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Nanoparticle synthesis using microorganisms and plants by green synthesis technology

is biologically safe, cost-effective, and environment-friendly. Plants and microorganisms

have established the power to devour and accumulate inorganic metal ions from their

neighboring niche. The biological entities are known to synthesize nanoparticles both

extra and intracellularly. The capability of a living system to utilize its intrinsic organic

chemistry processes in remodeling inorganic metal ions into nanoparticles has opened

up an undiscovered area of biochemical analysis. Nanotechnology in conjunction with

biology gives rise to an advanced area of nanobiotechnology that involves living entities

of both prokaryotic and eukaryotic origin, such as algae, cyanobacteria, actinomycetes,

bacteria, viruses, yeasts, fungi, and plants. Every biological system varies in its

capabilities to supply metallic nanoparticles. However, not all biological organisms can

produce nanoparticles due to their enzymatic activities and intrinsic metabolic processes.

Therefore, biological entities or their extracts are used for the green synthesis of metallic

nanoparticles through bio-reduction of metallic particles leading to the synthesis of

nanoparticles. These biosynthesized metallic nanoparticles have a range of unlimited

pharmaceutical applications including delivery of drugs or genes, detection of pathogens

or proteins, and tissue engineering. The effective delivery of drugs and tissue engineering

through the use of nanotechnology exhibited vital contributions in translational research

related to the pharmaceutical products and their applications. Collectively, this review

covers the green synthesis of nanoparticles by using various biological systems as well

as their applications.

Keywords: metallic nanoparticles, green synthesis, extracellular, intracellular, tissue engineering, bio-detection

INTRODUCTION

Nanotechnology is amongst the most widely used technologies in translational research. The
development of metallic nanoparticles employing biological materials by an eco-friendly approach
has attracted significant attention. Nanotechnology deals with particles of a size ranging from 1 to
100 nm, their synthesis strategy, and manipulation. This knowledge domain naturally commingles
all the fields of natural sciences together with chemistry, physics, biological sciences, engineering,
materials science, and computational sciences for the formulation of nanostructures (Shenton et al.,
1999; Medvedeva et al., 2007). The nanostructures have different applications attributable to their
new or increased properties (Tang et al., 2007; Thakkar et al., 2009) depending upon their size,
distribution, and morphology. It has applications in various fields including biomedical, catalysis,

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2020.00799
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2020.00799&domain=pdf&date_stamp=2020-10-29
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zguangw543@aliyun.com
https://doi.org/10.3389/fchem.2020.00799
https://www.frontiersin.org/articles/10.3389/fchem.2020.00799/full


Zhang et al. Metallic Nanoparticles for Cancer Therapeutics

chemical industries, cosmetics, drug delivery, electronics,
environment, energy science, food and feed, health care,
mechanics, optics, space industries, non-linear optical
devices, single-electron transistors, and photo-electrochemical
applications. The metallic nanoparticles are considered one of
the most promising systems for all the aforementioned functions
(Wang et al., 2005; You et al., 2013; Singh et al., 2016).

A nanoscale drug carrier acts as a single unit with respect to
its properties and transport. These nanoclusters have narrow size
distribution and a minimum of one dimension between 1 and 10
nanometers. The agglomerates of ultrafine particles, nanoclusters
or nanoparticles, are nanopowders whereas nanocrystals are the
crystals of nanoparticle size

There are two general strategies for the synthesis of
nanomaterials: the top-down approach, wherein a larger
structure is broken down into smaller pieces using chemical,
physical, and biological energy; and the bottom-up approach,
in which material is synthesized from the atomic level
using various chemical, physical, or biological reactions
to make a large nanostructure (Das et al., 2017). The
chemical and biological methods are primarily accustomed
to build nanostructured carriers (NC) employing this
approach (Figure 1).

The physical and chemical strategies are in-use for the
synthesis of nanoparticles. The utilization of toxic chemicals
could exert potential hazards like carcinogenicity, toxicity, and

FIGURE 1 | (A,B) Approaches and method of synthesis of nanoparticles.

environmental toxicity (Gupta and Xie, 2018). The toxicity
problems are quite prominent due to the use of hazardous
substances such as reducing agents, organic solvents, and
stabilizers. These chemicals prevent the agglomeration of
colloids. The use of toxic solvents and chemical contaminations
limits the use of nanoparticles in various clinical and biomedical
applications (Hua et al., 2018). Therefore, a reliable, clean,
biologically appropriate, and environmental-friendly techniques
is indeed required to synthesize nanoparticles (Jain et al.,
2010; Thakkar et al., 2010; Kulkarni and Muddapur, 2014).
The biological synthesis of nanoparticles may prove to be an
attractive alternative. It includes adoption of multicellular and
unicellular biological entities- bacteria (Roh et al., 2001; Nair and
Thalappil, 2002; Lengke et al., 2006; Husseiny et al., 2007; Joglekar
et al., 2011), actinomycetes (Ahmad et al., 2003a,b; Sastry et al.,
2005), fungi Mukherjee et al., 2001, 2002; Ahmad et al., 2002,
2005; Bhainsa and D’Souza, 2006, plants Philip, 2010; Kumar
et al., 2011, viruses (Lee et al., 2002; Merzlyak and Lee, 2006;
Khan et al., 2013), and yeasts (Dameron et al., 1989; Kowshik
et al., 2003; Gericke and Pinches, 2006a,b). The biologically
synthesized nanoparticles have a broad area to study with respect
to their shape, size, composition, and physicochemical properties
(Mohanpuria et al., 2008). Further, biological entitiesmay operate
as a pattern for the assembly, synthesis, and organization of
the nanometer scale. The present review covers the use of
biological routes for the synthesis of metal oxide and metal
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nanoparticles, and various factors affecting their synthesis, and
possible mechanisms employed along with likely applications of
nanoparticles formed using biological factories.

BIOLOGICAL SYNTHESIS OF
NANOPARTICLES

Organisms have advanced to endure in environments of high
concentrations of metals (Bisen et al., 1987, 1996; Khare and
Bisen, 1991). These organisms may alter the chemical nature of
the toxic metals by lowering their toxicity or making them non-
toxic (Singh et al., 1989, 1993; Sharma and Bisen, 1992; Sharma
et al., 2001). The formation of nanoparticles is the “consequence”
of the resistance mechanism of an organism in contrast to a
specific metal (Figure 2). The synthesis of “Natural” biogenic
metallic nanoparticle synthesis is split into two categories:

(a) Bioreduction: More stable forms of metal ions may be
achieved by chemical reduction using biological means and is
achieved by dissimilatory metal reduction. The metal ion is
reduced and the enzyme is oxidized (Deplanche et al., 2010). This
concludes in the production of impotent metallic nanoparticles
whichmay be harmlessly recovered from a contaminated sample.

