

Green Synthesis of Silver Nanoparticles: A Review

Sista Kameswara Srikar^{1,2*}, Deen Dayal Giri^{1,3}, Dan Bahadur Pal¹, Pradeep Kumar Mishra¹, Siddh Nath Upadhyay^{1*}

¹Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India

²Tata Steel, Jamshedpur, Jharkhand, India

³Department of Botany, IFTM University, Moradabad, Uttar Pradesh, India Email: ^{*}sista.sri@gmail.com, ddgiri1@gmail.com, danbahadur.chem@gmail.com, pkmishra.che@itbhu.ac.in, upadhyaysnu@rediffmail.com, ^{*}snupadyay.che@itbhu.ac.in

Received 30 October 2015; accepted 26 February 2016; published 29 February 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). <u>http://creativecommons.org/licenses/by/4.0/</u>

CC ① Open Access

Abstract

The bio-molecules from various plant components and microbial species have been used as potential agents for the synthesis of silver nanoparticles (AgNPs). In spite of a wide range of bio-molecules assisting in the process, synthesizing stable and widely applicable AgNPs by many researchers still poses a considerable challenge to the researchers. The biological agents for synthesizing AgNPs cover compounds produced naturally in microbes and plants. More than 100 different biological sources for synthesizing AgNPs are reported in the past decade by various authors. Reaction parameters under which the AgNPs were being synthesized hold prominent impact on their size, shape and application. Available published information on AgNPs synthesis, effects of various parameters, characterization techniques, properties and their application are summarised and critically discussed in this review.

Keywords

AgNPs, Green Synthesis, Silver Nano, Plant Extract, Microbe

1. Introduction

Materials in the nano dimensions (1 - 100 nm) have remarkable difference in the properties compared to the same material in the bulk. These differences lie in the physical and structural properties of atoms, molecules and

*Corresponding author.

bulk materials of the element due to difference in physiochemical properties and surface to volume ratio [1]. With advancement in nanotechnology, a large number of nanomaterials are appearing with unique properties, opening spectrum of applications and research opportunities [2].

About 5000 years ago, many Greeks, Romans, Persians and Egyptians used silver in one form or other to store food products [3]. Use of silver ware during ancient period by various dynasties was common across the globe utensils for drinking and eating and storing various drinkable and eatable items probably due to the knowledge of antimicrobial action [4]. There are records regarding therapeutic application of silver in literature as earlier as 300 BC. In the Hindu religion, till date silver utensils are preferred for the "panchamrit" preparation using curd, *Ocimum sanctum* and other ingredients. The therapeutic potentials of various metals are mentioned in ancient Indian Aurvedic medicine book medicinal literature named "Charak Samhita" [5]. Until the discovery of antibiotics by Alexzander Flemming, silver was commonly used as antimicrobial agent.

In the recent past, silver nano particles (AgNps) have received enormous attention of the researchers due to their extraordinary defense against wide range of microorganisms and also due to the appearance of drug resistance against commonly used antibiotics [2]. The exceptional characteristics of AgNPs have made them applicable in various fields like biomedical [6], drug delivery [7], water treatment [8], agricultural etc. [9]. AgNps are applied in inks, adhesives, electronic devises, pastes etc. due to high conductivity [10]. AgNps have been synthesized by physio-chemical techniques such as chemical reduction [11], gamma ray radiation [12], micro emulsion [13], electrochemical method [14], laser ablation [15], autoclave [16], microwave [17] and photochemical reduction [18]. These methods have effective yield, but they are associated with the limitations like use of toxic chemicals and high operational cost and energy needs. Considering the drawbacks of physio-chemical methods, cost-effective and energy efficient new alternative for AgNP synthesis using microorganisms [2], plant extracts [19] and natural polymers [20] as reducing and capping agents are emerging very fast. The association of nanotechnology and green chemistry will unfold the range of biologically and cytologically compatible metallic nanoparticles [21] [22].

Over the past decade, few reviews focusing on green synthesis of AgNPs were published [23]-[27]. Most of these reviews focused on several plant and microbial sources for synthesis, several characterization techniques for analysis, certain tabular data representing source, shape and size and information regarding various applications. The present review, unlike the earlier ones, summarizes the synthesis procedure, parameters, characterizations, applications and predicted antibacterial mechanism in a systematic manner, focusing on various green routes for AgNPs synthesis.

2. Green Synthesis

The primary requirement of green synthesis of AgNPs is silver metal ion solution and a reducing biological agent. In most of the cases reducing agents or other constituents present in the cells acts as stabilizing and capping agents, so there is no need of adding capping and stabilizing agents from outside.

2.1. Metal Ion Solution

The Ag^+ ions are primary requirement for the synthesis of AgNPs which can be obtained from various water soluble salts of silver. However, the aqueous AgNO₃ solution with Ag^+ ion concentration range between 0.1 - 10 mm (most commonly 1 mm) has been used by the majority of researchers.

2.2. Biological Reducing Agents

The reducing agents are widely distributed in the biological systems. The AgNPs have been synthesized using different organisms belonging to four kingdom out of five kingdom of living organisms *i.e.* Monera (prokaryotic organisms without true nucleus) Protista (unicellular organisms with true nucleus), fungi (eukaryotic, sapro-phyte/parasite), plantae (eukaryotic, autotrophs) and animalia (eukaryotic, heterotrophs). Data are not available regarding use of animal materials for the synthesis of AgNP' till date to the best of our knowledge. Due to this limitation, green synthesis of AgNPs has been discussed under headings microorganisms, plants, and bio-polymers.

Green syntheses of AgNPs have been performed using plant extracts, microbial cell biomass or cell free growth medium and biopolymers. The plants used for AgNps synthesis range from algae to angiosperms; however, limited reports are available for lower plants and the most suitable choice are the angiosperm plants. Parts like leaf, bark, root, and stem have been used for the AgNP synthesis. The medicinally important plants like *Boerhaavia diffusa* [28], *Tinospora cordifolia* [29], *Aloe vera* [30], *Terminalia chebula* [31] *Catharanthus roseus* [32], *Ocimum tenuiflorum* [33], *Azadirachta indica* [34], *Emblica officinalis* [35], *Cocos nucifera* [36], common spices *Piper nigrum* [37]), *Cinnamon zeylanicum* [38]. Some exotic weeds like *Parthenium hysterophorus* [39] growing in uncontrolled manner due to lack of natural enemies and causing health problems have also been used for AgNP's synthesis. The other group includes alkaloids (*Papaver somniferum*) and essential oils (*Mentha piperita*) producing plants. All the plant extracts played dual role of potential reducing and stabilizing agents with an exception in few cases where external chemical agents like sodium-do-decyl sulphate were used for stabilization the AgNPs [40]). Metabolites, proteins [41] and chlorophyll [42] present in the plant extracts were found to be acting as capping agents for synthesized AgNPs.

The preferred solvent for extracting reducing agents from the plant is water in most of the cases however, there are few reports regarding the use of organic solvents like methanol [43]-[46], ethanol [47] [48] and ethyl acetate [49]. Some researchers pre-treated the plants materials in saline [39] or acetone [50] atmospheres before extraction. On the whole, even though the extracting solvents differed, the nanoparticle suspensions have made in aqueous medium only. Synthesis using plant extracts generate nanoparticles of well-defined shape, structure and morphology in compared to those obtained through the utilization of bark, tissue and whole plant [51].

The AgNPs synthesis by microbes is strenuous compared to the use of plant extracts and biopolymers as reducing and capping agents mainly due to the difficulty in growth, culture maintenance, and inoculums size standardization. Several fungal and bacterial species have been successfully used in the synthesis. The AgNPs synthesis mainly followed one of the two distinct routes, one utilizing extracellular materials secreted in the growth medium whereas the other utilizing microbial cell biomass directly. The microbes synthesize AgNP intracellularly as well as extracellularly. The Intracellular synthesis of AgNPs was observed by few researchers [52].

AgNPs synthesis supports better control on size and shape of AgNPs, due to easy down streaming and larger adaptability to nano systems. However, extracellular AgNP synthesis is been widely reported [53] [54]. One of the commonly used fungal genera for synthesizing AgNPs is *Fusarium* [53] [55]-[57]. No special capping agent was used in the work of many researchers for stabilizing synthesized AgNPs, except Perni *et al.* [58] and Shahverdi *et al.* [59] who used L-cystine and piperitone as stabilizing agents, respectively. Among the wide varieties off bio-polymers used for AgNP synthesis, almost all played the dual role of reducing and stabilizing agents with an exception of using starch as a capping agent [60].

3. Separation of AgNPs

Centrifugation technique is mostly used by researchers to obtain the pellet or powder form of synthesized silver nanoparticles. The AgNPs suspensions were also oven dried to obtain the product in powder form [44].

Some common characterizations of AgNPs include UV-Vis Spectra, SEM, TEM, FTIR, XRD and EDAX or EDX/EDS. DLS study is mostly used for AgNPs synthesized from bio-polymers rather than plant extracts and microorganisms. Zeta potential values indicate the stability of synthesized AgNPs. Thermo-Gravimetric Analysis (TGA) is used to find the effect of AgNO₃ and L-cystine on the organic composition of AgNPs [58] to find out the amount of organic material in synthesized AgNPs [61] and predict the thermal stability of AgNPs [62]. Inductive Coupled Plasma (ICP) analysis was performed to analyze the concentration and conversion of AgNPs [19].

4. Monitoring of AgNPs

The appearance of yellow to slight brownish-yellow color in the colorless solution has been taken as indicative of AgNPs synthesis by almost all the researchers. The SPR peak of the synthesized AgNPs was witnessed in the range of 400 - 450 nm, the significant range for AgNPs [63]. The UV-Vis spectral analyses have been used to analyze the dependency of pH, metal ion concentration, extract content on the formation of AgNPs and reveal the size-stability of synthesized AgNPs by exhibiting red shift in the SPR peak with increase in size of nanoparticles and blue shift for decrease in size. The SEM morphological analysis in most of the studies revealed spherical AgNPs, whereas few authors reported irregular [64], triangular [65], hexagonal [66], isotropic [67], polyhedral [60], flake [68], flower [69], pentagonal [70], anisotropic [71] and rod like structures [72]. A pictorial representation of SEM/TEM images of AgNPs with different shapes is shown in **Figure 1**. Using XRD studies of almost all the researchers reported the formation of face centered cubic (FCC) crystalline structured AgNPs.

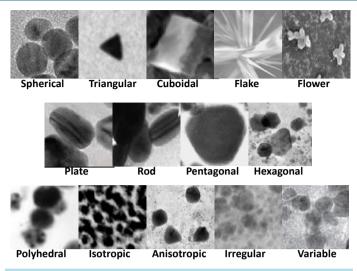


Figure 1. Various shapes of AgNPs synthesized (from various sources).

However, cubic and hexagonal structures were also reported in some cases. EDS or EDAX, for analyzing elemental composition in the nanomaterials, exhibited a characteristic optical absorption band peak around 3 KeV with silver weight percentage ranging from 45% to 80%. The reported stability of synthesized AgNPs has varied from 1 day to 1 year depending upon reducing agents and other operating conditions.

5. Mechanism of AgNPs Synthesis

The synthesis of AgNP by biological entities is due to the presence of large number of organic chemical like carbohydrate, fat, proteins, enzymes& coenzymes, phenols flavanoids, terpenoids, alkaloids, gum, etc capable of donating electron for the reduction of Ag^+ ions to Ag^0 . The active ingredient responsible for reduction of Ag^+ ions varies depending upon organism/extract used. For nano-transformation of AgNPs, electrons are supposed to be derived from dehydrogenation of acids (ascorbic acid) and alcohols (catechol) in hydrophytes, keto to enol conversions (cyperaquinone, dietchequinone, remirin) in mesophytes or both mechanisms in xerophytes plants [73]. The microbial cellular and extracellular oxidoreductase enzymes can perform similar reduction processes. A schematic diagram showing the silver ion reduction, agglomeration and stabilization to form a particle of nano size is shown in Figure 2.

6. Factors Affecting AgNPs Synthesis

The major physical and chemical parameters that affect the synthesis of AgNP are reaction temperature, metal ion concentration, extract contents, pH of the reaction mixture, duration of reaction and agitation. Parameters like metal ion concentration, extract composition and reaction period largely affect the size, shape and morphology of the AgNPs [62]. Most of the authors have reported suitability of basic medium for AgNPs synthesis due to better stability of the synthesized nanoparticles in basic medium [36] [44] [45] [74]. Some other advantages reported under basic pH are rapid growth rate [31] [75] [76] good yield and mono dispersity [77] and enhanced reduction process. Small and uniform sized nanoparticles were synthesized by increasing pH of the reaction mixture [60] [72] [77]-[79]. The nearly spherical AgNPs were converted to spherical AgNP by altering pH [22], However, very high pH (pH > 11) was associated with the drawback of formation of agglomerated and unstable AgNPs [80].

The Reaction conditions like time of stirring and reaction temperature are important parameters. Temperatures up to 100°C were used by many researchers for AgNP synthesis using bio-polymers and plant extracts, whereas the use of mesophilic microorganism restricted the reaction temperature to 40°C. At higher temperatures the mesophilic microorganism dies due to the inactivation of their vital enzymes. The temperature increase (30°C - 90°C) resulted in increased rate of AgNPs synthesis [81] and also promoted the synthesis of smaller size AgNPs [82]. On the whole, most of workers have synthesized AgNPs at room temperature (25°C to 37°C) range. A plot representing the size range of AgNPs synthesized in the room temperature range is elucidated in Figure 3.

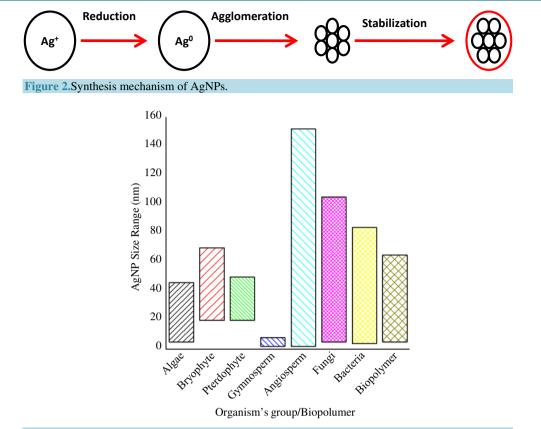


Figure 3. Size range of AgNPs synthesized at room temperature range (from various sources).

It has been found that the size range of AgNPs synthesized from algae, bryophytes, pteridophytes, gymnosperms and bio-polymer sources lie below 50 nm and that of AgNPs synthesized using from angiosperms, algae and bacterial sources ranged between 100 nm and more. The reaction mixture synthesizing AgNP using microor-ganisms and bio-polymers were continuously agitated to protect agglomeration compared to plant extracts without any suitable reason by the authors. Reaction mixture agitation achieved by applying external mechanical force might accelerate the formation of nanoparticles. Aging of the synthesized AgNP solution changed spherical nanoparticles into flower like structure [83] (Table 1).

7. Applications of AgNPs

The recent research results have shown that the AgNPs, due to their special characteristics, have immense potential for applications as anti-microbial, anti-parasitic and anti-fouling agents; as agents for site-specific medication, water purification systems, etc. The essential features of some of these applications are discussed in the following sections.

7.1. Anti-Microbial Activity

The AgNPs have been found to exhibit promising anti-micribial activity. Researchers have used several novel techniques to confirm and quantify the anti-micribial activity of AgNPs.

