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Abstract: Nanoparticles (NPs) exhibit distinct features compared to traditional physico-chemical
synthesis and they have many applications in a wide range of fields of life sciences such as surface
coating agents, catalysts, food packaging, corrosion protection, environmental remediation, elec-
tronics, biomedical and antimicrobial. Green-synthesized metal NPs, mainly from plant sources,
have gained a lot of attention due to their intrinsic characteristics like eco-friendliness, rapidity and
cost-effectiveness. In this study, zinc oxide (ZnO) NPs have been synthesized employing an aqueous
leaf extract of Pelargonium odoratissimum (L.) as a reducing agent; subsequently, the biosynthesized
ZnO NPs were characterized by ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering
(DLS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scan-
ning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX), high-resolution
transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). Moreover,
aqueous plant leaf extract was subjected to both qualitative and quantitative analysis. Antioxidant
activity of ZnO NPs was assessed by DPPH assay, with varying concentrations of ZnO NPs, which
revealed scavenging activity with IC50 = 28.11 µg mL−1. Furthermore, the anti-bacterial efficacy of the
green synthesized ZnO NPs against four foodborne pathogenic bacterial strains was examined using
the disk diffusion assay, and Staphylococcus aureus (ATCC 8095), Pseudomonas aeruginosa (ATCC10662)
and Escherichia coli (ATCC 25922) were found to be the most sensitive against biosynthesized ZnO
NPs, whereas the least sensitivity was shown by Bacillus cereus (ATCC 13753). The anti-inflammatory
effect was also evaluated for both ZnO NPs and the aqueous leaf extract of P. odoratissimum through
the human red blood cells (HRBC) membrane stabilization method (MSM) in vitro models which
includes hypotonicity-induced hemolysis. A maximum membrane stabilization of ZnO NPs was
found to be 95.6% at a dose of 1000 µg mL−1 compared with the standard indomethacin. The re-
sults demonstrated that leaf extract of P. odoratissimum is suitable for synthesizing ZnO NPs, with
antioxidant, antibacterial as well as superior anti-inflammatory activity by improving the membrane
stability of lysosome cells, which have physiological properties similar to erythrocyte membrane cells
and have no hemolytic activity. Overall, this study provides biosynthesized ZnO NPs that can be
used as a safe alternative to synthetic substances as well as a potential candidate for antioxidants,
antibacterial and anti-inflammatory uses in the biomedical and pharmaceutical industries.
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1. Introduction

Nanotechnology is one of the most quickly evolving fields, potentially forming and
underpinning a wide range of technological and biotechnological advancements; as a result,
it is seen as the century’s oncoming industrial revolution [1]. Nanotechnology has been
used in different industrial and academic areas, including chemistry, agriculture, biology,
medicine, electronics, information technology and physics [2–4]. Nanomaterials possess
great potential in various fields of science due to their excellent physico-chemical and
biological characteristics over bulk materials [5]. Nanoparticles (NPs) have the unique
property of having a high surface-to-volume ratio [6], which means that they are more ap-
propriate candidates for application-oriented performance (e.g., photocatalysis, cosmetics,
gas sensing, energy reservoirs, electronics, packaging and environmental remediation) and
encourages their incorporation into a wide range of commercial products, biotechnology
and biomedical applications [7–13].

Among the large variety of NPs available, metal oxide (MO) NPs are thought to be the
most promising because they have distinctive physical, chemical, and biological properties
like solubility, chemical stability, and adhesiveness [8]. Additionally, the utilization of
harmful compounds for reduction and as a capping agent in the nanoparticle synthesis
process causes a variety of adverse effects on the flora life as well as the environment and
the living system toxicity. As a result, plant extracts (PEs) are therefore a more promising
tool for the easy synthesis of MO NPs through the green route, because this approach is eco-
friendly, non-toxic, low cost, environmentally compatible and easy to apply. Additionally,
the resultant particles are biocompatible and free of toxic stabilizers compared to classical
chemicals. Basically, PEs contain a variety of active biomolecules that aid to reduce and
stabilize NPs [6,12].

Zinc oxide (ZnO) is one of the very promising inorganic oxides that has recently
attracted the attention of many scientists for the biosynthesis of NPs due to its unique
properties and multiple applications such as drug delivery, solar cells, photocatalytic degra-
dation and personal care products like sunscreens and cosmetics [14–19]. Based on earlier
reports in the literature, ZnO NPs have been biosynthesized from several plant extracts
such as Cassia auriculata [20], Aloe vera [13,21], Duranta erecta [22], Cinnamomum verum [23],
Bauhinia tomentosa [24], Vitex trifolia [25], Moringa oleifera [26], Azadirachta indica [27,28],
Artocarpus gomezianus [29] and Olea europaea [30]. In biological systems, the overproduc-
tion of highly reactive radical species (HRRS) causes oxidative stress, which has been
observed in several diseases, i.e., cancer, diabetes, cardiovascular disease, and arthritis [31].
All biosystems depend heavily on antioxidants to function correctly. As a result, there
is an urgent need to search for innovative and safe antioxidants produced from natural
sources, which are more effective and less toxic. Additionally, the widespread use of
antibacterial and anti-inflammatory drugs has caused resistance, the appearance of new
pathogenic strains resistant to antibiotics [32] and chronic and acute toxicities in several
human physiological systems, particularly the immune system. As a result, searching for
new, effective antibacterial and anti-inflammatory drugs that can effectively combat drug-
resistant bacteria is necessary and does not cause immunosuppression. Biosynthesized
NPs have been proposed as an alternate potential approach to address these problems [33].
Pelargonium odoratissimum (L.) aqueous leaf extract (ALE) was utilized in the present study,
for the biosynthesis of ZnO NPs as this is the first report on the use of this plant’s leaves for
the green synthesis of NPs. Pelargonium odoratissimum (L.) known as “Apple Geranium”
is a perennial and relatively flat-growing shrublet that belongs to the family Geraniaceae,
very commonly grown locally in Egypt and is widely utilized for its health benefits [34].
Essential oils of Pelargonium spp. are in considerable demand in the pharmaceutical, per-
fumery, and cosmetic industries. Additionally, some reports revealed that essential oils
obtained from a variety of Pelargonium spp. possess excellent antioxidant, antibacterial and
antifungal properties [35–38]