(b) Biosorption: The metal ions bind to the organism itself
from an aqueous sample or soil sample. Either the metal ions are
bonded to the cell wall or peptides are synthesized by some plants,
bacteria, and fungi, and these synthesized peptides assembles into
stable nanoparticulate structures (Yong et al., 2002).

The selection of biological methods for synthesis and
engineering of nanoparticles is dependent upon several variables.
The form of the metal nanoparticle to be synthesized is the

most important variable. Resistance developed against a small
number of metals by the organisms limit the choice of organisms.
Following are a number of the microbial resources (algae, fungi,
bacteria, viruses, and yeast) used for most of the frequently
studied metal and metal salts nanoparticles consisting of copper,
silver, gold, cadmium, platinum, palladium, cadmium sulfide,
titanium dioxide, and zinc oxide (Mousavi et al., 2018; Gahlawat
and Roy Choudhury, 2019).

Bacteria Mediated Synthesis of
Nanoparticles
Pure gold nanoparticles were synthesized by bacterium, Delftia
acidovorans (Johnston et al., 2013). Delftibactin is a small non-
ribosomal peptide and is considered liable for the synthesis
of gold nanoparticles as it is known to induce resistance
against toxic gold ions. The transition metal, gold, did not
exert toxicity toward bacterium due to the formation of inert
gold nanoparticles (AuNPs) bound to delftibactin (Pantidos and
Horsfall, 2014). A substitutive method for gold nanoparticle
synthesis by the bacterium Rhodopseudomonas capsulata was
shown to produce extracellular gold nanoparticles ranging in size
from 10 to 20 nm via NADH-Dependant Reductase (He et al.,
2007). Green products may act as a stabilizing and reducing agent
for AuNPs synthesis and these preparations exhibit medicinal
applications (Lee et al., 2020).

Palladium (Pd), one of the members of the Platinum Group
Metals (PGM) has a compilation of highly catalytically active
metals, and is being employed as a catalyst for hydrogenation
and dehalogenation reactions. The heavy contamination of
those bacteria that had been isolated from Alpine sites with

FIGURE 2 | Various biological synthesis of nanoparticles.
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that of heavy metals led to the synthesis of zero-valent
Palladium (Pd0) nanoparticles (Schlüter et al., 2014). Amongst
various bacteria isolated from the site, only Pseudomonas
cells exhibited the potential to produce catalytically active
Pd nanoparticles. Furthermore, they were able to carry out
the reductive dehalogenation of congeners like tri and tetra-
chlorinated dioxin. Escherichia coli synthesized Pd0 nanoparticles
using hydrogenases present in the cells (Lloyd et al., 1998). Pd
nanoparticles were synthesized on the bacterial cell envelope and
may be separated easily.

The bacterium, Bacillus licheniform, reportedly produced
silver nanoparticles (AgNPs) intracellularly (Kalimuthu et al.,
2008). The production/synthesis of nanoparticles required
24 h and was demonstrated by the color modification of
culture into dark brown after the augmentation of silver ions.
However, as the nanoparticles were synthesized intracellularly
an additional extraction step was required. Intracellular AgNPs
were synthesized by the members of the Bacillus spp. subcultured
in AgNO3 containing media and the reaction was completed in
7 days (Pugazhenthiran et al., 2009). The culture supernatant
was tested for its capability to form metallic nanoparticles
(Shahverdi et al., 2007) in 5min. The extracellular production
of nanoparticles is recommended compared to the intracellular
synthesis due to the simple purification process with the
increased production rate (Das et al., 2014).

Green synthesis of AgNPs using lactic acid bacteria was
demonstrated by Sintubin et al. (2009). Lactobacillus spp.,

Pediococcus pentosaceus, Enterococcus faecium, and Lactococcus
garvieae was shown to synthesize the nanoparticles by many
bacteria. The procedure of AgNP formation was proposed to be
a two-step method. The biosorption of Ag ions on the cell wall
was followed by a reduction of these ions resulting in AgNPs
formation (Sintubin et al., 2009). Additionally, the cell wall could
be thought to be a capping agent, maintaining their stability by
stopping their aggregation.

The biosynthesis of Ag and AuNPs has been a focal point of
research because of their antimicrobial attributes. The extensive
studies were conducted to synthesize the metallic nanoparticles
using Bacillus species due to their metal accumulating abilities
(Pollmann et al., 2006; Kalimuthu et al., 2008; Pugazhenthiran
et al., 2009). Bacillus sphaericus JG-A12 can collect excessive
concentrations of Al, Cd, Cu, Pb, and U (Figure 3). The Uranium
bioremediation from the aqueous environment was attributed
to the S-layer proteins of B. sphaericus. It is a porous layer
surrounding the bacterial cell and is made up of identical
proteins, ∼5–15 nm thick, with the pores ranging in size from
2 to 6 nm. The S-layer contributes up to 15% of the total proteins
of the cell. The S-layer has been stated to be liable for the binding
of heavy metals from the aqueous environments (Pollmann et al.,
2006) with a capability to bind up to 20mgU/g of protein, and the
U binds to the phosphate and carboxyl and groups of the S-layer
protein (Pollmann et al., 2006).

Copper (Cu) is not reportedly stable and is oxidized rapidly
to copper oxide (CuO) (Baco-Carles et al., 2011). Therefore,

FIGURE 3 | Green synthesis of nanoparticles by plants.
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Cu nanoparticles need to be stabilized as soon as they are
formulated. The synthesis of Cu nanoparticles using Morganella
morganii is proved with the help of intracellular uptake of
Cu ions accompanied by the means of binding of ions to a
metallic ion reductase or a comparable protein ensuring in the
reduction of the ion to metallic Cu0 (Baco-Carles et al., 2011).
The metallic Cu nanoparticles then accumulate extracellularly
since they are effluxed out of the cell.Morganella sp. additionally
extracellularly synthesized AgNPs (Parikh et al., 2008). The Cu
nanoparticles synthesis using M. morganii may be due to an
Ag resistance mechanism to provide elemental Cu nanoparticles
through silE homolog to copper-binding protein from different
microorganisms (Ramanathan et al., 2013).

Nanoparticle Synthesis Using Fungi
The production of AgNPs using fungi has been the focal
point of investigation because of their applications in numerous
industries such as antimicrobials and electronics (Rai et al., 2008;
Ummartyotin et al., 2012). The capability of the fungus Fusarium
oxysporum to synthesize AgNPs has been verified with sizes
ranging from 5 to 15 nm which had been capped through fungal
proteins to lead them to becoming stable. Fusarium oxysporum
could also synthesize nanoparticles extracellularly (Rai et al.,
2008; Ummartyotin et al., 2012) as compared to earlier studies
in which intracellular production of Ag and AuNPs, lead sulfide
(PbS), cadmium sulfide (Cds), molybdenum sulfide (MoS), and
zinc sulfide (ZnS) nanoparticles intracellular production of Ag
and AuNPs, cadmium sulfide (Cds), lead sulfide (PbS), zinc
sulfide (ZnS), and molybdenum sulfide (MoS) had been reported
(Ahmad et al., 2002, 2003a).

