbplan.2012.04.007
https://doi.org/10.1016/j.puhe.2006.10.007
https://www.ncbi.nlm.nih.gov/pubmed/17067646
https://doi.org/10.1016/j.envres.2020.110334
https://doi.org/10.1016/j.landurbplan.2009.06.001
https://doi.org/10.1016/j.envint.2019.02.013
https://doi.org/10.3390/land11122254
https://doi.org/10.1117/12.2262042


Sustainability 2023, 15, 7782 24 of 25

45. Larkin, A.; Krishna, A.; Chen, L.; Amram, O.; Avery, A.R.; Duncan, G.E.; Hystad, P. Measuring and modelling perceptions of
the built environment for epidemiological research using crowd-sourcing and image-based deep learning models. J. Expo. Sci.
Environ. Epidemiol. 2022, 32, 892–899. [CrossRef]

46. Ghahramani, M.; Galle, N.J.; Duarte, F.; Ratti, C.; Pilla, F. Leveraging artificial intelligence to analyze citizens’ opinions on urban
green space. City Environ. Interact. 2021, 10, 100058. [CrossRef]

47. Ye, Y.; Richards, D.; Lu, Y.; Song, X.; Zhuang, Y.; Zeng, W.; Zhong, T. Measuring daily accessed street greenery: A human-scale
approach for informing better urban planning practices. Landsc. Urban Plan. 2019, 191, 103434. [CrossRef]

48. Bosnjak, Z.; Grljevic, O. CRISP-DM as a framework for discovering knowledge in small and medium sized enterprises’ data.
In Proceedings of the 2009 5th International Symposium on Applied Computational Intelligence and Informatics, Timisoara,
Romania, 28–29 May 2009; pp. 509–514. [CrossRef]

49. Jaggia, S.; Kelly, A.; Lertwachara, K.; Chen, L. Applying the CRISP-DM Framework for Teaching Business Analytics. Decis. Sci. J.
Innov. Educ. 2020, 18, 612–634. [CrossRef]

50. Wirth, R.; Hipp, J. CRISP-DM: Towards a standard process model for data mining. In Proceedings of the Fourth International
Conference on the Practical Application of Knowledge Discovery and Data Mining, Manchester, UK, 11–13 April 2000; pp. 29–39.
Available online: https://www.researchgate.net/publication/239585378_CRISP-DM_Towards_a_standard_process_model_for_
data_mining (accessed on 2 January 2023).

51. Li, Z.; Kamnitsas, K.; Glocker, B. Analyzing Overfitting Under Class Imbalance in Neural Networks for Image Segmentation.
IEEE Trans. Med. Imaging 2021, 40, 1065–1077. [CrossRef] [PubMed]

52. Ferreira, C.A.; Melo, T.; Sousa, P.; Meyer, M.I.; Shakibapour, E.; Costa, P.; Campilho, A. Classification of Breast Cancer Histology
Images Through Transfer Learning Using a Pre-trained Inception Resnet V2. In Image Analysis and Recognition, Proceedings
of the 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, 27–29 June 2018; Springer International Publishing:
Berlin/Heidelberg, Germany, 2018; pp. 763–770. [CrossRef]

53. Yadav, G.; Maheshwari, S.; Agarwal, A. Contrast limited adaptive histogram equalization based enhancement for real time video
system. In Proceedings of the 2014 International Conference on Advances in Computing, Communications and Informatics
(ICACCI), Delhi, India, 24–27 September 2014; pp. 2392–2397. [CrossRef]

54. Wong, L.J.; Michaels, A.J. Transfer Learning for Radio Frequency Machine Learning: A Taxonomy and Survey. Sensors 2022,
22, 1416. [CrossRef]

55. Ayadi, S.; Lachiri, Z. Deep Neural Network for visual Emotion Recognition based on ResNet50 using Song-Speech characteristics.
In Proceedings of the 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), Hammamet,
Tunisia, 22–25 March 2022; pp. 363–368. [CrossRef]

56. Jibhakate, A.; Parnerkar, P.; Mondal, S.; Bharambe, V.; Mantri, S. Skin Lesion Classification using Deep Learning and Image
Processing. In Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi,
India, 3–5 December 2020; pp. 333–340. [CrossRef]

57. Raihan, M.; Suryanegara, M. Classification of COVID-19 Patients Using Deep Learning Architecture of InceptionV3 and ResNet50.
In Proceedings of the 2021 4th International Conference of Computer and Informatics Engineering (IC2IE), Depok, Indonesia,
14–15 September 2021; pp. 46–50. [CrossRef]

58. Tian, X.; Chen, C. Modulation Pattern Recognition Based on Resnet50 Neural Network. In Proceedings of the Modulation Pattern
Recognition Based on Resnet50 Neural Network, Weihai, China, 28–30 September 2019; pp. 34–38. [CrossRef]

59. Singh, P.; Verma, A.; Alex, J.S.R. Disease and pest infection detection in coconut tree through deep learning techniques. Comput.
Electron. Agric. 2021, 182, 105986. [CrossRef]

60. Mascarenhas, S.; Agarwal, M. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image
Classification. In Proceedings of the 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research
and Applications (CENTCON), Bengaluru, India, 19–21 November 2021; Volume 1, pp. 96–99. [CrossRef]

61. Khade, S.; Gite, S.; Pradhan, B. Iris Liveness Detection Using Multiple Deep Convolution Networks. Big Data Cogn. Comput. 2022,
6, 67. [CrossRef]

62. Gupta, R.K.; Kunhare, N.; Pathik, N.; Pathik, B. An AI-enabled pre-trained model-based Covid detection model using chest X-ray
images. Multimed. Tools Appl. 2022, 81, 37351–37377. [CrossRef]