The aerial parts of this Pelargonium spp. are used in traditional medicine for the
treatment of wound healing, debility, gastrointestinal disorders (i.e., diarrhea and dysen-
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tery), hemorrhage, skin complaints, neuralgia and throat infections due to their various
phytochemical constituents such as phenolics, flavonoids, terpenes, saponins and essential
oils [39], which can contribute to their biological activities and facilitate the biosynthesis of
NPs by employing them as reducing, capping and stabilizing agents.

Despite the widespread use of Pelargonium species as therapeutic agents, to date, there
have been no data on their use for green synthesis of NPs, antioxidant, antibacterial and
anti-inflammatory effects from Pelargonium odoratissimum leaf extract.

The aim of this study was to explore the application of P. odoratissimum ALE as a
capping and reducing agent for the biosynthesis of ZnO NPs. The biosynthesized ZnO NPs
were characterized and confirmed by various spectroscopic and microscopic techniques,
i.e., UV-Vis spectroscopy, FTIR, XRD, DLS, HR-TEM, FE-SEM and EDX, in addition, to
evaluate the antioxidant effects, as well as the antibacterial activities against some food-
borne pathogens strains beside evaluating the anti-inflammatory activities of both ZnO
NPs and the ALE of P. odoratissimum.

2. Materials and Methods
2.1. Chemicals

Gallic acid, rutin, 1,1-diphenyl-2-picrylhydrazyl (DPPH, ≥99%), Folin–Ciocalteu’s
reagent, L-ascorbic acid (Sigma-Aldrich, St. Louis, MO 63103, USA), aluminum chloride
anhydrous (Fluka, Buchs, Switzerland), sodium carbonate (>99%), zinc acetate dihydrate
(Advent Chembio PVT. LTD, Mumbai, India), Luria-Bertani (LB) broth medium (Himedia,
Mumbai, India) gentamycin (Tody Laboratories Int., 22nd Vadul Moldovei Street, Bucharest,
Romania). All chemicals used in this study were of analytical grade.

2.2. Plant Collection and Processing

Fresh leaves of P. odoratissimum (L.) were collected from the Botanical Garden of
Fayoum University, Fayoum, Egypt, in March 2021. The taxonomic identification of the
plant was identified by Mrs. Therese Labib, Head of the Taxonomy specialists at El-Orman
Botanical Garden, Cairo, Egypt. A voucher specimen with number 126 was deposited in
the herbarium of the Biochem. Dept. Fac. Agric., Fym. Univ., Fym., Egypt. The leaves
were completely air dried in the shade before being ground into a fine powder in a lab mill
and sieved using a 24 mesh sieve. The powdered leaves were maintained in an air-tight
container at room temperature (28 ± 2 ◦C) and kept away from light until use.

2.3. Preparation of P. odoratissimum Leaf Extract

The air-dried powder (20 g) of P. odoratissimum leaves was taken and immersed in
400 mL of deionized water (dH2O). The extraction process was performed via the ultrasonic-
assisted solvent extraction (UASE) method [40] by placing the conical flask in a Probe
Sonicator homogenizer (Benchmark Scientific, USA, 150 W, 25 kHz) at room temperature
(35 ± 2 ◦C) for 30 min. The solvent (d.H2O) and powder layer were filtered using muslin
cloth first and then Whatman filter paper No.1. The filtrate solution of P. odoratissimum leaf
extract was kept in a refrigerator to be utilized for further use.

2.4. Qualitative Phytochemical Screening

The detection of various phytoconstituents present in the ALE of P. odoratissimum was
carried out using the standard phytochemical methods [41–43].

2.5. HPLC-Analysis

The HPLC analysis was carried out using an Agilent 1260 series. The separation
was performed using Eclipse C18 column (4.6 mm × 250 mm i.d., 5 µm). The mobile
phase consisted of water (A) and 0.05% trifluoroacetic acid (TFA) in acetonitrile (B) at a
flow rate of 0.9 mL/min. The mobile phase was programmed consecutively in a linear
gradient as follows: 0 min (82% A); 0–5 min (80% A); 5–8 min (60% A); 8–12 min (60% A);
12–15 min (82% A); 15–16 min (82% A) and 16–20 (82%A). The multi-wavelength detector
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was monitored at 280 nm. The injection volume was 5 µL for each of the sample solutions.
The column temperature was maintained at 40 ◦C.