Aspergillus fumigatus is used to synthesize extracellular silver
nanoparticles of larger sizes ranging from 5 to 25 nm as compared
to Fusarium oxysporum, with the disadvantage of difficulty in
anticipating the catalytic activity with the size difference in
every batch (Bhainsa and D’Souza, 2006). However, the bio-
production of AgNPs using A. fumigatus is an attractive prospect
as organism reduces Ag ions into nanoparticles within 10min
of contact (Bhainsa and D’Souza, 2006). Fungus Trichoderma
reesei could also be used for extracellular production of AgNPs
with a size range of 5–50 nm nanoparticles. It took 72 h
to synthesize AgNPs which was appreciably slower than A.
fumigatus and Fusarium oxysporum (Ahmad et al., 2002, 2005;
Bhainsa and D’Souza, 2006). Furthermore, the use of T. reesei
has an advantage over the use of other fungi since it has been
an extensively-studied organism which may be manipulated
for the production of an excessive quantity of enzymes (Roy
et al., 2008; Vahabi et al., 2011) and may help increase the
rate of production of nanoparticles. However, the nanoparticles
were not as homogenous as those which were produced by
A. Fumigates (Bhainsa and D’Souza, 2006) and F. oxysporum
(Ahmad et al., 2002). The fungal attribute to produce intracellular
nanoparticles is helpful in getting rid of the fungus and its
gathered metallic contaminant. A white-rot fungus (Coriolus
versicolor) is suggested to provide and accumulate AgNPs extra
and intracellularly by manipulating reaction conditions (Sanghi
and Verma, 2008). Only a few fungi are considered to have the
potential to synthesize gold nanoparticles despite the increasing

demand in various fields. The small size of gold nanoparticles
causes them to become more reactive and appropriate as
compared to the bulk form to be used as precursors for
electronics applications and catalysts (Mukherjee et al., 2001;
Eustis and El-Sayed, 2006). The synthesis of AuNPs using
Verticillium sp. by the biological reduction of AuCl4 localized on
the surface of the mycelia (Mukherjee et al., 2001).

Biological synthesis of Platinum nanoparticles (PtNPs) was
carried out by the use of fungus Neurospora crassa. It produced
single PtNPs (Platinum nanoparticles) intracellularly ranging
in size from 4 to 35 nm in diameter. They may additionally
synthesize spherical nano-agglomerates in the range of 20–
110 nm diameter (Castro et al., 2013). Both biomass and
extract of N. crassa were used to synthesize PtNPs. The PtNPs
synthesized using the N. Crassa extract contains single-crystal
nano agglomerates (Castro et al., 2011, 2013). PtNPs were also
reportedly synthesized extra and intracellularly by F. oxysporum
but with sub-optimal quantity when synthesized intracellularly
(Riddin et al., 2006). The phytopathogenic fungus F. oxysporum
and the endophytic fungus Verticillium sp. had been reported
to synthesize magnetite (a common iron oxide) nanoparticles
(MaNPs) intracellularly (Bharde et al., 2006).

The use of fungi for nanoparticles synthesis has some benefits
over the use of bacteria namely; scaling up and easy downstream
processing, the economic status, and an increased surface area
provided by the fungal mycelia (Mukherjee et al., 2001). The
higher amount of proteins secreted by using fungi should likely
increase the productivity of nanoparticle synthesis but safety is
compromised since a number of fungi are phytopathogenic and
may pose a safety risk (Spadaro and Gullino, 2005). Trichoderma
asperellum and Trichoder mareesei are non-pathogenic making
them ideal for commercial applications (Nevalainen et al., 1994;
Roy et al., 2008; Vahabi et al., 2011). T. reesei is broadly used in
animal feed, food, paper, pharmaceuticals, and textile industries
(Nevalainen et al., 1994).

Nanoparticle Synthesis Using Yeast
Yeasts can absorb and accumulate a good quantity of lethal
metals from their adjacent areas due to their large surfaces
(Bhattacharya and Gupta, 2005; Mandal et al., 2006). Yeast uses
a range of detoxification mechanisms to adapt to toxic metals
such as bio-precipitation, chelation, extracellular sequestration
and bio-sorption. These mechanisms adapted through yeast cells
are used during nanoparticle synthesis to form and increase
the durability of nanoparticles, giving rise to variation in
particle size, particle properties, and location (Hulkoti and
Taranath, 2014). The intracellular synthesis of CdS quantum
dots turned into confirmed via Candida glabrata when exposed
to cadmium salts (Dameron et al., 1989). The growth phase
of yeast Schizosaccharomyces pombe cells and the formation of
CdS quantum dots are linked together (Kowshik et al., 2002a,b).
Torulopsis sp. synthesizes PbS quantum dots when exposed
to Pb2 ions and Pichia jadinii synthesizes Au nanoparticles
intracellularly. The size range of these nanoparticles is from a few
nanometers to around 100 nm. Themorphological characteristics
of these nanoparticles were easily conducted by monitoring the
cellular activities and growth of P. jadinii during the synthesis
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of the nanoparticle (Gericke and Pinches, 2006a,b). The use of
metallic nanoparticles has become vital due to their safety and
prospective applications.

Nanoparticles Synthesis Using
Cyanobacteria (Blue Green Algae)
Green and valuable synthetic techniques have attracted great
interest in the synthesis of nanoparticles (Sundrarajan andGowri,
2011). Cyanobacteria strains are an inexpensive eco-friendly
tool for nanometal formation. Cyanobacterial technology offers
the merits of eco-friendly methods, such as timesaving for
large-scale production at ambient temperatures. They grow
much faster compared to the plants and could easily be
manipulated as needed. Studies onmolecular biology and ecology
regarding synthesis of nanoparticles offer a great opportunity for
efficient development of application-oriented nanoparticles. The
common cyanobacterial strains used in nanoparticle biosynthesis
vary from unicellular and colonial species. Colonies might
form sheets, filamentous, or even hollow balls. They may fix
atmospheric nitrogen besides fixing the atmospheric carbon
dioxide during photosynthesis. Some strains grow in dark under
organotrophic/chemotrophic/lithotrophic conditions offering a
wide range of modes of nutrition with normal plants-like
photosynthesis. Few strains exhibit symbiotic conditions with
lichen (Fungi), bryophytes (Liverworts), gymnosperms (Cycas),
and with higher plants (Macrozamia). They require a lesser
quantity of chemicals as they are all photoautotrophic and
may also grow under the chemo-autotrophic condition in light
and dark.