7.1.1. Disc/Well Diffusion Methods

The disc diffusion method, a most commonly used technique to access the antimicrobial activity of a liquid, has been employed by many researchers to confirm antimicrobial action of the AgNPs solution. In this method, uniform sized disc of adsorbent material are dipped in the increasing concentration of AgNP and placed over surface of the targeted microbe inoculated on the nutrient medium plates. An inhibition zone formation around the disc reflects antimicrobial action of the nanomaterials [72] [94] [95] [101] [104] [111] and well diffusion [29]

S. No.	Author	Reducing Agent	Operating Conditions	Characterization	Particle Characteristics	Remarks
			Algae			
			AgNO3 concentration-1 mM,			
	W .11	Filtered aqueous extract of	Reaction period—3 hr,	UV-Vis	Size-5 - 25 nm	1.01.01.11.01.01.00
	Kathiraven <i>et al.</i> (2014) [84]	Caulerpa racemosa	Reaction temp—room temp. Extract: 10 ml/90 ml	FTIR TEM	Shape-sph, tri.	Antibacterial action against P. mirabilis and S. aureus
	(2014)[64]	marine algae	(AgNO ₃),	XRD	Structure—FCC	mirubuis and 5. uureus
			Motion: static			
			1	UV-Vis	Size-28 - 41 nm	And harden in the state of the state of W
	Rajesh et al. (2012)	Ethyl acetate	1 mM, 2 min, room temp. 3 ml/100 ml,	FTIR SEM	Shape—sph	Antibacterial action against X. campestrispv malvacearum
	[49]	extract of Ulva fasciata	Static	XRD	Structure—cryst Nature—PD	pathogen
				EDX	Ivaluie—PD	
			1 mM, room temp,	UV-Vis FTIR	Size-~22 nm	
	Vivek et al. (2011)	Aqueous filtrate of	10 ml/90 ml,	SEM	Shape—sph.	Antifungal against Mucor
	[85]	Gelidiella acerosa	Agitated	TEM	Structure—FCC Nature—PD	inicus and Trichoderma reese
				XRD	Tuture TD	
	Govindaraju et al.	Aqueous filtrate of	1 mM, 1 hr, room temp,	UV-Vis FTIR	Size-8 - 27 nm	Antibacterial against S.
	(2009) [86]	Sargassum wightii	10 ml/90 ml,	TEM		aureus, B. rhizoids, E. coli
			Static	XRD	Structure—cryst	and P. aeruginosa
			Bryophyte			
	Kulkarni et al.		1 mM, 25°C, dark,	UV-Vis		Antibacterial against p.
5	(2012) [47]	Ethanol filtrate of Riccia	5 ml/1 ml,	SEM	Shape-cub/triang	aeruginosa
			Agitated	EDS UV-Vis		÷
5	Kulkarni et al.	Ethanol filtrate of Anthoceras	0.5 mM, 10 min, room temp.	SEM		Antibacterial activity after incorporation into gauze cloth
	(2012) [47]	Aninoceras	5ml/1 ml, Static	EDS	Snape—cub/triang	
-	Srivastava et al.	Aqueous and	0.5 mM, 1 hr, room temp.	UV-Vis	<i>a</i> , , , ,	Antibacterial action against E.
7	(2011) [87]	ethanol filtrate of Fissidens minutes	10 ml/1 ml, Shaken	SEM EDS	Shape—sph/variable Structure—cryst Shape—cub/triang Size—20 - 50 nm Shape—cub/triang Shape—nearly sph Size—20 - 50 nm Shape—cub/triang Shape—cub/triang Size—20 - 50 nm Shape—cub/triang Size—20 - 50 nm Shape—sph. Structure—FCC Size—10 - 18 nm Shape—anisotropic Structure—FCC Nature—MD Size—-26.58 nm Shape—sph.	coli, B. cereus, K. pneumoniae, P. aeruginosa
			1 mM, 25°C, dark,	UV-Vis		Antibacterial action against E
8	Kulkarni et al. (2011) [88]	Aqueous filtrate of Anthoceras	5 ml/1 ml,	SEM		coli, B. subtilis, K.
	(2011) [88]	Aninocerus	Agitated	EDS	Shape—cub/thang	pneumoniae, P. aeruginosa
			Pteridophyt	e		
			1 mM, 28 hr, room temp.			Antibacterial action against
)	John De Britto et al.	Aqueous filtrate of Pteris	5 ml/100 ml,			Shigella boydii, Shigella
,	(2014) [89]	argyreae, Pteris confuse and Pteris blaurita	Static, Centrifugation: 25 min			dysenteriae, S. aureus, Klebsiella vulgaris and
			at 10000 rpm.			Salmonalla typhi
	Bhor et al. (2014)	Aqueous filtrate of	1mM 4h	UV-Vis	Size—avg 24.76 nm	Antibacterial against many
0	[90]	Nephrolepis sexaltata L.	1mM, 4h, 10 ml/90 ml	SEM		human and plant pathogens
	[20]	fern	10 110,00 111	XRD	Structure—FCC	numun und philit puillogens
			1 - 10 mM, 30°C	UV-Vis FTIR	Size 10 18 nm	AgNps from
	Sant et al. (2013)	Aqueous filtrate of	Extract: AgNO ₃	EDS		medicinally important plants
1	[71]	Adiantum philippense L.	Ratio-1: 10; 1:100; 1:1000,	TEM	Structure—FCC	opens spectrum of medical
			Agitated	DLS	Nature—MD	applications.
				XRD	Size-~26 58 nm	
12	Nalwade et al.	Aqueous filtrate of Cheilanthes	1 mM, 4 hr, room temp.	UV-Vis SEM		Antibacterial action against S.
12	(2013) [91]	forinosa Forsk leaf	10 ml/90 ml	XRD	Structure—FCC	aureus and Proteus morgani
		<i></i>		UV-Vis		
13	Kang et al. (2008)	Aqueous filtrate of	1 mM, 12 hr, room temp.	TEM	Size-20 - 30 nm	AgNps are stable for 12
	[92]	Pteridophyta	10 ml/100 ml, Static	EDX	Shape—sph.	months.
			Gymnospern	ns		
		Filtered	0.25 M, 10min, room temp.	UV-Vis	Size-2 - 6 nm	
14	Jha and Prasad. (2010) [93]	aqueous-ethanol extract of	80 ml/20 ml,	TEM	Shape-sph.	The extraction of cycas leaf is done in 50% EtOH as solvent.
	(2010) [95]	Cycas leaf	Static	XRD	Structure—FCC	done in 50% Eto11 as solvent.
		Decanted aqueous extract	0.1 - 2 mm, 30 min,	UV-Vis SEM	Size—15 - 500 nm	
15	Song and Kim.	of Pinus desiflora and	25°C - 95°C,	TEM	Shape—sph.	AgNps were stable for 4
	(2009) [19]	Ginko biloba leaf	10 ml/190 ml, Static, 20 min (15k rpm)	EDS	Structure—cryst	weeks.
			State, 20 mil (15k ipin)	ICP		
			Angiosperm	s		
				UV-Vis		
	Ashalilanan dal	Elter de contracto de c	10	FTIR	Size-7 - 17 nm	Antimicrobial action against
16	Ashokkumar <i>et al.</i> (2015) [94]	Filtered aqueous extract of Abutilon indicum leaf	10 mm, 15 min, room temp. 2 to 3.5 ml/30 ml, Static	FE-SEM TEM	Shape-sph.	S. typhi, E. coli, S. aureus,
	(2010)[21]	nounon materia idai	2 to 515 million million	XRD	Structure—FCC	B. substilus
				FS		
				UV-Vis		
				FTIR		
	Sadeghi et al.	Filtered aqueous-methanol	1 mM, 35 min, room temp.	SEM	Size—10 - 50 nm	Stability: 7 - 11 pH range.
17	(2015) [45]	extract of Pistacia atlantica seed powder.	1 ml/10 ml, Shaken,15 min at10 k rpm	TEM XRD	Shape—sph. Structure—FCC	Antibacterial affect against S. aureus.
		anunneu seed powder.	Snaken, iS mill at to k tpill	EDAX	Suuciaie—FCC	au/ CH3.
				ZP		

Table 1. Summary of the work related AgNPs synthesis using green route.

Joint	inued			UV-Vis		
18	Sadeghi and Gholamhoseinpoor (2015) [44]	Methanol extracted aqueous filtrate of Ziziphora tenuior leaf	0.1 mM, 35 min, room temp. Static, Oven dried	FTIR SEM-EDAX TEM XRD ZP UV-Vis	Size—8 - 40 nm. Shape—sph. Structure—FCC	Stability: 6 - 12 pH range
19	Ajitha et al. (2014) [95]	Filtered aqueous extract of <i>Tephrosia purpurea</i> leaf powder	1 mM, 5 min, 37°C, 10 ml/50 ml, Stirred,10 min at 10000 rpm	FTIR FESEM TEM XRD EDAX FS	Size—~20 nm Shape—sph. Structure—FCC	Antimicrobial agents against <i>Pseudomonas</i> spp. and <i>Penicillium</i> spp.
20	Suresh <i>et al.</i> (2014) [96]	Filtered aqueous extract of <i>Delphinium denudatum</i> root powder	1 mM, 2hr, room temp. 1.5 ml/30 ml, Static, 20 min at 12000 rpm	RS UV-Vis FTIR FESEM XRD	Size—<85 nm Shape—sph. Structure—FCC Nature—PD	Anti-bacterial against S. aureus, B. cereus, E. coli and P. aeruginos Larvicidal to Aedes aegypti
1	Rahimi-Nasrabadi et al. (2014) [45]	Methanol extract and essential oil of <i>Eucalyptus</i> <i>leucoxylon</i> leaf	120 min, room temp. Static	UV-Vis SEM TEM XRD	Size—~50 nm Shape—sph. Structure—FCC	AgNP with biomedical potential
2	Zuas <i>et al.</i> (2014) [97]	Filtered aqueous extract of <i>Myrmecodia pendan</i> plant.	2.5 mM, room temp. 0.3 ml/60 ml, Static	UV-Vis FTIR SEM TEM XRD	Size—10 - 20 nm Shape—sph. Structure—FCC	Promising therapeutic value
3	Mondal <i>et al.</i> (2014) [39]	Saline washed, filtered aqueous extract of Parthenium hysterophorous root	10 mM, 24 hr, room temp. 1:3 to 1:9, Static	UV-Vis FTIR SEM	Shape—spherical	Potential larvacidal for Cule. quinquefasciatus
24	Raut <i>et al.</i> (2014) [98]	Filtered aqueous extract of Withania somnifera leaf powder.	100 mM, sunlight: 5min, dark room: 12hr, room temp. 100 ml/1 ml, Static	UV-Vis FTIR TEM XRD EDAX	Size—5 - 30 nm Shape—sph. Structure—FCC	AgNPs with quasi-reversible redox behavior Anti-bacterial to E. coli and S. aureus Anti-fungal to A. niger, A. flavus and C. albican
5	Vijaykumar <i>et al.</i> (2014) [28]	Aqueous extract of <i>Boerhaavia diffusa</i> plant powder.	0.1 mm, 24 hr, 100°C, 10 ml/90 ml, Stirred	UV-Vis FTIR SEM-EDAX XRD TEM UV-Vis	Size—~25 nm Shape—sph. Structure—FCC, Cub	Antibacterial to fish pathogens A. hydrophilia, F. branchiophilum, P. fluorescens
6	Ajitha et al. (2014) [95]	Aqueous extract of Plectranthus amboinicus leaf	1 mM, 5 min, room temp. 20 ml/50 ml, Stirred, 10 min at 10000 rpm	FTIR FESEM TEM XRD EDAX RS	Size—~20 nm Shape—sph. Structure—FCC	Antimicrobial agents against <i>E. coli and Penicillium</i> spp.
7	Singh <i>et al.</i> (2015) [99]	Lantana camara		UV-Vis FTIR FESEM	48.1 nm	Anti microbial to E coli and aureus Leakage due to cell wall rupturing
8	Rao <i>et al.</i> (2014) [40]	Decanted aqueous filtrate of lemon	1 - 5 mM, room temp and 40°C, dark 10 ml/50 ml, pH—3 - 10, Stirred	UV-Vis SEM AFM	Size—~75 nm Shape—small grains	SDS is added for stability. Antibacterial action to <i>E. coi</i> and <i>B. subtilis</i>
9	Vimala <i>et al.</i> (2015) [100]	Leaf and fruit of Couroupita guianensis		FTIR XRD TEM	Cubic size 10-45 nm 5—15 nm	water soluble phenolic compounds as reducing and stabilizing agent larvicidal to A. <i>aegyptiextensive mortality</i> rate (LC90-5.65 ppm)
60	Shafaghat (2014) [46]	Vacuo evaporated methanol extract of Viburnum lantana leaf	500 mM, 4 hr, 25°C, 5 g/100 ml, Stirred, 30 min at 3000 rpm	UV-Vis XRD TEM FTIR SEM UV-Vis	Size—20 - 80 nm Shape—sph Structure—FCC Nature—uniform	Antibacterial to variousgram positive and gram negative species
1	Elumalai <i>et al.</i> (2014) [41]	Filtered coconut water	1 mM, 15 min, 80°C, 10 ml/90 ml, Static, 20 min at 18000 rpm	XRD SEM EDAX FTIR	Size—70 - 80 nm Structure—FCC Nature—PD	Metabolites and proteins served as capping agents.
2	Roopan <i>et al.</i> (2013) [36]	Filtered aqueous extract of mesocrap layer of <i>Cocos</i> <i>nucifera</i>	1 mM, 1 hr, 60°C, 20 ml/80 ml, Stirring, pH—2 - 11	UV-Vis TEM XRD	Size—24 nm. Shape—sph. Structure—FCC	Larvicidal nature
3	Anuj and Ishnava (2013) [29]	Filtered aqueous extract of <i>Tinospora</i> <i>cordifolia</i> stem powder.	1 mM, 30 min, room temp. 40 ml/200 ml, 15 min at 10000 rpm, Stirring	UV-Vis FTIR TEM XRD EDAX	Size—60 nm. Shape—sph. Structure—cryst	Antibacterial nature
34	Zhang et al. (2013) [101]	Filtered aqueous extract of <i>Aloe</i> leaf	0.1 - 1.5 mM, 20 min, 20°C - 40°C, 0 to 15 ml/1 ml, Hydrazine hydrate	UV-Vis TEM XRD	Size—~20 nm. Shape—sph. Structure—FCC	Antibacterial to E. coli and S aureus