2.6. Estimation of Total Phenolic and Flavonoid Contents (TPC and TFC)

The determination of both TPC as mg gallic acid equivalents (GAE) mg GAE/g plant ex-
tract) and TFC as mg rutin equivalents (RE)/g plant extract were performed spectrophotomet-
rically by the Folin-Ciocalteu reagent [44] and aluminum chloride methods [45] respectively.

2.7. Green Synthesis of ZnO Nanoparticles

After heating twenty milliliters of P. odoratissimum leaf extract at 50 ◦C for 10 min, fifty
milliliters of 0.1 M zinc acetate dihydrate (Zn(CH3COO)2·2H2O) (1.095 g of zinc acetate
dihydrate was dissolved in 50 mL of d.H2O) was added drop-by-drop to it under stirring
at 800 rpm that resulted in cream-colored zinc hydroxide precipitate formation. For the
complete reduction in zinc hydroxide, the reaction mixture was left for 30 min. Then
the precipitate was centrifuged (Sigma Laborzentrifugen 2k15, Osterode, Germany) at
16,000 rpm for 10 min at 4 ◦C by dH2O followed by ethanol repeatedly in order to remove
the impurities. The precipitate was dried overnight in an oven at 100 ◦C. The obtained
dried powder was calcined in a muffle furnace at 600 ◦C for 2 h and the white powder of
ZnO NPs was obtained after calcination as shown in Figure 1. The resulted powder was
used for characterization.
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Figure 1. Represent (pictorial) the synthesis of ZnO NPs via P. odoratissimum ALE.

2.8. Characterization Methods of ZnO NPs
2.8.1. UV-Vis Spectroscopy

In order to study the optical characteristics of green synthesized ZnO NPs, a known
amount of ZnO NPs (0.05 g) was dispersed in 5 mL of ethanol (96%). The absorption spec-
trum was recorded by using a UV-Vis (U-2900) double beam spectrophotometer (Hitachi,
Tokyo, Japan) in between a wavelength scan of 200–800 nm.

2.8.2. Dynamic Light Scattering (DLS)

A particle size analyzer (Zetasizer V 2.2, Worcestershire, Malvern, UK) was utilized to
determine the particle size distribution (PSD) of ZnO NPs obtained using ALE. The zeta
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potential of ZnO NPs was carried out in the water as a dispersant through a Zeta sizer (V
2.3, Worcestershire, Malvern, UK) to identify the stability of the synthesized NPs.

2.8.3. Fourier Transform Infra-Red Spectroscopy (FTIR)

FTIR analysis (Bruker, Berlin, Germany) was employed to identify the functional
groups (FGs) involved in biosynthesized ZnO NPs. At a wavelength of 4000–400 cm−1, the
FTIR spectra were scanned with a resolution of 4.0 cm−1.

2.8.4. X-ray Diffraction (XRD)

The crystalline structure of ZnO NPs was analyzed by an X-ray diffractometer (Bruker
D8 DISCOVER, Bruker, Germany) with Cu-Kα radiation (λ = 1.54060 Angstrom). The
relative intensity data were collected over a 2θ range of 5◦–80◦, 2θ values and relative
intensities (I/Io) were determined from the chart, and the minerals of core materials were
identified with JCPDS carts.

2.8.5. Field Emission-Scanning Electron Microscopy (FE-SEM)

The topography and surface morphology of the biosynthesized ZnO NPs were ex-
amined using FE-SEM (Carl- ZEISS Sigma 500 VP, Sigma, Osterode, Germany) equipped
with an energy dispersive X-ray spectrometer (EDX, Bruker, Germany) for the element
composition present in the powder of ZnO NPs. A portion of the sample was set on a
carbon-coated copper (CCC) grid, and the film on the FE-SEM grid was then dried by fixing
it under gold for 5 min.

2.8.6. High-Resolution Transmission Electron Microscopy (HRTEM)

The shape and size distribution of powdered ZnO NPs were studied by using HRTEM
(JEM-2100, JEOL, Tokyo, Japan) at an accelerated voltage of 200 kV.

2.9. Estimation of Antioxidant Activity—DPPH Radical Scavenging Activity

The ability to scavenge the free radical DPPH of the ALE of P. odoratissimum, biosyn-
thesized ZnO NPs and standard L-ascorbic acid at different concentrations ranging from
3125–100 µg mL−1 were performed using the Brand-Williams et al. method [46]. Briefly,
2 mL of the DPPH solution (Sigma-Aldrich, 3050 Spruce Street, St. Louis, MO 63103,
USA) (25 mg L−1 in methanol) was added to 0.1 mL of different concentrations of each
sample and standard L-ascorbic acid (3125–100 µg mL−1). After shaking vigorously for
1 min, the reaction mixture was maintained in the dark for 30 min at room temperature
(35 ± 2 ◦C) and the absorbance was recorded at 517 nm using the U-2900 UV-Vis double
beam spectrophotometer (Hitachi, Tokyo, Japan). Each measurement was taken in three
replications. The free radical scavenging activity (FRSA) of each sample was expressed as
percent inhibition of DPPH free radical and was calculated as:

% inhibition (% Anti-radical activity) = [(A control − A sample)/A control] × 100, where
A is the absorbance. The IC50 values were measured from the relationship curve of FRSA
versus concentrations of the respective sample curve.