Out of the 30 different strains of cyanobacteria (unicellular,
colonial, undifferentiated and differentiated filamentous) studied
for the silver nanoparticles biosynthesis, the filamentous
heterocystous strain Cylindrospermum stagnale was the best
organism synthesizing nanoparticles of 38–40 nm (Husain et al.,
2015). In general, the time frame varied from 30 to 360 h, and
the size varied from 38 to 88 nm (Husain et al., 2015). The
techniques of synthesis of AgNPs using cyanobacteria Spirulina
platensis and Nostoclinckia have been studied (Cepoi et al., 2014).
There is a need to understand the optical conditions of the
interaction among the biomass and solution containing Ag ions
that may allow nanoparticles without biomass degradation at the
time of Ag nanoparticle formation (Cepoi et al., 2014; Hamouda
et al., 2019). The green synthesized silver nanoparticles via simple
biological protocol using Oscillatoria limnetica aqueous extract
that had provided both a decreasing and stabilizing agent for
the biosynthesis of nanoparticles by suspending the live and
washed biomass into the AgNO3 solution and by adding AgNO3

into a cell-free culture liquid (Patel et al., 2015) assessed the
selected strains of cyanobacteria for the ability to synthesize
AgNPs. Around 14 out of 16 tested strains have been utilized
for the AgNPs biosynthesis. Mostly, AgNPs have been formed
in the presence of biomass in addition to the cell-free culture
media indicating that the Ag-NPs formation technique engages
an extracellular compound inclusive of polysaccharide. TEM
evaluation revealed that nanoparticles were set in an organic
matrix. AgNPs varied in shape and sizes that ranged between 13

and 31 nm, depending upon the organism used (Patel et al., 2015).
With the exception of one strain of Cyanobacterium Limnothrix
sp., all strains confirmed the antibacterial activity of Ag-NPs
(Patel et al., 2015). For the gold nanoparticles green synthesis,
Lyngbya majuscula and Spirulina subsalsa were investigated as
bioreagents. The cyanobacterial biomass turned purple within
72 h of incubation at 15mg L-1 Au3+ solution, indicating an
intracellular reduction of Au3+ to Au0 and subsequent formation
of gold nanoparticles. Spirulina subsalsa showed the synthesis
of spherical nanoparticles of ∼5 to ∼30 nm in diameter along
with very few nanorods. Lyngbya majuscule showed the presence
of spherical and hexagonal nanoparticles of ∼2 to ∼25 nm in
diameter. The reduction of Au3+ to Au0 was proved by the
XRD study. FTIR analysis indicated the presence of protein
shells around the gold nanoparticles (Parial and Pal, 2011).
The biosynthesis of AgNPs and their antimicrobial property
and photocatalytic activity for photodegradation of organic dye
were studied by San Keskin et al. (2016). The characterization
of synthesized Ag nanoparticles was carried out by UV–Vis
spectrophotometer (surface plasmon resonance band at 430–
450 nm). The Attenuated Total Reflection Fourier Transform
Infrared Spectroscopy (ATR-FTIR) study confirmed the reducing
nature of proteins. The Scanning electron microscopy (SEM)
and Transmission electron microscopy (TEM) were used to
determine the structure of AgNPs and was found to be
spherical. The AgNPs showed photocatalytic activity that is
photodegradation of organic dye i.e., methylene blue. It was
shown that methylene blue was degraded by ∼18% within
4 h with biosynthesized AgNPs (San Keskin et al., 2016).
The biosynthesis of AgNPs has been efficaciously performed
with the use of bloom-forming filamentous undifferentiated
cyanobacterium Plectonema boryanum which reacted with
solution of AgNO3 (∼560 mg/L Ag) for up to 28 days at 25–
100◦C. The precipitation of spherical AgNPs and octahedral
silver platelets (of up to 200 nm) in solutions is promoted
by interaction of cyanobacteria with AgNO3 Solution. The
mechanism of formation of AgNPs via cyanobacteria may
involve the metabolic processes in which nitrate is used at
25◦C, and organics are released from the lifeless cyanobacteria
at 25–100◦C (Lengke et al., 2006, 2007). The cyanobacterium
Gloeocapsa sp. was an effective strain for nanosilver production
(Al-Katib et al., 2015). The extracellular synthesis of AgNPs
was initially detected by visual inspection for color changing of
the cultured flasks solutions from transparent to brown then
black, as well as nanoparticles characterization through UV-Vis
spectrophotometer and Fourier Transform Infrared spectroscopy
(FTIR) with characteristic surface Plasmon absorption peaks
at range 400–450 nm. The FTIR spectrum data in addition
confirmed the presence of specific functional groups such as
proteins and does have an important role as a capping and
stabilizing agent in the biosynthesis of AgNPs (Al-Katib et al.,
2015). Cyanobacteria could play an instrumental role as an
excellent candidate for nanoparticle biosynthesis.

Nanoparticle Synthesis Using Algae
Algae are regarded to accumulate heavy metals and may be
utilized for the biogenic synthesis of metallic nanoparticles.
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Dried unicellular alga Chlorella vulgaris could synthesize
nanoparticles of diverse shapes—tetrahedral, decahedral,
and icosahedral accumulated near the surface (Luangpipat
et al., 2011). The extract of Chlorella vulgaris produced Ag
nanometer scale plates at room temperature. Biosynthesis of
CuFe2O4@Agnano composite from Chlorella vulgaris combined
with ciprofloxacin confirmed promising bactericidal activity
toward multidrug resistant Staphylococcus aureus which is a
rising global risk (Kahzad and Salehzadeh, 2020). The proteins
present in the algal extract perform a primary function as a
stabilizing agent, reducing agent, and shape-control modifier
(Xie et al., 2007). Sargassum wightii, a marine alga, could
also synthesize extracellular Ag, Au, and Au/Ag bimetallic
nanoparticles (Govindaraju et al., 2009). Rapid synthesis of
extracellular Au nanoparticles with a size from 8 to 12 nm via
S. wightii has been demonstrated by Singaravelu et al. (2007).
Several other algae Kappaphycu salvarezii (Rajasulochana et al.,
2011), Fucus vesiculosus (Mata et al., 2008), Tetraselmisko
chinensis (Senapati et al., 2012), Chondrus crispus, and
Spirogyra insignis (Castro et al., 2013) have been reported
to synthesize Au and Ag nanoparticles (Rajasulochana et al.,
2011). By using the living cells of Euglena gracilis microalga
which have been grown under either mixotropic (exposed
to light and grown in an organic carbon-enriched culture
medium) or autotropic condition, the gold nanoparticles
synthesized were of true yield, kinetics and colloidal stability
(Dahoumane et al., 2016).