Continued						
	Yang et al.	Filtered aqueous extract of	0.5 to 4 mM, 15 to 90 min, 25 to 100°C,	UV-Vis	Size—7 - 27 nm	Stable for 3 months, AgNPs loaded on fabrics
35	(2013) [74]	Mangifera indica linn peel	0.1 to3 ml/27 ml, pH: 2 - 11. Static	TEM XRD	Shape—sph. Structure—FCC	exhibited antimicrobial property.
		Filtered aqueous extract of	2 to 10 mM, 5 min, 121°C,	UV-Vis		Anti-bacterial to B. cereus, B. subtilis, S. aureus and P.
36	Jagtap and Bapat.	Artocarpus	15 psi.	FTIR	Size—3 - 25 nm	<i>aeruginosa.</i> AgNP-lectin hybrid has
	(2013) [64]	heterophyllus lam. Seed powder	2 to 10 w/v%, 1:4, Static, 15min at 10000 rpm	SEM-EDAX TEM	Shape—irregular	promising use in glycol nanosensors for disease diagnosis.
	Khalil et al	Elitared equation entropy of	1 mM, 2 min, 30°C to 90°C,	UV-Vis FTIR SEM	Size—20 - 25 nm	Stability: 1 week, AgNPs inhibited growth of <i>E</i> .
37	Khalil <i>et al.</i> (2013) [75]	Filtered aqueous extract of olive leaf	0.5 to 5 ml/10 ml, pH: 2 – 11, Stirred	TEM XRD TGA	Shape—sph. Structure—FCC	coli, S. aureus and P. aeruginosa
	Karuppiah and		1 mM, dark and room temp.	UV-Vis	Size—13 - 57 nm	
38	Rajmohan (2013) [102]	Filtered aqueous extract of <i>Lxora coccinea L.</i> leaf	0.5 ml/10 ml, 15 min at 10000 rpm, Statio	FTIR. FE-SEM XRD	Shape—sph. Structure—FCC	
		Filtered ethanolic extracts	Static 1 mM, 24 - 48 hr, 37°C,	UV-Vis		
20	Logeswari et al.	of Solanum tricobactum,	10 ml/5 ml,	FTIR	Size—41 - 53 nm.	Antibacterial against
39	(2013) [103]	syzygium cumini, centella asiatica and citrus sinensis plant powders	Additive: ammonium solution= 2.5 ml, agitated	XRD AFM	Shape—irregular Structure—FCC	pathogenic P. aeruginosa
	Geetha lakshmi and		1 mM, dark and	UV-Vis	Size—17.9 - 59.6	Antibacterial to P. aeruginosa, E.
40	Sarada	Sponin extracted from Trianthema decendra L.	incubated, 1 ml/5 ml,	FTIR FE-SEM	nm.	faecalis, S. typhi, K.
	(2013) [104]	Thannema accenara L.	Static, 15min at 10000 rpm	EDAX	Shape—sph.	pneumonia, E. coli and C. albicans
41	Yasin et al. (2013)	Filtered aqueous extract of	3 mM, 65°C,	UV-Vis TEM	Size— 13 ± 3.5 nm	Antibacterial to E. coli and S.
41	[105]	Bamboo leaf	5 ml/5 ml, Stirring	XRD		aureus
	De laisse I ann a	Ethanol/aqueous extract of	2.5 - 15 mM, 24 - 96 hr,	EDX UV-Vis		AgNPs are
42	Rodriguez-Leon <i>et al.</i> (2013) [106]	Rumex hymenosepalus root	room temp. 5% v/v, Static	TEM EDS		synthesized in ethanol medium.
43	Rajathi and Sridhar	Decanted aqueous filtrate	1 mM, 2 hr, room temp. 0.5 ml/10 ml, Static,	UV-Vis FTIR		Antibacterial to S. aureus, V. cholerae, M. luteus and K.
	(2013) [107]	of Wrightia tinctoria leaf	10 min at 10000 rpm 1 mM, 48 hr, room temp,	XRD UV-Vis	Structure—cryst	pneumonia
44	Kannan et al.	Filtered aqueous extract of codium captium sea weed	dark, 12ml/1 ml,	FTIR		Fresh extract was more potent
++	(2013) [108]	powder.	Static, 20 min at 12000 rpm	SEM-EDAX TEM	clusters	for AgNP synthesis.
			0.5 - 2 mM, 20 - 60 min,	UV-Vis	Size—avg 30 nm	Antimicrobial against E.coli, P. putida, B. subtilis, S.
45	Natarajan et al.	Powdered	40°C - 100°C, 10 g/3 ml,	FTIR	Shape—sph.	r. punaa, b. subnus, s. aureus,
	(2013) [109]	Elaeagnus indica leaves	Static, 10 min at 12000 rpm	TEM DLS	Nature-MD	A. flavus and F. oxysporum
	Kirubaharan et al.	Filtered aqueous extract of	1 mM, 90 min, room to 90°C,	UV-Vis	Size—15 - 20 nm Shape—sph.	Stability: 4 months,
46	(2012) [110]	Azadirchata indica(neem) leaves	1.25 ml/50 ml, pH: 6 - 8. Stirred	TEM XRD	Structure—FCC Nature—MD, PD	Heavy metal ion sensors in aqueous media
			1 mM, 0 - 60 min,			Stability 1 month, Inhibitory to human
47	Satishkumar et al.	Filtered aqueous extract of	37°C - 100°C,	UV-Vis FTIR	Size—10 - 60 nm	pathogens like E. coli, P.
47	(2012) [72]	Morinda citifolia L. leaf powder	5 ml/95 ml, 5 min at 5000 rpm, Static	SEM HR-TEM	Shape—sph. Structure—FCC	aeroginosa, K. pneumoniae, B. cereus, Enterococci spp. and Enterobacter aerogenes
				UV-Vis		0
	Edison and	Filtered aqueous extract of	10 mM, room temp.	FTIR HR-TEM	Size—25 nm	Stabile for 10 days, AgNps showed
48	Sethuraman.	Terminalia chebula fruit	1 ml/25 ml, pH: 4 – 9,	XRD	Structure—FCC Nature—phyto	catalytic activity on the
	(2012) [31]	powder.	Static	EDS DLS ZP	capped	reduction of methylene blue.
		Aqueous filtrate of	1 mM, 1 hr, room temp,	UV-Vis.	Size—~38 nm	
49	Kaviya et al. (2012)	Crossandra	3 ml/40 ml,	FTIR FESEM-EDAX	Shape—flake	
	[68]	infundibuliformis leaf	Stirring, 20 min at 4000 rpm	XRD	Structure—-FCC	
		Filtered aqueous extract of	1 mM, room temp, dark,	UV-Vis FTIR	Size-16-28 nm	Stability-6 months.
50	Gopinath <i>et al.</i> (2012) [111]	<i>Tribulus terrestris L</i> dried fruit	100 ml/150 ml, Static	TEM XRD	Shape-sph. Structure-FCC.	Antibacterial to S. pyogens, P. aeruginosa, E. coli, S. aureus and B. subtilis
				AFM	Trachyspermum	una D. subitus
		Filtered aqueous extract of	1 mM, Trachyspermum ammi:		ammi:	Essential oil in T. ammi was
	Vijayaraghavan et al.	Trachyspermum ammi and	15 min,	UV-Vis	Size—87 - 998 nm Shape—tri	found to be good reducing
51	(2012) [65]	Papavera somniferum plant	Papavera somniferum: 35 min, 28°C,	SEM-EDAX	Papavera	agent when compared to alkaloids in
		powders	1 ml/50 ml,		<i>somniferum:</i> Size—3.2 - 7.6 μm	P. somniferum.
			Shaking			

Continued

Conti	nucu					
52	Sreekanth <i>et al.</i> (2012) [69]	Dioscorea batatas rhizome powder	1 mM, 25 and 80°C Static, 20 min at 5000 rpm	UV-Vis FTIR SEM	Shape—circular and flower Structure—FCC	
				XRD	Nature—MD Size—10 - 880 nm	
53	Chaudhary <i>et al.</i> (2012) [112]	Aqueous filtrate of Vitis viniera fruit	1 mM, 10 hr, room temp. 10 ml/90 ml, Static.15 min at 2000 rpm	UV-Vis SEM XRD	Shape—sph Structure—FCC, cubic and hexl	Antibacterial to B. subtilis, E. coli, P. aeruginosa and S. pnemoniae
		Aqueous filtrate of	1 mM, 24 hr, room temp.	UV-Vis	Size—avg 10 nm	
54	Ashok kumar (2012) [113]	Prathemium	1 ml/9 ml, Static,	FTIR SEM	Shape-nearly sph	
		hysterophorus plant	20 min at 5000 rpm	XRD UV-Vis	Structure—FCC	
55	Patil et al. (2012)	Filtered aqueous extract of	1 mM, 10 min, room temp. 2 ml/20 ml,	TEM	Size—15-25 nm Shape-sph	Antibacterial against E. coli,
55	[33]	Ocimum tenuiflorum leaf	Static	PS ZP	Structure—FCC	C. bacterium, B. subtilis
		Indigofera		UV Vis		Water-soluble organics leaf extract
	Arunachalam <i>et al.</i> (2013) [114]	aspalathoides, aqueos leaf t		SEM EDAX	Size-20 - 50 nm	responsible to
	(2013) [114]	extracts		FTIR		reduction. Wound healing applications
		Filtered aqueous extract of	1 mM, 24 hr, 28°C,	UV-Vis		Active against
56	Mubarakali <i>et al.</i> (2011) [115]	Mentha piperita plant	1.5 ml/30 ml,	FTIR SEM	Size—90 nm Shape—sph.	clinically isolated human pathogens like <i>E. coli</i> and <i>S.</i>
		powder	Static, 10 min at 6000 rpm	EDS		aureus.
	Mukunthan et al.	Aqueous extract of	1 mM, 15 min, 80°C,	UV-Vis SEM	Size-48 - 67 nm	Antibacterial activity against S. aureus, E. coli, K.
57	(2011) [32]	Catharanthus roseus leaf	10 ml/90 ml, Static	XRD	Structure—FCC Nature—uniform	pneumoniae, B. aureus and P.
		roscus icui	State	EDAX		aeruginosa
			1	UV-Vis	Size—35 - 60 nm Shape—TEM: sph.	Stabila for Cha
50	Rajakumar and	Filtered aqueous extract of	1 mM, 1 hr, room temp. 12 ml/88 ml,	FTIR	SEM: triang, hex	Stabile for 6 hr Larvicidal to filariasis vector
58	Abdul Rahuman (2011) [70]	Eclipta prostrate leaf	45 min at 10000 rpm, Static	SEM TEM	and pentagon Structure—	C. quinquefasciatus and malarial vector A. subpictus
			Static	XRD	crystalline Nature—biphasic	matarial vector A. subpictus
				UV-Vis	Wature—biphasie	
	Kumar and Yadav.	Filtered aqueous extract of	1 to 9 mM, 24 hr, 40°C - 80°C,	FTIR SEM	Size—36 - 72 nm	Stability: zeta
59	(2011) [116]	Lonicera japonica L leaf.	5% to 40% (v/v),	TEM	Shape—sph, plate, and other shaped	potential-41mV
			Static, 5 min at 10000 rpm	AFM ZP	<u>i</u>	
	Gnanadesigan et al.	Filtered aqueous extract of	1 M, 10 min, room temp. 10 ml/90 ml,	UV-Vis FTIR	Size—60 - 95 nm	Larvicidal to Ae. aegypti and
60	(2011) [117]	Rizophora mucronata leaf	20 min at 12000 rpm,	XRD	Shape—sph. Structure—cryst	Cx. quinquefasciatus
			Static	AFM	Sunlight: 5min. Size—~120 nm Shape—irregular Structure—FCC	
			1 mM, 1 min to 2 hr, room temp, sunlight,	UV-Vis	Nature-	AgNP toxic to aquatic plant D. magna.
51	Rani and Reddy (2011) [118]	Decanted aqueous extract of <i>Piper betel L</i> . leaf	10 ml/190 ml,	FTIR TEM	agglomerated Sunlight: 10 - 80 min	Biosynthesized AgNP less
			Static, 15min at 6000 rpm.	XRD	Size—28 - 17 nm Shape—sph. Structure—FCC Nature—shelled	toxic compared to chemically synthesized ones
			0.25 - 5 mM, 0 - 70 min,		AgNP	
62	Veerasamy et al.	Aqueous filtrate of	37°C - 90°C, 5 ml/95 ml,	UV-Vis FTIR	Size—avg 35 nm	Stable for 30 days, Antibacterial against E. coli
02	(2011) [119]	Garcinia mangostana leaf	5 mi/95 mi, Static, pH—4, 7, 8 30 min (5k rpm)	TEM	Shape—sph	and S. aureus
	Santoshkumar et al.	Decanted aqueous filtrate	1 mM, 10 min, room temp.	UV-Vis FTIR	Size—25 - 80 nm Shape—sph, tri and	Larvicidal against A.
63	(2011) [120]	of Nelumbo nucifera leaf	12 ml/8 ml, Static	TEM	dec	subpictus and C. quinquefasciatus
	Al	Aqueous extract of		XRD UV-Vis	Structure—FCC	
64	Ahmad <i>et al.</i> (2011) [121]	Desmodium	0.025 M, 1 hr	TEM	Size—5 - 20 nm Structure—cryst	Antibacterial against S. spp, E. coli, B. subtilis
		triflorum		XRD UV-Vis	-	
		Filtered and centrifuged	0.1 - 10 mM, 4 hr, 30°C,	XRD TEM	Size—~50 nm	AgNPs were stable for 14 days. Size-XRD-18.306 nm
65	Prathna et al. (2011) [122]	juice of	1:4 to 4:1, Shaken,	FTIR	Shape—nearly sph. Structure—cryst	AFM—<100 nm
		Citruslimon fruit	10 min at 10000 rpm	AFM DLS	Nature—PD	TEM—25 - 50 nm DLS—153.68 nm
			0.125 to 1mM, 3 min,	ZP		
	Bankar et al	Acetone treated, aqueous extracted, filtered and	40°C to 100°C,	UV-Vis FTIR.	Size-< 100 nm	Antifungal and
66	(2010) [50]	precipitated powder of	0.5 to 10 mg/2 ml, pH: 2 – 5,	SEM-EDS	Structure—FCC	antibacterial action
		Banana peel	Static	XRD		
				UV-Vis	Size—10 nm	AgNP of smaller size at 50°C
			O I M Inda	0 v - v 15		
67	Njagi <i>et al.</i> (2010) [123]	Filtered aqueous extract of Sorghum bran	0.1 M, 1min, room temp. 2:1 volume ratio,	FE-SEM HR-TEM-EDS	Shape—sph. Structure—FCC	of extraction temperature compared to 25°C

68	Kumar <i>et al.</i> (2010) [124]	Filtered aqueous extract of <i>Syzygium cumini</i> leaf (LE) and seed (SE) powder	1 mM, 24 hr, room temp. 10% (v/v), Static, 20 min, 12k rpm	UV-Vis FTIR SEM AFM	Size—LE: 30nm, Water content of LE: 29 nm, SE: 92 nm, Water content of LE: 73nm.	SE have higher synthesis rate and larger size AgNP compared to LE.
69	Dubey <i>et al.</i> (2010) [79]	Filtered aqueous extract of <i>Tanaetum vulgare</i> fruit.	1 - 3 mM, 10 min - 5hr, 25°C - 150°C, 0.5 - 4.8 ml/50 ml, pH: 2 - 10, Static	UV-Vis FTIR TEM XRD EDAX	Size—10 - 40 nm Shape—sph. Structure—FCC	AgNP more stable in basic compared to acidic medium
70	Shukla <i>et al.</i> (2010) [37]	Filtered aqueous extract of <i>Piper nigrum</i> (black pepper)	10 mM, room temp. 1 ml/100 ml, Stirred, 10 min at 3000 rpm	UV-Vis TEM XRD	Size—20 - 50 nm Shape—sph. Structure—FCC Nature—large grain, WD, uniform and polycrystalline	
71	Krishnaraj <i>et al.</i> (2010) [125]	Aqueous filtrate of Acalypha indica leaf	1 mM, 30 min, 37°C, dark 12 ml/100 ml, Static, 30 min at 75000 g	UV-Vis SEM TEM EDS XRD	Size—20 - 30 nm Structure—cub	Antimicrobial against water borne pathogens <i>E. coli</i> and <i>Vibrio cholera</i>
72	Satish kumar <i>et al.</i> (2009) [38]	Aqueous bark and powder extracts of <i>Cinnamon</i> zeylanicum plant	1 mM, 25°C, 1 to 5 ml/50 ml, Powder content: 0.1 to 1 g/50 ml, pH: 1 - 11, Shaken	UV-Vis TEM XRD EDX	Size—powder: 31 nm, Extract: 40 nm Shape—quasi sph and R, Structure— cub and hex Nature—bi-phasic	Stable for 3 months, Served as antimicrobial agen
73	Tripathi <i>et al.</i> (2009) [34]	Aqueous filtrate of Azadirachta indica leaves	10 mM, 24 hr, 28°C, 1:4. 15 min at 10,000 rpm Shaken	UV-Vis TEM SEM FTIR	Size—50 - 100 nm Shape—irregular Nature—PD	AgNPs loaded on cotton disk shown antibacterial activity.
74	Leela and Vivekanandan. (2008) [126]	Aqueous extract of <i>Helianthus annus</i> plant		UV-Vis XRD SEM	Structure-cryst	
75	Chandran <i>et al.</i> (2006) [30]	Aqueous extract of <i>Aloe</i> vera leaf	1 mM, 24 hr, room temp. 5 ml/5 ml, Static	UV-Vis XRD TEM	Size—15.2 ± 4.2 nm Shape—sph. Structure—FCC	
76	Ankamwar <i>et al.</i> (2005) [35]	Emblica Officinalis fruit extract		UV-Vis TEM	Size—10 - 20 nm	Transmetallation reaction promoted the AgNPs synthesis
77	Shankar <i>et al.</i> (2004) [127]	Decanted aqueous extract of <i>Azadirachta</i> <i>indica</i> leaf	1 mM, 24 hr 5 ml/45 ml, 15 min at 10000 rpm. Static	UV-Vis XRD TEM FTIR	Size—5 - 35 nm Shape—Sph Structure—cryst Nature—PD	AgNPs stable for 4 weeks
78	Shankar <i>et al.</i> (2003) [42]	Decanted aqueous broth of <i>Pelargonium</i> graveolens leaf	1 mM, 24 hr 5 ml/100 ml, 15 min at 10000 rpm. Static	UV-Vis XRD FTIR TEM EDAX	Size—16 - 20 nm. Shape—nearly sph Structure—FCC Nature—PD	Chlorophyll of leaf extract formed 5 nm capping around the AgNP.
			Fungi			
79	Das <i>et al.</i> (2012) [76]	Mycelia of <i>Rhizopus</i> oryzae	1 to 5 mM, 72 hr, 30°C, 0.2 g/25 ml. pH—2 to 8, Shaken	UV-Vis FTIR HRTEM EDAX	Size—~15 nm Shape—sph. Structure—FCC	Stable for 3 months, Antimicrobial to <i>E. coli</i> and <i>B. subtilis</i> , Used for treating contaminated water and adsorption of pesticides
80	Naveen et al (2010) [128]	Aqueous cell filtrate of Penicillium Sp. fungi	1 mM, 24 hr, room temp, dark 50 ml/50 ml, Agitated, Lyophilized	UV-Vis FTIR AFM	Size—52 - 104 nm	
81	Balaji <i>et al</i> (2009) [129]	<i>Cladosporium clado</i> <i>sporioides</i> fungal aqueous filtrate	78 h, 27°C. 10 ml, Shaken	UV-Vis TEM XRD FTIR	Size—Avg: 35 nm Shape—Sph. Structure—FCC Nature—PD	
82	Shaligram <i>et al</i> (2009) [130]	Penicillium brevicompatum WA 2315 fungal aqueous filtrate	1 mM, 72 hr, 25°C, Shaken	UV-Vis FTIR TEM XRD	Size—58.35 ± 17.8 nm Structure—FCC	
83	Fayaz et al. (2009) [82]	Harvested cell aqueous filtrate of <i>Trichoderma</i> <i>viride</i> fungus	1 mM, dark, 10°C - 40°C. Shaken.	UV-Vis XRD TEM FTIR	10°C: 2 - 4 nm, sph. 27°C: 10 - 40 nm, sph. 40°C: 80 - 100 nm, Plate like, Structure: Cryst, Nature: MD	Increase in temperature led to blue shift in UV-Vis peak, decreased size and increased dispersity
84	Kathiresan <i>et al.</i> (2009) [131]	Aqueous Cell filtrate of Penicillum fellutanum fungus	0.5 - 2.5 mM, 0 - 48 hr, 0°C - 40°C, dark, pH: 5 - 7.5. Salinity-1% - 5% NaCl, Shaken	UV-Vis TEM	Size—5 -2 5 nm Shape—Sph.	(NH ₄) ₂ SO ₄ solid used for precipitation and phosphate buffer (pH-8) for dissolution of nanoparticles
85	Ingle <i>et al</i> (2009) [57]	Aqueous cell filtrate of <i>Fusarium solani</i> fungus	1mM, room temp. Static, 10 min, 10000 g	UV-Vis FTIR TEM	Size—5 - 35 nm Shape—Sph.	
86	Basavaraja <i>et al</i> (2008) [132]	Aqueous filtrate of Fusarium semitetum fungus	1 mM, 48 hr, 27°C, Shaken	UV-Vis XRD TEM FTIR	Size—10 - 60 nm Shape—Sph. Structure—cryst Nature—PD	AgNP stable for 6 - 8 weeks