2.10. Estimation of Antibacterial Activity
2.10.1. Bacteria Strains

The antibacterial effect of the biosynthesized ZnO NPs with P. odoratissimum ALE was
established against two Gram-positive bacteria (GPB), Bacillus cereus (ATCC13753) and
Staphylococcus aureus (ATCC8095), and two Gram-negative bacteria (GNB), Escherichia coli
(ATCC25922) and Pseudomonas aeruginosa (ATCC10662). These four strains were acquired
from the Microbiol. Dept., Fac. Agric., Fym. Univ., Egypt. The bacterial strains used were
maintained in the Luria–Bertani (LB) agar at 30 ◦C for 24 h and then kept at 4 ◦C in a
refrigerator. During this study, LB media was used for all bacterial cultures.
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2.10.2. Antibacterial Assay

The antibacterial effect against the examined bacterial strains was determined using
the agar disc diffusion method (ADDM) described by Bauer et al. [47]. In this method,
three different ZnO NPs concentrations (10, 20 and 30 µg mL−1) and ALE (20 µg mL−1)
were dissolved in ethanol and then used to fill sterilized Whatman filter paper discs of
approximately 40 µL with the proper volume containing the tested ZnO NPs concen-
trations and ALE and left to totally dry. A disc containing only solvent was used as a
negative control and a disc containing zinc acetate dihydrate was employed. A positive
control gentamicin (10 µg mL−1) was used. Overnight bacterial cultures were prepared
in LB broth for obtaining tested bacterial suspensions for the assay. The discs were then
placed on the plates having the tested bacterial cultures and diluted to obtain about
1 × 10−7 colony-forming unit (CFU). The inoculated plates were incubated at 37 ◦C for
24 h and then the activity was assayed by measuring the inhibition diameter in millimeters
(mm). All tests were performed in triplicate.

2.11. Estimation of Anti-inflammatory Activity

The human red blood cells (HRBCs)-membrane stabilization method (HRBCs-MSM)
has been performed for the evaluation of in vitro anti-inflammatory activity according to
the procedure outlined by Anosike et al. [48].

2.12. Statistical Analysis

All of the tests (antioxidant, antibacterial, and anti-inflammatory activity) were per-
formed in triplicates, with the results provided as mean ± SD. Using the statistical software
SPSS (SPSS version 21, IBM Corporation, Armonk, NY, USA), the statistical data were exam-
ined using the two-way ANOVA technique. The difference in significance was calculated
at p < 0.05.

3. Results and Discussion
3.1. Qualitative Phytochemical Screening (QPS)

The results of the QPS of P. odoratissimum ALE are summarized in (Table 1), which
displays the existence of saponins, phenolics and tannins, flavonoids, carbohydrates and/or
glycosides and the absence of steroids, triterpenoids and alkaloids. These present compounds
could be responsible for the bio-reduction of the metal salts into nanosize particles [49].

Table 1. Qualitative phytochemical screening of P. odoratissimum ALE.

Phytoconstituents Name of Detection Test Inference

Saponins Frothing +
Steroids Liebermann −

Triterpenoids Salkowski −
Phenolics and tannins FeCl3 +

Flavonoids Lead (II) acetate +
Alkaloids Wagner’s −

Carbohydrates Molisch’s +
Proteins Biuret +

(+): present; (−): absent.

3.2. HPLC-Analysis

HPLC analysis of ALE indicates the presence of sixteen phenolic compounds in
appropriate amounts: Gallic acid, Chlorogenic acid, Catechin, Methyl gallate, Caffeic
acid, Syringic acid, Rutin, Ellagic acid, Coumaric acid, Ferulic acid, Naringenin, Daidzein,
Quercetin, Cinnamic acid, Apigenin and Kaempferol (Table 2 and Figure 2, respectively),
that may be responsible for the bio-reduction of the metal salts into ZnO-nanosize particles.
Additionally, Gallic acid, Syringic acid, Chlorogenic acid, Ferulic acid, Naringenin, Ellagic
acid, Rutin and Coumaric acid were found to be highly prevalent among several significant
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phenolic components identified. Both phenolic acids and flavonoids are known to be potent
hydrogen donors [50], which are responsible for a variety of biological activities because of
their functional (carboxyl and hydroxyl) groups. The amounts (µg/g) and structures of
polyphenols are illustrated in Table 2 and Figure 3, respectively.

Table 2. Polyphenolic compounds of P. odoratissimum ALE.

Compound Conc. (µg/g) Compound Conc. (µg/g)

Gallic acid 3744.95 Vanillin 0.00

Chlorogenic acid 2523.29 Ferulic acid 2507.38

Catechin 586.08 Naringenin 1870.30

Methyl gallate 63.94 Daidzein 23.74

Caffeic acid 754.77 Quercetin 208.25

Syringic acid 3513.87 Cinnamic acid 11.21

Pyro catechol 0.00 Apigenin 13.56

Rutin 1268.87 Kaempferol 21.50

Ellagic acid 1573.64 Hesperetin 0.00

Coumaric acid 1008.72
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3.3. Characterization of ZnO NPs
3.3.1. Visual Observation

The first essential indicator that confirms the biosynthesis of ZnO NPs is visual ob-
servation. When the Zn(CH3COO)2·2H2O, as a precursor for ZnO NPs, was added to the
P. odoratissimum leaf extract, the color of the P. odoratissimum leaf extract was changed from
light red to cream-colored precipitate (Figure 4). Similar color changes of synthesized ZnO
NPs employing Hibiscus subdariffa leaf extract, from light red to cream-colored precipitate,
were displayed by Bala et al. [16], confirming the biosynthesis of ZnO NPs.