Nanoparticle Synthesis Using Plants
The plants are considered to be more suitable compared to
microbes for green synthesis of nanoparticles as they are non-
pathogenic and various pathways are thoroughly researched
(Figure 4). A wide spectrum of metal nanoparticles has been
produced using different plants (Narayanan and Sakthivel, 2011;
Iravani and Zolfaghari, 2013; Mittal et al., 2013; Das et al., 2017).
These nanoparticles have unique optical, thermal, magnetic,
physical, chemical, and electrical properties in comparison to
their counterpart bulk material with numerous applications in
numerous fields of human interest (Husseiny et al., 2007; Duran
and Seabra, 2012). There are various biological entities which
are used for AgNPs synthesis (Keat et al., 2015). Jatroa curcas
extract results in the production of homogenous (10–20 nm)
AgNPs from AgNO3 salt in 4 h (Bar et al., 2009). The leaf extracts
of Acalypha indica have exhibited the capability to synthesize
AgNPs. The size of the AgNPs obtained became extensively
homogeneous and ranged from 20 to 30 nm (Krishnaraj et al.,
2009). In another study,Medicago sativa seed exudates were used
for the synthesis of AgNPs. The reduction of Ag+ happened
almost immediately as nanoparticles had been reported within
a minute of metal salt exposure and 90% of Ag+ was reduced
at 30◦C in <50min. The resulting nanoparticles were flower-
like and/or triangular and spherical with a size range of 5–
108 nm and had a heterogeneous size distribution (Lukman
et al., 2010). The leaf extract of Ocimum sanctum can also
reduce Ag+ resulting in the AgNPs of 3–20 nm in size

FIGURE 4 | Green synthesis of Cds nanoparticles by bacteria.
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production The particles were spherical and stabilized by the
way of a component of the leaf broth (Koduru et al., 2011).
Terminalia chebula fruit extract has been used to promptly
produce Ag nanoparticles (Jebakumar Immanuel Edison and
Sethuraman, 2012). Eucalyptus macrocarpa leaf extract produced
Ag nanoparticles of cubic shape ranging in size from 50 to
200 nm (Poinern et al., 2013); spherical gold nanoparticles of
around 20 nm by Nyctanthes arbor tristis (night jasmine) flower
extract (Das et al., 2011); leaf extract from Coriandrum sativum
(coriander) leaf extract produce Ag and Au nanoparticles of
7–58 nm (Mittal et al., 2013). Phyllanthin extracted from the
plant Phyllanthus amarusmay be used to produce both gold and
silver nanoparticles. This study is unique for the use of single
constituent of a plant extract to synthesize metallic nanoparticles
in comparison to different investigations wherein the whole
plant was used (Kasthuri et al., 2008). The shape and size of
nanoparticles produced had been affected by the concentration of
phyllanthin used. Low concentrations of phyllanthin resulted in
the triangular and hexagonal AuNPs formation, whereas higher
concentrations produced increased spherical NPs (Kasthuri
et al., 2008). Plant derived polysaccharides and phytochemicals
nanoparticle (Park et al., 2011), soluble starch (Raveendran
et al., 2003), cellulose (Cai et al., 2009), dextran (Ma et al.,
2005), chitosan (Laudenslager et al., 2008), alginic acid (Saha
et al., 2009), and hyaluronic acid (Kemp et al., 2009) may
be harnessed and studied for the synthesis of silver and gold
nanoparticles successfully. These compounds offer benefits of
using less toxic chemical compounds and render capability to
create nanocomposites with different metals. The incubation
of the extract from lemon-grass plant, Cymbopogon flexuosus,
with gold tetrachloride solution resulted in the formation of
a unique type of liquid-like nanotriangles by the aggregation
of spherical AuNPs, the surface of which forms a complex
with the aldehydes and/or ketones present in the plant extract,
contributing to the fluidity (Sangaru et al., 2004). The leaf broth
of Azadirachta indica, forms a complex when dealing with the
salts of silver, gold, and then both metallic ions concurrently
produced silver, gold, and bimetallic silver-gold NPs. The rate
of formation of nanoparticles became faster having attained
the plateau in 2 h. The stability of NPs was attributed to the
terpenoid and flavanone components of the leaf (Sangaru et al.,
2004). Phytochemically reduced NiO NPs with garlic and ginger
add on to the increased bactericidal activity toward multiple
drug resistant Staphylococcus aureus which may address drug
resistance issues to an extent (Haider et al., 2020).

Alloying Ag and Au has brought about the formation
of bimetallic nanoparticles. Their production entails the
competitive reduction between two aqueous solutions having
one of a kind of metallic ion precursor used together with a
plant extract. The Ag-Au nanoparticle, the core-shell structure
is manufactured from Au due to its larger reduction potential,
and Ag ions are reduced and form a shell with Ag coalescing
on the core. Few plants have been efficiently used to synthesize
Ag-Au bimetallic nanoparticles like Azadirachta indica (Sangaru
et al., 2004),Anacardium occidentale (Sheny et al., 2011), Swieteni
amahagony (Mondal et al., 2010), and cruciferous vegetable
extracts (Jacob et al., 2012).

Extracts from various plants have been used to synthesize
nanoparticles of copper (Cu) and copper oxide (CuO). Cu
nanoparticles varying from 40 to 100 nm in size were synthesized
from Magnolia kobus leaf extract (Lee et al., 2013) and from
Syzygium aromaticum (Clove) (Subhankari and Nayak, 2013)
showing spherical to granular shape with 40 nm of an average
particle size. The Latex from the stem of Euphorbia nivulia
(Common milk hedge) was used to synthesize an important class
of Cu nanoparticles stabilized and coated through terpenoids and
peptides of the latex (Valodkar et al., 2011a) and synthesis of
a notably stable spherical nanoparticles of CuO was confirmed
from Sterculia urens (Karaya gum) with a particle size of 4.8 nm
(Padil and Cernik, 2013).

The synthesis of the first platinum nanoparticles was
demonstrated with the help of Song et al. (2009b) Diospyros
kaki (Persimmon) leaf extract and carboxylic acids, amines,
alcohols. Ketones present in the leaf extract act as a functional
group for the reduction of Pt ions. There was 90% reduction
of Pt ions into nanoparticles in ∼2.5 h. The possibility of an
enzyme mediated process was ruled out due to the temperature
of execution of the experiment (95◦C) which is high enough
to denature proteins. Palladium nanoparticles were synthesized
using the extract of Cinnamon zeylanicum bark (Sathishkumar
et al., 2009a,b) and Annona squamosa (custard apple) peel
extract for the synthesis of Pd nanoparticles of size 75–85 nm
(Roopan et al., 2012). Nanoparticles with a mean size of 15 nm
had been synthesized from the leaf extract of soybean (Glycine
max) (Petla et al., 2012). The extracts from commonly available
Camellia sinensis (Tea) and Coffe aarabica (Coffee) have been
utilized to produce nanoparticles of palladium of sizes ranging
from 20 to 60 nm with faced centered cubic crystal symmetry
(Petla et al., 2012). Furthermore, when an extract of Gardenia
jasminoides (Cape jasmine) is used to synthesize nanoparticles
of palladium the antioxidants (geniposide, chlorogenic acid,
crocins, and crocetin) present in the extracts acts as stabilizing
and reducing agents (Jia et al., 2009). Other plants like
Ocimum sanctum leaf extract (Holy basil) (Soundarrajan et al.,
2011), plant wood nanomaterials (Lin et al., 2011) and lignin
from red pine (Pinus resinosa) were used for the synthesis
of nanoparticles of platinum and palladium (Coccia et al.,
2012).