Vigneswaran <i>et al.</i> [66] Bhainsa and D'souza (2006) [54] Vigneswaran <i>et al.</i> [67] Duran <i>et al</i> (2005) [56] Senapati <i>et al.</i> (2004) [133] Ahmad <i>et al.</i> (2003) [55]	cells Comparison Aspherillus fumigates aqueous cell filtrate et al. Phaenerochaete chrysosporium mycelium 005) Aqueous filtrate and biomass of Fusarium oxysporum species.	1 mM, 24 hr, 37°C, Dark. 5 g/100 ml, Shaken 1 mM, 1 hr, 25°C, Dark, Shaken 1 mM, 24 hr, 37°C, Dark, Shaken 1 mM, 28 hr, 28°C. 10 g/100 ml Static.	UV-Vis TEM XRD FTIR FS UV-Vis TEM XRD UV-Vis XRD SEM TEM FS UV-Vis	Size—8.92 ± 1.61 nm Shape—Isotropic Structure—FCC Nature—MD Size—5 - 25 nm Shape—Sph and Tri. Structure—Crystal Nature—WD Size—50 - 200 nm Shape—sph. and hex. Structure—FCC Nature—non uniform	AgNP stable for 3 months No precipitation of AgNP observed upto 72 hrs AgNP formed on the surface of mycelium
(2006) [54] Vigneswaran <i>et al.</i> (67] Duran <i>et al</i> (2005) [56] Senapati <i>et al.</i> (2004) [133] Ahmad <i>et al.</i> (2003)	0 Souza fumigates aqueous cell filtrate et al. Phaenerochaete chrysosporium mycelium 005) Aqueous filtrate and biomass of Fusarium oxysporum species. . Verticillium and F.	Dark, Shaken 1 mM, 24 hr, 37°C, Dark, Shaken 1 mM, 28 hr, 28°C. 10 g/100 ml	UV—Vis TEM XRD UV-Vis XRD SEM TEM FS	Size—5 - 25 nm Shape—Sph and Tri. Structure—Crystal Nature—WD Size—50 - 200 nm Shape—sph. and hex. Structure—FCC Nature—non	observed upto 72 hrs AgNP formed on the surface
 [67] Duran et al (2005) [56] Senapati et al. (2004) [133] Ahmad et al. (2003) 	. <i>Chrysosporium</i> mycelium Aqueous filtrate and biomass of <i>Fusarium</i> <i>oxysporum</i> species. <i>Verticillium</i> and <i>F.</i>	Dark, Shaken 1 mM, 28 hr, 28°C. 10 g/100 ml	XRD SEM TEM FS	Shape—sph. and hex. Structure—FCC Nature—non	
 [56] Senapati <i>et al.</i> (2004) [133] Ahmad <i>et al.</i> (2003) 	. <i>Verticillium</i> and <i>F</i> .	10 g/100 ml	UV Vie	umom	
(2004) [133] Ahmad <i>et al.</i> (2003)			UV-Vis SEM	Size—20 - 50 nm Shape—sph.	Nitrate based reductase promoted the AgNP synthesis
			UV-Vis SEM/TEM	Size—Verticillium 25 ± 8 nm, F. oxysporum—5 - 50 nm	<i>Verticillium</i> (intracellular) and <i>F. oxysporum</i> —extracellular synthesis.
	(2003) Fusarium oxysporum biomass	1 mM, 72 hr, room temp, dark 10 g/100 ml, Static	UV-Vis XRD TEM FTIR FS	Size—5 - 50 nm Shape—sph/tri. Structure—FCC	
Mukherjee <i>et al.</i> (2001) [52]	al. Harvested mycelia of Verticillium sp. fungi	0.2 mM, 72 hr, 28°C, 10 g/100 ml, Shaken, pH: 5.5 - 6	UV-Vis SEM TEM EDAX	Size—25 ± 12 nm Shape—nearly sph, Nature— monodispersed	AgNPs were synthesized on intracellular bases.
		Gram positive Ba	cteria	monousperoeu	
Zhang <i>et al.</i> (2014) [134]	Lactobacillus fermentum.LMG 8900 cells	10 g/L, 24 hr, 30°C, 10 g/L, Shaken, 6 min at 5000 rpm and 10 min at 6000 rpm	UV-Vis TEM XRD ZP	Size—~6 nm Shape—sph. Structure—FCC	Stable for 3 months. Resist growth of <i>E. coli</i> , <i>S. aureus</i> and <i>P. aeruginosa</i> Act as promising anti-biofouling agent
Zonnoz and Salouti (2011) [83]	alouti Aqueous cell filtrate of <i>Streptomyces sp. ERI-</i> 3	1 mM, 48 hr, 28°C. Dark. Shaken.	UV-Vis XRD TEM SEM	Size—10 - 100 nm Shape—Spherical	After 3 months, nanoparticles developed floret shape
Deepak <i>et al.</i> (2011) [135]	Fibrinolytic URAK enzyme produced by Bacillus cereus NK1	1 mM, 24 hr without NaOH and 5 min with NaOH, 37°C, URAK content: 1 mg, additives: 10 ml of Tris-Hcl buffer of pH 9	UV-Vis TEM XRD AFM	Size—50 - 80 nm Shape—sph. Structure—FCC Nature—WD	AgNP with mmobilized enzyme
Kalishwarlal <i>et al</i> (2010) [136]	et al Brevibacterium casei harvested cells	1 mM, 24 hr, 37°C, 1 g, Shaken, 30 min at 16000 g	UV-Vis TEM XRD FTIR FS	Size—10 - 50 nm. Shape—Sph. Structure—FCC	AgNP act as stable anti-coagulant
Ganeshbabu and Gunasekaran (2009) [137]		1 mM, 120 hr, 37°C. 10 g/100 ml. 15 min at 15000 rpm. Shaken.	UV-Vis FTIR XRD TEM	Size-4-5 nm Shape-Sph. Structure-FCC. Nature-MD.	Tris Buffer (pH-7) as suspension media for nanoparticles
Nanda <i>et al</i> (2009) [138]	2009) Staphylococcus aureus supernatant	1 mM, 5 min	UV-Vis AFM	Size—160 - 180 nm Nature—PD.	AgNP antibacterial action against human pathogenic bacteria MRSA, MRSE, S. pyogenes
Kalimuthu <i>et al</i> (2008) [139]	al Bacillus icheniormis cells	1 mM, 24 hr, 37°C, 30 min at 15000 rpm. Shaken	UV-Vis SEM EDX XRD	Size—50 nm Structure—Crystal Nature—WD	pyogenes
		Gram negative ba	cteria		
Perni <i>et al</i> (2013) [58]	Escherichia coli cells	1 or 5 mM, 24 hr, 30°C, Ratio of AgNO ₃ : L-cysteine = 1:5, Shaken, 10 min at 1851 g	UV-Vis FTIR TEM TGA	Size—~5 nm	Capping agent: L-cysteine, Antimicrobial against <i>E.</i> <i>coli</i> and <i>S. aureus</i>
Juibari <i>et al.</i> (2011) [140]	2011) Ureibacillus thermo sphaerius supernatant	1 - 100 mM, 24 hr, 60°C - 80°C, Dark, 15 min (13 k, rpm Static	UV-Vis DLS XRD FTIR TEM	Size—10 - 100 nm Shape—Sph. Structure—FCC Nature—PD	Temperature around 80°C stands possible because of thermophilic nature of bacteria
	t al. E. coli supernatant	1 - 10 mM, 24 hr, 20°C - 90°C,	UV-Vis DLS	Size—10 - 90 nm Shape—Sph.	Nitrate medium (pH-8) is used
Gurunathan <i>et al.</i> (2009) [141]	Li con superinani	pH: 5 - 12, 10 min at 10k rpm Static	TEM FTIR	Structure—Crystal Nature—Uniform	for culture.
	2011) [135] (alishwarlal a 2010) [136] Janeshbabu a Junasekaran 137] Vanda <i>et al</i> (2 138] (alimuthu <i>et</i> 2008) [139] Perni <i>et al</i> 2013) [58] uibari <i>et al.</i> (140] Jurunathan <i>e</i>	Deepak et al. Fibrinolytic URAK 2011) [135] Fibrinolytic URAK 2011) [135] Brevibacterium casei Salishwarlal et al Brevibacterium casei 2010) [136] Isolated and Janeshbabu and Isolated and Junasekaran (2009) Isolated and J37] Staphylococcus aureus Salishwarlal et al (2009) Staphylococcus aureus J38] Supernatant Salishuthu et al Bacillus 2008) [139] Escherichia coli cells Perni et al Escherichia coli cells uibari et al. (2011) Ureibacillus Harmo sphaerius supernatant	Deepak et al. (2011) [135]Fibrinolytic URAK enzyme produced by Bacillus cereus NK11 mM, 24 hr without NaOH and 5 min with NaOH, 37°C, URAK content: 1 mg, additives: 10 ml of Tris-Hcl buffer of pH 9Calishwarlal et al (2010) [136]Brevibacterium casei harvested cells1 mM, 24 hr, 37°C, 1 g, Shaken, 30 min at 16000 gGaneshbabu and Junasekaran (2009)Isolated and harvested Bacillus cereus PGN1 cells.1 mM, 120 hr, 37°C. 10 g/100 ml. 15 min at 15000 rpm. Shaken.Nanda et al (2009)Staphylococcus aureus supernatant1 mM, 24 hr, 37°C, 30 min at 16000 gStatimuthu et al 2008) [139]Bacillus icheniormis cells1 mM, 24 hr, 37°C, 30 min at 15000 rpm. ShakenPerni et al 2013) [58]Escherichia coli cells1 mM, 24 hr, 30°C, Ratio of agNO; L-cysteine = 1:5, Shaken, 10 min at 1851 guibari et al. (2011)Ureibacillus thermo sphaerius supernatant1 - 10 mM, 24 hr, 60°C - 80°C, Dark, 15 min (13 k, rpm Staticuinnyathan et al01 - 10 mM, 24 hr, 20°C, 20°C,	Deepak et al. 2011) [135]Fibrinolytic URAK enzyme produced by Bacillus cereus NK1I mM, 24 hr without NaOH and 5 min with NaOH, 37°C, URAK content: 1 mg, additives: 10 ml of Tris-Hcl AFM buffer of pH 9UV-Vis UV-VisCalishwarlal et al 2010) [136]Brevibacterium casei harvested cells1 mM, 24 hr, 37°C, 1 g, Shaken, 30 min at 16000 gUV-Vis FSGaneshbabu and Junasekaran (2009)Isolated and harvested Bacillus cereus PGN1 cells.1 mM, 120 hr, 37°C. 10 g/100 ml. 15 min at 15000 rpm. Shaken.UV-Vis FSSanda et al (2009)Staphylococcus aureus supernatant1 mM, 5 minUV-Vis Shaken.Calimuthu et al 2008) [139]Bacillus icheniormis cells1 mM, 24 hr, 37°C, 30 min at 15000 rpm. Shaken.UV-Vis EEM TEMPerni et al 2013) [58]Escherichia coli cells1 or 5 mM, 24 hr, 30°C, Ratio of AgNO; L-cysteine = 1:5, Shaken, TEM Shaken, 1 or 0 mM, 24 hr, 30°C, Ratio of AgNO; L-cysteine = 1:5, Shaken, TIR Shaken, TGAUV-Vis EM Shaken, TGAuibari et al. (2011)Ureibacillus thermo sphaerius supernatant1 - 10 mM, 24 hr, Bacillus thermo sphaerius supernatant1 - 10 mM, 24 hr, C MU-Vis Co°C - 80°C, Dark, 15 min (13 k, rpm Strip C MU-Vis Static	Jameshbabu and 2010) [135]Fibrinolytic URAK enzyme produced by Bacillus cereus NK1I mM, 24 hr without NaOH and 5 min with NaOH, 37°C, URAK content: 1 mg, additives: 10 ml of Tris-Hcl buffer of pH 9Size—50 - 80 nm Shape—sph. Structure—FCC AFM Nature—WDCalishwarlal et al 2010) [136]Brevibacterium casei harvested cells1 mM, 24 hr, 37°C, 1 g, Shaken, 30 min at 16000 gUV-Vis FTIR Structure—FCC FSSize—10 - 50 nm. Shape—Sph. Structure—FCC FSJameshbabu and jumaskaran (2009)Isolated and harvested Bacillus cereus PGN1 cells.1 mM, 120 hr, 37°C. 10 g/100 ml. 15 min at 15000 rpm. Shaken.UV-Vis FSStadiumuthu et al 2008) [139]Bacillus icheniormis cells1 mM, 24 hr, 37°C, 30 min at 15000 rpm. Shaken.UV-Vis SEMCalishuth et al 2013) [58]Escherichia coli cells1 mM, 24 hr, 37°C, 30 min at 15000 rpm. Shaken.UV-Vis SEMCalimuthu et al 2013) [58]Escherichia coli cells1 mM, 24 hr, 37°C, 30 min at 15000 rpm. Shaken.UV-Vis SEMCalimuthu et al 2013) [58]Escherichia coli cells1 mM, 24 hr, 37°C, 30 min at 15000 rpm. Shaken, 30 min at 15000 rpm. Shaken.Size—160 - 180 nm Nature—VD.Uberni et al. (2011)Ureibacillus thermo sphaerius supernatant1 mM, 24 hr, 37°C, 30 min at 15000 rpm. Shaken, 1 mM, 24 hr, 30°C, Ratio of AgNO; C, C, C, C, Dark, 15 min (13 k, rpm TEM Structure—Crystal StaucSize—10 - 100 nm Shaken, 1 - 100 mM, 24 hr, DUV-Vis DIS Shape—Sph. Structure—PCuibari et al. (2011)Ureibac