63. Sutaji, D.; Yıldız, O. LEMOXINET: Lite ensemble MobileNetV2 and Xception models to predict plant disease. Ecol. Inform. 2022,
70, 101698. [CrossRef]

64. Lo, W.W.; Yang, X.; Wang, Y. An Xception Convolutional Neural Network for Malware Classification with Transfer Learning.
In Proceedings of the 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Canary
Islands, Spain, 24–26 June 2019; pp. 1–5. [CrossRef]

65. Jethwa, N.; Gabajiwala, H.; Mishra, A.; Joshi, P.; Natu, P. Comparative Analysis between InceptionResnetV2 and InceptionV3 for
Attention based Image Captioning. In Proceedings of the 2021 2nd Global Conference for Advancement in Technology (GCAT),
Bangalore, India, 1–3 October 2021; pp. 1–6. [CrossRef]

66. Thomas, A.; Harikrishnan, P.M.; Palanisamy, P.; Gopi, V.P. Moving Vehicle Candidate Recognition and Classification Using
Inception-ResNet-v2. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMP-
SAC), Madrid, Spain, 13–17 July 2020; pp. 467–472. [CrossRef]

https://doi.org/10.1038/s41370-022-00489-8
https://doi.org/10.1016/j.cacint.2021.100058
https://doi.org/10.1016/j.landurbplan.2018.08.028
https://doi.org/10.1109/saci.2009.5136302
https://doi.org/10.1111/dsji.12222
https://www.researchgate.net/publication/239585378_CRISP-DM_Towards_a_standard_process_model_for_data_mining
https://www.researchgate.net/publication/239585378_CRISP-DM_Towards_a_standard_process_model_for_data_mining
https://doi.org/10.1109/TMI.2020.3046692
https://www.ncbi.nlm.nih.gov/pubmed/33351758
https://doi.org/10.1007/978-3-319-93000-8_86
https://doi.org/10.1109/icacci.2014.6968381
https://doi.org/10.3390/s22041416
https://doi.org/10.1109/ic_aset53395.2022.9765898
https://doi.org/10.1109/iciss49785.2020.9316092
https://doi.org/10.1109/ic2ie53219.2021.9649255
https://doi.org/10.1109/icicsp48821.2019.8958555
https://doi.org/10.1016/j.compag.2021.105986
https://doi.org/10.1109/centcon52345.2021.9687944
https://doi.org/10.3390/bdcc6020067
https://doi.org/10.1007/s11042-021-11580-x
https://doi.org/10.1016/j.ecoinf.2022.101698
https://doi.org/10.1109/ntms.2019.8763852
https://doi.org/10.1109/gcat52182.2021.9587514
https://doi.org/10.1109/compsac48688.2020.0-207


Sustainability 2023, 15, 7782 25 of 25

67. Aslam, N.; Khan, I.U.; Albahussain, T.I.; Almousa, N.F.; Alolayan, M.O.; Almousa, S.A.; Alwhebi, M.E. MEDeep: A Deep Learning
Based Model for Memotion Analysis. Math. Model. Eng. Probl. 2022, 9, 533–538. [CrossRef]

68. Delgado, R.; Tibau, X.-A. Why Cohen’s Kappa should be avoided as performance measure in classification. PLoS ONE 2019,
14, e0222916. [CrossRef] [PubMed]

69. Salminen, J.; Kandpal, C.; Kamel, A.M.; Jung, S.-G.; Jansen, B.J. Creating and detecting fake reviews of online products. J. Retail.
Consum. Serv. 2022, 64, 102771. [CrossRef]

70. Nafisah, S.I.; Muhammad, G. Tuberculosis detection in chest radiograph using convolutional neural network architecture and
explainable artificial intelligence. Neural Comput. Appl. 2022, 6. [CrossRef]

71. Lee, C.; Lin, J.; Prokop, A.; Gopalakrishnan, V.; Hanna, R.N.; Papa, E.; Freeman, A.; Patel, S.; Yu, W.; Huhn, M.; et al. StarGazer:
A Hybrid Intelligence Platform for Drug Target Prioritization and Digital Drug Repositioning Using Streamlit. Front. Genet. 2022,
13, 868015. [CrossRef]

72. Sun, D.; Xu, Y.; Shen, M. Efficient Models Selecting, 2018. Available online: https://digital.wpi.edu/concern/student_works/73
666612z (accessed on 2 January 2023).

73. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
[CrossRef]

74. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

75. Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf.
Process. Syst. 2018, 31, 8778–8788.

76. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018; pp. 4510–4520. [CrossRef]

77. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.18280/mmep.090232
https://doi.org/10.1371/journal.pone.0222916
https://www.ncbi.nlm.nih.gov/pubmed/31557204
https://doi.org/10.1016/j.jretconser.2021.102771
https://doi.org/10.1007/s00521-022-07258-6
https://doi.org/10.3389/fgene.2022.868015
https://digital.wpi.edu/concern/student_works/73666612z
https://digital.wpi.edu/concern/student_works/73666612z
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2018.00474

	Introduction 
	Research Motivation 
	Research Contributions 
	Section Organization 

	Literature Review 
	Green Space Quality Analysis Using Traditional Methods 
	Green Space Quality Analysis Using Machine Learning 

	Methodology 
	Description of Dataset 
	Exploratory Data Analysis 
	Data Pre-Processing 
	Model Training 
	Transfer Learning 
	Classification Models 
	Evaluation Metrics 
	Deployment 
	Tools 

	Results and Discussion 
	Deployment 
	Challenges and Limitations 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