Nanoparticles of spherical size and ranging in size from 100
to 150 nm from metal oxide which includes titanium dioxide
(TiO2) were synthesized efficaciously using numerous plant
extracts viz. Annona squamosa peel (Roopan et al., 2012),
Cocos nucifera coir (Roopan et al., 2013), Nyctanthes arbor-tristis
leaf extracts (Sundrarajan and Gowri, 2011), Psidium guajava
(Thirunavukkarasu et al., 2013), Eclipta prostrata (Rajakumar
et al., 2011; Zahir et al., 2015), and Catharanthus roseus
(Kanayairam et al., 2011). Spherical shaped zinc oxide (ZnO)
nanoparticles were obtained using the latex of Calotropis procera
(Singh, 2011), Aloe vera (Duran and Seabra, 2012), Physalisalke
kengi (Sangeetha et al., 2011), and Sedum alfredii (Qu et al.,
2011a,b). Biogenic Indium oxide (In2O3) spherical nanoparticles
were synthesized with a variable size range from 5 to 50 nm by
using leaf extracts from Aloe vera (Aloe barbadensis) (Laokula
et al., 2008).
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Iron (Fe) nanoparticles were synthesized by the use of green
chemistry methods including the aqueous Sorghum bicolor bran
extracts (Njagi et al., 2011) and leaf extracts of Azadirachta
indica (Pattanayak and Nayak, 2013), Euphorbia milii, Tridax
procumbens, Tinospora cordifolia, Datura innoxia, Calotropis
procera, and Cymbopogon citratus (Shah et al., 2014). The latex
from Jatropha curcas has been used to synthesize spherical Pb
nanoparticles of sizes from 10 to 12.5 nm (Joglekar et al., 2011).
Synthesis of metallic nanoparticles includes the use of the extracts
of plant parts or whole plant extracts. Also, metallic nanoparticles
may be synthesized inside living plants and a novel approach for
the synthesis of PdNPs by the use of Arabidopsis thaliana was
reportedly developed (Parker et al., 2014) by growing the plant
in the usual growth medium, and medium was then replaced
with potassium tetrachloropalladate (K2PdCl4) followed by the
incubation for 24 h in the salt solution. PdNPs of 2–4 nm were
produced as visualized by transmission electron microscope.
These biologically synthesized PdNPs had been utilized in
Suzuki-Miyaura coupling reactions with better catalytic activity
as compared to the commercially available PdNPs (Parker
et al., 2014). The Alfalfa plant seeds were grown with various
concentrations of K(AuCl4) for 2 weeks for the formation of
AuNP nanoparticles (Gardea-Torresdey et al., 2002). The time
taken for the synthesis of nanoparticles via this method exceeds 2
weeks, limiting its commercial feasibility. However, if production
time is reduced, it might be a great strategy for creating a cheap
green method for synthesizing nanoparticles.

Nanoparticle Synthesis Using Viruses
Quantum dots were synthesized by using viruses over the last
decade (Dameron et al., 1989; Lee et al., 2002; Mao et al.,
2003) for the synthesis of nanomaterials. The outer capsid
protein present on the virus offers an attractive function in the
synthesis of nanoparticles by supplying a highly reactive surface
interacting with metallic ions (Makarov et al., 2014). Tobacco
mosaic virus (TMV) has ∼2,130 capsid proteins masking its
surface. These proteins act as notch attachments for the material
to deposit (Royston et al., 2008; Aljabali et al., 2010; Górzny
et al., 2010; Kobayashi et al., 2012) or may be used to synthesize
the three-dimensional vessels for multiple applications in the
pharmaceutical industry. The addition of Ag or Au salts to
low concentrations of TMV prior to including plant extracts
of Nicotiana benthamiana (Round-leaved native tobacco) or
Hordeum vulgare (Barley) showed a decrease in the size of
the synthesized nanoparticles. Additionally it accelerated their
numbers as compared to those having no viral supplement
(Love et al., 2014) showing relatively small free nanoparticles
formation at higher TMV concentrations. TMV also served
as a bio-template to form nanowires by using metallization.
The unexplored potential of viruses in the manufacture of
nanometer scale structures of different varieties have been
reported elsewhere (Shenton et al., 1999; Merzlyak and Lee,
2006). They deliver inorganic substances such as cadmium sulfide
(CdS), silicon dioxide (SiO2), zinc sulfide (ZnS), and iron oxide
(Fe2O3). Semiconductor substances such as CdS and ZnS are
utilized in electronic goods and therefore hold importance in the
electronics industry.

TABLE 1 | Factors affecting biological synthesis of metal nanoparticles.

S. No Factors Influence on biological

synthesis of metal

nanoparticles

References

1. pH Size and shape of the

synthesized nanoparticle

Dubey et al., 2010;

Sathishkumar

et al., 2010

2. Reactant

concentration

Shape of the synthesized

nanoparticles

Chandran et al.,

2006

3. Reaction time Size and shape of the

synthesized nanoparticle

Tc et al., 2011

4. Reaction

temperature

Size, shape, yield and stability of

the synthesized nanoparticle

Song et al., 2009a;

Sathishkumar

et al., 2010

FACTORS AFFECTING BIOLOGICAL
SYNTHESIS OF METAL NANOPARTICLES

The morphological characteristics of nanoparticles can be
manipulated by means of various parameters viz. reaction time,
reactant concentrations, pH, and temperature (Table 1). Such
parameters are crucial to understand the effect of environmental
factors for the synthesis of NP as they may play an important
role during the optimization of metallic NPs synthesis by
biological means.

pH
The reaction medium pH plays an critical role in the formation
of nanoparticles (Gardea-Torresdey et al., 1999). Size and
shape of nanoparticles vary with the pH of the medium, and
large sized nanoparticles are produced in acidic pH (Dubey
et al., 2010; Sathishkumar et al., 2010). The rod-shaped gold
nanoparticles were synthesized by using biomass of Avena sativa
(Oat) resulting in the size range from 25 to 85 nm at pH 2
which was comparatively smaller (5–20 nm) at pH 3 and 4
(Armendariz et al., 2004). Further, accessibility of functional
groups for particle nucleation in the extract was better at
pH 3 or 4 as compared to the pH 2 as fewer functional
groups were available prompting particle aggregation to form
larger Au nanoparticles. An increased number of spherical Ag
nanoparticles were synthesized in Cinnamon zeylanicum bark
extract at higher pH (pH >5) (Kumar and Yadav, 2009). A
slight increase was observed in particle size at higher pH when
Cinnamon zeylanicum bark extract was used for the synthesis
of palladium (Pd) nanoparticles, and particle size was estimated
from 15 to 20 nm at pH <5, and 20–25 nm at the higher pH
(Kumar and Yadav, 2009).