3.3.2. UV-Vis Spectroscopy

To confirm the synthesis of ZnO NPs, UV/Vis spectrophotometry was performed in or-
der to examine the optical characteristics of green synthesized ZnO NPs using
P. odoratissimum ALE. The UV-Vis spectrum recorded the maximum absorbance peak at
370 nm as shown in Figure 5, which verified the synthesis of ZnO NPs via P. odoratissimum
ALE, which is consistent with earlier studies by Senthilkumar et al. [51], who examined
the ability of Tecona grandis (L.) ALE to synthesize ZnO NPs with surface plasmon reso-
nance (SPR) at 370 nm. Additionally, there are no other peaks recorded in the spectrum
which means that the biosynthesized ZnO NPs are a pure product. Furthermore, the high
absorption band seen at 378 nm might be attributed to ZnO’s inherent band-gap absorption
caused by electron transitions from the valence band (EV) to the conduction band (EC)
(O2p–Zn3d) [52,53]. The formula for calculating the energy bandgap (EG) of ZnO NPs was
used as follows:

EG = hc/λ (1)

Where h is Planck’s constant (6.626 × 10−34 Js), c is the velocity of light (3 × 108 m/s)
and λ is the wavelength (378 nm). In total, 3.28 eV was found to be the bandgap energy
of ZnO. The significant UV absorption of ZnO NPs demonstrates the product’s suitability
for a variety of medicinal applications, including sun-screen protectors and antibacterial
ointments [54].
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3.3.3. Dynamic Light Scattering (DLS)

The Z-average diameter (nm) and PSD of the biosynthesized ZnO NPs were measured
using the DLS technique. As shown in Figure 6A, the measurements demonstrated that
the average size (nm) of the ZnO NPs with P. odoratissimum ALE was about 76 nm. The
result obtained from the PSD profile of the ZnO nanoparticles revealed two notable peaks
with intensities of 98.7% and 1.3%. Additionally, the ZnO NPs have a polydispersity index
(PDI) of 0.241. This indicated that ZnO nanoparticles are very homogeneous and have a
uniform size range [55]. This finding is completely compatible with Badran, Chen et al.
and Putri et al. [56–58] who reported that PDI values of 0.3 and below are considered to
be monodisperse. Because of the hydrodynamical shell, the DLS technique is known to
produce significantly higher values than HRTEM size analyses. Additionally, the size of the
hydrodynamical shell is influenced by particle structure, particle shape, and roughness [59].
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The surface charges and stability of biosynthesized ZnO NPs have been assessed
through zeta potential (ZP) analysis. The ZP graph of ZnO nanoparticles is presented in
(Figure 6B). As shown in Figure 6B, the ZP was found to be −19.3 mV which indicates the
potential stability of the examined NPs [51]. As a result, the reducing agents (i.e., phenolic
and flavonoid components) found in the leaf extract (LE) are probably responsible for the
negative charge potential of the produced ZnO NPs. It also confirms that the produced
substance contains substantial electrostatic forces [60].

3.3.4. FTIR Analysis of Biosynthesized ZnO NPs and P. odoratissimum ALE

The FTIR technique was used in order to detect possible FGs present in the ALE of
P. odoratissimum that contribute to the reduction in and stabilization of ZnO NPs. Figure 7a,b
represents the FTIR spectra of biosynthesized ZnO nanoparticles and P. odoratissimum leaf
extract. The peaks of P. odoratissimum ALE and biosynthesized ZnO nanoparticles are
displayed in Table 3. The broad stretch peak at 3409 cm−1 and 3417 cm−1 indicates the
presence of an O-H stretch band for the extract and ZnO NPs which are corresponded
to the O-H stretching of alcohol, phenolic and flavonoid constituents [61,62]. The low-
intensity peaks that arise at 2923 cm−1 and 2920 cm−1 were assigned to –CH stretching
vibration of the hydroxyl compounds [63,64]. The absorption peaks at 2356 cm−1 and
2356 cm−1 were ascribed to O=C=O (stretching vibration) [65]. The peaks observed at
1616 cm−1 and 1621 cm−1 indicate the stretching C=C vibration of the aromatic ring
system [66,67]. The absorption peaks at 1400 cm−1 and 1403 cm−1 correspond to the C-N
stretching vibration of amino acids [63]. The strong intensity peaks at 1068 cm−1 and
1072 cm−1 are due to the C-O stretching bond of the aromatic rings [67] and may also be
related to phenols and flavonoids found in the P. odoratissimum ALE in Table 1. The bands
at 852 cm−1 and 855 cm−1 are attributed to –CH stretching vibration of aromatics [64].
The absorption band observed at 435 cm−1 confirmed the successful formation of Metal-
Oxygen (ZnO). The ZnO absorption peak obtained by FTIR analysis of biosynthesized ZnO
NPs has been detected at wavelengths 436 cm−1 [51], 442 cm−1 [68], 450 cm−1 [69] and
485 cm−1 [70], in the range 400 to 500 cm−1 [71], which are consistent with our findings.
The similarity of bands in both P. odoratissimum ALE and P. odoratissimum-synthesized
ZnO NPs (Table 3) could be attributable to capped biomolecules on the surface of green
synthesized ZnO nanoparticles.