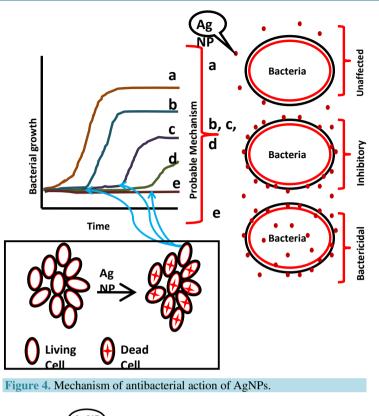
105	Cheng <i>et al.</i> (2014) [142]	Chondrotin sulfate	1 and 6.25 mM, 3 - 120 hr, 25°C and 80°C, 0.8 to 20 mg/l, 10 min at 5000 g, Stirred	UV-Vis FTIR TEM DLS	Size—<20 nm Shape—sph.	Stable for 2 months, Served as nano carrier for drug delivery
106	Chen <i>et al.</i> (2014) [143]	Chitosan biopolymer	10 mm a 5000 g, Surrea	UV-Vis FTIR TEM DLS	Size—~218.4 nm Shape—oval and sph. Nature—Ag/ chitosan nano hybrids	Antimicrobial to E. coli, S. choleraesuis, S. aureus and B. subtilis
107	Tagad <i>et al.</i> (2013) [80]	Locust bean gum polysaccharide.	1 - 5 mM, 6 hr, 60°C, 0.1 to 0.4 (w/v)/25 ml, pH: 4 to 12, Static	UV-Vis AFM	Size—18 - 51 nm	Stability: 7 months, AgNP served in development of H ₂ O ₂ sens
108	El-Rafie <i>et al.</i> (2013) [144]	Crude hot water soluble polysaccharide extracted from different marine algae	0.1 mM, 20 min, 70°C, 0.3 (mg/ml)/1 ml, pH: 10.10 min at 5000 rpm, Stirring	UV-Vis FTIR TEM	Size—7 - 20 nm Shape—sph	Stability: 6 months, AgNP treated cotton fibers antibacterial to <i>E. coli</i> and <i>aureus</i>
109	Ashraf <i>et al.</i> (2013) [77]	Casein milk protein	1 mM, 5 - 10 min, 50°C - 60°C, 1-c10 ml/25 ml, pH: 10 - 14, vigorous stirring	UV-Vis FTIR SEM TEM DLS ZP	Size—pH > 7: 3 - 18 nm, pH < 6: 60 - 80 nm. Shape—sph.	Cytotoxocity and cellular uptake of AgNP was studi
110	Dehnavi <i>et al.</i> (2013) [78]	Fructose	10 - 100 ppm, 11 - 100 min, 55°C - 95°C, 1(g/L)/9.35 ml, Other contents: Diammonium hydrogen citrate, 1 M ammonium solution, pH: 8.5 to 11.5, stirring	UV-Vis FE-SEM TEM XRD DLS	Size—36 nm Shape—sph. Structure— crystalline Nature—WD and homogenous	Stability for 1 month, Antibacterial to <i>E. coli and</i> <i>aureus</i>
111	Ortega-arroyo <i>et al.</i> (2013) [60]	D-glucose	0.13 to 0.97 M, 1 min, 26°C - 94°C, 150 μL (0.1 M)/100 μL, Capping agent-6ml of 1.7 wt%, pH: 7 to 13, Stirred	UV-Vis TEM XRD RS	Size—2 - 24 nm Shape—sph and polyhedral Structure—FCC Nature— homogenous WD	Smaller particle range of silver nanoparticles are observed at 0.55M D-gluc pH-11 and temperature > 70°C.
112	Lu <i>et al.</i> (2012) [145]	Egg white extract	10 mM, 72 hr, room temp. 1 ml/2 ml, Vigorous stirring, 15 min, 15k rpm	UV-Vis FTIR TEM DLS	Size—~20 nm Shape—sph Structure—Cryst	Silver nanoparticle conjug is used in cancer radiation therapy.
113	Guidelli <i>et al.</i> (2012) [146]	DL-Alanine	Ag/alanine ratio (%): 0.045 to 0.36, 40 min, 100°C. vigorous stirring.	UV-Vis FTIR TEM XRD	Size-~7.5 nm Shape-sph. Structure-FCC	Nanoparticle stands applic for ESR-Dosimetry.
114	Tanvir <i>et al.</i> (2012) [147]	Co-enzyme (β-NADPH)	0.31 - 10 mM, 20°C. 1:1 to 3:1. Stirring, 30 min at 15000 rpm	UV-Vis TEM XRD DLS ZP	Size—20.77 ± 0.67 nm Shape—sph. Structure—FCC Nature—narrow and	Stabile for 2 months, The reagent used for the synthesis of nanoparticles be regenerated.
115	Bankura <i>et al.</i> (2012) [148]	Dextran	0.01 M, room temp. 5%, Additive: 0.4 ml of 0.001 M NaOH, static	EDAX UV-Vis TEM XRD EDAX AFM	MD Size—5 - 60 nm Shape—sph. Structure—FCC Nature—WD	Stable for 1 months, Antimicrobial to <i>B. subtili</i> <i>cereus, E. coli, S. aureus,</i> <i>aeruginosa</i>
116	Sasikala <i>et al.</i> (2012) [149]	Soyabean protein	1 mM, 24 hr, room temp. 1 g/100 ml, 10 min at 10000 rpm, Static	UV-Vis FTIR HR-SEM HRTEM XRD EDAX	Size—7 - 29 nm Shape—sph. Structure—FCC Nature—WD	Protein of 51 kDa was responsible for the format of AgNP formation.
117	Morales-Sanchez et al. [61]	Albumin	30 mM, 24 min, room temp. Additive: Ammonium hydroxide (pH: 11), Stirred	UV-Vis TEM TGA DLS	Size—~26 nm Shape—sph.	Stable for 6 months
118	El-rafie <i>et al.</i> (2011) [81]	Hydropropyl starch	100 - 750 ppm, 15 - 90 min, 30°C - 90°C, 9 g/l with 0.84 molar substitutions, pH: 2 - 12, Stirring	UV-Vis TEM	Size-6-8 nm	Stable for 6 months, More reduction at higher p rate increased rate with ter particle aggregation with t
119	Philip (2010) [21]	Honey	1 mM, 1 min, 15 ml/20 ml, pH: 6.5 - 8.5, Stirred	UV-Vis FTIR HR-TEM XRD	Size—4 nm Shape—sph. Structure—FCC Nature—MD	Stabile for 6 months, NaOH is added for pH adjustment
120	Kora <i>et al.</i> (2010) [62]	Gum kondagogu (Cochlospermum gossypium)	1 - 5 mM, 10 - 60 min, 121 ⁺ C, 15 psi, 0.1 - 0.5(w/v), gum mean particle size: 30 - 300μm, Static	UV-Vis TEM XRD TGA	1 mM AgNO ₃ , (0.1) and (0.5) w/v% gum: Size—30 min—(55) and (11.2) nm; 60 min—(18.9) and (4.5) nm Shape—(R, hex) and (sph). Structure—FCC Nature—PD, WD	Anti-bacterial to <i>S. aureus</i> coli, and <i>P. aeruginosa</i>

Note: DLS—Dynamic light scattering, EDAX/EDS Energy Dispersive X-ray Analysis/Energy Dispersive Spectroscopy; FTIR—Fourier transform infrared spectroscopy, HRTEM—High Resolution Transmission Electron Microscopy; SEM—Scanning Electron Microscopy, TGA—Thermogravimetric analysis, UV-Vis—Ultra violet-visible spectroscopy; XRD—X Ray Diffraction, DEC—decahedral, sph—spherical, Tri—Triangular, R—Rod, Hex—Hexagonal, PD—Polydispersed, MD—monodispersed, WD—Well Dispersed, Crystalline.

[32] [62] [75] [104] [115] [148]. In the Well diffusion method instead of using discs, small disc shaped pits are created on the agar plate for filling the test solution. In both the techniques, the microbe inoculated plates are incubated under standard condition for the formation of clear inhibition zone. The inhibition zone diameter around the disc or well, directly relates the effects of AgNPs on the chosen microbe.

7.1.2. Minimum Inhibitory Concentration (MIC)/Minimum Bactericidal Concentration (MBC)

The MIC is defined as the minimum concentration of the analyte which inhibit 100% visible growth of the targeted microbe after 24 hours. The MIC is determined by monitoring growth of bacteria in culture tubes inoculated with the same amount of bacterial culture but increasing concentration of AgNPs in the growth medium. The minimum concentration of AgNP which checks growth of bacteria is called the minimum inhibitory concentration. For the determination of MBC, fixed AgNP concentration greater than MIC value is added to the nutrient mediums containing increasing bacterial inoculum and bacterial growth is monitored, using UV-Vis spectroscopy or plate analyzer, for change in the optical density of the samples [58] [134] [142]. The broth dilution test is also used to conduct MIC and MBC analysis, in which the results after experimentation are compared with a standard data [96] [98].


7.1.3. Analysis of SEM and TEM Micrographs

The SEM and TEM analyses have been used to monitor changes in the morphology of the bacterial cell before and after treatment with "AgNPs"; The visible alterations in the cell shape and perforations in the cell wall have been reported and used as indicator of the antimicrobial action of AgNPs by several workers [45] [134] [142].

7.2. Antibacterial Action

The AgNPs have potent antibacterial action against gram positive bacteria, *Lactobacillus fermentum* [134], *Streptomyces* sp. [83]. *Bacillus cereus* [135] *Brevibacterium casei* [136], *S. aureus* [138] *B. licheniromis* [139], and gram negative bacteria, *E. coli* [58] *Entrobacteria* [59] and *Ureibacillus thermo sphaerius* [140]. The antibacterial action of AgNPs on gram positive and gram negative bacterial strains is not the same but competes one over the other. There are contradictory reports regarding antibacterial action against gram positive and gram negative bacteria. According to some researchers the gram negative bacteria are reported to be more sensitive to AgNPs compared to gram positive bacteria [32] [78] [111] [134] whereas reverse results were observed by other researchers [62] [75] [76] [98]. The reported differential sensitivity of both the bacterial species could be attributed to the difference in structural characteristics of the bacterial species [62] [111] as well as shape and size of AgNP, bacterial inoculum size, exposure time and nutrient medium used during analysis of antibacterial action [98].

The anti-bacterial action of AgNPs is quite complex and not well studied. Its mechanism is onlytentatively explained. The antimicrobial action of AgNPs can be categorized in two types: the inhibitory action and bactericidal action. In the former strategy bacterial cells are not killed but their division is prevented whereas in the later bacterial cells will die due to the action of AgNP [58]. The antibacterial action mechanism of AgNP is summarized in Figure 4. The graphical presentation shown in Figure 4 is the result of bacterial growth loaded with AgNPs synthesized from different green sources. Probable mechanism leading the differential behavior in the cases "a" to "e" is shown on the right hand part. The reason behind the bacterial cells resuming their growth after certain period of inhibitory action in cases "b", "c", "d" respectively was assumed to due to the unaffected cells, which in turn promote the growth (figure shown in inset). On the other hand a complete inhibition/bactericidal effect as in the case "e" is attributed to the complete death of cells. A shift from inhibitory action to nearly bactericidal action was observed with an increase in concentration of AgNPs loading [78] [134]. The experimental support in the form of morphological changes and perforations in cell wall has been presented as shown in Figure 5. The mechanism behind the bactericidal action of AgNP was illustrated by release of Ag⁺ ions, which serves as reservoirs for anti-microbial action [111]. The Ag⁺ cations produced interacts with the negative charge on the cell wall and affects the membrane permeability. The nano-silver cations which have greater affinity towards sulphur and phosphorus containing compounds present in the outer membrane, respiratory enzymes, proteins and DNA, penetrate through the cell wall and plasma membrane by destabilizing them and cause protein denaturation by dissipating proton motive force, respiratory inhibition, intracellular ATP depletion

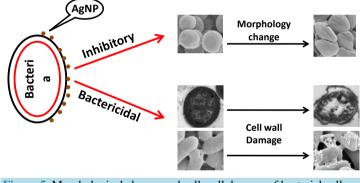


Figure 5. Morphological change and cell wall damage of bacterial cell.

and DNA damage. The above stated mechanism is in agreement with the reports of many authors [64] [72] [75] [78] [95] [98].

7.3. Anti-Fungal Action

The AgNPs exhibited antifungal action against various fungi [50] [98]. Actual mechanism behind the antifungal activity is not fully. The disrupting the structure of the cell membrane by destructing the membrane integrity, thereby the inhibition of the budding process has been attributed to be responsible for the antifungal action of AgNPs against *C. albanicans* species [150]. The shape of the AgNPs has a significant effect on the anti-microbial activity [151]

7.4. Anti-Parasitic Action

The AgNPs have been found to be effective larvicidal agents against dengue vector *Aedes aegypt* [96], and *Culex quinquefasciatus* [39], filariasis vector *C. quinquefasciatus* [120] and malarial vector *A. subpictus* [70], *Aedes aegypti* [116], *A. subpictu* [120] and other parasites [36] [152]. No attempt has been made to propose a

proper mechanism for anti-parasitic action of AgNPs. Denaturation of sulfur containing proteins and phosphorus containing DNA by AgNPs, leading to denaturation of organelles and enzymes is believed to be responsible for the larvicidal activity [117].

7.5. Anti-Fouling Action

The AgNPs synthesized from *Rhizopus oryzae* fungal species have been used for treating contaminated water and adsorption of pesticides [76] and that from *Lactobacillus fermentum* cells have been used as anti-bio fouling agent [134]. The AgNPs are being used to treat many environmental concerns like; air disinfection, water disinfection, ground water and biological water disinfection and surface disinfection [153].

7.6. Other Applications

There have been several reports on the use of AgNPs in the field of medicine. The AgNPs have been used as therapeutic agents [97], as glyconano sensors for disease diagnosis [63] and as nano carriers for drugs delivery [142]. Reports are also available on the use of AgNPs in radiation therapy [145], in H₂O₂ sensor [80], in ESR-Dosimetry [146], as heavy metal ion sensors [110] and as catalyst for reduction of dyes such as methylene blue [31].

8. Conclusion

Sufficient volume of published literature is available on the synthesis of AgNPs through green routes. Among plants, angiosperm species has been widely used in comparison with the other sources. Several characterizations methods and techniques have been used for AgNPs synthesis and confirmation. The AgNPs synthesized using biological reducing and capping agents have shown wide variation in shape and size. Among applications, the anti-microbial action of AgNPs has been widely studied. Various methods used to carry out antibacterial study and elucidate mechanism of anti-microbial have been developed. The results, however, are conflicting and there is a need for more work to resolve this issue. The potential of AgNPs for their use as drug carriers in cancer therapy, as biosensors for metabolites and pollutants, as catalyst etc. is quite high and requires intensive and integrated research activity for harnessing it.

Acknowledgements

One of the Authors (SNU) is grateful to the Department of Atomic Energy, GoI, Mumbai for the award of Raja Ramanna fellowship. The financial support to DDG in the form of Dr DS Kothari Postdoc fellowship from the UGC, New Delhi is gratefully acknowledged. Authors are also grateful to Head of the Department of Chemical Engineering and Technology, IIT (BHU) for providing necessary encouragement and facilities.