Reactant Concentration
The formation of metallic nanoparticles is affected by the
concentration of biomolecules present in the extract. The shape
of the biosynthesized Au and Ag nanoparticles by using the sun-
dried Cinnamomum camphora (camphor) leaf extract affected
by the amount of biomass in the reaction medium (Huang
et al., 2007). Exposure of the precursor chloroauric acid to
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growing concentrations of the extract resulted in the synthesis
of spherical nanoparticles instead of triangular. A change in
the ratio of spherical nanoparticles to triangular plates in the
reaction medium having chloroaurate ions due to the presence
of carbonyl compounds in the extract was observed when treated
with varying concentrations of Aloe vera leaf extract (Chandran
et al., 2006). Nanoparticle size can be modulated between 50
and 350 nm by using different extract concentrations (Chandran
et al., 2006). Spherical, triangular, hexagonal, and decahedral
shapes of AgNPs were produced by varying the concentration
of Plectranthu samboinicus leaf extract in the reaction medium
(Narayanan and Sakthivel, 2010). An increase in the variety of
Ag nanoparticles was observed with increasing concentration
of Cinnamon zeylanicum bark extract (Kumar and Yadav,
2009). The extracellular (Agnihotri et al., 2009) and intracellular
synthesis (Pimprikar et al., 2009) of Au nanoparticles was
affected by biomass and Au salt concentration using marine
yeast, Yarrowia lipolytica. An increased Au salt concentration
produced both nanoscale spheres and plates. In another study,
a silver-tolerant yeast strain MKY3 synthesized spherical Ag
nanoparticles extra-cellularly with the size ranging from 2 to
5 nm (Kowshik et al., 2003).

Reaction Time
The reaction time plays an important role for synthesizing
nanoparticles (Ahmad, 2012). A rapid color change was observed
within 2min when Anana scomosus (Pineapple) extract was used
for AgNPs synthesis, and aqueous AgNO3 solution was rapidly
decreased, forming nanoparticles within 2min. The reaction
continued for up to 5min and then there was a slight color
change. The shape of synthesized nanoparticles was spherical
with a mean size of 12 nm (Ahmad, 2012). Chenopodium album
leaf extract was used for the biogenic production of Ag and Au
nanoparticles. The nanoparticles were formed within 15min of
the reaction and the reaction continued over a period of 2 h and
very few nanoparticles with larger size were synthesized (Dwivedi
and Gopal, 2010). Change in the particle size (ranging 10–35 nm)
was observed when reaction time was increased from 30min to
4 h using Azadirachta indica leaf extract and AgNO3 (Tc et al.,
2011).

Reaction Temperature
The reaction temperature is a critical component which plays a
key role in determining the shape, size, and yield of synthesized
nanoparticles using plants (Song et al., 2009a; Sathishkumar
et al., 2010). The peel extract of Citrus sinensis (sweet orange)
produced particles with an average size of around 35 nm at
25◦C. The average size of the nanoparticles decreased to 10 nm
with the rise in the reaction temperature to 60◦C (Kaviya et al.,
2011). The stable Ag nanoparticles were synthesized byDiospyros
kaki (persimmon) leaf extract at the reaction temperature
varying from 25 to 95◦C (Song et al., 2009b). The variation
in the temperature of reaction conditions for the synthesis of
Au nanoparticles using Avena sativa (oat) biomass ended in
modifications in the shape and size of the nanoparticles produced
(Armendariz et al., 2004). A higher temperature supports an
increased rate of formation of Au nanoparticles. The spherical

Au nanoparticles were predominantly formed at the lower
temperature whereas at higher temperatures rod-like and plate-
like nanoparticles were formed (Gericke and Pinches, 2006a,b).
The reaction rate and particle formation rate increased with the
increase in the reaction temperature. The particle conversion rate
steadily increased and average particle size saw a decrease with
the rise in the reaction temperature to 60◦C.

The extracellularly produced PtNPs amount was reported to
be 5.66mg l−1 (Riddin et al., 2006), with the variation in the
temperature that affects production rates of the PtNPs. The slight
change in pH from the standard inhibits the PtNPs formation
(Riddin et al., 2006).

APPLICATIONS OF METALLIC
NANOPARTICLES SYNTHESIZED BY
GREEN TECHNOLOGY

Nanoparticles have wide applications in both biomedical
and physicochemical fields. They may be used for drug
delivery, biosensing, bio-imaging, and biomolecular recognition
(Figure 5) in bio-medical research. Such nanoparticles are
integrated in various materials of everyday use which includes
cosmetics, toothpaste, deodorants, water purification systems,
and humidifiers due to their anti-microbial properties (Baker
et al., 2005). They have an important role to play in agriculture
technology such as detection and abatement of plant diseases and
minimizing nutrient leaching to increase the crop yield. They are
also used in solar and oxide batteries for energy storage.

Gold and Silver Nanoparticles
The variation in shape, size, and surface properties of Au
nanoparticles (Wang et al., 2005; Ghosh and Pal, 2007; Cai
et al., 2008; Alexandridis, 2011; Shivaji et al., 2014) makes them
very beneficial for their potential applications within the area of
biosensors (Chan and Nie, 1998; Kreibig and Vollmer, 2013),
hyperthermia therapy (Huang et al., 2006), delivery systems
for therapeutic drugs and genetic materials (Paciotti et al.,
2004), as well as anti-bacterial drugs (Sondi and Salopek-Sondi,
2004; Hsiao et al., 2006). Gold nanoparticles from Sesbaniadrum
mondii (rattlebush) have shown the catalytic activity that may
be beneficial in the reduction of aromatic nitro compounds in
waste decontamination.