3.3.5. X-ray Diffraction (XRD) Analysis of ZnO NPs

The XRD pattern of biosynthesized ZnO NPs using ALE of P. odoratissimum is il-
lustrated in Figure 8. The XRD diffraction peaks existed at 2θ angles of 31.85◦, 34.55◦,
36.35◦, 47.69◦, 56.75◦, 63.09◦, 66.56◦, 68.17◦, 69.29◦, 72.87◦ and 77.21◦ corresponding to
lattice planes (100), (002), (101), (102), (110), (103), (200), (112), (201), (004) and (202), re-
spectively [72]. These peaks are in accordance with those of (JCPDS card No: 36-1451),
which is indicating the confirmation of the hexagonal wurtzite structure of ZnO NPs for-
mation [73]. The average crystalline size (ACS) of biosynthesized ZnO NPs was calculated
using Deby-Scherrer’s formula [74] and the ACS of the ZnO NPs was estimated to be
14 nm, which is derived from the full width at half maximum (FWHM) of the most intense
peak corresponding to (101) plane located at 36.35◦. Furthermore, the XRD pattern revealed
no additional peaks other than the characteristic ZnO peaks, confirming the purity of the
produced ZnO NPs. Additionally, the narrow and strong diffraction peak clearly indicates
that the ZnO NPs have an optimal crystalline structure [75,76].
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Table 3. FTIR spectra of biosynthesized ZnO NPs and P. odoratissimum ALE.

Functional Groups Absorption Bands in
ZnO NPs (cm−1)

Absorption Bands in
P. odoratissimum

ALE (cm−1)

-OH stretch 3417 3409
-C-H stretch 2920 2923

O=C=O stretch 2356 2356
C=C stretch 1621 1616
C-N stretch 1403 1400
C-O stretch 1072 1068

-C-H stretch (aromatics) 855 852
Zn-O 435 -

3.3.6. FE-SEM of ZnO NPs

The size and the morphology of the biosynthesized ZnO nanoparticles were imaged via
FE-SEM (Figure 9), and the chemical composition of the biosynthesized ZnO nanoparticles
was determined using EDX (Figure 10). The FE-SEM image demonstrated that the ZnO
NPs were spherical and hexagonal in the morphology shape with good distribution. AN
FE-SEM examination showed that the average size of ZnO NPs was 21.6 nm.
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3.3.7. Energy Dispersive X-ray Analysis (EDX) Spectrum of ZnO NPs

The elemental mapping of the EDX (Figure 10) verified that the examined sample
displayed the elemental peaks of zinc and oxygen which are summarized in Table 4. The
EDX analysis proved that the examined sample contained the biosynthesized ZnO NPs.
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Table 4. Elemental constituents of ZnO NPs.

Element Weight (%) Atom (%)

Zn 80.71 50.58

O 19.29 49.42

Total 100 100

3.3.8. HR-TEM of ZnO NPs

The high-resolution TEM analysis (Figure 11a–g) was carried out to confirm the for-
mation of the biosynthesized ZnO NPs. Based on the results obtained, it can be concluded
that the pure green ZnO NPs display hexagonal shapes with an average size of 34.12 nm
(Figure 11i) and also clearly reveal lattice fringes without any distortion, indicating that
ZnO NPs have high crystallinity. The selected area electron diffraction (SAED) (Figure 11h)
pattern revealed a series of rings with bright spots, indicating that ZnO nanoparticles are
crystalline in nature [74,76]. Additionally, the hexagonal wurtzite crystalline structure of
ZnO NPs is also proven by the diffraction rings on the SAED image and the peaks in the
XRD pattern.
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Figure 11. (a–g) HR-TEM images of biosynthesized ZnO NPs, (h) SAED pattern and (i) histogram of
particle size distribution.

3.4. Antioxidant Activity

The antioxidant activity of ZnO NPs, the ALE of P. odoratissimum and L-ascorbic acid
are shown in Figure 12. The results obtained show the DPPH scavenging activity of ZnO
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NPs, ALE and L-ascorbic acid at six different concentrations (3.125 to 100 µg mL−1) ranging
from 10.78 to 76.14%, 23.05 to 89.92% and 14.70 to 83.02% respectively. The DPPH assay showed
the scavenging effect of ZnO nanoparticles having an IC50 value of 28.11 ± 0.01 µg mL−1

when compared with the IC50 value of L-ascorbic acid (11.50 ± 0.03 µg mL−1) and aqueous
extract (04.56 ± 0.02 µg mL−1). Additionally, the aqueous extract revealed a superior
antioxidant potential to traditional reference L-ascorbic acid, which could be due to var-
ious bioactive constituents and the higher content of phenolics and flavonoids present
in the P. odoratissimum ALE. Moreover, the IC50 value of P. odoratissimum ALE exhibited
higher antioxidants than the aqueous extract of P. graveolens, which had an IC50 value
of 16.59 µg mL−1 [77].
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Figure 12. DPPH FRSA of ZnO NPs, ALE and L-ascorbic acid at different concentrations.