References

- Mody, V.V., Siwale, R., Singh, A. and Mody H.R. (2010) Introduction to Metallic Nanoparticles. *Journal of Pharmacy and Bioallied Sciences*, 2, 282-289. <u>http://dx.doi.org/10.4103/0975-7406.72127</u>
- [2] Sharma. V.K., Yngard, R.A. and Lin, Y. (2009) Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. *Advances in Colloid and Interface Science*, **145**, 83-96. <u>http://dx.doi.org/10.1016/j.cis.2008.09.002</u>
- [3] Grier, N. (1968) Silver and Its Compounds. In: Block, S.S., Ed., *Disinfection, Sterilization and Preservation*, Lee and Febiger, Philadelphia, 375-398.
- [4] Hill, W.R. and Pillsbury, D.M. (1939) Argyria—The Pharmacology of Silver. Williams and Williams, Baltimore.
- [5] Galib, B.M., Mashru, M., Jagtap, C., Patgiri, B.J. and Prajapati, P.K. (2011) Therapeutic Potentials of Metals in Ancient India: A Review through Charaka Samhita. *Journal of Ayurveda and Integrative Medicine*, 2, 55-63. http://dx.doi.org/10.4103/0975-9476.82523
- [6] Chaloupka, K., Malam, Y. and Seifalian, A.M. (2010) Nanosilver as a New Generation of Nanoproduct in Biomedical Applications. *Trends in Bioethanology*, **28**, 580-588.
- [7] Prow, T.W., Grice, J.E., Lin, L.L., Faye, R., Butler, M., Becker, W., Wurm, E.M.T., Yoong, C., Robertson, T.A., Soyer, H.P. and Roberts, M.S. (2011) Nanoparticles and Microparticles for Skin Drug Delivery. *Advanced Drug Delivery Reviews*, 63, 470-491. <u>http://dx.doi.org/10.1016/j.addr.2011.01.012</u>

- [8] Dankovich, T.A. and Gray, D.G. (2011) Bactericidal Paper Impregnated with Silver Nanoparticles for Point-of-Use Water Treatment. *Environmental Science & Technology*, 45, 1992-1998. <u>http://dx.doi.org/10.1021/es103302t</u>
- [9] Nair, R., Varghese, S.H., Nair. B.G., Maekawa. T., Yoshida, Y. and Sakthi Kumar, D. (2010) Nanoparticulate Material Delivery to Plants. *Plant Science*, **179**, 154-163. <u>http://dx.doi.org/10.1016/j.plantsci.2010.04.012</u>
- [10] Park, K., Seo, D. and Lee, J. (2008) Conductivity of Silver Paste Prepared from Nanoparticles. *Colloids and Surfaces A*, 313, 351. <u>http://dx.doi.org/10.1016/j.colsurfa.2007.04.147</u>
- [11] Khan, Z., Al-Thabaiti, S.A., Obaid, A.Y. and Al-Youbi, A.O. (2011) Preparation and Characterization of Silver Nanoparticles by Chemical Reduction Method. *Colloids and Surfaces B: Biointerfaces*, 82, 513-517. http://dx.doi.org/10.1016/j.colsurfb.2010.10.008
- [12] Chen, P., Song, L.Y. and Liu, Y.K. (2007) Synthesis of Silver Nanoparticles by Gamma-Ray Irradiation in Acetic Water Solution Containing Chitosan. *Radiation Physics and Chemistry*, 76, 1165-1168. <u>http://dx.doi.org/10.1016/j.radphyschem.2006.11.012</u>
- [13] Zhang, W.Z., Qiao, X.L. and Chen, J.G. (2006) Synthesis and Characterization of Silver Nanoparticles in AOT Micro-Emulsion System. *Chemical Physics*, **300**, 495-500. <u>http://dx.doi.org/10.1016/j.chemphys.2006.09.029</u>
- [14] Reicha, F.M., Sarhan, A., Abdel-Hamid, M.I. and El-Sherbiny, I.M. (2012) Preparation of Silver Nanoparticles in the Presence of Chitosan by Electrochemical Method. *Carbohydrate Polymers*, 89, 236-244. http://dx.doi.org/10.1016/j.carbpol.2012.03.002
- [15] Abid, J.P., Wark, A.W., Brevetm, P.F. and Girault, H.H. (2002) Preparation of Silver Nanoparticles in Solution from a Silver Salt by Laser Irradiation. *Chemical Communications*, 7, 792-793. <u>http://dx.doi.org/10.1039/b200272h</u>
- [16] Yang, J. and Pan, J. (2012) Hydrothermal Synthesis of Silver Nanoparticles by Sodium Alginate and Their Applications in Surface-Enhanced Raman Scattering and Catalysis. *Acta Materialia*, 60, 4753-4758. http://dx.doi.org/10.1016/j.actamat.2012.05.037
- [17] Khan, A., El-Toni, A.M., Alrokayan, S., Alsalhi, M., Alhoshan, M. and Aldwayyan, A.S. (2011) Microwave-Assisted Synthesis of Silver Nanoparticles Using Poly-N Isopropyl Acrylamide/Acrylic Acid Microgel Particles. *Colloids and* Surfaces A: Physicochemical and Engineering Aspects, 377, 356-360. <u>http://dx.doi.org/10.1016/j.colsurfa.2011.01.042</u>
- [18] Alarcon, E.I., Udekwu, K., Skog, M., Pacioni, N.L., Stamplecoskie, K.G., González-Béjar, M., et al. (2012) The Biocompatibility and Antibacterial Properties of Collagen-Stabilized, Photochemically Prepared Silver Nanoparticles. *Biomaterials*, 33, 4947-4956. <u>http://dx.doi.org/10.1016/j.biomaterials.2012.03.033</u>
- [19] Song, J.Y. and Kim, B.S. (2009) Rapid Biological Synthesis of Silver Nanoparticles Using Plant Leaf Extracts. *Bioprocess and Biosystems Engineering*, 32, 79-84. <u>http://dx.doi.org/10.1007/s00449-008-0224-6</u>
- [20] Huang, H. and Yang, X. (2004) Synthesis of Polysaccharide-Stabilized Gold and Silver Nanoparticles: A Green Method. *Carbohydrate Research*, 339, 2627-2631. <u>http://dx.doi.org/10.1016/j.carres.2004.08.005</u>
- [21] Philip, D. (2010) Honey Mediated Green Synthesis of Silver Nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75, 1078-1081. <u>http://dx.doi.org/10.1016/j.saa.2009.12.058</u>
- [22] Philip, D. (2010) Rapid Green Synthesis of Spherical Gold Nanoparticles Using *Mangifera indica* Leaf. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **77**, 807-810. <u>http://dx.doi.org/10.1016/j.saa.2010.08.008</u>
- [23] Mittal, A.K., Chisti, Y. and Banerjee, U.C. (2013) Synthesis of Metallic Nanoparticles Using Plant Extracts. *Biotechnology Advances*, **31**, 346-356. <u>http://dx.doi.org/10.1016/j.biotechadv.2013.01.003</u>
- [24] Prabhu, S. and Polusu, E.K. (2012) Silver Nanoparticles: Mechanism of Antimicrobial Action, Synthesis, Medical Applications and Toxicity Affects. *International Nano Letters*, 2, 32. <u>http://dx.doi.org/10.1186/2228-5326-2-32</u>
- [25] Gopinath, S.M., Saha, N.S., John, V.J., Khanum, N.S., Ganesh, S. and Patil, G.M.A. (2013) Biological Synthesis, Characterization and Application of Silver Nanoparticles. *International Journal of Pharmaceutical Applications*, 4, 19-28.
- [26] Geoprincy, G., Srri, B.N.V., Poonguzhali, U., Gandhi, N.N. and Renganthan, S.A. (2013) Review on Green Synthesis of Silver Nanoparticles. *Asian Journal of Pharmaceutical and Clinical Research*, **6**, 8-12.
- [27] Kaler, A., Patel, N. and Banerjee, U.C. (2010) Green Synthesis of Silver Nanoparticles. Current Research and Information on Pharmaceutical Science, 11, 68-71.
- [28] Vijaykumar, P.P.N., Pammi, S.V.N., Kollu, P., Satyanarayana, K.V.V. and Shameem, U. (2014) Green Synthesis and Characterization of Silver Nanoparticles Using *Boerhaavia diffusa* Plant Extract and Their Antibacterial Activity. *Industrial Crops and Products*, **52**, 562-566. <u>http://dx.doi.org/10.1016/j.indcrop.2013.10.050</u>
- [29] Anuj, S.A. and Ishnava, K.B. (2013) Plant Mediated Synthesis of Silver Nanoparticles Using Dried Stem Powder of *Tinospora cordifolia*, Its Antibacterial Activity and Its Comparison with Antibiotics. *International Journal of Pharmacy and Biological Sciences*, 4, 849-863.
- [30] Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A. and Sastry, M. (2006) Synthesis of Gold Nanotriangles and

Silver Nanoparticles Using *Aloe vera* Plant Extract. *Biotechnology Progress*, **22**, 577-583. <u>http://dx.doi.org/10.1021/bp0501423</u>

- [31] Edison, T.J.I. and Sethuraman, M.G. (2012) Instant Green Synthesis of Silver Nanoparticles Using *Terminalia chebula* Fruit Extract and Evaluation of Their Catalytic Activity on Reduction of Methylene Blue. *Process Biochemistry*, 47, 1351-1357. <u>http://dx.doi.org/10.1016/j.procbio.2012.04.025</u>
- [32] Mukunthan, K.S., Elumalai, E.K., Patel, E.N. and Murty, V.R. (2011) *Catharanthus roseus*: A Natural Source for Synthesis of Silver Nanoparticles. *Asian Pacific Journal of Tropical Biomedicine*, 1, 270-274. http://dx.doi.org/10.1016/S2221-1691(11)60041-5
- [33] Patil, R.S., Kokate, M.R. and Kolekar, S.S. (2012) Bioinspired Synthesis of Highly Stabilized Silver Nanoparticles Using Ocimum tenuiflorum Leaf Extract and Their Antibacterial Activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 234-238. http://dx.doi.org/10.1016/j.saa.2012.02.009
- [34] Tripathi, A., Chandrasekaran, N., Raichur, A.M. and Mukherjee, A. (2009) Antibacterial Applications of Silver Nanoparticles Synthesized by Aqueous Extract of *Azadirachta indica* (Neem) Leaves. *Journal of Biomedical Nanotechnol*ogy, 5, 93-98. <u>http://dx.doi.org/10.1166/jbn.2009.038</u>
- [35] Ankamwar, B., Damle, C., Ahmad, A. and Sastry, M. (2005) Biosynthesis of Gold and Silver Nanoparticles Using *Emblica officinalis* Fruit Extract, Their Phase Transfer and Transmetallation in an Organic Solution. *Journal of Nanoscience and Nanotechnology*, 5, 1665-1671. <u>http://dx.doi.org/10.1166/jnn.2005.184</u>
- [36] Roopan, S.M., Rohit, Madhumitha, G., Rahuman, A.A., Kamraj, C., Bharathi, A. and Surendra, T.V. (2013) Low-Cost and Eco-Friendly Phyto-Synthesis of Silver Nanoparticles Using *Coos nucifera* Coir Extract and Its Larvicidal Activity.*Industrial Crops and Products*, 43, 631-635. <u>http://dx.doi.org/10.1016/j.indcrop.2012.08.013</u>
- [37] Shukla, V.K., Singh, R.P. and Pandey, A.C. (2010) Black Pepper Assisted Biomimetic Synthesis of Silver Nanoparticles. *Journal of Alloys and Compounds*, 507, L13-L16. <u>http://dx.doi.org/10.1016/j.jallcom.2010.07.156</u>
- [38] Satishkumar, M., Sneha, K., Won, S.W., Cho, C.W., Kim, S. and Yun, Y.S. (2009)*Cinnamon zeylancium* Bark Extract and Powder Mediated Green Synthesis of Nano-Crystalline Silver Particles and Its Antibacterial Activity. *Colloids and Surfaces B: Biointerfaces*, 73, 332-338. <u>http://dx.doi.org/10.1016/j.colsurfb.2009.06.005</u>
- [39] Mondal, N.K., Chaudhury, A., Mukhopadhya, P., Chatterjee, S., Das, K. and Datta, J.K. (2014) Green Synthesis of Silver Nanoparticles and Its Application for Mosquito Control. Asian Pacific Journal of Tropical Disease, 4, S204-S210. <u>http://dx.doi.org/10.1016/s2222-1808(14)60440-0</u>
- [40] Rao, P., Chandraprasad, M.S., Lakshmi, Y.N., Rao, J., Aishwarya, P. and Shetty, S. (2014) Biosynthesis of Silver Nanoparticles Using Lemon Extract and Its Antibacterial Activity. *International Journal of Multidisciplinary and Current Research*, 2, 165-169.
- [41] Elumalai, E.K., Kayalvizhi, K. and Silvan, S. (2014) Coconut Water Assisted Green Synthesis of Silver Nanoparticles. *Journal of Pharmacy & Bioallied Sciences*, 6, 241-245. <u>http://dx.doi.org/10.4103/0975-7406.142953</u>
- [42] Shankar, S.S., Ahmad, A. and Sastry, M. (2003) Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles. *Biotechnology Progress*, 19, 1627-1631. <u>http://dx.doi.org/10.1021/bp034070w</u>
- [43] Sadeghi, B., Rostami, A. and Momei, S.S. (2015) Facile Green Synthesis of Silver Nanoparticles Using Seed Aqueous Extract of *Pistacia atlantica* and Its Antibacterial Activity. *Spectrochimica Acta Part A: Molecular and Biomolecular* Spectroscopy, 134, 326-332. <u>http://dx.doi.org/10.1016/j.saa.2014.05.078</u>
- [44] Sadeghi, B. and Gholamhoseinpoor, F. (2015) A Study on Stability and Green Synthesis of Silver Nanoparticles Using Ziziphora tenuior (Zt) Extract at Room Temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134, 310-315. <u>http://dx.doi.org/10.1016/j.saa.2014.06.046</u>
- [45] Rahimi-Nasrabadi, M., Pourmortazavi, S.M., Shandiz, S.A.S., Ahmadi, F. and Batooli, H. (2014)Green Synthesis of Silver Nanoparticles Using *Eucalyptus leucoxylon* Leaves Extract and Evaluating the Antioxidant Activities of the Extract. *Natural Product Research*, 28, 1964-1969. <u>http://dx.doi.org/10.1080/14786419.2014.918124</u>
- [46] Shafaghat, A. (2014) Synthesis and Characterization of Silver Nanoparticles by Phytosynthesis Method and Their Biological Activity. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45, 381-387. http://dx.doi.org/10.1080/15533174.2013.819900
- [47] Kulkarni, A.P., Srivastava, A.A., Nagalgaon, R.K. and Zunjarrao, R.S. (2012) Phytofabrication of Silver Nanoparticles from a Novel Plant Source and Its Application. *International Journal of Biological & Pharmaceutical Research*, 3, 417-421.
- [48] Logeswari, P., Silambarasan, J. and Abraham, J. (2015) Synthesis of Silver Nanoparticles Using Plants Extract and Analysis of Their Antimicrobial Property. *Journal of Saudi Chemical Society*, **19**, 311-317. http://dx.doi.org/10.1016/j.jscs.2012.04.007
- [49] Rajesh, S., Raja, D.P., Rathi, J.M. and Sahayaraj, K. (2012) Biosynthesis of Silver Nanoparticles Using Ulva fasciata (Delile) Ethyl Acetate Extract and Its Activity against Xanthomonas campestris pv. Malvacearum. Journal of Biopesti-

cides, 5, 119-128.