The rise in antibiotic resistance among pathogenic bacteria
has highlighted the antibacterial properties of nanoparticles and
their ability to be used as new medical tools. The antimicrobial
activity of Ag is widely known and is used in multiple medical
preparations against pathogens (Sondi and Salopek-Sondi, 2004;
Kumar and Yadav, 2009; Sotiriou and Pratsinis, 2011). The anti-
bacterial properties of AbNPs have allowed for their extensive use
in food storage, the health industry, textile coatings and several
environmental applications. Silver nanoparticles synthesized
by the use of Tridax procumbens (tridax daisy) extract have
robust antibacterial activity toward Escherichia coli, Shigella
dysenteriae, and Vibrio cholera (Dhanalakshmi and Rajendran,
2012). Silver nanoparticles obtained by using Pinusthun bergii
(Japaneseblack pine) cone extracts exhibit antibacterial activity
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FIGURE 5 | Application of Green synthesis of metallic nanoparticles.

against diverse Gram-negative and Gram-positive agricultural
pathogens (Velmurugan et al., 2012), and the antifungal effect of
Ag nanoparticles has been confirmed (Vivek et al., 2011). Their
utility as antifungal agents is found to be safer as compared to
the conventional fungicides (Park et al., 2011). Ag nanoparticles
interact closely with the bacterial cell membrane due to their high
surface area to volume ratio as well as size (Chen and Schluesener,
2008). Recent antimicrobial studies of Ag nanoparticles have
shown that they can cause significant membrane damage and
DNA toxicity via bio-sorption and cellular uptake (Brayner
et al., 2006; Simon-Deckers et al., 2009). AgNPs are already
in-use as antimicrobial agents in many commercially available
medical and consumer goods. Despite decades of its use, it is
important to note that the evidence of the silver toxicity is not
yet fully explored. Their applications have been discovered both
in the field of medicine and home remedies. Silver sulfadiazine
creams are often used to prevent burn site infection and some
companies have also built silver into their washing machines.
Presently, silver seems be a part of many consumer products such
as computer keyboards, acne creams, and clothing (e.g., socks
and athletic wear) that protects the wearer from emitting body
odor further to deodorizing sprays. A range of organizations
that offer accreditation like US-FDA, US-EPA, Korea’s Testing,
SIAA of Japan and Research Institute for Chemical Industry

and FITI Testing and Research Institute have approved products
containing silver nanoparticles (Veeraputhiran, 2013). The silver
nanoparticles also display an anti-tumorigenic ability due to their
cytotoxic activity against various tumor cells. The growth and
survival of HeLa cells were inhibited by the silver nanoparticles
synthesized from Iresine herbstii (Herbst’s bloodleaf). AgNPs
produced by latex extracts of Euphorbia nivulia (leafymilk hedge)
exhibited toxicity toward the human lung cancer cells (A549)
(Valodkar et al., 2011b). Nerium oleander (oleander) extracted
silver nanoparticle displayed robust larvicidal activity against
malaria vector larvae (Suganya et al., 2013), as optical sensors that
form small molecule adsorbates (McFarland andDuyne, 2003), as
selective and sensitive nanoscale affinity biosensors to investigate
the transport across the membrane of living microbial cells (P.
aeruginosa) in real time (Xu et al., 2004). Silver nanoparticles
and their composites demonstrate better catalytic activities in dye
reduction and their elimination (Kundu et al., 2002; Mallick et al.,
2006).

Copper and Copper Oxide Nanoparticles
The nanoparticles of CuO display anti-oxidant, anti-bacterial,
and antimicrobial activity against common pathogenic strains
such as Escherichia coli and Staphylococcus aureus and are shown
to have tremendous application potential (Heinlaan et al., 2008;
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Das et al., 2012; Padil and Cernik, 2013). Cu nanoparticles
have antibacterial potential against common pathogenic bacteria
Escherichia coli (Lee et al., 2011). They have functional
decontaminating properties against several infectious micro-
organisms with the potential to be used as bactericidal material
(Akhavan and Ghaderi, 2010; Hassan et al., 2012; Subhankari
and Nayak, 2013). The Cu nanoparticles synthesized by stem
latex of Euphorbia nivulia were seen toxic to human lung cancer
cells (A549) (Valodkar et al., 2011c) surfacing the their potential
application in the field of cancer therapy.

Palladium and Platinum Nanoparticles
The catalytic activity of platinum nanoparticles extracted from
Ocimum sanctum (Holy basil) for the electrolysis of water to
produce hydrogen fuel elements has been studied (Soundarrajan
et al., 2011). A few Pt nanoparticle based catalysts show elevated
activity for the electro-oxidation of formic acid used for the
cleaning of surroundings (Waszczuk et al., 2002).

Titanium Dioxide and Zinc Oxide
Nanoparticles
TiO2 suspensions have been explored successfully for both
adulticidal and larvicidal properties againstHippobosca maculate
(hematophagous fly) and Bovicolaovis (sheep louse) (Kanayairam
et al., 2011). TiO2 nanoparticles synthesized from the extract
of Psidium guajava confirmed the effective antibacterial activity
against Aeromona shydrophila, Escherichia coli, Proteus mirabilis,
Pseudomonas aeruginosa, and Staphylococcus aureus, pathogens
with strong antioxidant behaviors (Heinlaan et al., 2008;
Thirunavukkarasu et al., 2013). TiO2 oxide nanoparticles have
shown applications in the biomedical industry, disinfection of
waste water, and beauty products. ZnO nanoparticles additionally
possess antibacterial activity that was used in waste water
treatments and food packaging (Espitia et al., 2012). Biogenic
ZnO nanoparticles can be used as a drug delivery vehicle for
doxorubicin (Vimala et al., 2013). The nanoparticles of magnetite
were used in biomedical applications such as magnetic resonance
imaging (Sun and Zeng, 2002; You et al., 2013) and oscillation

damping and position sensing (Thapa et al., 2004). Furthermore,
afore-mentioned NPs have many non-medical applications that
include magnetic recording devices.

CONCLUSION AND FUTURE
PERSPECTIVE

Green synthesis technology presents a clean, non-toxic and eco-
friendly technique for the synthesis of metallic nanoparticles and
is of enormous interest due to economic prospects and feasibility.
However, protocols need to be modified further for making these
methods cost-effective and comparable with traditional methods
for the large-scale production of nanoparticles. Improvement
of reliable and eco-friendly processes for the synthesis of
metallic nanoparticles is a significant step in the field of
applied nanotechnology. Further, most of these strategies are
still under the developmental stage and challenges need to
be taken care of. These encompass stability and aggregation
of nanoparticles, managing the crystal growth, morphology
and size. The separation and purification of nanoparticles is
another vital parameter which needs to be explored further.
Metal nanoparticles produced by the plants and/or plant extracts
are more stable as compared to those produced through
different organisms. Genetically modified organisms (GMO)
have tremendous capability to optimize for generating a greater
quantity of proteins, enzymes, and biomolecules required for
the biosynthesis and stabilization of nanoparticles. We believe
genetic change to enhance the metal tolerance and accumulation
capacity is the future approach to enhance the production of
metal nanoparticles by adopting the “green synthesis” approach.
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