Generally, phenolic and flavonoid compounds are almost present in all plants in
varying proportions and have been reported to act as bio-reductants of metallic ions in an
aqueous medium and display a wide range of biological activities such as antioxidant and
antimicrobial activity [78]. Many studies have specified that various OH groups’ presence
in phenolic and flavonoids are responsible for the formation and stabilization of metal and
metal oxide nanoparticles [79–81].

As presented in Table 5, the total phenolic content (TPC) of P. odoratissimum ALE was
found to be 21.93 ± 0.01 mg GAE/g of dried leaf extract, while the total flavonoid content
(TFC) was recorded to be 17.11 ± 0.001 mg RE/g of dried leaf extract. From the above
results, the ALE of P. odoratissimum possesses phytoconstituents that can be used in the
formation, capping, stabilization and reduction of zinc acetate salt into ZnO NPs via the
green route.
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Table 5. IC50, total phenolic (TP), and total flavonoid (TF) contents of P. odoratissimum ALE.

Treatment DPPH
IC50 (µg/mL)

TPC
(mg GAE/g Dry Leaf

Extract)

TFC
(mg RE/g Dry Leaf

Extract)

ALE 04.56 ± 0.02 a 21.93 ± 0.01 17.11 ± 0.001
ZnO NPs 28.11 ± 0.01 c n.d. n.d.

L-ascorbic acid 11.50 ± 0.03 b n.d. n.d.
n.d. not determined; values expressed as mean of triplicates ± SD (p < 0.05). The means of each column with the
letters (a–c) differ significantly (p < 0.05).

3.5. Antibacterial Activity

The antibacterial effect of the biosynthesized ZnO NPs was evaluated by disc dif-
fusion assay against S. aureus (ATCC 8095), B. cereus (ATCC 13753) as GPB, and E. coli
(ATCC 25922) and P. aeruginosa (ATCC10662) as GNB. The results are represented in Table 6
and Figure 13. Generally, the results revealed that the biosynthesized ZnO NPs using
P. odoratissimum ALE possessed a significant antibacterial effect against all tested bac-
terial strains. The significant antibacterial zone of inhibition was recorded in S. aureus
(28 ± 0.35 mm) followed by B. cereus (24 ± 0.14 mm), P. aeruginosa (21 ± 0.28 mm) and
E. coli (16 ± 0.21 mm). ALE does not observe any zone of inhibition in the tested bac-
terial strains. Furthermore, compared to gentamycin as a positive control and ALE of
P. odoratissimum, biosynthesized ZnO NPs displayed higher antibacterial activity. The
antibacterial activities of ZnO NPs differ depending on the cell wall nature of GPB or
GNB [82,83]. In the present study, the biosynthesized ZnO NPs showed higher antibac-
terial activity against GPB (S. aureus and B. cereus) compared to GNB (P. aeruginosa and
E. coli). A similar trend was obtained by Vijayakumar et al. [10] who stated that ZnO NPs
synthesized from Laurus nobilis leaf extract displayed greater antibacterial activity against
GPB (S. aureus) than GNB (P. aeruginosa). This is maybe owing to the structure and the
components of GPB (i.e., peptidoglycan layer) and may improve the ZnO NPs’ attachment
to the cell wall, while the components of GNP avoid this attachment [84].

Table 6. Evaluation of the antibacterial activity toward pathogenic bacteria.

Pathogenic
Bacteria

Diameter of Inhibition Zones (mm) Positive
Control

Gentamycin
(10 µg mL−1)

Aqueous Leaf
Extract

(20 µg mL−1)
ZnO NPs

10 µg mL−1 20 µg mL−1 30 µg mL−1

S. aureus 23 ± 0.70 c 25 ± 1.41 b 28 ± 0.35 a 13 ± 0.28 j -
B. cereus 17 ± 0.35 g 18 ± 0.56 f 24 ± 0.14 f 22 ± 0.70 d -

E. coli 13 ± 0.72 j 15 ± 0.07 i 16 ± 0.21 h 12 ± 0.42 k -
P. aeruginosa 18 ± 1.06 f 20 ± 0.70 e 21 ± 0.28 d 13 ± 0.14 j -

Mean of ZnO NPs 17.75 ± 3.7 C 19.5 ± 3.5 B 22.25 ± 3.5 A 15 ± 4.00 D -

Values are means (n = 3). According to LSD (as a post hoc test (PHT) at p ≤ 0.05), the means of ZnO NPs
concentrations sharing different capital letters are significantly different. Interactions between each concentration
and bacterial strains are indicated with different superscripted small letters and significantly differ according to
LSD as a PHT at p ≤ 0.05.

Additionally, the results indicated that the inhibitory effect of biosynthesized ZnO
NPs using P. odoratissimum leaf extract increased when the concentration of ZnO NPs was
increased. This was in agreement with Gunalan et al. [85], who reported that increasing the
concentration of ZnO NPs in discs and wells consistently increased the growth inhibition
due to optimal NPs diffusion in the agar medium.