- [50] Bankar, A., Joshi, B., Kumar, A.R. and Zinjarde, S. (2010) Banana Peel Extract Mediated Novel Route or the Synthesis of Silver Nanoparticles. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 368, 58-63. http://dx.doi.org/10.1016/j.colsurfa.2010.07.024
- [51] Patete, J.M., Peng, X., Koenigsmann, C., Xu, Y., Karn, B. and Wong, S.S. (2011) Viable Methods or the Synthesis of High Quality Nanostructures. *Green Chemistry*, 13, 482-519. <u>http://dx.doi.org/10.1039/c0gc00516a</u>
- [52] Mukherjee, P., Ahmad, A., Mandal, D.D., Senapati, S., Sainkar, S.R., Khan, M.I., Parishcha, R., Ajaykumar, P.V., Alam, M., Kumar, R. and Sastry, M. (2001) Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. *Nano Letters*, 1, 515-519. http://dx.doi.org/10.1021/nl0155274
- [53] Ajitha, B., Redd, Y.A.K. and Reddy, P.S. (2014) Biosynthesis of Silver Nanoparticles Using *Plectranthus amboinicus* Leaf Extract and Its Antimicrobial Activity. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 128, 257-262. <u>http://dx.doi.org/10.1016/j.saa.2014.02.105</u>
- [54] Bhainsa, K.C. and D'souza, S.F. (2006) Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Aspergillus fumigates. Colloids and Surfaces B: Biointerfaces, 47, 160-164. <u>http://dx.doi.org/10.1016/j.colsurfb.2005.11.026</u>
- [55] Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Kham, M.I., Kumar, R. and Sastry, M. (2003) Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus *Fusarium oxysporum*. *Colloids and Surfaces B: Biointerfaces*, 28, 313-318. <u>http://dx.doi.org/10.1016/S0927-7765(02)00174-1</u>
- [56] Duran, N., Marcato, P.D., Alves, O.L., De Souza, D.I.H. and Esposito, E. (2005) Mechanistic Aspect of Biosynthesis of Silver Nanoparticles by Several *Fusarium oxysporum* Species. *Journal of Nanobiotechnology*, 3, 8. http://dx.doi.org/10.1186/1477-3155-3-8
- [57] Ingle, A., Rai, M., Gade, A. and Bawaskar, M. (2009) Fusarium solani: A Novel Biological Agent for the Extracellular Synthesis of Silver Nanoparticles. Journal of Nanoparticle Research, 11, 2079-2085. http://dx.doi.org/10.1007/s11051-008-9573-y
- [58] Perni, S., Hakala, V. and Prokopovich, K. (2014) Biogenic Synthesis of Antimicrobial Silver Nanoparticles Caped with L-Cystine. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 460, 219-224.
- [59] Shahverdi, A.R., Minaeian, S., Shahverdi, H.R., Jamalifar, H. and Nohi, A.-A. (2007) Rapid Synthesis of Silver Nanoparticles Using Cultural Supernatants of *Enterobacteria*: A Novel Biological Approach. *Process Biochemistry*, 42, 919-923. http://dx.doi.org/10.1016/j.procbio.2007.02.005
- [60] Ortega-Arroyo, L., Martin-Martinez, E.S., Aguilar-Mendez, M.A., Cruz-Orea, A., Hernandez-Perez, I. and Glorieux, C.(2013) Green Synthesis Method of Silver Nanoparticles Using Starch as Capping Agent Applied the Methodology of Surface Response. *Starch/Starke*, 65, 814-821. <u>http://dx.doi.org/10.1002/star.201200255</u>
- [61] Morales-Sanchez, E., Guajardo-Pacheco, J., Noriega-Trevino, M., Quintero-Gonzalez, C., Compean-Jasso, M., Lopez-Salinas, F., Gonzalez-Hernandez, J. and Ruiz, F. (2011) Synthesis of Silver Nanoparticles Using Albumin as Reducing Agent. *Materials Sciences and Applications*, 2, 578-581. <u>http://dx.doi.org/10.4236/msa.2011.26077</u>
- [62] Kora, A.J., Sashidhar, R.B. and Arunachalam, J. (2010) Gum Kondagogu (*Cochlospermum gossypium*): A Template for Green Synthesis and Stabilization of Silver Nanoparticles with Antibacterial Application. *Carbohydrate Polymers*, 82, 670-679. <u>http://dx.doi.org/10.1016/j.carbpol.2010.05.034</u>
- [63] Sastry, M., Mayyaa, K.S. and Bandyopadhyay, K. (1997) pH Dependent Changes in the Optical Properties of Carboxylic Acid Derivatized Silver Colloid Particles. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 127, 221-228. <u>http://dx.doi.org/10.1016/S0927-7757(97)00087-3</u>
- [64] Jagtap, U.B. and Bapat, V.A. (2013) Green Synthesis of Silver Nanoparticles Using Artocarpus heterophyllus Lam. Seed Extract and Its Antibacterial Activity. Industrial Crops and Products, 46, 132-137. <u>http://dx.doi.org/10.1016/j.indcrop.2013.01.019</u>
- [65] Vijayaraghavan, K., Nalini, S.P.K., Prakash, N.U. and Madhankumar, D. (2012) One Step Green Synthesis of Silver nano/Micro Particles Using Extracts of *Trahyspermum ammi* and *Papaver somniferum*. Colloids and Surfaces B: Biointerfaces, 94, 114-117. <u>http://dx.doi.org/10.1016/j.colsurfb.2012.01.026</u>
- [66] Vigneswaran, N., Ashtaputre, N.M., Varadarajan, P.V., Nachane, R.P., Paralikar, K.M. and Balasubramanya, R.H. (2007) Biological Synthesis of Silver Nanoparticles Using the Fungus Aspergillus flavus. Materials Letters, 61, 1413-1418. <u>http://dx.doi.org/10.1016/j.matlet.2006.07.042</u>
- [67] Vigneshwaran, N., Kathe, A.A., Varadarajan, P.V., Nachane, R.P. and Balasubramanya, R.H. (2006) Biomimitics of Silver Nanoparticles by White Rot Fungus. *Colloids and Surfaces B: Biointerfaces*, 53, 55-59. http://dx.doi.org/10.1016/j.colsurfb.2006.07.014
- [68] Kaviya, S., Santhanalakshmi, J. and Viswanathan, B. (2012) Biosynthesis of Silver Nanoflakes by Crossandra infundibuliformis Leaf Extract. Materials Letters, 67, 64-66. <u>http://dx.doi.org/10.1016/j.matlet.2011.09.023</u>

- [69] Sreekanth, T.V.M., Nagajyothi, P.C. and Lee, K.D. (2012) Dioscorea Batatas Rhizome-Assisted Rapid Biogenic Synthesis of Silver and Gold Nanoparticles. *Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry*, 42, 567-572. <u>http://dx.doi.org/10.1080/15533174.2011.613886</u>
- [70] Rajakumar, G. and Rahuman, A.A. (2011) Larvaidal Activity of Synthesized Silver Nanoparticles Using *Eclipta pro-strata* Leaf Extract against Filariasis and Malaria Vectors. *Acta Tropica*, **118**, 196-203. http://dx.doi.org/10.1016/j.actatropica.2011.03.003
- [71] Sant, D.G., Gujarathi, T.R., Harne, S.R., Ghosh, S., Kitture, R., Kale, S., Chopade, B.A. and Pardesi, K.R. (2013) *Adiantum phillipenseL*. Frond Assisted Rapid Green Synthesis of Gold and Silver Nanoparticles. *Journal of Nanoparticles*, 2013, Article ID: 182320.
- [72] Satishkumar, G., Gobinath, G., Karpagam, K., Hemamalini, V., Premkumar, K. and Sivaramakrishna, S. (2012) Phyto-Synthesis of Silver Nanoscale Particles Using *Morinda citifolia* L. and Its Inhibitory Action against Human Pathogens. *Colloids and Surfaces B: Biointerfaces*, 95, 235-240. <u>http://dx.doi.org/10.1016/j.colsurfb.2012.03.001</u>
- [73] Jha, A.K., Prasad, K., Prasad, K. and Kulkarni, A.R. (2009) Plant System: Natures Nanofactory. *Colloids and Surfaces B: Biointerfaces*, 73, 219-223. <u>http://dx.doi.org/10.1016/j.colsurfb.2009.05.018</u>
- [74] Yang, N. and Li, W.H. (2013) Mango Peel Extract Mediated Novel Route or Synthesis of Silver Nanoparticles and Antibacterial Application of Silver Nanoparticles Loaded onto Non-Woven Fibers. *Industrial Crops and Products*, 48, 81-88. <u>http://dx.doi.org/10.1016/j.indcrop.2013.04.001</u>
- [75] Khalil, M.M.H., Ismail, E.H., El-Bhaghdady, K.Z. and Mohamed, D. (2014) Green Synthesis of Silver Nanoparticles Using Olive Leaf Extract and Its Antibacterial Activity. *Arabian Journal of Chemistry*, 7, 1131-1139.
- [76] Das, S.K., Khan, M.M.R., Guha, A.K., Das, A.K. and Mandal, A.B. (2012) Silver-NanoBiohybrid Material: Synthesis, Characterization and Application in Water Purification. *Bioresource Technology*, **124**, 495-499. <u>http://dx.doi.org/10.1016/j.biortech.2012.08.071</u>
- [77] Ashraf, S., Abbasi, A.Z., Pfeiffer, C., Hussain, S.Z., Khalid, Z.M., Gil, P.R., Parak, W.J. and Hussain, I. (2013) Protein-Mediated Synthesis, pH-Induced Reversible Agglomeration, Toxicity and Cellular Interaction of Silver Nanoparticles. *Colloids and Surfaces B: Biointerfaces*, **102**, 511-518. <u>http://dx.doi.org/10.1016/j.colsurfb.2012.09.032</u>
- [78] Dehnavi, A.S., Raisi, A. and Aroujalian, A. (2013) Control Size and Stability of Colloidal Silver Nanoparticles with Antibacterial Activity Prepared by a Green Synthesis Method. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 43, 543-551. <u>http://dx.doi.org/10.1080/15533174.2012.741182</u>
- [79] Dubey, S.P., Lahtinen, M. and Sillianpaa, M. (2010) Tansy Fruit Mediated Greener Synthesis of Silver and Gold Nanoparticles. *Process Biochemistry*, 45, 1065-1071.<u>http://dx.doi.org/10.1016/j.procbio.2010.03.024</u>
- [80] Tagad, C.K., Dugasani, S.R., Aiyer, R., Park, S., Kulkarni, A. and Sabharwal, S. (2013)Green Synthesis of Silver Nanoparticles and Their Application for the Development of Optical Fiber Based Hydrogen Peroxide Sensor. *Sensors and Actuators B: Chemical*, 183, 144-149. <u>http://dx.doi.org/10.1016/j.snb.2013.03.106</u>
- [81] El-Rafie, M.H., El-Nagger, M.E., Ramadan, M.A., Fouda, M.M.G., Al Deyab, S.S. and Hebeish, A. (2011) Environmental Synthesis of Silver Nanoparticles Using Hydroxypropyl Starch and Their Characterization. *Carbohydrate Polymers*, 86, 630-635. <u>http://dx.doi.org/10.1016/j.carbpol.2011.04.088</u>
- [82] Fayaz, A.M., Balaji, K., Kalaichelvan, P.T. and Venkatesan, R. (2009) Fungal Based Synthesis of Silver Nanoparticles—An Effect of Temperature on the Size of Particles. *Colloids and Surfaces B: Biointerfaces*, 74, 123-126. http://dx.doi.org/10.1016/j.colsurfb.2009.07.002
- [83] Zonnoz, N.F. and Salouti, M. (2011) Extracellular Biosynthesis of Silver Nanoparticles Using Cell Filtrate of Streptomyces sp. ERI-3. Scientia Iranica, 18, 1631-1635. <u>http://dx.doi.org/10.1016/j.scient.2011.11.029</u>
- [84] Kathiraven, T., Sundaramanickam, A., Shanmugam, N. and Balasubramanian, T. (2014) Green Synthesis of Silver Nanoparticles Using Marine Algae *Caulerpa resmosa* and Their Anti-Baterial Activity against Some Human Pathogens. *Applied Nanoscience*, 5, 499-504. <u>http://dx.doi.org/10.1007/s13204-014-0341-2</u>
- [85] Vivek, M., Kumar, P.S., Steffi, S. and Sudha, S. (2011) Biogenic Silver Nanoparticles by *Gelidiella acerosa* Extract and Their Antifungal Effects. *Avicenna Journal of Medical Biotechnology*, **3**, 143-148.
- [86] Govindaraju, K., Kiruthiga, V., Kumar, V.G. and Singaravelu, G.(2009) Extracellular Synthesis of Silver Nanoparticles by Marine Algae, *Sargassum wightii* Grevilli and Their Antibacterial Effects. *Journal of Nanoscience and Nanotechnology*, 9, 5497-5501. http://dx.doi.org/10.1166/jnn.2009.1199
- [87] Srivastava, A.A., Kulkarni, A.P., Harpale, P.M. and Zunjarrao, R.S. (2011) Plant Mediated Synthesis of Silver Nanoparticles Using a Bryophyte: *Fissidens minutes* and Its Anti-Microbial Activity. *International Journal of Engineering Science and Technology*, 3, 8342-8347.
- [88] Kulkarni, A.P., Srivastava, A.A., Harpale, P.M. and Zunjarrao, R.S. (2011) Plant Mediated Synthesis of Silver Nanoparticles—Tapping the Unexploited Resources. *Journal of Natural Product and Plant Resources*, 1, 100-107.
- [89] Britto, J.D., Gracelin, D.H.S. and Kumar, P.B.J.R. (2014) Antibacterial Activity of Silver Nanoparticles Synthesized

from a Few Medicinal Ferns. International Journal of Pharmaceutical Research and Development, 6, 25-29.

- [90] Bhor, G., Maskare, S., Hinge, S., Singh, L. and Nalwade, A. (2014) Synthesis of Silver Nanoparticles Using Leaflet Extract of *Nephrolepi sexaltata* L. and Evaluation Antibacterial Activity against Human and Plant Pathogenic Bacteria. *Asian Journal of Pharmaceutical Technology and Innovation*, 2.
- [91] Nalwade, A.R., Badhe, M.N., Pawale, C.B. and Hinge, S.B. (2013) Rapid Biosynthesis of Silver Nanoparticles Using Fern Leaflet Extract and Evaluation of Their Antibacterial Activity. *International Journal of Biological Technology*, 4, 12-18.
- [92] Kang, K.C., Kim, S.S., Baik, M.H., Choi, J.W. and Kwon, S.H. (2008) Synthesis of Silver Nanoparticles Using Green Chemical Method. Applied Chemistry, 12, 281-284.
- [93] Jha, A.K. and Prasad, K. (2010) Green Synthesis of Silver Nanoparticles Using Cycas Leaf. International Journal of Green Nanotechnology: Physics and Chemistry, 1, 110-117. <u>http://dx.doi.org/10.1080/19430871003684572</u>
- [94] Ashokkumar, S., Ravi, S., Kathiravan, V. and Velmurugan, S. (2015) Synthesis of Silver Nanoparticles Using A. indicum Leaf Extract and Their Antibacterial Activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134, 34-39. <u>http://dx.doi.org/10.1016/j.saa.2014.05.076</u>
- [95] Ajitha, A., Reddy, Y.A.K. and Reddy, P.S. (2014) Biogenic Nano-Scale Silver Particles by *Tephrosia purpurea* Leaf Extract and Their Inborn Antimicrobial Activity. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **121**, 164-172. <u>http://dx.doi.org/10.1016/j.saa.2013.10.077</u>
- [96] Suresh, P., Gunasekar, P.H., Kokila, D., Prabhu, D., Dinesh, D., Ravichandran, N., Ramesh, B., Koodalingam, A. and Siva, G.V.(2014) Green Synthesis of Silver Nanoparticles Using *Delphinium denundatum* Root Extract Exhibits Antibacterial and Mosquito Larvicidal Activities. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 127, 61-66. <u>http://dx.doi.org/10.1016/j.saa.2014.02.030</u>
- [97] Zuas, O., Hamim, N. and Sampora, Y.(2014) Bio-Synthesis of Silver Nanoparticles Using Water Extract of Myrmecodia pendan (Sarang Semut Plant). Materials Letters, 123, 156-159. <u>http://dx.doi.org/10.1016/j.matlet.2014.03.026</u>
- [98] Raut, R.W., Mendhulkar, V.D. and Kashid, S.B. (2014) Photosensitized Synthesis of Silver Nanoparticles Using Withania somnifera Leaf Powder and Silver Nitrate. Journal of Photochemistry and Photobiology B: Biology, 132, 45-55. http://dx.doi.org/10.1016/j.jphotobiol.2014.02.001
- [99] Singh, P.K., Bhardwaj, K., Dubey, P. and Prabhune, A. (2015) UV-Assisted Size Sampling and Antibacterial Screening of *Lantana camara* Leaf Extract Synthesized Silver Nanoparticles. *RSC Advances*, 5, 24513-24520. http://dx.doi.org/10.1039/C4RA17233G
- [100] Vimala, R.T.V., Satishkumar, G. and Sivramakrishnan, S. (2015) Optimization of Reaction Conditions to Fabricate Nano Silover Using *Couroupita guianensis* Aubel(Leaf & Fruit) and Its Enhanced Larvicidal Effects. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **135**, 110-115. <u>http://dx.doi.org/10.1016/j.saa.2014.06.009</u>
- [101] Zhang, Y., Cheng, X., Zhang, Y., Xue, X. and Fu, Y.(2013) Biosynthesis of Silver Nanoparticles at Room Temperature Using Aqueous Aloe Leaf Extract and Antibacterial Properties. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **423**, 63-68. http://dx.doi.org/10.1016/j.colsurfa.2013.01.059
- [102] Karuppiah, M. and Rajmohan, R. (2013) Green Synthesis of Silver Nanoparticles Using Ixora coccinea Leaves Extract. Materials Letters, 97, 141-143. <u>http://dx.doi.org/10.1016/j.matlet.2013.01.087</u>
- [103] Logeswari, P., Silambarasan, S. and Abraham, J. (2013) Ecofriendly Synthesis of Silver Nanoparticles from Commercially Available Plant Powders and Their Antibacterial Properties. *Scientia Iranica*, 20, 1049-1054.
- [104] Geethalakshmi, R. and Sarada, D.V.L.(2013) Characterization and Antimicrobial Activity of Gold and Silver Nanoparticles Synthesized Using Saponin Isolated from *Trianthema decendra* L. *Industrial Crops and Products*, 51, 107-115. <u>http://dx.doi.org/10.1016/j.indcrop.2013.08.055</u>
- [105] Yasin, S., Liu, L. and Yao, J. (2013) Biosynthesis of Silver Nanoparticles by Bamboo Leaves Extract and Their Antimicrobial Activity. *Journal of Fiber Bioengineering and Informatics*, 6, 77-84. <u>http://dx.doi.org/10.3993/jfbi03201307</u>
- [106] Rodriguez, L.E., Iniguez, P.R., Navarro, R.E., Herrera, U.R., Tanori, J., Iniguez, P.C. and Maldonado, A. (2013) Synthesis of Silver Nanoparticles Using Reducing Agents Obtained from Natural Sources (*Rumex hymenosepalus Extracts*). Nanoscale Research Letters, 8, 318. http://dx.doi.org/10.1186/1556-276X-8-318
- [107] Rajathi, K. and Sridhar, S. (2013) Green Synthesis of Silver Nanoparticles from the Medicinal Plant Wrightia tinctoria and Its Antimicrobial Potential. International Journal of ChemTech Research, 5, 1701-1713.
- [108] Kannan, R.R.R., Strik, W.A. and Staden, V. (2013) Synthesis of Silver Nanoparticles Using the Seaweed Codium capitatum P.C. Silva (Chlorophyceae). South African Journal of Botany, 86, 1-4. http://dx.doi.org/10.1016/j.sajb.2013.01.003
- [109] Natarajan, R.K., John Nayagam, A.A., Gurunagarajan, S., Muthukumar, Ekambaram, N. and Manimaran, A. (2013) *Elaeagnus indica* Mediated Green Synthesis of Silver Nanoparticles and Its Potent Toxicity against Human Pathogens.

Global Journal of Pharmacology, 7, 222-231.

- [110] Kirubaharan, C.J., Kalpana, D., Lee, Y.S., Kim, A.R., Yoo, D.J., Nahm, K.S. and Kumar, G.G.(2012) Biomediated Silver Nanoparticles for the Highly Selective Copper(II) Ion Sensor Applications. *Industrial and Engineering Chemi*stry Research, **51**, 7441-7446. <u>http://dx.doi.org/10.1021/ie3003232</u>
- [111] Gopinath, V., Mubarakali, D., Priyadarshini, S., Priyadharsshini, N.M., Thajuddin, N. and Velusamy, P. (2012) Biosynthesis of Silver Nanoparticles from *Tribulus terrestris* and Its Antimicrobial Activity: A Novel Biological Approach. *Colloids and Surfaces B: Biointerfaces*, 96, 69-74. <u>http://dx.doi.org/10.1016/j.colsurfb.2012.03.023</u>
- [112] Chaudhary, S., Paul, S. and Sagar, S. (2012) Biosynthesis of Silver Nanoparticles Using *Vitis vinifera* Extract and Evaluation of Their Antimicrobial Activity. *International Journal of Bio-Technology and Research*, **2**, 1-12.
- [113] Ashok Kumar, D. (2012) Rapid and Green Synthesis of Silver Nanoparticles Using the Leaf Extracts of Parthenium hysterophorus: A Novel Biological Approach. International Research Journal of Pharmacy, 3, 169-173.
- [114] Arunachalam, K.D., Annamalai, S.K., Arunachalam, A.M. and Kennedy, S. (2013) Green Synthesis of Crystalline Silver Nanoparticles Using Indigofera Aspalathoides-Medicinal Plant Extract for Wound Healing Applications. *Asian Journal of Chemistry*, 25, S311-S314.
- [115] Mubarakali, D., Thajuddin, N., Jeganathan, K. and Gunasekaran, M. (2011) Plant Extract Mediated Synthesis of Silver and Gold Nanoparticles and Its Antibacterial Activity against Clinically Isolated Pathogens. *Colloids and Surfaces B: Biointerfaces*, 85, 360-365. http://dx.doi.org/10.1016/j.colsurfb.2011.03.009
- [116] Kumar, V. and Yadav, S.K. (2011) Synthesis of Stable, Polyshaped Silver and Gold Nanoparticles Using Leaf Extract of *Lonicera japonica* L. *International Journal of Green Nanotechnology*, 3, 281-291. http://dx.doi.org/10.1080/19430892.2011.633474
- [117] Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Vijaykumar, V., Selvam, S., et al. (2011) Biosynthesis of Silver Nanoparticles Using Mangrove Plant Extract and Their Potential Mosquito Larvicidal Property. Asian Pacific Journal of Tropical Disease, 4, 799-803. http://dx.doi.org/10.1016/S1995-7645(11)60197-1
- [118] Rani, P.U. and Rajasekharreddy, P.(2011) Green Synthesis of Silver-Protein (Core-Shell) Nanoparticles Using Piper betel L. Leaf Extract and Its Ecotoxicological Studies on Daphnia manga. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389, 188-194. http://dx.doi.org/10.1016/j.colsurfa.2011.08.028
- [119] Veerasamy, R., Xin, T.Z., Gunasagaran, S., Xiang, T.F.W., Yang, E.F.C., Jeyakumar, N. and Dhanaraj, S.A. (2011) Biosynthesis Silver Nanoparticles Using Mangosteen Leaf Extract and Evaluation of Their Antimicrobial Activities. *Journal of Saudi Chemical Society*, 15, 113-120. <u>http://dx.doi.org/10.1016/j.jscs.2010.06.004</u>
- [120] Santoshkumar, T., Rahuman, A.A., Rajakumar, G., Marimuthu, S., Bagavan, A., Jayaseelan, C., Zahir, A.A., Elango, G. and Kamaraj, C. (2011) Synthesis of Silver Nanoparticles Using *Nelumbo nucifera* Leaf Extract and Its Larvicidal Activity against Malaria and Filariasis Vectors. *Parasitology Research*, **108**, 693-702. http://dx.doi.org/10.1007/s00436-010-2115-4
- [121] Ahmad, N., Sharma, S., Singh, V.N., Shamsi, S.F., Fatma, A. and Mehta, B.R. (2011) Biosynthesis of Silver Nanoparticles from *Desmodium triflorum*: A Novel Approach towards Weed Utilization. *Biotechnology Research International*, 2011, Article ID: 454090. http://dx.doi.org/10.4061/2011/454090
- [122] Prathna, T.C., Chandrasekaran, N., Raichur, A.M. and Mukherjee, A. (2011) Biomimetic Synthesis of Silver Nanoparticles by *Citrus limon* (Lemon) Aqueous Extract and Theoretical Prediction of Particle Size. *Colloids and Surfaces B: Biointerfaces*, 82, 152-159. http://dx.doi.org/10.1016/j.colsurfb.2010.08.036
- [123] Njagi, E.C., Huang, H., Stafford, L., Genuino, H., Galindo, H.M., Collins, J.B., Hoag, G.E. and Suib, S.L. (2011) Biosynthesis of Iron and Silver Nanoaparticles at Room Temperature Using Aqueous Sorghum Bran Extracts. *Langmuir*, 27, 264-271. <u>http://dx.doi.org/10.1021/la103190n</u>
- [124] Kumar, V., Yadav, S.C. and Yadav, S.K. (2010) Syzygium cumini Leaf Extract and Seed Extract Mediated Biosynthesis of Silver Nanoparticles and Their Characterization. Journal of Chemical Technology and Biotechnology, 85, 1301-1309. http://dx.doi.org/10.1002/jctb.2427
- [125] Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T. and Mohan, N. (2010) Synthesis of Silver Nanoparticles Using Aclypha indica Extracts and Its Antibacterial Activity against Water Borne Pathogens. Colloids and Surfaces B: Biointerfaces, 76, 50-56. <u>http://dx.doi.org/10.1016/j.colsurfb.2009.10.008</u>
- [126] Leela, A. and Vivekanandan, M. (2008) Tapping the Unexploited Plant Resources for the Synthesis of Silver Nanoparticles. African Journal of Biotechnology, 7, 31662-3165.
- [127] Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. (2004) Rapid Synthesis of Au, Ag and Bimetallic Au Core-Ag Shell Nanoparticles Using Neem (*Azadirachta indica*) Leaf Broth. *Journal of Colloid and Interface Science*, 275, 496-502. http://dx.doi.org/10.1016/j.jcis.2004.03.003
- [128] Naveen, K.S.H., Kumar, G., Karthik, L. and Rao, K.V.B. (2010) Extracellular Biosynthesis of Silver Nanoparticles Using the Filamentous Fungus *Penicillium* sp. *Archives of Applied Science Research*, 2, 161-167.

- [129] Balaji, D.S., Basavaraja, S., Deshpande, R., Mahesh, D.B., Prabhakar, B.K. and Venkataraman, A. (2009) Extracellular Biosynthesis of Functionalized Silver Nanoparticles by Strains of *Cladosporium cladosporioides* Fungus. *Colloids and Surfaces B: Biointerfaces*, 68, 88-92. <u>http://dx.doi.org/10.1016/j.colsurfb.2008.09.022</u>
- [130] Shaligram, N.S., Bule, M., Bhambure, R., Singhal, R.S., Singh, S.K., Szakacs, G. and Pandey, A. (2009) Biosynthesis of Silver Nanoparticles Using Aqueous Extract from the Compactin Producing Fungal Strain. *Process Biochemistry*, 44, 939-943. <u>http://dx.doi.org/10.1016/j.procbio.2009.04.009</u>
- [131] Kathiresan, K., Manivannan, S., Nabeel, M.A. and Dhivya, B. (2009) Studies on Silver Nanoparticles Synthesized by Marine Fungus, *Penicillium fellutanum* Isolated from Coastal Mangrove Sediment. *Colloids and Surfaces B: Biointerfaces*, **71**, 133-137. <u>http://dx.doi.org/10.1016/j.colsurfb.2009.01.016</u>
- [132] Basavaraja, S., Balaji, S.D., Lagashetty, A., Rajasab, A.H. and Venkataraman, A. (2008) Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus *Fusarium semitectum*. *Materials Research Bulletin*, 43, 1164-1170. http://dx.doi.org/10.1016/j.materresbull.2007.06.020
- [133] Senapati, S., Mandal, D., Ahmad, A., Khan, M.I., Sastry, M. and Kumar, R. (2004) Fungus Mediated Synthesis of Silver Nanoparticles: A Novel Biological Approach. *Indian Journal of Physics*, 78, 101-105.
- [134] Zhang, M., Zhang, K., Gusseme, B.D., Verstraete, W. and Field, R. (2014) The Antibacterial and Anti-Biofouling Performance of Biogenic Silver Nanoparticles by *Lactobacillus fermentum*. *Biofouling: The Journal of Bioadhesion and Biofilm Research*, 30, 347-357.<u>http://dx.doi.org/10.1080/08927014.2013.873419</u>
- [135] Deepak, V., Umamaheshwaran, P.S., Guhan, K., Nanthini, R.A., Krithiga, B., Jaithoon, N.M.H. and Gurunathan, S. (2011) Synthesis of Gold and Silver Nanoparticles Using Purified URAK. *Colloids and Surfaces B: Biointerfaces*, 86, 353-358.<u>http://dx.doi.org/10.1016/j.colsurfb.2011.04.019</u>
- [136] Kalishwaralal, K., Deepak, V., Pandian, S.R.K., Kottaisamy, M., Barathmanikanth, S., Kartikeyan, B. and Gurunathan, S. (2010) Biosynthesis of Silver and Gold Nanoparticles Using *Brevibacterium casei*. *Colloids and Surfaces B: Biointerfaces*, 77, 257-262. <u>http://dx.doi.org/10.1016/j.colsurfb.2010.02.007</u>
- [137] Babu, M.M.G. and Gunasekaran, P. (2009) Production and Structural Characterization of Crystalline Silver Nanoparticles from *Bacillus cereus* Isolate. *Colloids and Surfaces B: Biointerfaces*, 74, 191-195. http://dx.doi.org/10.1016/j.colsurfb.2009.07.016
- [138] Nanda, A. and Saravanan, M. (2009) Biosynthesis of Silver Nanoparticles from *Staphylococcus aureus* and Its Antimicrobial Activity against MRSA and MRSE. *Nanomedicine: Nanotechnology, Biology and Medicine*, 5, 452-456. <u>http://dx.doi.org/10.1016/j.nano.2009.01.012</u>
- [139] Kalimuthu, K., Babu, R.S., Venkataraman, D., Bilal, M. and Gurunathan, S. (2008) Biosynthesis of Silver Nanocrystals by *Bacillus licheniformis*. *Colloids and Surfaces B: Biointerfaces*, 65, 150-153. http://dx.doi.org/10.1016/j.colsurfb.2008.02.018
- [140] Juibari, M.M., Abbasalizadeh, S., Jouzani, G.S. and Noruzi, M. (2011) Intensified Biosynthesis of Silver Nanoparticles Using a Native Extremophilic Ureibacillus thermosphaerius Strain. Materials Letters, 65, 1014-1017. <u>http://dx.doi.org/10.1016/j.matlet.2010.12.056</u>
- [141] Gurunathan, S., Kalishwaralal, K., Vaidhyanathan, R., Deepak, V., Pandian, S.R.K., Muniyandi, J., Hariharan, N. and Eom, S.H.(2009) Biosynthesis, Purification and Characterization of Silver Nanoparticles Using *Escherichia coli. Colloids and Surfaces B: Biointerfaces*, 74, 328-335. <u>http://dx.doi.org/10.1016/j.colsurfb.2009.07.048</u>
- [142] Cheng, K.M., Hung, Y.W., Chen, C.C., Lin, C.C. and Yong, J.J. (2014) Green Synthesis of Chondroitin Sulfate-Capped Silver Nanoparticles: Characterization and Surface Modification. *Carbohydrate Polymers*, **110**, 195-202. <u>http://dx.doi.org/10.1016/j.carbpol.2014.03.053</u>
- [143] Chen, Q., Jiang, H., Ye, H., Li, J. and Huang, J. (2014) Preparation, Antibacterial, and Antioxidant Activities of Silver/Chitosan Composities. *Journal of Carbohydrate Chemistry*, 33, 298-312.
- [144] El-Rafie, H.M., El-Rafie, M.H. and Zahran, M.K. (2013) Green Synthesis of Silver Nanoparticles Using Polysaccharides Extracted from Marine Macro Algae. *Carbohydrate Polymers*, 96, 403-410. <u>http://dx.doi.org/10.1016/j.carbpol.2013.03.071</u>
- [145] Lu, R., Yang, D., Cui, D., Wang, Z. and Guo, L. (2012) Egg White-Mediated Green Synthesis of Silver Nanoparticles with Excellent Biocompatibility and Enhanced Radiation Effects on Cancer Cells. *International Journal of Nanomedicine*, 7, 2101-2107. <u>http://dx.doi.org/10.2147/IJN.S29762</u>
- [146] Guidelli, E.D., Ramos, A.P., Zaniquelli, M.E.D., Nicolucci, P. and Baffa, O. (2012) Synthesis of Silver Nanoparticles Using DL-Alanine for ESR Dosimetry Applications. *Radiation Physics and Chemistry*, 81, 301-307. http://dx.doi.org/10.1016/j.radphyschem.2011.10.020
- [147] Tanvir, S., Oudet, F., Pulvin, S. and Anderson, W.A.(2012) Coenzyme Based Synthesis of Silver Nanorystals. *Enzyme and Microbial Technology*, 51, 231-236. <u>http://dx.doi.org/10.1016/j.enzmictec.2012.07.002</u>
- [148] Bankura, K.P., Maity, D., Mollick, M.M.R., Mondal, D., Bhowmick, B., Bain, M.K., Chakraborty, A., Sarkar, J.,

Acharya, K. and Chattopadhyay, D. (2012) Synthesis, Characterization and Antimicrobial Activity of Dextran Stabilized Silver Nanoparticles in Aqueous Medium. *Carbohydrate Polymers*, **89**, 1159-1165. http://dx.doi.org/10.1016/j.carbpol.2012.03.089

- [149] Sasikala, D., Govindaraju, K., Tamilselvan, K. and Singaravelu, G. (2012) Soyabean Protein: A Natural Source for the Production of Green Silver Nanoparticles. *Biotechnology and Bioprocess Engineering*, 17, 1176-1181. http://dx.doi.org/10.1007/s12257-012-0021-6
- [150] Kim, K.J., Sung, W.S., Suh, B.K., Moon, S.K., Choi, J.S., Kim, J.G. and Lee, D.G. (2009) Antifungal Activity and Mode of Action of Silver Nanoparticles on *Candida albicans. Biometals*, 22, 235-242. http://dx.doi.org/10.1007/s10534-008-9159-2
- [151] Rai, M.K., Deshmukh, S.D., Ingle, A.P. and Gade, A.K. (2012) Silver Nanoparticles: The Powerful Nanoweapon against Multidrug-Resistant Bacteria. *Journal of Applied Microbiology*, **112**, 841-852. http://dx.doi.org/10.1111/j.1365-2672.2012.05253.x
- [152] Marimuthu, S., Rahuman, A.A., Rajakumar, G., Santhoshkumar, T., Kirthi, A.V., Jayaseelan, C., Bagavan, A., Zahir, A.A., Elango, G. and Kamaraj, C. (2011) Evaluation of Green Synthesized Silver Nanoparticles against Parasites. *Parasitology Research*, **108**, 1541-1549. <u>http://dx.doi.org/10.1007/s00436-010-2212-4</u>
- [153] Tran, Q.H., Nguyen, V.Q. and Le, A.T. (2013) Silver Nanoparticles: Synthesis, Properties, Toxicology, Applications and Perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, Article ID: 033001. <u>http://dx.doi.org/10.1088/2043-6262/4/3/033001</u>