For the effect of ZnO NPs, there are some proposed bactericidal mechanisms (Figure 14)
that have been suggested by scientists. Some suggested that the released Zn from ZnO
NPs possess toxic properties that are leading to inhibiting a lot of bacterial cell activities
such as bacterial metabolism, and enzyme activity resulting in cell bacterial death [86,87].
The other suggested mechanism is the formation of reactive oxygen species (ROS) that
activates oxidative stress which subsequently leads to cell death [88,89]. Another proposed
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mechanism is the lethal activity of the ZnO NPs due to the attachment of the NPs to the
bacterial cell membranes, and the accumulation inside the cytoplasm resulting in damaging
the cell membrane integrity and loss of cell contents because of the leakage ending up with
cell death [90].
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3.6. Anti-inflammatory Activity

During times of inflammation, lysosomes lyse and release their component enzymes,
resulting in a variety of disorders. Nonsteroidal anti-inflammatory drugs (NSAIDs) work
by either blocking lysosomal enzyme release or stabilizing lysosomal membranes [91].
When RBCs are exposed to harmful substances such as hypotonic medium, heat, methyl
salicylate (MeS) or phenylhydrazine (PhNHNH2), the membranes lyse, resulting in hemol-
ysis and hemoglobin oxidation [92]. Because the membranes of HRBCs are similar to
those of lysosomes [91], the inhibition of hypotonicity-induced RBCs membrane lysis was
used as a measure of the mechanism of the anti-inflammatory effect of ZnO NPs and
P. odoratissimum ALE.

From the results obtained in Table 7, the ZnO NPs and P. odoratissimum ALE have
an anti-inflammatory effect that is concentration-dependent, with the percentage of pro-
tection increasing as the concentration of the samples increases. At the concentration of
1000 µg mL−1, the ZnO NPs significantly (p ≤ 0.05) produced 95.60% inhibition of RBC
hemolysis, and it was comparable to the results achieved with standard indomethacin
(Table 7). The hemolytic effect of the hypotonic solution is due to an excessive accumulation
of fluid within the cell, which causes the cell membrane to rupture. Damage to the red cell
membrane (RCM) increases the cell’s vulnerability to subsequent damage caused by free
radical-induced lipid peroxidation [93]. During a time of increased permeability produced
by inflammatory mediators, membrane stability prevents leaking the flow of serum protein
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and fluids into the tissues [94]. The ZnO NPs and ALE of P. odoratissimum maybe stabi-
lized the RBC membrane by preventing the release of active mediators of inflammation
and lytic enzymes. Furthermore, many studies have revealed that plant flavonoids have
anti-inflammatory and antioxidant activity [95–97]. Their anti-inflammatory properties are
thought to be owing to an inhibitory action on enzymes involved in the synthesis of the
chemical mediators of inflammation and arachidonic acid metabolism [98,99].
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Table 7. Effect of the biosynthesized ZnO NPs and ALE of P. odoratissimum on hypotonicity-induced
hemolysis of HRBCs.

Sample Conc. (ug/mL)
Mean Absorbance ± SD Hemolysis

Inhibition %Hypotonic Solution Isotonic Solution

Control 1.326 ± 0.1 0.001 ± 0.01

ZnO NPs

1000 0.158 ± 0.004 b 0.095 ± 0.00 95.6

800 0.189 ± 0.003 c 0.071 ± 0.00 91.8

600 0.264 ± 0.006 d 0.061 ± 0.00 85.9

400 0.381 ± 0.005 f 0.054 ± 0.00 77.3

200 0.475 ± 0.002 h 0.035 ± 0.00 69.5

100 0.583 ± 0.012 j 0.020 ± 0.00 61.0
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Table 7. Cont.

Sample Conc. (ug/mL)
Mean Absorbance ± SD Hemolysis

Inhibition %Hypotonic Solution Isotonic Solution

ALE

1000 0.198 ± 0.007 c 0.081 ± 0.00 91.9

800 0.329 ± 0.006 e 0.065 ± 0.00 81.7

600 0.426 ± 0.005 g 0.035 ± 0.00 72.9

400 0.474 ± 0.007 h 0.031 ± 0.00 69.3

200 0.544 ± 0.005 i 0.027 ± 0.00 64.1

100 0.660 ± 0.003 k 0.022 ± 0.00 55.7

Indomethacin 1000 0.059 ± 0.002 a 0.035 ± 0.01 98.1

Values are expressed as the mean of triplicates ± SD. Different superscripted small letters significantly differ
based on LSD as a post hoc test at p ≤ 0.05.

4. Conclusions

This study presents the biosynthesized ZnO NPs for the first time using an ALE
of P. odoratissimum via a simple green route. The biosynthesized ZnO NPs showed a
characteristic Uv-Vis absorption peak at 370 nm. The XRD pattern also indicated the
hexagonal pure Wurtzite structure. FE-SEM coupled with EDX, HR-TEM, FTIR and DLS,
confirmed the formation of NPs with an average size of 34.12 nm as obtained from HR-TEM
analysis. The DPPH assay revealed that ZnO NPs possess antioxidant activity with an
IC50 value of 28.11 µg mL−1. Furthermore, ZnO NPs showed excellent antibacterial effects
against both GNB and GPB. In addition, ZnO NPs were found to be more effective as anti-
inflammatory via stabilizing the RBCs’ membrane in in vitro models. Our findings suggest
the possibility of using the aqueous leaf extract of P. odoratissimum for synthesizing stable
ZnO NPs. The biosynthesized ZnO NPs possess a significant antioxidant, antibacterial
against foodborne pathogenic bacteria and anti-inflammatory activities that can be used
as a safe and stable alternative to synthetic substances in the fields of pharmaceutical and
biomedical research.
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